NetCoMi: network construction and comparison for microbiome data in R

Abstract Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 4
Main Authors Peschel, Stefanie, Müller, Christian L, von Mutius, Erika, Boulesteix, Anne-Laure, Depner, Martin
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data. Results Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi’s wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children’s rooms between samples from two study centers (Ulm and Munich). Availability R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi. Contact Tel:+49 89 3187 43258; stefanie.peschel@mail.de Supplementary information Supplementary data are available at Briefings in Bioinformatics online.
AbstractList Abstract Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data. Results Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi’s wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children’s rooms between samples from two study centers (Ulm and Munich). Availability R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi. Contact Tel:+49 89 3187 43258; stefanie.peschel@mail.de Supplementary information Supplementary data are available at Briefings in Bioinformatics online.
Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data.MOTIVATIONEstimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data.Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi's wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children's rooms between samples from two study centers (Ulm and Munich).RESULTSHere, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi's wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children's rooms between samples from two study centers (Ulm and Munich).R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi.AVAILABILITYR scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi.Tel:+49 89 3187 43258; stefanie.peschel@mail.de.CONTACTTel:+49 89 3187 43258; stefanie.peschel@mail.de.Supplementary data are available at Briefings in Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Briefings in Bioinformatics online.
Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data. Results Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi’s wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children’s rooms between samples from two study centers (Ulm and Munich). Availability R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi. Contact Tel:+49 89 3187 43258; stefanie.peschel@mail.de Supplementary information Supplementary data are available at Briefings in Bioinformatics online.
Author Müller, Christian L
Peschel, Stefanie
Depner, Martin
von Mutius, Erika
Boulesteix, Anne-Laure
Author_xml – sequence: 1
  givenname: Stefanie
  surname: Peschel
  fullname: Peschel, Stefanie
  email: stefanie.peschel@mail.de
– sequence: 2
  givenname: Christian L
  surname: Müller
  fullname: Müller, Christian L
– sequence: 3
  givenname: Erika
  surname: von Mutius
  fullname: von Mutius, Erika
– sequence: 4
  givenname: Anne-Laure
  surname: Boulesteix
  fullname: Boulesteix, Anne-Laure
– sequence: 5
  givenname: Martin
  surname: Depner
  fullname: Depner, Martin
BookMark eNp9kV9rFTEQxYNU7B998gssCFKQbTObbDbrg1AuVQtVQfQ5TLKJpu4m1ySr-O3N5V4EC_qUZPKbw5k5p-QoxGAJeQr0AujILrXXl1ojdiN9QE6AD0PLac-PdncxtD0X7Jic5nxHaUcHCY_IMWOd4GyEE3L93pZNfOdfNsGWnzF9a0wMuaTVFB9Dg2GqhWWLyef6dDE1izcpah8X20xYsPGh-fiYPHQ4Z_vkcJ6Rz6-vP23etrcf3txsrm5bwyUrrbPThEICuh6NdJpP2lHdOeDaGQ0IRkgJzCF0eoABGLOjNppTPUIdULAz8mqvu131YidjQ0k4q23yC6ZfKqJXf_8E_1V9iT-U7EYmWV8Fzg8CKX5fbS5q8dnYecZg45pVx4UYBiphrOize-hdXFOo46muHynlvRQ7Ry_2VF1Kzsm6P2aAql08qsajDvFUGu7Rxhfcbbq69fM_ep7ve-K6_a_4b1LWo8A
CitedBy_id crossref_primary_10_3389_fimmu_2022_841835
crossref_primary_10_1002_lno_12274
crossref_primary_10_1038_s41598_024_71539_4
crossref_primary_10_1038_s41598_023_43821_4
crossref_primary_10_1136_ard_2022_223389
crossref_primary_10_1186_s12859_024_05689_7
crossref_primary_10_1016_j_foodchem_2024_140943
crossref_primary_10_3390_f16010027
crossref_primary_10_1038_s41467_024_54797_8
crossref_primary_10_1038_s41396_023_01422_z
crossref_primary_10_3389_froh_2021_796140
crossref_primary_10_1111_mec_16795
crossref_primary_10_1128_aem_00570_24
crossref_primary_10_1111_cas_15441
crossref_primary_10_3389_fmicb_2022_930302
crossref_primary_10_1128_spectrum_03429_22
crossref_primary_10_1186_s10086_023_02111_3
crossref_primary_10_1186_s42523_025_00391_2
crossref_primary_10_1016_j_scitotenv_2025_179109
crossref_primary_10_3389_fmicb_2023_1197135
crossref_primary_10_1111_pai_70041
crossref_primary_10_1111_jcpe_13737
crossref_primary_10_1016_j_isci_2024_110312
crossref_primary_10_1093_femsec_fiae128
crossref_primary_10_1016_j_apsoil_2024_105588
crossref_primary_10_1039_D3FO04980A
crossref_primary_10_1080_19490976_2023_2241207
crossref_primary_10_3390_ani12212995
crossref_primary_10_3389_fmicb_2023_1173609
crossref_primary_10_1007_s00248_022_02130_5
crossref_primary_10_1186_s40793_024_00632_y
crossref_primary_10_1038_s41522_023_00379_3
crossref_primary_10_1007_s00374_024_01871_4
crossref_primary_10_1111_mec_17506
crossref_primary_10_1186_s12866_023_02836_7
crossref_primary_10_3390_jof9070718
crossref_primary_10_1016_j_pedsph_2024_08_005
crossref_primary_10_1186_s42523_023_00258_4
crossref_primary_10_1094_PBIOMES_05_22_0032_R
crossref_primary_10_1038_s41598_022_22541_1
crossref_primary_10_1038_s41598_022_18269_7
crossref_primary_10_1093_femsec_fiad156
crossref_primary_10_3390_microorganisms11082035
crossref_primary_10_1093_femsec_fiae001
crossref_primary_10_1128_spectrum_00377_23
crossref_primary_10_1007_s11104_023_06364_1
crossref_primary_10_1093_jambio_lxad067
crossref_primary_10_1007_s00784_024_05922_w
crossref_primary_10_1111_lam_13828
crossref_primary_10_1186_s40793_023_00471_3
crossref_primary_10_1016_j_apsoil_2024_105286
crossref_primary_10_1111_mec_17058
crossref_primary_10_1038_s41467_024_52953_8
crossref_primary_10_3389_fpls_2024_1352997
crossref_primary_10_1016_j_xcrm_2024_101775
crossref_primary_10_1186_s12859_024_05977_2
crossref_primary_10_3390_agronomy13051392
crossref_primary_10_1186_s40168_023_01735_3
crossref_primary_10_1128_spectrum_00861_24
crossref_primary_10_1016_j_heliyon_2024_e39384
crossref_primary_10_1186_s12866_024_03593_x
crossref_primary_10_1039_D4LC00877D
crossref_primary_10_1097_JS9_0000000000002083
crossref_primary_10_1038_s41591_023_02324_5
crossref_primary_10_3389_fmicb_2023_1207837
crossref_primary_10_3389_fmicb_2024_1409659
crossref_primary_10_1111_oik_08717
crossref_primary_10_3390_microorganisms11020261
crossref_primary_10_3389_fimmu_2022_841188
crossref_primary_10_3389_fmicb_2022_957885
crossref_primary_10_1007_s10123_023_00473_8
crossref_primary_10_1007_s00572_024_01168_2
crossref_primary_10_1080_19490976_2025_2455506
crossref_primary_10_1186_s40793_024_00661_7
crossref_primary_10_3389_fmicb_2023_1291284
crossref_primary_10_3389_fsoil_2025_1535734
crossref_primary_10_1007_s10123_024_00582_y
crossref_primary_10_1002_JPER_23_0205
crossref_primary_10_1128_spectrum_03616_22
crossref_primary_10_1264_jsme2_ME21087
crossref_primary_10_1038_s41598_024_78102_1
crossref_primary_10_1038_s41467_022_34416_0
crossref_primary_10_1016_j_micres_2023_127418
crossref_primary_10_1094_PBIOMES_02_24_0021_R
crossref_primary_10_1186_s40168_023_01703_x
crossref_primary_10_1007_s13721_025_00506_4
crossref_primary_10_1016_j_celrep_2024_114635
crossref_primary_10_1016_j_ijfoodmicro_2022_109696
crossref_primary_10_1080_19490976_2024_2446423
crossref_primary_10_1002_dev_22317
crossref_primary_10_1111_wrr_13088
crossref_primary_10_3389_frmbi_2023_1310790
crossref_primary_10_3389_fmicb_2022_948165
crossref_primary_10_1186_s43170_023_00174_2
crossref_primary_10_1128_spectrum_02287_23
crossref_primary_10_1128_msystems_01062_22
crossref_primary_10_1186_s13071_022_05535_w
crossref_primary_10_1128_spectrum_04764_22
crossref_primary_10_1016_j_apsoil_2024_105642
crossref_primary_10_1093_cid_ciac299
crossref_primary_10_1007_s00253_024_13089_3
crossref_primary_10_1016_j_jhazmat_2024_135473
crossref_primary_10_2217_fmb_2021_0219
crossref_primary_10_1111_myc_70024
crossref_primary_10_1161_HYPERTENSIONAHA_123_21144
crossref_primary_10_3389_frmbi_2023_1301609
crossref_primary_10_1016_j_heliyon_2024_e27985
crossref_primary_10_1016_j_micres_2024_127638
crossref_primary_10_1186_s40168_023_01599_7
crossref_primary_10_1016_j_molmed_2024_09_002
crossref_primary_10_1038_s41380_023_01948_w
crossref_primary_10_1038_s41396_023_01448_3
crossref_primary_10_3389_fmicb_2024_1358456
crossref_primary_10_1016_j_jinf_2024_106210
crossref_primary_10_1016_j_ebiom_2024_104980
crossref_primary_10_1186_s12916_023_03123_y
crossref_primary_10_1038_s41591_023_02243_5
crossref_primary_10_1128_msphere_00181_24
crossref_primary_10_3390_metabo14020116
crossref_primary_10_1016_j_cbd_2024_101285
crossref_primary_10_1016_j_ccst_2024_100324
crossref_primary_10_1186_s13073_023_01202_6
crossref_primary_10_1038_s41598_024_54269_5
crossref_primary_10_1093_bioinformatics_btad766
crossref_primary_10_1186_s13213_023_01737_4
crossref_primary_10_3390_biomedicines12050996
crossref_primary_10_3390_horticulturae9121257
crossref_primary_10_3389_fphys_2021_801622
crossref_primary_10_1016_j_jacig_2025_100435
crossref_primary_10_1128_spectrum_00728_24
crossref_primary_10_1016_j_envpol_2023_123051
crossref_primary_10_1371_journal_pone_0300563
crossref_primary_10_1016_j_hazadv_2023_100320
crossref_primary_10_1016_j_scitotenv_2024_171952
crossref_primary_10_1111_ppa_14084
crossref_primary_10_1016_j_apsoil_2023_105212
crossref_primary_10_1080_13416979_2023_2265006
crossref_primary_10_1016_j_apsoil_2023_104925
crossref_primary_10_3390_w16182655
crossref_primary_10_3389_fmicb_2023_1189468
crossref_primary_10_1016_j_bej_2022_108516
crossref_primary_10_1128_msystems_00364_22
crossref_primary_10_1371_journal_pcbi_1010820
crossref_primary_10_1186_s12866_024_03468_1
crossref_primary_10_3390_pathogens13010091
crossref_primary_10_1093_gastro_goad022
crossref_primary_10_3389_fvets_2023_1186554
crossref_primary_10_1038_s43705_023_00232_w
crossref_primary_10_1093_femsec_fiae088
crossref_primary_10_34133_research_0389
crossref_primary_10_1038_s41598_024_82944_0
crossref_primary_10_3390_plants11050613
crossref_primary_10_3389_fmicb_2024_1383404
crossref_primary_10_1016_j_jenvman_2024_123638
crossref_primary_10_1128_mbio_01418_24
crossref_primary_10_1080_19490976_2023_2257291
crossref_primary_10_1038_s41598_022_20888_z
crossref_primary_10_1111_1758_2229_12998
crossref_primary_10_1038_s41598_022_15681_x
crossref_primary_10_1186_s40168_024_01814_z
crossref_primary_10_1093_femsec_fiad023
crossref_primary_10_1016_j_microb_2023_100009
crossref_primary_10_1007_s00284_024_03870_y
crossref_primary_10_1093_femsec_fiad140
crossref_primary_10_3390_d16050293
crossref_primary_10_1039_D3FO00286A
crossref_primary_10_1158_1078_0432_CCR_23_2369
crossref_primary_10_1186_s12866_024_03633_6
crossref_primary_10_7717_peerj_16639
crossref_primary_10_1002_ece3_11228
crossref_primary_10_1038_s41598_023_43040_x
crossref_primary_10_1016_j_psychres_2024_115775
crossref_primary_10_1128_spectrum_04365_22
crossref_primary_10_1016_j_envpol_2022_120411
crossref_primary_10_1186_s40793_022_00454_w
crossref_primary_10_1080_20002297_2022_2082727
crossref_primary_10_1016_j_scitotenv_2023_167530
crossref_primary_10_1371_journal_pcbi_1012627
crossref_primary_10_1038_s41598_024_54221_7
crossref_primary_10_1111_1758_2229_13262
crossref_primary_10_1016_j_envint_2023_108153
crossref_primary_10_1128_msystems_00957_23
crossref_primary_10_1186_s40793_023_00534_5
crossref_primary_10_1016_j_apsoil_2022_104776
crossref_primary_10_1016_j_crpvbd_2024_100177
crossref_primary_10_1016_j_jaip_2022_06_006
crossref_primary_10_1186_s40793_021_00387_w
crossref_primary_10_3390_genes12111755
crossref_primary_10_1186_s40793_024_00592_3
crossref_primary_10_1111_jre_13292
crossref_primary_10_3390_microorganisms11030683
crossref_primary_10_3390_ani14081143
crossref_primary_10_3390_microorganisms11030563
crossref_primary_10_1002_imt2_71
crossref_primary_10_1016_j_scitotenv_2023_168050
crossref_primary_10_1186_s40793_022_00420_6
crossref_primary_10_1094_PBIOMES_02_23_0009_FI
crossref_primary_10_3390_dj11020044
crossref_primary_10_1080_19490976_2023_2183685
crossref_primary_10_1111_gcb_16877
crossref_primary_10_1139_cjss_2022_0121
crossref_primary_10_1016_j_envint_2024_108901
crossref_primary_10_1021_acs_jafc_2c08338
crossref_primary_10_1016_j_rhisph_2024_101015
crossref_primary_10_3389_fevo_2021_746783
crossref_primary_10_3390_microorganisms10112213
crossref_primary_10_1038_s41467_023_44373_x
crossref_primary_10_3389_fmicb_2024_1401794
crossref_primary_10_1111_1462_2920_16693
crossref_primary_10_1016_j_ejsobi_2024_103638
crossref_primary_10_3389_fmicb_2024_1347422
crossref_primary_10_3390_su15053879
Cites_doi 10.1093/bioinformatics/btp211
10.1093/bioinformatics/btv349
10.1093/bioinformatics/btl287
10.1186/s40168-020-00857-2
10.1023/A:1023866030544
10.1016/j.foodqual.2013.05.005
10.1080/01621459.1971.10482356
10.1038/ismej.2017.119
10.1038/ismej.2015.235
10.1016/S0378-8733(00)00031-9
10.18637/jss.v024.i01
10.1128/MMBR.00044-18
10.2202/1544-6115.1585
10.1038/nature11234
10.1016/0378-8733(78)90021-7
10.1186/s12859-016-1013-x
10.1128/mSystems.00031-18
10.1046/j.1461-0248.2001.00230.x
10.1111/j.2517-6161.1982.tb01195.x
10.1073/pnas.0400087101
10.1093/cercor/bht004
10.1214/009053606000000281
10.1007/978-981-13-1534-3
10.1371/journal.pcbi.1002687
10.1093/bioinformatics/btn209
10.1086/228631
10.1038/s41598-017-16520-0
10.3389/fmicb.2017.02224
10.1007/s11004-007-9100-1
10.1103/PhysRevE.69.026113
10.1089/cmb.2016.0061
10.1371/journal.pcbi.1003531
10.1101/2020.07.15.195248
10.1016/j.cels.2019.08.002
10.1016/j.aca.2012.12.029
10.1214/aoms/1177729694
10.1371/journal.pone.0061562
10.1093/bioinformatics/btv633
10.1093/femsre/fuy030
10.1186/s40168-018-0605-2
10.1111/j.1365-3016.2011.01223.x
10.3389/fgene.2019.00516
10.1371/journal.pcbi.1004075
10.1038/s41586-018-0386-6
10.1371/journal.pcbi.1006369
10.1128/mSystems.00053-18
10.1177/1471082X14535524
10.1093/sysbio/45.3.380
10.1128/JCM.01228-07
10.1109/TIT.2003.813506
10.1007/978-1-4612-4380-9_6
10.1016/j.neuroimage.2016.05.068
10.1002/9781119976462.ch4
10.1007/BF01908075
10.1016/j.cels.2016.12.012
10.1038/s41522-018-0077-y
10.1007/978-1-349-03521-2
10.1073/pnas.82.20.6955
10.1089/cmb.2017.0054
10.1093/biostatistics/kxm045
10.1111/j.1467-9868.2005.00515.x
10.1186/1471-2105-13-113
10.1038/nmeth.2693
10.1016/j.chemolab.2015.02.019
10.1371/journal.pbio.1002352
10.1186/1471-2105-11-95
10.7554/eLife.46923
10.1126/science.1261359
10.1111/0081-1750.00098
10.1038/nmeth.4468
10.1371/journal.pone.0061217
10.3102/10769986025001060
10.1186/s40168-017-0393-0
10.1007/BF00891269
10.1371/journal.pcbi.1002606
10.1016/0378-8733(88)90014-7
10.18637/jss.v024.i02
10.1002/bimj.201700129
10.1128/AEM.71.3.1501-1506.2005
10.2307/1942268
10.1186/gb-2010-11-10-r106
10.1103/PhysRevE.70.066111
10.1128/mBio.00169-10
10.1038/nrg3182
10.1038/nmeth.2658
10.1002/9780470253489
10.1186/1471-2105-9-559
10.1214/aos/1013699998
10.1007/978-1-4419-8819-5
10.1101/gr.1239303
10.1371/journal.pcbi.1004226
10.1126/science.1073374
10.1109/TKDE.2007.190689
10.1371/journal.pgen.1000255
10.2202/1544-6115.1128
10.1186/s12859-019-2915-1
10.1016/j.cageo.2007.09.015
10.1094/PHYTO-02-16-0058-FI
10.1371/journal.pcbi.1005852
10.1093/bioinformatics/btu447
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbaa290
DatabaseName Oxford Journals Open Access Collection
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC8293835
10_1093_bib_bbaa290
10.1093/bib/bbaa290
GrantInformation_xml – fundername: ;
  grantid: LSHBCT-2006-018996
– fundername: ;
  grantid: ERC-2009-AdG_20090506_250268
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c483t-fedda681af5ac8fb4dbf0b2f14bfcb1a1c68813fa12b717133e9bcb40b91baa63
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 14:10:19 EDT 2025
Fri Jul 11 12:01:16 EDT 2025
Mon Jun 30 08:52:45 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
Wed Aug 28 03:20:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords network analysis
compositional data
differential association
network comparison
sample similarity network
microbial association estimation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-fedda681af5ac8fb4dbf0b2f14bfcb1a1c68813fa12b717133e9bcb40b91baa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbaa290
PMID 33264391
PQID 2590045866
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8293835
proquest_miscellaneous_2466770819
proquest_journals_2590045866
crossref_primary_10_1093_bib_bbaa290
crossref_citationtrail_10_1093_bib_bbaa290
oup_primary_10_1093_bib_bbaa290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Brandes (2021072112294531000_ref88) 2007; 20
Martín-Fernández (2021072112294531000_ref44) 2015; 15
Yoon (2021072112294531000_ref66) 2018
Martín-Fernández (2021072112294531000_ref40) 2003; 35
Bondy (2021072112294531000_ref78) 1976
Hirano (2021072112294531000_ref116) 2019; 20
Freeman (2021072112294531000_ref79) 1978; 1
Qannari (2021072112294531000_ref102) 2014; 32
Langaas (2021072112294531000_ref74) 2005; 67
R Core Team (2021072112294531000_ref69) 2018
Bolland (2021072112294531000_ref82) 1988; 10
Zhang (2021072112294531000_ref112) 2018; 14
Bahram (2021072112294531000_ref16) 2018; 560
Sunagawa (2021072112294531000_ref10) 2013; 10
Fruchterman (2021072112294531000_ref110) 1991; 21
Schwager (2021072112294531000_ref62) 2019
Biswas (2021072112294531000_ref124) 2016; 23
Newman (2021072112294531000_ref89) 2004; 69
Boulesteix (2021072112294531000_ref119) 2018; 60
Schloss (2021072112294531000_ref8) 2005; 71
Real (2021072112294531000_ref99) 1996; 45
Callahan (2021072112294531000_ref9) 2017; 11
Genuneit (2021072112294531000_ref107) 2011; 25
Benjamini (2021072112294531000_ref73) 2000; 25
McDonald (2021072112294531000_ref15) 2018; 3
Palarea-Albaladejo (2021072112294531000_ref37) 2015; 143
Martín-Fernández (2021072112294531000_ref36) 2011
Martín-Fernández (2021072112294531000_ref95) 2001
Gill (2021072112294531000_ref105) 2010; 11
Csardi (2021072112294531000_ref24) 2006; 1695
Bastian (2021072112294531000_ref22) 2009
Rand (2021072112294531000_ref100) 1971; 66
Rowan-Nash (2021072112294531000_ref120) 2019; 83
Palarea-Albaladejo (2021072112294531000_ref41) 2007; 39
Badri (2021072112294531000_ref47) 2020
Bonacich (2021072112294531000_ref80) 1987; 92
Aitchison (2021072112294531000_ref38) 2003
Meinshausen (2021072112294531000_ref58) 2006; 34
Tackmann (2021072112294531000_ref113) 2019; 9
Zhang (2021072112294531000_ref46) 2005; 4
Benjamini (2021072112294531000_ref70) 2001; 29
Ali (2021072112294531000_ref34) 2014; 30
Huttenhower (2021072112294531000_ref13) 2012; 486
Siska (2021072112294531000_ref106) 2016; 32
Davidson (2021072112294531000_ref4) 2018
Aitchison (2021072112294531000_ref45) 1982; 44
Shannon (2021072112294531000_ref23) 2003; 13
Horvath (2021072112294531000_ref68) 2011
Fisher (2021072112294531000_ref103) 1992
Winkler (2021072112294531000_ref127) 2016; 141
Xia (2021072112294531000_ref39) 2018
Zhou (2021072112294531000_ref35) 2010; 1
Boulesteix (2021072112294531000_ref118) 2013; 8
Davis (2021072112294531000_ref5) 2018; 6
Efron (2021072112294531000_ref72) 2005
Sunagawa (2021072112294531000_ref14) 2015; 348
Palarea-Albaladejo (2021072112294531000_ref42) 2008; 34
Anders (2021072112294531000_ref49) 2010; 11
Loh (2021072112294531000_ref57) 2012
Jaccard (2021072112294531000_ref98) 1908; 44
Palarea-Albaladejo (2021072112294531000_ref43) 2013; 764
Fang (2021072112294531000_ref64) 2016
Lovell (2021072112294531000_ref54) 2015; 11
Bray (2021072112294531000_ref90) 1957; 27
Fang (2021072112294531000_ref61) 2016
Aitchison (2021072112294531000_ref96) 1992; 24
Schwager (2021072112294531000_ref109) 2017; 13
Janda (2021072112294531000_ref1) 2007; 45
Kullback (2021072112294531000_ref91) 1951; 22
Jeffreys (2021072112294531000_ref92) 1948
Filosi (2021072112294531000_ref60) 2017
Deng (2021072112294531000_ref114) 2012; 13
Yoon (2021072112294531000_ref65) 2019
Phipson (2021072112294531000_ref75) 2010; 9
Poudel (2021072112294531000_ref67) 2016; 106
McMurdie (2021072112294531000_ref111) 2013; 8
McMurdie (2021072112294531000_ref48) 2014; 10
Yoon (2021072112294531000_ref55) 2019; 10
Junker (2021072112294531000_ref83) 2008
Agler (2021072112294531000_ref84) 2016; 14
Lichtblau (2021072112294531000_ref31) 2016; 18
Uehara (2021072112294531000_ref97) 2014; 24
Kurtz (2021072112294531000_ref122) 2019
Friedman (2021072112294531000_ref59) 2008; 9
Clauset (2021072112294531000_ref86) 2004; 70
Strimmer (2021072112294531000_ref71) 2008; 24
Ravasz (2021072112294531000_ref77) 2002; 297
Ruhnau (2021072112294531000_ref81) 2000; 22
van Dongen (2021072112294531000_ref76) 2012
Kurtz (2021072112294531000_ref28) 2015
Gotelli (2021072112294531000_ref51) 2001; 4
McLaren (2021072112294531000_ref6) 2019; 8
Cho (2021072112294531000_ref3) 2012; 13
Fang (2021072112294531000_ref56) 2017; 24
Tipton (2021072112294531000_ref121) 2018; 6
Ma (2021072112294531000_ref21) 2020; 8
Friedman (2021072112294531000_ref27) 2012; 8
Weiss (2021072112294531000_ref115) 2016; 10
Butts (2021072112294531000_ref26) 2008; 24
Faust (2021072112294531000_ref18) 2012; 8
Huse (2021072112294531000_ref2) 2008; 4
Fang (2021072112294531000_ref53) 2015; 31
Kuntal (2021072112294531000_ref32) 2016; 17
Knijnenburg (2021072112294531000_ref126) 2009; 25
Liang (2021072112294531000_ref33) 2006; 22
Lane (2021072112294531000_ref7) 1985; 82
Hubert (2021072112294531000_ref101) 1985; 2
Röttjers (2021072112294531000_ref117) 2018; 42
Quinn (2021072112294531000_ref30) 2017; 7
Barrat (2021072112294531000_ref85) 2004; 101
Gloor (2021072112294531000_ref11) 2017; 8
Rivera-Pinto (2021072112294531000_ref12) 2018; 3
Peschel (2021072112294531000_ref108) 2020
Yu (2021072112294531000_ref104) 2019; 9
Wang (2021072112294531000_ref123) 2019
Yoon (2021072112294531000_ref29) 2019
Yang (2021072112294531000_ref125) 2017; 4
Kurtz (2021072112294531000_ref63) 2019
Handcock (2021072112294531000_ref25) 2008; 24
Paulson (2021072112294531000_ref50) 2013; 10
Martín-Fernández (2021072112294531000_ref94) 1999
White (2021072112294531000_ref87) 2001; 31
Endres (2021072112294531000_ref93) 2003; 49
Liu (2021072112294531000_ref20) 2020; 00
Langfelder (2021072112294531000_ref52) 2008; 9
Pasolli (2021072112294531000_ref17) 2017; 14
Layeghifard (2021072112294531000_ref19) 2019; 5
References_xml – volume: 25
  start-page: i161
  year: 2009
  ident: 2021072112294531000_ref126
  article-title: Fewer permutations, more accurate P-values
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp211
– volume: 31
  start-page: 3172
  year: 2015
  ident: 2021072112294531000_ref53
  article-title: CCLasso: correlation inference for compositional data through lasso
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv349
– volume: 22
  start-page: 2175
  year: 2006
  ident: 2021072112294531000_ref33
  article-title: NetAlign: a web-based tool for comparison of protein interaction networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl287
– year: 2019
  ident: 2021072112294531000_ref123
  article-title: Managing batch effects in microbiome data
  publication-title: Brief Bioinform
– volume: 8
  start-page: 1
  year: 2020
  ident: 2021072112294531000_ref21
  article-title: Earth microbial co-occurrence network reveals interconnection pattern across microbiomes
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00857-2
– volume: 35
  start-page: 253
  year: 2003
  ident: 2021072112294531000_ref40
  article-title: Dealing with zeros and missing values in compositional data sets using nonparametric imputation
  publication-title: Mathematical Geology
  doi: 10.1023/A:1023866030544
– volume: 32
  start-page: 93
  year: 2014
  ident: 2021072112294531000_ref102
  article-title: Significance test of the adjusted Rand index. Application to the free sorting task
  publication-title: Food Quality and Preference
  doi: 10.1016/j.foodqual.2013.05.005
– volume-title: ccrepe: ccrepe_and_nc.score
  year: 2019
  ident: 2021072112294531000_ref62
– volume: 66
  start-page: 846
  year: 1971
  ident: 2021072112294531000_ref100
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1971.10482356
– volume: 11
  start-page: 2639
  year: 2017
  ident: 2021072112294531000_ref9
  article-title: Exact sequence variants should replace operational taxonomic units in marker-gene data analysis
  publication-title: ISME J
  doi: 10.1038/ismej.2017.119
– volume: 10
  start-page: 1669
  year: 2016
  ident: 2021072112294531000_ref115
  article-title: Correlation detection strategies in microbial data sets vary widely in sensitivity and precision
  publication-title: ISME J
  doi: 10.1038/ismej.2015.235
– volume: 22
  start-page: 357
  year: 2000
  ident: 2021072112294531000_ref81
  article-title: Eigenvector-centrality – a node-centrality?
  publication-title: Social Networks
  doi: 10.1016/S0378-8733(00)00031-9
– volume: 24
  start-page: 1548
  year: 2008
  ident: 2021072112294531000_ref25
  article-title: Statnet: software tools for the representation, visualization, analysis and simulation of network data
  publication-title: J Stat Softw
  doi: 10.18637/jss.v024.i01
– volume: 83
  start-page: 1
  year: 2019
  ident: 2021072112294531000_ref120
  article-title: Cross-domain and viral interactions in the microbiome
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00044-18
– volume-title: SPRING: Semi-parametric Rank-Based Correlation and Partial Correlation Estimation for Quantitative Microbiome Data
  year: 2019
  ident: 2021072112294531000_ref29
– volume: 9
  year: 2010
  ident: 2021072112294531000_ref75
  article-title: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1585
– volume: 486
  start-page: 207
  year: 2012
  ident: 2021072112294531000_ref13
  article-title: Structure, function and diversity of the healthy human microbiome
  publication-title: Nature
  doi: 10.1038/nature11234
– volume: 1
  start-page: 215
  year: 1978
  ident: 2021072112294531000_ref79
  article-title: Centrality in social networks conceptual clarification
  publication-title: Social Networks
  doi: 10.1016/0378-8733(78)90021-7
– year: 2019
  ident: 2021072112294531000_ref122
  article-title: Disentangling microbial associations from hidden environmental and technical factors via latent graphical models
  publication-title: bioRxiv
– volume: 17
  year: 2016
  ident: 2021072112294531000_ref32
  article-title: CompNet: a GUI based tool for comparison of multiple biological interaction networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1013-x
– volume: 9
  start-page: 1
  year: 2019
  ident: 2021072112294531000_ref104
  article-title: New statistical methods for constructing robust differential correlation networks to characterize the interactions among microRNAs
  publication-title: Sci Rep
– volume: 3
  start-page: e00031
  year: 2018
  ident: 2021072112294531000_ref15
  article-title: American gut: an open platform for citizen science microbiome research
  publication-title: mSystems
  doi: 10.1128/mSystems.00031-18
– volume: 4
  start-page: 379
  year: 2001
  ident: 2021072112294531000_ref51
  article-title: Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness
  publication-title: Ecol Lett
  doi: 10.1046/j.1461-0248.2001.00230.x
– volume: 18
  start-page: 837
  year: 2016
  ident: 2021072112294531000_ref31
  article-title: Comparative assessment of differential network analysis methods
  publication-title: Brief Bioinform
– volume: 44
  start-page: 139
  year: 1982
  ident: 2021072112294531000_ref45
  article-title: The statistical analysis of compositional data
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 101
  start-page: 3747
  year: 2004
  ident: 2021072112294531000_ref85
  article-title: The architecture of complex weighted networks
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0400087101
– volume: 24
  start-page: 1529
  year: 2014
  ident: 2021072112294531000_ref97
  article-title: Efficiency of a “small-world” brain network depends on consciousness level: a resting-state fMRI study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bht004
– volume: 34
  start-page: 1436
  year: 2006
  ident: 2021072112294531000_ref58
  article-title: High-dimensional graphs and variable selection with the lasso
  publication-title: The Annals of Statistics
  doi: 10.1214/009053606000000281
– volume-title: Statistical Analysis of Microbiome Data with R
  year: 2018
  ident: 2021072112294531000_ref39
  doi: 10.1007/978-981-13-1534-3
– year: 2020
  ident: 2021072112294531000_ref47
  article-title: Shrinkage improves estimation of microbial associations under different normalization methods
  publication-title: bioRxiv
– start-page: 2087
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 2021072112294531000_ref57
  article-title: Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses
– volume: 8
  start-page: e1002687
  year: 2012
  ident: 2021072112294531000_ref27
  article-title: Inferring correlation networks from genomic survey data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002687
– volume-title: R package computes correlation for relative abundances
  year: 2017
  ident: 2021072112294531000_ref60
– volume: 24
  start-page: 1461
  year: 2008
  ident: 2021072112294531000_ref71
  article-title: Fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn209
– volume: 92
  start-page: 1170
  year: 1987
  ident: 2021072112294531000_ref80
  article-title: Power and centrality: a family of measures
  publication-title: Am J Sociol
  doi: 10.1086/228631
– volume: 7
  start-page: 16252
  year: 2017
  ident: 2021072112294531000_ref30
  article-title: Propr: an R-package for identifying proportionally abundant features using compositional data analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16520-0
– volume: 8
  start-page: 2224
  year: 2017
  ident: 2021072112294531000_ref11
  article-title: Microbiome datasets are compositional: and this is not optional
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02224
– volume: 39
  start-page: 625
  year: 2007
  ident: 2021072112294531000_ref41
  article-title: A parametric approach for dealing with compositional rounded zeros
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-007-9100-1
– volume: 69
  start-page: 026113
  year: 2004
  ident: 2021072112294531000_ref89
  article-title: Finding and evaluating community structure in networks
  publication-title: Physical review E
  doi: 10.1103/PhysRevE.69.026113
– volume: 23
  start-page: 526
  year: 2016
  ident: 2021072112294531000_ref124
  article-title: Learning microbial interaction networks from metagenomic count data
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2016.0061
– volume: 10
  start-page: e1003531
  year: 2014
  ident: 2021072112294531000_ref48
  article-title: Waste not, want not: why rarefying microbiome data is inadmissible
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003531
– year: 2020
  ident: 2021072112294531000_ref108
  article-title: NetCoMi: network construction and comparison for microbiome data
  doi: 10.1101/2020.07.15.195248
– volume: 9
  start-page: 286
  year: 2019
  ident: 2021072112294531000_ref113
  article-title: Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2019.08.002
– year: 2012
  ident: 2021072112294531000_ref76
  article-title: Metric distances derived from cosine similarity and Pearson and Spearman correlations
– volume: 764
  start-page: 32
  year: 2013
  ident: 2021072112294531000_ref43
  article-title: Values below detection limit in compositional chemical data
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2012.12.029
– volume: 22
  start-page: 79
  year: 1951
  ident: 2021072112294531000_ref91
  article-title: On information and sufficiency
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 8
  start-page: e61562
  year: 2013
  ident: 2021072112294531000_ref118
  article-title: A plea for neutral comparison studies in computational sciences
  publication-title: PloS One
  doi: 10.1371/journal.pone.0061562
– volume: 32
  start-page: 690
  year: 2016
  ident: 2021072112294531000_ref106
  article-title: The discordant method: a novel approach for differential correlation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv633
– volume: 42
  start-page: 761
  year: 2018
  ident: 2021072112294531000_ref117
  article-title: From hairballs to hypotheses–biological insights from microbial networks
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuy030
– volume: 6
  start-page: 226
  year: 2018
  ident: 2021072112294531000_ref5
  article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0605-2
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2018
  ident: 2021072112294531000_ref69
– volume: 25
  start-page: 436
  year: 2011
  ident: 2021072112294531000_ref107
  article-title: The GABRIEL advanced surveys: study design, participation and evaluation of bias
  publication-title: Paediatr Perinat Epidemiol
  doi: 10.1111/j.1365-3016.2011.01223.x
– volume: 10
  year: 2019
  ident: 2021072112294531000_ref55
  article-title: Microbial networks in SPRING-semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome data
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00516
– volume: 11
  start-page: e1004075
  year: 2015
  ident: 2021072112294531000_ref54
  article-title: Proportionality: a valid alternative to correlation for relative data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004075
– volume: 560
  start-page: 233
  year: 2018
  ident: 2021072112294531000_ref16
  article-title: Structure and function of the global topsoil microbiome
  publication-title: Nature
  doi: 10.1038/s41586-018-0386-6
– volume: 14
  start-page: e1006369
  year: 2018
  ident: 2021072112294531000_ref112
  article-title: SILGGM: an extensive R package for efficient statistical inference in large-scale gene networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006369
– volume: 21
  start-page: 1129
  year: 1991
  ident: 2021072112294531000_ref110
  article-title: Graph drawing by force-directed placement
  publication-title: Software: Practice and Experience
– volume: 3
  start-page: e00053
  year: 2018
  ident: 2021072112294531000_ref12
  article-title: Balances: a new perspective for microbiome analysis
  publication-title: MSystems
  doi: 10.1128/mSystems.00053-18
– start-page: 77
  volume-title: Methods in Molecular Biology
  year: 2018
  ident: 2021072112294531000_ref4
  article-title: Microbiome Sequencing Methods for Studying Human Diseases
– volume: 15
  start-page: 134
  year: 2015
  ident: 2021072112294531000_ref44
  article-title: Bayesian-multiplicative treatment of count zeros in compositional data sets
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X14535524
– volume: 45
  start-page: 380
  year: 1996
  ident: 2021072112294531000_ref99
  article-title: The probabilistic basis of Jaccard’s index of similarity
  publication-title: Syst Biol
  doi: 10.1093/sysbio/45.3.380
– volume: 45
  start-page: 2761
  year: 2007
  ident: 2021072112294531000_ref1
  article-title: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01228-07
– volume: 49
  year: 2003
  ident: 2021072112294531000_ref93
  article-title: A new metric for probability distributions
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2003.813506
– start-page: 66
  volume-title: Breakthroughs in Statistics
  year: 1992
  ident: 2021072112294531000_ref103
  article-title: Statistical methods for research workers
  doi: 10.1007/978-1-4612-4380-9_6
– volume: 141
  start-page: 502
  year: 2016
  ident: 2021072112294531000_ref127
  article-title: Faster permutation inference in brain imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.068
– start-page: 43
  volume-title: Compositional data analysis
  year: 2011
  ident: 2021072112294531000_ref36
  article-title: Dealing with zeros
  doi: 10.1002/9781119976462.ch4
– volume: 2
  start-page: 193
  year: 1985
  ident: 2021072112294531000_ref101
  article-title: Comparing partitions
  publication-title: Journal of Classification
  doi: 10.1007/BF01908075
– volume: 4
  start-page: 129
  year: 2017
  ident: 2021072112294531000_ref125
  article-title: Inference of environmental factor-microbe and microbe-microbe associations from metagenomic data using a hierarchical Bayesian statistical model
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2016.12.012
– volume: 5
  year: 2019
  ident: 2021072112294531000_ref19
  article-title: Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations
  publication-title: NPJ Biofilms and Microbiomes
  doi: 10.1038/s41522-018-0077-y
– volume-title: Graph theory with applications
  year: 1976
  ident: 2021072112294531000_ref78
  doi: 10.1007/978-1-349-03521-2
– volume: 82
  start-page: 6955
  year: 1985
  ident: 2021072112294531000_ref7
  article-title: Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.82.20.6955
– volume: 00
  start-page: 1
  year: 2020
  ident: 2021072112294531000_ref20
  article-title: Network analyses in microbiome based on high-throughput multi-omics data
  publication-title: Brief Bioinform
– volume: 24
  start-page: 699
  year: 2017
  ident: 2021072112294531000_ref56
  article-title: gCoda: conditional dependence network inference for compositional data
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2017.0054
– volume: 9
  start-page: 432
  year: 2008
  ident: 2021072112294531000_ref59
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume-title: CCLasso: Correlation Inference for Compositional Data through Lasso
  year: 2016
  ident: 2021072112294531000_ref61
– volume: 67
  start-page: 555
  year: 2005
  ident: 2021072112294531000_ref74
  article-title: Estimating the proportion of true null hypotheses, with application to DNA microarray data
  publication-title: J R Stat Soc Series B Stat Methodology
  doi: 10.1111/j.1467-9868.2005.00515.x
– volume: 13
  start-page: 113
  year: 2012
  ident: 2021072112294531000_ref114
  article-title: Molecular ecological network analyses
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-113
– volume: 10
  start-page: 1196
  year: 2013
  ident: 2021072112294531000_ref10
  article-title: Metagenomic species profiling using universal phylogenetic marker genes
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2693
– volume: 143
  start-page: 85
  year: 2015
  ident: 2021072112294531000_ref37
  article-title: zCompositions-R package for multivariate imputation of left-censored data under a compositional approach
  publication-title: Chemom Intel Lab Syst
  doi: 10.1016/j.chemolab.2015.02.019
– volume: 14
  start-page: e1002352
  year: 2016
  ident: 2021072112294531000_ref84
  article-title: Microbial hub taxa link host and abiotic factors to plant microbiome variation
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002352
– volume: 11
  start-page: 95
  year: 2010
  ident: 2021072112294531000_ref105
  article-title: A statistical framework for differential network analysis from microarray data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-95
– volume: 8
  start-page: e46923
  year: 2019
  ident: 2021072112294531000_ref6
  article-title: Consistent and correctable bias in metagenomic sequencing experiments
  publication-title: Elife
  doi: 10.7554/eLife.46923
– volume: 348
  year: 2015
  ident: 2021072112294531000_ref14
  article-title: Structure and function of the global ocean microbiome
  publication-title: Science
  doi: 10.1126/science.1261359
– volume: 44
  start-page: 223
  year: 1908
  ident: 2021072112294531000_ref98
  article-title: Nouvelles Recherches Sur la distribution Florale
  publication-title: Bulletin de la Société Vaudoise des Sciences Naturelles
– volume: 31
  start-page: 305
  year: 2001
  ident: 2021072112294531000_ref87
  article-title: The cohesiveness of blocks in social networks: node connectivity and conditional density
  publication-title: Sociological Methodology
  doi: 10.1111/0081-1750.00098
– volume: 14
  start-page: 1023
  year: 2017
  ident: 2021072112294531000_ref17
  article-title: Accessible, curated metagenomic data through ExperimentHub
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4468
– volume: 8
  start-page: e1003531
  year: 2013
  ident: 2021072112294531000_ref111
  article-title: Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0061217
– start-page: 361
  volume-title: AAAI Publications, Third International AAAI Conference on Weblogs and Social Media
  year: 2009
  ident: 2021072112294531000_ref22
  article-title: An Open Source Software for Exploring and Manipulating Networks
– volume-title: SpiecEasi: Sparse Inverse Covariance for Ecological Statistical Inference
  year: 2019
  ident: 2021072112294531000_ref63
– volume: 25
  start-page: 60
  year: 2000
  ident: 2021072112294531000_ref73
  article-title: On the adaptive control of the false discovery rate in multiple testing with independent statistics
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/10769986025001060
– volume: 1695
  start-page: 1
  year: 2006
  ident: 2021072112294531000_ref24
  article-title: The igraph software package for complex network research
  publication-title: InterJournal, Complex Systems
– volume: 6
  start-page: 12
  year: 2018
  ident: 2021072112294531000_ref121
  article-title: Fungi stabilize connectivity in the lung and skin microbial ecosystems
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0393-0
– volume: 24
  start-page: 365
  year: 1992
  ident: 2021072112294531000_ref96
  article-title: On criteria for measures of compositional difference
  publication-title: Mathematical Geology
  doi: 10.1007/BF00891269
– volume: 8
  start-page: e1002606
  year: 2012
  ident: 2021072112294531000_ref18
  article-title: Microbial co-occurrence relationships in the human microbiome
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002606
– volume-title: SPRING: Semi-Parametric Rank-based approach for INference in Graphical model (SPRING)
  year: 2019
  ident: 2021072112294531000_ref65
– volume: 10
  start-page: 233
  year: 1988
  ident: 2021072112294531000_ref82
  article-title: Sorting out centrality: an analysis of the performance of four centrality models in real and simulated networks
  publication-title: Social Networks
  doi: 10.1016/0378-8733(88)90014-7
– volume: 24
  start-page: 1
  year: 2008
  ident: 2021072112294531000_ref26
  article-title: Network: a package for managing relational data in R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v024.i02
– volume: 60
  start-page: 216
  year: 2018
  ident: 2021072112294531000_ref119
  article-title: On the necessity and design of studies comparing statistical methods
  publication-title: Biom J
  doi: 10.1002/bimj.201700129
– volume: 71
  start-page: 1501
  year: 2005
  ident: 2021072112294531000_ref8
  article-title: Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.3.1501-1506.2005
– volume-title: Proceedings of CoDaWork’03, The 1st Compositional Data Analysis Workshop
  year: 2003
  ident: 2021072112294531000_ref38
  article-title: Possible solution of some essential zero problems in compositional data analysis
– volume-title: gCoda: conditional dependence network inference for compositional data
  year: 2016
  ident: 2021072112294531000_ref64
– volume: 27
  start-page: 325
  year: 1957
  ident: 2021072112294531000_ref90
  article-title: An ordination of the upland forest communities of southern Wisconsin
  publication-title: Ecological Monographs
  doi: 10.2307/1942268
– volume: 11
  start-page: R106
  year: 2010
  ident: 2021072112294531000_ref49
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– volume: 70
  start-page: 066111
  year: 2004
  ident: 2021072112294531000_ref86
  article-title: Finding community structure in very large networks
  publication-title: Physical review E
  doi: 10.1103/PhysRevE.70.066111
– volume: 1
  year: 2010
  ident: 2021072112294531000_ref35
  article-title: Functional molecular ecological networks
  publication-title: MBio
  doi: 10.1128/mBio.00169-10
– volume-title: Theory of probability
  year: 1948
  ident: 2021072112294531000_ref92
– volume: 13
  start-page: 260
  year: 2012
  ident: 2021072112294531000_ref3
  article-title: The human microbiome: at the interface of health and disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3182
– volume: 10
  start-page: 1200
  year: 2013
  ident: 2021072112294531000_ref50
  article-title: Robust methods for differential abundance analysis in marker gene surveys
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2658
– volume-title: Analysis of biological networks
  year: 2008
  ident: 2021072112294531000_ref83
  doi: 10.1002/9780470253489
– volume: 9
  start-page: 559
  year: 2008
  ident: 2021072112294531000_ref52
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– year: 2018
  ident: 2021072112294531000_ref66
  article-title: Sparse semiparametric canonical correlation analysis for data of mixed types
– volume: 29
  start-page: 1165
  year: 2001
  ident: 2021072112294531000_ref70
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: The Annals of statistics
  doi: 10.1214/aos/1013699998
– volume-title: Weighted Network Analysis: Applications in Genomics and Systems Biology
  year: 2011
  ident: 2021072112294531000_ref68
  doi: 10.1007/978-1-4419-8819-5
– volume: 13
  start-page: 2498
  year: 2003
  ident: 2021072112294531000_ref23
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume-title: PLoS Comput Biol
  year: 2015
  ident: 2021072112294531000_ref28
  article-title: Sparse and compositionally robust inference of microbial ecological networks
  doi: 10.1371/journal.pcbi.1004226
– volume: 297
  start-page: 1551
  year: 2002
  ident: 2021072112294531000_ref77
  article-title: Hierarchical organization of modularity in metabolic networks
  publication-title: Science
  doi: 10.1126/science.1073374
– volume: 20
  start-page: 172
  year: 2007
  ident: 2021072112294531000_ref88
  article-title: On modularity clustering
  publication-title: IEEE transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2007.190689
– volume: 4
  start-page: e1000255
  year: 2008
  ident: 2021072112294531000_ref2
  article-title: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000255
– volume: 4
  start-page: 17
  year: 2005
  ident: 2021072112294531000_ref46
  article-title: A general framework for weighted gene co-expression network analysis
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1128
– start-page: 211
  volume-title: Lippard, Næss, and Sinding-Larsen
  year: 1999
  ident: 2021072112294531000_ref94
  article-title: A measure of difference for compositional data based on measures of divergence
– volume: 20
  start-page: 329
  year: 2019
  ident: 2021072112294531000_ref116
  article-title: Difficulty in inferring microbial community structure based on co-occurrence network approaches
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2915-1
– volume: 34
  start-page: 902
  year: 2008
  ident: 2021072112294531000_ref42
  article-title: A modified EM alr-algorithm for replacing rounded zeros in compositional data sets
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2007.09.015
– volume-title: Proceedings of the Annual Conference of the International Association for Mathematical Geology
  year: 2001
  ident: 2021072112294531000_ref95
  article-title: Some Practical Aspects on Multidimensional Scaling of Compositional Data
– volume: 106
  start-page: 1083
  year: 2016
  ident: 2021072112294531000_ref67
  article-title: Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management
  publication-title: The American Phytopathological Society
  doi: 10.1094/PHYTO-02-16-0058-FI
– volume: 13
  start-page: e1005852
  year: 2017
  ident: 2021072112294531000_ref109
  article-title: A Bayesian method for detecting pairwise associations in compositional data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005852
– volume: 30
  start-page: i430
  year: 2014
  ident: 2021072112294531000_ref34
  article-title: Alignment-free protein interaction network comparison
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu447
– volume-title: Local False Discovery Rates. Tech. rep
  year: 2005
  ident: 2021072112294531000_ref72
SSID ssj0020781
Score 2.666206
SecondaryResourceType review_article
Snippet Abstract Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at...
Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at...
Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Associations
Bioinformatics
Computer applications
Computer graphics
Data analysis
Estimation
Heterogeneity
Method Review
Microbial activity
Microbiomes
Microorganisms
Networks
Next-generation sequencing
Secondary analysis
Software
Statistical methods
Workflow
Title NetCoMi: network construction and comparison for microbiome data in R
URI https://www.proquest.com/docview/2590045866
https://www.proquest.com/docview/2466770819
https://pubmed.ncbi.nlm.nih.gov/PMC8293835
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf2J1aoQ9CWVLk6apbzI2hrAJssHeSi5NsOBaYfPB_96k7aqVoX3NlbZ3KfmO--47hHqERaEMKPeNIMxnsSA-GKL8mKWKC0lBlCKu0xmfLNjTMlzWBNn1jhJ-TPuQQR9AyiB2qbk9fp1E_vx52eRVTq-maiKKfKfuXrfh_bq3dfC0mtkcpmwzIn8cMeMjdFhjQ_xYBfMY7en8BO1X0yI_T9FopjfDYpo94LzibmNVfOu_YpmnWDVTBbEFo3iVVTJLK40dExRnOX45Q4vxaD6c-PUUBF8xQTe-0WkquSDShFIJAywFM4DAEAZGAZHE-lQQaiQJwOZmNufUMShgA4iJ_XJOz1EnL3J9gXBECJUiNjR0ZVyIQRhqL2M0G2ib13jofuuiRNUS4W5SxVtSlappYv2Z1P70UK8xfq-UMXab3Vpf_23R3cYhqX-gdRK4aaYsFJx76K5Ztlvf1TNkrosPa8M4jyKHaTwUteLXPM6JZ7dX8uy1FNEWFudY9Hn57-tdoYPA8VhKim4XdWxY9bUFIhu4KbfhFzrN3Yg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NetCoMi%3A+network+construction+and+comparison+for+microbiome+data+in+R&rft.jtitle=Briefings+in+bioinformatics&rft.au=Peschel%2C+Stefanie&rft.au=M%C3%BCller%2C+Christian+L&rft.au=von+Mutius%2C+Erika&rft.au=Boulesteix%2C+Anne-Laure&rft.date=2021-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa290&rft.externalDocID=10.1093%2Fbib%2Fbbaa290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon