NetCoMi: network construction and comparison for microbiome data in R
Abstract Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.07.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Motivation
Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data.
Results
Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi’s wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children’s rooms between samples from two study centers (Ulm and Munich).
Availability
R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi.
Contact
Tel:+49 89 3187 43258; stefanie.peschel@mail.de
Supplementary information
Supplementary data are available at Briefings in Bioinformatics online. |
---|---|
AbstractList | Abstract
Motivation
Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data.
Results
Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi’s wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children’s rooms between samples from two study centers (Ulm and Munich).
Availability
R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi.
Contact
Tel:+49 89 3187 43258; stefanie.peschel@mail.de
Supplementary information
Supplementary data are available at Briefings in Bioinformatics online. Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data.MOTIVATIONEstimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data.Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi's wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children's rooms between samples from two study centers (Ulm and Munich).RESULTSHere, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi's wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children's rooms between samples from two study centers (Ulm and Munich).R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi.AVAILABILITYR scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi.Tel:+49 89 3187 43258; stefanie.peschel@mail.de.CONTACTTel:+49 89 3187 43258; stefanie.peschel@mail.de.Supplementary data are available at Briefings in Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Briefings in Bioinformatics online. Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat. Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data normalization and computing microbial associations. Since microbial interactions are likely to change between conditions, e.g. between healthy individuals and patients, identifying network differences between groups is often an integral secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data. Results Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers functionality for constructing and analysing single microbial association networks as well as quantifying network differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of an entire microbiome sample collection. We illustrate NetCoMi’s wide applicability using data sets from the GABRIELA study to compare microbial associations in settled dust from children’s rooms between samples from two study centers (Ulm and Munich). Availability R scripts used for producing the examples shown in this manuscript are provided as supplementary data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi. Contact Tel:+49 89 3187 43258; stefanie.peschel@mail.de Supplementary information Supplementary data are available at Briefings in Bioinformatics online. |
Author | Müller, Christian L Peschel, Stefanie Depner, Martin von Mutius, Erika Boulesteix, Anne-Laure |
Author_xml | – sequence: 1 givenname: Stefanie surname: Peschel fullname: Peschel, Stefanie email: stefanie.peschel@mail.de – sequence: 2 givenname: Christian L surname: Müller fullname: Müller, Christian L – sequence: 3 givenname: Erika surname: von Mutius fullname: von Mutius, Erika – sequence: 4 givenname: Anne-Laure surname: Boulesteix fullname: Boulesteix, Anne-Laure – sequence: 5 givenname: Martin surname: Depner fullname: Depner, Martin |
BookMark | eNp9kV9rFTEQxYNU7B998gssCFKQbTObbDbrg1AuVQtVQfQ5TLKJpu4m1ySr-O3N5V4EC_qUZPKbw5k5p-QoxGAJeQr0AujILrXXl1ojdiN9QE6AD0PLac-PdncxtD0X7Jic5nxHaUcHCY_IMWOd4GyEE3L93pZNfOdfNsGWnzF9a0wMuaTVFB9Dg2GqhWWLyef6dDE1izcpah8X20xYsPGh-fiYPHQ4Z_vkcJ6Rz6-vP23etrcf3txsrm5bwyUrrbPThEICuh6NdJpP2lHdOeDaGQ0IRkgJzCF0eoABGLOjNppTPUIdULAz8mqvu131YidjQ0k4q23yC6ZfKqJXf_8E_1V9iT-U7EYmWV8Fzg8CKX5fbS5q8dnYecZg45pVx4UYBiphrOize-hdXFOo46muHynlvRQ7Ry_2VF1Kzsm6P2aAql08qsajDvFUGu7Rxhfcbbq69fM_ep7ve-K6_a_4b1LWo8A |
CitedBy_id | crossref_primary_10_3389_fimmu_2022_841835 crossref_primary_10_1002_lno_12274 crossref_primary_10_1038_s41598_024_71539_4 crossref_primary_10_1038_s41598_023_43821_4 crossref_primary_10_1136_ard_2022_223389 crossref_primary_10_1186_s12859_024_05689_7 crossref_primary_10_1016_j_foodchem_2024_140943 crossref_primary_10_3390_f16010027 crossref_primary_10_1038_s41467_024_54797_8 crossref_primary_10_1038_s41396_023_01422_z crossref_primary_10_3389_froh_2021_796140 crossref_primary_10_1111_mec_16795 crossref_primary_10_1128_aem_00570_24 crossref_primary_10_1111_cas_15441 crossref_primary_10_3389_fmicb_2022_930302 crossref_primary_10_1128_spectrum_03429_22 crossref_primary_10_1186_s10086_023_02111_3 crossref_primary_10_1186_s42523_025_00391_2 crossref_primary_10_1016_j_scitotenv_2025_179109 crossref_primary_10_3389_fmicb_2023_1197135 crossref_primary_10_1111_pai_70041 crossref_primary_10_1111_jcpe_13737 crossref_primary_10_1016_j_isci_2024_110312 crossref_primary_10_1093_femsec_fiae128 crossref_primary_10_1016_j_apsoil_2024_105588 crossref_primary_10_1039_D3FO04980A crossref_primary_10_1080_19490976_2023_2241207 crossref_primary_10_3390_ani12212995 crossref_primary_10_3389_fmicb_2023_1173609 crossref_primary_10_1007_s00248_022_02130_5 crossref_primary_10_1186_s40793_024_00632_y crossref_primary_10_1038_s41522_023_00379_3 crossref_primary_10_1007_s00374_024_01871_4 crossref_primary_10_1111_mec_17506 crossref_primary_10_1186_s12866_023_02836_7 crossref_primary_10_3390_jof9070718 crossref_primary_10_1016_j_pedsph_2024_08_005 crossref_primary_10_1186_s42523_023_00258_4 crossref_primary_10_1094_PBIOMES_05_22_0032_R crossref_primary_10_1038_s41598_022_22541_1 crossref_primary_10_1038_s41598_022_18269_7 crossref_primary_10_1093_femsec_fiad156 crossref_primary_10_3390_microorganisms11082035 crossref_primary_10_1093_femsec_fiae001 crossref_primary_10_1128_spectrum_00377_23 crossref_primary_10_1007_s11104_023_06364_1 crossref_primary_10_1093_jambio_lxad067 crossref_primary_10_1007_s00784_024_05922_w crossref_primary_10_1111_lam_13828 crossref_primary_10_1186_s40793_023_00471_3 crossref_primary_10_1016_j_apsoil_2024_105286 crossref_primary_10_1111_mec_17058 crossref_primary_10_1038_s41467_024_52953_8 crossref_primary_10_3389_fpls_2024_1352997 crossref_primary_10_1016_j_xcrm_2024_101775 crossref_primary_10_1186_s12859_024_05977_2 crossref_primary_10_3390_agronomy13051392 crossref_primary_10_1186_s40168_023_01735_3 crossref_primary_10_1128_spectrum_00861_24 crossref_primary_10_1016_j_heliyon_2024_e39384 crossref_primary_10_1186_s12866_024_03593_x crossref_primary_10_1039_D4LC00877D crossref_primary_10_1097_JS9_0000000000002083 crossref_primary_10_1038_s41591_023_02324_5 crossref_primary_10_3389_fmicb_2023_1207837 crossref_primary_10_3389_fmicb_2024_1409659 crossref_primary_10_1111_oik_08717 crossref_primary_10_3390_microorganisms11020261 crossref_primary_10_3389_fimmu_2022_841188 crossref_primary_10_3389_fmicb_2022_957885 crossref_primary_10_1007_s10123_023_00473_8 crossref_primary_10_1007_s00572_024_01168_2 crossref_primary_10_1080_19490976_2025_2455506 crossref_primary_10_1186_s40793_024_00661_7 crossref_primary_10_3389_fmicb_2023_1291284 crossref_primary_10_3389_fsoil_2025_1535734 crossref_primary_10_1007_s10123_024_00582_y crossref_primary_10_1002_JPER_23_0205 crossref_primary_10_1128_spectrum_03616_22 crossref_primary_10_1264_jsme2_ME21087 crossref_primary_10_1038_s41598_024_78102_1 crossref_primary_10_1038_s41467_022_34416_0 crossref_primary_10_1016_j_micres_2023_127418 crossref_primary_10_1094_PBIOMES_02_24_0021_R crossref_primary_10_1186_s40168_023_01703_x crossref_primary_10_1007_s13721_025_00506_4 crossref_primary_10_1016_j_celrep_2024_114635 crossref_primary_10_1016_j_ijfoodmicro_2022_109696 crossref_primary_10_1080_19490976_2024_2446423 crossref_primary_10_1002_dev_22317 crossref_primary_10_1111_wrr_13088 crossref_primary_10_3389_frmbi_2023_1310790 crossref_primary_10_3389_fmicb_2022_948165 crossref_primary_10_1186_s43170_023_00174_2 crossref_primary_10_1128_spectrum_02287_23 crossref_primary_10_1128_msystems_01062_22 crossref_primary_10_1186_s13071_022_05535_w crossref_primary_10_1128_spectrum_04764_22 crossref_primary_10_1016_j_apsoil_2024_105642 crossref_primary_10_1093_cid_ciac299 crossref_primary_10_1007_s00253_024_13089_3 crossref_primary_10_1016_j_jhazmat_2024_135473 crossref_primary_10_2217_fmb_2021_0219 crossref_primary_10_1111_myc_70024 crossref_primary_10_1161_HYPERTENSIONAHA_123_21144 crossref_primary_10_3389_frmbi_2023_1301609 crossref_primary_10_1016_j_heliyon_2024_e27985 crossref_primary_10_1016_j_micres_2024_127638 crossref_primary_10_1186_s40168_023_01599_7 crossref_primary_10_1016_j_molmed_2024_09_002 crossref_primary_10_1038_s41380_023_01948_w crossref_primary_10_1038_s41396_023_01448_3 crossref_primary_10_3389_fmicb_2024_1358456 crossref_primary_10_1016_j_jinf_2024_106210 crossref_primary_10_1016_j_ebiom_2024_104980 crossref_primary_10_1186_s12916_023_03123_y crossref_primary_10_1038_s41591_023_02243_5 crossref_primary_10_1128_msphere_00181_24 crossref_primary_10_3390_metabo14020116 crossref_primary_10_1016_j_cbd_2024_101285 crossref_primary_10_1016_j_ccst_2024_100324 crossref_primary_10_1186_s13073_023_01202_6 crossref_primary_10_1038_s41598_024_54269_5 crossref_primary_10_1093_bioinformatics_btad766 crossref_primary_10_1186_s13213_023_01737_4 crossref_primary_10_3390_biomedicines12050996 crossref_primary_10_3390_horticulturae9121257 crossref_primary_10_3389_fphys_2021_801622 crossref_primary_10_1016_j_jacig_2025_100435 crossref_primary_10_1128_spectrum_00728_24 crossref_primary_10_1016_j_envpol_2023_123051 crossref_primary_10_1371_journal_pone_0300563 crossref_primary_10_1016_j_hazadv_2023_100320 crossref_primary_10_1016_j_scitotenv_2024_171952 crossref_primary_10_1111_ppa_14084 crossref_primary_10_1016_j_apsoil_2023_105212 crossref_primary_10_1080_13416979_2023_2265006 crossref_primary_10_1016_j_apsoil_2023_104925 crossref_primary_10_3390_w16182655 crossref_primary_10_3389_fmicb_2023_1189468 crossref_primary_10_1016_j_bej_2022_108516 crossref_primary_10_1128_msystems_00364_22 crossref_primary_10_1371_journal_pcbi_1010820 crossref_primary_10_1186_s12866_024_03468_1 crossref_primary_10_3390_pathogens13010091 crossref_primary_10_1093_gastro_goad022 crossref_primary_10_3389_fvets_2023_1186554 crossref_primary_10_1038_s43705_023_00232_w crossref_primary_10_1093_femsec_fiae088 crossref_primary_10_34133_research_0389 crossref_primary_10_1038_s41598_024_82944_0 crossref_primary_10_3390_plants11050613 crossref_primary_10_3389_fmicb_2024_1383404 crossref_primary_10_1016_j_jenvman_2024_123638 crossref_primary_10_1128_mbio_01418_24 crossref_primary_10_1080_19490976_2023_2257291 crossref_primary_10_1038_s41598_022_20888_z crossref_primary_10_1111_1758_2229_12998 crossref_primary_10_1038_s41598_022_15681_x crossref_primary_10_1186_s40168_024_01814_z crossref_primary_10_1093_femsec_fiad023 crossref_primary_10_1016_j_microb_2023_100009 crossref_primary_10_1007_s00284_024_03870_y crossref_primary_10_1093_femsec_fiad140 crossref_primary_10_3390_d16050293 crossref_primary_10_1039_D3FO00286A crossref_primary_10_1158_1078_0432_CCR_23_2369 crossref_primary_10_1186_s12866_024_03633_6 crossref_primary_10_7717_peerj_16639 crossref_primary_10_1002_ece3_11228 crossref_primary_10_1038_s41598_023_43040_x crossref_primary_10_1016_j_psychres_2024_115775 crossref_primary_10_1128_spectrum_04365_22 crossref_primary_10_1016_j_envpol_2022_120411 crossref_primary_10_1186_s40793_022_00454_w crossref_primary_10_1080_20002297_2022_2082727 crossref_primary_10_1016_j_scitotenv_2023_167530 crossref_primary_10_1371_journal_pcbi_1012627 crossref_primary_10_1038_s41598_024_54221_7 crossref_primary_10_1111_1758_2229_13262 crossref_primary_10_1016_j_envint_2023_108153 crossref_primary_10_1128_msystems_00957_23 crossref_primary_10_1186_s40793_023_00534_5 crossref_primary_10_1016_j_apsoil_2022_104776 crossref_primary_10_1016_j_crpvbd_2024_100177 crossref_primary_10_1016_j_jaip_2022_06_006 crossref_primary_10_1186_s40793_021_00387_w crossref_primary_10_3390_genes12111755 crossref_primary_10_1186_s40793_024_00592_3 crossref_primary_10_1111_jre_13292 crossref_primary_10_3390_microorganisms11030683 crossref_primary_10_3390_ani14081143 crossref_primary_10_3390_microorganisms11030563 crossref_primary_10_1002_imt2_71 crossref_primary_10_1016_j_scitotenv_2023_168050 crossref_primary_10_1186_s40793_022_00420_6 crossref_primary_10_1094_PBIOMES_02_23_0009_FI crossref_primary_10_3390_dj11020044 crossref_primary_10_1080_19490976_2023_2183685 crossref_primary_10_1111_gcb_16877 crossref_primary_10_1139_cjss_2022_0121 crossref_primary_10_1016_j_envint_2024_108901 crossref_primary_10_1021_acs_jafc_2c08338 crossref_primary_10_1016_j_rhisph_2024_101015 crossref_primary_10_3389_fevo_2021_746783 crossref_primary_10_3390_microorganisms10112213 crossref_primary_10_1038_s41467_023_44373_x crossref_primary_10_3389_fmicb_2024_1401794 crossref_primary_10_1111_1462_2920_16693 crossref_primary_10_1016_j_ejsobi_2024_103638 crossref_primary_10_3389_fmicb_2024_1347422 crossref_primary_10_3390_su15053879 |
Cites_doi | 10.1093/bioinformatics/btp211 10.1093/bioinformatics/btv349 10.1093/bioinformatics/btl287 10.1186/s40168-020-00857-2 10.1023/A:1023866030544 10.1016/j.foodqual.2013.05.005 10.1080/01621459.1971.10482356 10.1038/ismej.2017.119 10.1038/ismej.2015.235 10.1016/S0378-8733(00)00031-9 10.18637/jss.v024.i01 10.1128/MMBR.00044-18 10.2202/1544-6115.1585 10.1038/nature11234 10.1016/0378-8733(78)90021-7 10.1186/s12859-016-1013-x 10.1128/mSystems.00031-18 10.1046/j.1461-0248.2001.00230.x 10.1111/j.2517-6161.1982.tb01195.x 10.1073/pnas.0400087101 10.1093/cercor/bht004 10.1214/009053606000000281 10.1007/978-981-13-1534-3 10.1371/journal.pcbi.1002687 10.1093/bioinformatics/btn209 10.1086/228631 10.1038/s41598-017-16520-0 10.3389/fmicb.2017.02224 10.1007/s11004-007-9100-1 10.1103/PhysRevE.69.026113 10.1089/cmb.2016.0061 10.1371/journal.pcbi.1003531 10.1101/2020.07.15.195248 10.1016/j.cels.2019.08.002 10.1016/j.aca.2012.12.029 10.1214/aoms/1177729694 10.1371/journal.pone.0061562 10.1093/bioinformatics/btv633 10.1093/femsre/fuy030 10.1186/s40168-018-0605-2 10.1111/j.1365-3016.2011.01223.x 10.3389/fgene.2019.00516 10.1371/journal.pcbi.1004075 10.1038/s41586-018-0386-6 10.1371/journal.pcbi.1006369 10.1128/mSystems.00053-18 10.1177/1471082X14535524 10.1093/sysbio/45.3.380 10.1128/JCM.01228-07 10.1109/TIT.2003.813506 10.1007/978-1-4612-4380-9_6 10.1016/j.neuroimage.2016.05.068 10.1002/9781119976462.ch4 10.1007/BF01908075 10.1016/j.cels.2016.12.012 10.1038/s41522-018-0077-y 10.1007/978-1-349-03521-2 10.1073/pnas.82.20.6955 10.1089/cmb.2017.0054 10.1093/biostatistics/kxm045 10.1111/j.1467-9868.2005.00515.x 10.1186/1471-2105-13-113 10.1038/nmeth.2693 10.1016/j.chemolab.2015.02.019 10.1371/journal.pbio.1002352 10.1186/1471-2105-11-95 10.7554/eLife.46923 10.1126/science.1261359 10.1111/0081-1750.00098 10.1038/nmeth.4468 10.1371/journal.pone.0061217 10.3102/10769986025001060 10.1186/s40168-017-0393-0 10.1007/BF00891269 10.1371/journal.pcbi.1002606 10.1016/0378-8733(88)90014-7 10.18637/jss.v024.i02 10.1002/bimj.201700129 10.1128/AEM.71.3.1501-1506.2005 10.2307/1942268 10.1186/gb-2010-11-10-r106 10.1103/PhysRevE.70.066111 10.1128/mBio.00169-10 10.1038/nrg3182 10.1038/nmeth.2658 10.1002/9780470253489 10.1186/1471-2105-9-559 10.1214/aos/1013699998 10.1007/978-1-4419-8819-5 10.1101/gr.1239303 10.1371/journal.pcbi.1004226 10.1126/science.1073374 10.1109/TKDE.2007.190689 10.1371/journal.pgen.1000255 10.2202/1544-6115.1128 10.1186/s12859-019-2915-1 10.1016/j.cageo.2007.09.015 10.1094/PHYTO-02-16-0058-FI 10.1371/journal.pcbi.1005852 10.1093/bioinformatics/btu447 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2020 The Author(s) 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2020 – notice: The Author(s) 2020. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbaa290 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC8293835 10_1093_bib_bbaa290 10.1093/bib/bbaa290 |
GrantInformation_xml | – fundername: ; grantid: LSHBCT-2006-018996 – fundername: ; grantid: ERC-2009-AdG_20090506_250268 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c483t-fedda681af5ac8fb4dbf0b2f14bfcb1a1c68813fa12b717133e9bcb40b91baa63 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 14:10:19 EDT 2025 Fri Jul 11 12:01:16 EDT 2025 Mon Jun 30 08:52:45 EDT 2025 Tue Jul 01 03:39:31 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 Wed Aug 28 03:20:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | network analysis compositional data differential association network comparison sample similarity network microbial association estimation |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-fedda681af5ac8fb4dbf0b2f14bfcb1a1c68813fa12b717133e9bcb40b91baa63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbaa290 |
PMID | 33264391 |
PQID | 2590045866 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8293835 proquest_miscellaneous_2466770819 proquest_journals_2590045866 crossref_primary_10_1093_bib_bbaa290 crossref_citationtrail_10_1093_bib_bbaa290 oup_primary_10_1093_bib_bbaa290 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Brandes (2021072112294531000_ref88) 2007; 20 Martín-Fernández (2021072112294531000_ref44) 2015; 15 Yoon (2021072112294531000_ref66) 2018 Martín-Fernández (2021072112294531000_ref40) 2003; 35 Bondy (2021072112294531000_ref78) 1976 Hirano (2021072112294531000_ref116) 2019; 20 Freeman (2021072112294531000_ref79) 1978; 1 Qannari (2021072112294531000_ref102) 2014; 32 Langaas (2021072112294531000_ref74) 2005; 67 R Core Team (2021072112294531000_ref69) 2018 Bolland (2021072112294531000_ref82) 1988; 10 Zhang (2021072112294531000_ref112) 2018; 14 Bahram (2021072112294531000_ref16) 2018; 560 Sunagawa (2021072112294531000_ref10) 2013; 10 Fruchterman (2021072112294531000_ref110) 1991; 21 Schwager (2021072112294531000_ref62) 2019 Biswas (2021072112294531000_ref124) 2016; 23 Newman (2021072112294531000_ref89) 2004; 69 Boulesteix (2021072112294531000_ref119) 2018; 60 Schloss (2021072112294531000_ref8) 2005; 71 Real (2021072112294531000_ref99) 1996; 45 Callahan (2021072112294531000_ref9) 2017; 11 Genuneit (2021072112294531000_ref107) 2011; 25 Benjamini (2021072112294531000_ref73) 2000; 25 McDonald (2021072112294531000_ref15) 2018; 3 Palarea-Albaladejo (2021072112294531000_ref37) 2015; 143 Martín-Fernández (2021072112294531000_ref36) 2011 Martín-Fernández (2021072112294531000_ref95) 2001 Gill (2021072112294531000_ref105) 2010; 11 Csardi (2021072112294531000_ref24) 2006; 1695 Bastian (2021072112294531000_ref22) 2009 Rand (2021072112294531000_ref100) 1971; 66 Rowan-Nash (2021072112294531000_ref120) 2019; 83 Palarea-Albaladejo (2021072112294531000_ref41) 2007; 39 Badri (2021072112294531000_ref47) 2020 Bonacich (2021072112294531000_ref80) 1987; 92 Aitchison (2021072112294531000_ref38) 2003 Meinshausen (2021072112294531000_ref58) 2006; 34 Tackmann (2021072112294531000_ref113) 2019; 9 Zhang (2021072112294531000_ref46) 2005; 4 Benjamini (2021072112294531000_ref70) 2001; 29 Ali (2021072112294531000_ref34) 2014; 30 Huttenhower (2021072112294531000_ref13) 2012; 486 Siska (2021072112294531000_ref106) 2016; 32 Davidson (2021072112294531000_ref4) 2018 Aitchison (2021072112294531000_ref45) 1982; 44 Shannon (2021072112294531000_ref23) 2003; 13 Horvath (2021072112294531000_ref68) 2011 Fisher (2021072112294531000_ref103) 1992 Winkler (2021072112294531000_ref127) 2016; 141 Xia (2021072112294531000_ref39) 2018 Zhou (2021072112294531000_ref35) 2010; 1 Boulesteix (2021072112294531000_ref118) 2013; 8 Davis (2021072112294531000_ref5) 2018; 6 Efron (2021072112294531000_ref72) 2005 Sunagawa (2021072112294531000_ref14) 2015; 348 Palarea-Albaladejo (2021072112294531000_ref42) 2008; 34 Anders (2021072112294531000_ref49) 2010; 11 Loh (2021072112294531000_ref57) 2012 Jaccard (2021072112294531000_ref98) 1908; 44 Palarea-Albaladejo (2021072112294531000_ref43) 2013; 764 Fang (2021072112294531000_ref64) 2016 Lovell (2021072112294531000_ref54) 2015; 11 Bray (2021072112294531000_ref90) 1957; 27 Fang (2021072112294531000_ref61) 2016 Aitchison (2021072112294531000_ref96) 1992; 24 Schwager (2021072112294531000_ref109) 2017; 13 Janda (2021072112294531000_ref1) 2007; 45 Kullback (2021072112294531000_ref91) 1951; 22 Jeffreys (2021072112294531000_ref92) 1948 Filosi (2021072112294531000_ref60) 2017 Deng (2021072112294531000_ref114) 2012; 13 Yoon (2021072112294531000_ref65) 2019 Phipson (2021072112294531000_ref75) 2010; 9 Poudel (2021072112294531000_ref67) 2016; 106 McMurdie (2021072112294531000_ref111) 2013; 8 McMurdie (2021072112294531000_ref48) 2014; 10 Yoon (2021072112294531000_ref55) 2019; 10 Junker (2021072112294531000_ref83) 2008 Agler (2021072112294531000_ref84) 2016; 14 Lichtblau (2021072112294531000_ref31) 2016; 18 Uehara (2021072112294531000_ref97) 2014; 24 Kurtz (2021072112294531000_ref122) 2019 Friedman (2021072112294531000_ref59) 2008; 9 Clauset (2021072112294531000_ref86) 2004; 70 Strimmer (2021072112294531000_ref71) 2008; 24 Ravasz (2021072112294531000_ref77) 2002; 297 Ruhnau (2021072112294531000_ref81) 2000; 22 van Dongen (2021072112294531000_ref76) 2012 Kurtz (2021072112294531000_ref28) 2015 Gotelli (2021072112294531000_ref51) 2001; 4 McLaren (2021072112294531000_ref6) 2019; 8 Cho (2021072112294531000_ref3) 2012; 13 Fang (2021072112294531000_ref56) 2017; 24 Tipton (2021072112294531000_ref121) 2018; 6 Ma (2021072112294531000_ref21) 2020; 8 Friedman (2021072112294531000_ref27) 2012; 8 Weiss (2021072112294531000_ref115) 2016; 10 Butts (2021072112294531000_ref26) 2008; 24 Faust (2021072112294531000_ref18) 2012; 8 Huse (2021072112294531000_ref2) 2008; 4 Fang (2021072112294531000_ref53) 2015; 31 Kuntal (2021072112294531000_ref32) 2016; 17 Knijnenburg (2021072112294531000_ref126) 2009; 25 Liang (2021072112294531000_ref33) 2006; 22 Lane (2021072112294531000_ref7) 1985; 82 Hubert (2021072112294531000_ref101) 1985; 2 Röttjers (2021072112294531000_ref117) 2018; 42 Quinn (2021072112294531000_ref30) 2017; 7 Barrat (2021072112294531000_ref85) 2004; 101 Gloor (2021072112294531000_ref11) 2017; 8 Rivera-Pinto (2021072112294531000_ref12) 2018; 3 Peschel (2021072112294531000_ref108) 2020 Yu (2021072112294531000_ref104) 2019; 9 Wang (2021072112294531000_ref123) 2019 Yoon (2021072112294531000_ref29) 2019 Yang (2021072112294531000_ref125) 2017; 4 Kurtz (2021072112294531000_ref63) 2019 Handcock (2021072112294531000_ref25) 2008; 24 Paulson (2021072112294531000_ref50) 2013; 10 Martín-Fernández (2021072112294531000_ref94) 1999 White (2021072112294531000_ref87) 2001; 31 Endres (2021072112294531000_ref93) 2003; 49 Liu (2021072112294531000_ref20) 2020; 00 Langfelder (2021072112294531000_ref52) 2008; 9 Pasolli (2021072112294531000_ref17) 2017; 14 Layeghifard (2021072112294531000_ref19) 2019; 5 |
References_xml | – volume: 25 start-page: i161 year: 2009 ident: 2021072112294531000_ref126 article-title: Fewer permutations, more accurate P-values publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp211 – volume: 31 start-page: 3172 year: 2015 ident: 2021072112294531000_ref53 article-title: CCLasso: correlation inference for compositional data through lasso publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv349 – volume: 22 start-page: 2175 year: 2006 ident: 2021072112294531000_ref33 article-title: NetAlign: a web-based tool for comparison of protein interaction networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl287 – year: 2019 ident: 2021072112294531000_ref123 article-title: Managing batch effects in microbiome data publication-title: Brief Bioinform – volume: 8 start-page: 1 year: 2020 ident: 2021072112294531000_ref21 article-title: Earth microbial co-occurrence network reveals interconnection pattern across microbiomes publication-title: Microbiome doi: 10.1186/s40168-020-00857-2 – volume: 35 start-page: 253 year: 2003 ident: 2021072112294531000_ref40 article-title: Dealing with zeros and missing values in compositional data sets using nonparametric imputation publication-title: Mathematical Geology doi: 10.1023/A:1023866030544 – volume: 32 start-page: 93 year: 2014 ident: 2021072112294531000_ref102 article-title: Significance test of the adjusted Rand index. Application to the free sorting task publication-title: Food Quality and Preference doi: 10.1016/j.foodqual.2013.05.005 – volume-title: ccrepe: ccrepe_and_nc.score year: 2019 ident: 2021072112294531000_ref62 – volume: 66 start-page: 846 year: 1971 ident: 2021072112294531000_ref100 article-title: Objective criteria for the evaluation of clustering methods publication-title: J Am Stat Assoc doi: 10.1080/01621459.1971.10482356 – volume: 11 start-page: 2639 year: 2017 ident: 2021072112294531000_ref9 article-title: Exact sequence variants should replace operational taxonomic units in marker-gene data analysis publication-title: ISME J doi: 10.1038/ismej.2017.119 – volume: 10 start-page: 1669 year: 2016 ident: 2021072112294531000_ref115 article-title: Correlation detection strategies in microbial data sets vary widely in sensitivity and precision publication-title: ISME J doi: 10.1038/ismej.2015.235 – volume: 22 start-page: 357 year: 2000 ident: 2021072112294531000_ref81 article-title: Eigenvector-centrality – a node-centrality? publication-title: Social Networks doi: 10.1016/S0378-8733(00)00031-9 – volume: 24 start-page: 1548 year: 2008 ident: 2021072112294531000_ref25 article-title: Statnet: software tools for the representation, visualization, analysis and simulation of network data publication-title: J Stat Softw doi: 10.18637/jss.v024.i01 – volume: 83 start-page: 1 year: 2019 ident: 2021072112294531000_ref120 article-title: Cross-domain and viral interactions in the microbiome publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00044-18 – volume-title: SPRING: Semi-parametric Rank-Based Correlation and Partial Correlation Estimation for Quantitative Microbiome Data year: 2019 ident: 2021072112294531000_ref29 – volume: 9 year: 2010 ident: 2021072112294531000_ref75 article-title: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1585 – volume: 486 start-page: 207 year: 2012 ident: 2021072112294531000_ref13 article-title: Structure, function and diversity of the healthy human microbiome publication-title: Nature doi: 10.1038/nature11234 – volume: 1 start-page: 215 year: 1978 ident: 2021072112294531000_ref79 article-title: Centrality in social networks conceptual clarification publication-title: Social Networks doi: 10.1016/0378-8733(78)90021-7 – year: 2019 ident: 2021072112294531000_ref122 article-title: Disentangling microbial associations from hidden environmental and technical factors via latent graphical models publication-title: bioRxiv – volume: 17 year: 2016 ident: 2021072112294531000_ref32 article-title: CompNet: a GUI based tool for comparison of multiple biological interaction networks publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1013-x – volume: 9 start-page: 1 year: 2019 ident: 2021072112294531000_ref104 article-title: New statistical methods for constructing robust differential correlation networks to characterize the interactions among microRNAs publication-title: Sci Rep – volume: 3 start-page: e00031 year: 2018 ident: 2021072112294531000_ref15 article-title: American gut: an open platform for citizen science microbiome research publication-title: mSystems doi: 10.1128/mSystems.00031-18 – volume: 4 start-page: 379 year: 2001 ident: 2021072112294531000_ref51 article-title: Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness publication-title: Ecol Lett doi: 10.1046/j.1461-0248.2001.00230.x – volume: 18 start-page: 837 year: 2016 ident: 2021072112294531000_ref31 article-title: Comparative assessment of differential network analysis methods publication-title: Brief Bioinform – volume: 44 start-page: 139 year: 1982 ident: 2021072112294531000_ref45 article-title: The statistical analysis of compositional data publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 101 start-page: 3747 year: 2004 ident: 2021072112294531000_ref85 article-title: The architecture of complex weighted networks publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0400087101 – volume: 24 start-page: 1529 year: 2014 ident: 2021072112294531000_ref97 article-title: Efficiency of a “small-world” brain network depends on consciousness level: a resting-state fMRI study publication-title: Cereb Cortex doi: 10.1093/cercor/bht004 – volume: 34 start-page: 1436 year: 2006 ident: 2021072112294531000_ref58 article-title: High-dimensional graphs and variable selection with the lasso publication-title: The Annals of Statistics doi: 10.1214/009053606000000281 – volume-title: Statistical Analysis of Microbiome Data with R year: 2018 ident: 2021072112294531000_ref39 doi: 10.1007/978-981-13-1534-3 – year: 2020 ident: 2021072112294531000_ref47 article-title: Shrinkage improves estimation of microbial associations under different normalization methods publication-title: bioRxiv – start-page: 2087 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 2021072112294531000_ref57 article-title: Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses – volume: 8 start-page: e1002687 year: 2012 ident: 2021072112294531000_ref27 article-title: Inferring correlation networks from genomic survey data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002687 – volume-title: R package computes correlation for relative abundances year: 2017 ident: 2021072112294531000_ref60 – volume: 24 start-page: 1461 year: 2008 ident: 2021072112294531000_ref71 article-title: Fdrtool: a versatile R package for estimating local and tail area-based false discovery rates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn209 – volume: 92 start-page: 1170 year: 1987 ident: 2021072112294531000_ref80 article-title: Power and centrality: a family of measures publication-title: Am J Sociol doi: 10.1086/228631 – volume: 7 start-page: 16252 year: 2017 ident: 2021072112294531000_ref30 article-title: Propr: an R-package for identifying proportionally abundant features using compositional data analysis publication-title: Sci Rep doi: 10.1038/s41598-017-16520-0 – volume: 8 start-page: 2224 year: 2017 ident: 2021072112294531000_ref11 article-title: Microbiome datasets are compositional: and this is not optional publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02224 – volume: 39 start-page: 625 year: 2007 ident: 2021072112294531000_ref41 article-title: A parametric approach for dealing with compositional rounded zeros publication-title: Mathematical Geology doi: 10.1007/s11004-007-9100-1 – volume: 69 start-page: 026113 year: 2004 ident: 2021072112294531000_ref89 article-title: Finding and evaluating community structure in networks publication-title: Physical review E doi: 10.1103/PhysRevE.69.026113 – volume: 23 start-page: 526 year: 2016 ident: 2021072112294531000_ref124 article-title: Learning microbial interaction networks from metagenomic count data publication-title: J Comput Biol doi: 10.1089/cmb.2016.0061 – volume: 10 start-page: e1003531 year: 2014 ident: 2021072112294531000_ref48 article-title: Waste not, want not: why rarefying microbiome data is inadmissible publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003531 – year: 2020 ident: 2021072112294531000_ref108 article-title: NetCoMi: network construction and comparison for microbiome data doi: 10.1101/2020.07.15.195248 – volume: 9 start-page: 286 year: 2019 ident: 2021072112294531000_ref113 article-title: Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data publication-title: Cell Systems doi: 10.1016/j.cels.2019.08.002 – year: 2012 ident: 2021072112294531000_ref76 article-title: Metric distances derived from cosine similarity and Pearson and Spearman correlations – volume: 764 start-page: 32 year: 2013 ident: 2021072112294531000_ref43 article-title: Values below detection limit in compositional chemical data publication-title: Anal Chim Acta doi: 10.1016/j.aca.2012.12.029 – volume: 22 start-page: 79 year: 1951 ident: 2021072112294531000_ref91 article-title: On information and sufficiency publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – volume: 8 start-page: e61562 year: 2013 ident: 2021072112294531000_ref118 article-title: A plea for neutral comparison studies in computational sciences publication-title: PloS One doi: 10.1371/journal.pone.0061562 – volume: 32 start-page: 690 year: 2016 ident: 2021072112294531000_ref106 article-title: The discordant method: a novel approach for differential correlation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv633 – volume: 42 start-page: 761 year: 2018 ident: 2021072112294531000_ref117 article-title: From hairballs to hypotheses–biological insights from microbial networks publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuy030 – volume: 6 start-page: 226 year: 2018 ident: 2021072112294531000_ref5 article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data publication-title: Microbiome doi: 10.1186/s40168-018-0605-2 – volume-title: R: A Language and Environment for Statistical Computing year: 2018 ident: 2021072112294531000_ref69 – volume: 25 start-page: 436 year: 2011 ident: 2021072112294531000_ref107 article-title: The GABRIEL advanced surveys: study design, participation and evaluation of bias publication-title: Paediatr Perinat Epidemiol doi: 10.1111/j.1365-3016.2011.01223.x – volume: 10 year: 2019 ident: 2021072112294531000_ref55 article-title: Microbial networks in SPRING-semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome data publication-title: Front Genet doi: 10.3389/fgene.2019.00516 – volume: 11 start-page: e1004075 year: 2015 ident: 2021072112294531000_ref54 article-title: Proportionality: a valid alternative to correlation for relative data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004075 – volume: 560 start-page: 233 year: 2018 ident: 2021072112294531000_ref16 article-title: Structure and function of the global topsoil microbiome publication-title: Nature doi: 10.1038/s41586-018-0386-6 – volume: 14 start-page: e1006369 year: 2018 ident: 2021072112294531000_ref112 article-title: SILGGM: an extensive R package for efficient statistical inference in large-scale gene networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006369 – volume: 21 start-page: 1129 year: 1991 ident: 2021072112294531000_ref110 article-title: Graph drawing by force-directed placement publication-title: Software: Practice and Experience – volume: 3 start-page: e00053 year: 2018 ident: 2021072112294531000_ref12 article-title: Balances: a new perspective for microbiome analysis publication-title: MSystems doi: 10.1128/mSystems.00053-18 – start-page: 77 volume-title: Methods in Molecular Biology year: 2018 ident: 2021072112294531000_ref4 article-title: Microbiome Sequencing Methods for Studying Human Diseases – volume: 15 start-page: 134 year: 2015 ident: 2021072112294531000_ref44 article-title: Bayesian-multiplicative treatment of count zeros in compositional data sets publication-title: Statistical Modelling doi: 10.1177/1471082X14535524 – volume: 45 start-page: 380 year: 1996 ident: 2021072112294531000_ref99 article-title: The probabilistic basis of Jaccard’s index of similarity publication-title: Syst Biol doi: 10.1093/sysbio/45.3.380 – volume: 45 start-page: 2761 year: 2007 ident: 2021072112294531000_ref1 article-title: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls publication-title: J Clin Microbiol doi: 10.1128/JCM.01228-07 – volume: 49 year: 2003 ident: 2021072112294531000_ref93 article-title: A new metric for probability distributions publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2003.813506 – start-page: 66 volume-title: Breakthroughs in Statistics year: 1992 ident: 2021072112294531000_ref103 article-title: Statistical methods for research workers doi: 10.1007/978-1-4612-4380-9_6 – volume: 141 start-page: 502 year: 2016 ident: 2021072112294531000_ref127 article-title: Faster permutation inference in brain imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.068 – start-page: 43 volume-title: Compositional data analysis year: 2011 ident: 2021072112294531000_ref36 article-title: Dealing with zeros doi: 10.1002/9781119976462.ch4 – volume: 2 start-page: 193 year: 1985 ident: 2021072112294531000_ref101 article-title: Comparing partitions publication-title: Journal of Classification doi: 10.1007/BF01908075 – volume: 4 start-page: 129 year: 2017 ident: 2021072112294531000_ref125 article-title: Inference of environmental factor-microbe and microbe-microbe associations from metagenomic data using a hierarchical Bayesian statistical model publication-title: Cell Systems doi: 10.1016/j.cels.2016.12.012 – volume: 5 year: 2019 ident: 2021072112294531000_ref19 article-title: Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations publication-title: NPJ Biofilms and Microbiomes doi: 10.1038/s41522-018-0077-y – volume-title: Graph theory with applications year: 1976 ident: 2021072112294531000_ref78 doi: 10.1007/978-1-349-03521-2 – volume: 82 start-page: 6955 year: 1985 ident: 2021072112294531000_ref7 article-title: Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.82.20.6955 – volume: 00 start-page: 1 year: 2020 ident: 2021072112294531000_ref20 article-title: Network analyses in microbiome based on high-throughput multi-omics data publication-title: Brief Bioinform – volume: 24 start-page: 699 year: 2017 ident: 2021072112294531000_ref56 article-title: gCoda: conditional dependence network inference for compositional data publication-title: J Comput Biol doi: 10.1089/cmb.2017.0054 – volume: 9 start-page: 432 year: 2008 ident: 2021072112294531000_ref59 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume-title: CCLasso: Correlation Inference for Compositional Data through Lasso year: 2016 ident: 2021072112294531000_ref61 – volume: 67 start-page: 555 year: 2005 ident: 2021072112294531000_ref74 article-title: Estimating the proportion of true null hypotheses, with application to DNA microarray data publication-title: J R Stat Soc Series B Stat Methodology doi: 10.1111/j.1467-9868.2005.00515.x – volume: 13 start-page: 113 year: 2012 ident: 2021072112294531000_ref114 article-title: Molecular ecological network analyses publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-113 – volume: 10 start-page: 1196 year: 2013 ident: 2021072112294531000_ref10 article-title: Metagenomic species profiling using universal phylogenetic marker genes publication-title: Nat Methods doi: 10.1038/nmeth.2693 – volume: 143 start-page: 85 year: 2015 ident: 2021072112294531000_ref37 article-title: zCompositions-R package for multivariate imputation of left-censored data under a compositional approach publication-title: Chemom Intel Lab Syst doi: 10.1016/j.chemolab.2015.02.019 – volume: 14 start-page: e1002352 year: 2016 ident: 2021072112294531000_ref84 article-title: Microbial hub taxa link host and abiotic factors to plant microbiome variation publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002352 – volume: 11 start-page: 95 year: 2010 ident: 2021072112294531000_ref105 article-title: A statistical framework for differential network analysis from microarray data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-95 – volume: 8 start-page: e46923 year: 2019 ident: 2021072112294531000_ref6 article-title: Consistent and correctable bias in metagenomic sequencing experiments publication-title: Elife doi: 10.7554/eLife.46923 – volume: 348 year: 2015 ident: 2021072112294531000_ref14 article-title: Structure and function of the global ocean microbiome publication-title: Science doi: 10.1126/science.1261359 – volume: 44 start-page: 223 year: 1908 ident: 2021072112294531000_ref98 article-title: Nouvelles Recherches Sur la distribution Florale publication-title: Bulletin de la Société Vaudoise des Sciences Naturelles – volume: 31 start-page: 305 year: 2001 ident: 2021072112294531000_ref87 article-title: The cohesiveness of blocks in social networks: node connectivity and conditional density publication-title: Sociological Methodology doi: 10.1111/0081-1750.00098 – volume: 14 start-page: 1023 year: 2017 ident: 2021072112294531000_ref17 article-title: Accessible, curated metagenomic data through ExperimentHub publication-title: Nat Methods doi: 10.1038/nmeth.4468 – volume: 8 start-page: e1003531 year: 2013 ident: 2021072112294531000_ref111 article-title: Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data publication-title: PLoS ONE doi: 10.1371/journal.pone.0061217 – start-page: 361 volume-title: AAAI Publications, Third International AAAI Conference on Weblogs and Social Media year: 2009 ident: 2021072112294531000_ref22 article-title: An Open Source Software for Exploring and Manipulating Networks – volume-title: SpiecEasi: Sparse Inverse Covariance for Ecological Statistical Inference year: 2019 ident: 2021072112294531000_ref63 – volume: 25 start-page: 60 year: 2000 ident: 2021072112294531000_ref73 article-title: On the adaptive control of the false discovery rate in multiple testing with independent statistics publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/10769986025001060 – volume: 1695 start-page: 1 year: 2006 ident: 2021072112294531000_ref24 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – volume: 6 start-page: 12 year: 2018 ident: 2021072112294531000_ref121 article-title: Fungi stabilize connectivity in the lung and skin microbial ecosystems publication-title: Microbiome doi: 10.1186/s40168-017-0393-0 – volume: 24 start-page: 365 year: 1992 ident: 2021072112294531000_ref96 article-title: On criteria for measures of compositional difference publication-title: Mathematical Geology doi: 10.1007/BF00891269 – volume: 8 start-page: e1002606 year: 2012 ident: 2021072112294531000_ref18 article-title: Microbial co-occurrence relationships in the human microbiome publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002606 – volume-title: SPRING: Semi-Parametric Rank-based approach for INference in Graphical model (SPRING) year: 2019 ident: 2021072112294531000_ref65 – volume: 10 start-page: 233 year: 1988 ident: 2021072112294531000_ref82 article-title: Sorting out centrality: an analysis of the performance of four centrality models in real and simulated networks publication-title: Social Networks doi: 10.1016/0378-8733(88)90014-7 – volume: 24 start-page: 1 year: 2008 ident: 2021072112294531000_ref26 article-title: Network: a package for managing relational data in R publication-title: J Stat Softw doi: 10.18637/jss.v024.i02 – volume: 60 start-page: 216 year: 2018 ident: 2021072112294531000_ref119 article-title: On the necessity and design of studies comparing statistical methods publication-title: Biom J doi: 10.1002/bimj.201700129 – volume: 71 start-page: 1501 year: 2005 ident: 2021072112294531000_ref8 article-title: Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.3.1501-1506.2005 – volume-title: Proceedings of CoDaWork’03, The 1st Compositional Data Analysis Workshop year: 2003 ident: 2021072112294531000_ref38 article-title: Possible solution of some essential zero problems in compositional data analysis – volume-title: gCoda: conditional dependence network inference for compositional data year: 2016 ident: 2021072112294531000_ref64 – volume: 27 start-page: 325 year: 1957 ident: 2021072112294531000_ref90 article-title: An ordination of the upland forest communities of southern Wisconsin publication-title: Ecological Monographs doi: 10.2307/1942268 – volume: 11 start-page: R106 year: 2010 ident: 2021072112294531000_ref49 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 70 start-page: 066111 year: 2004 ident: 2021072112294531000_ref86 article-title: Finding community structure in very large networks publication-title: Physical review E doi: 10.1103/PhysRevE.70.066111 – volume: 1 year: 2010 ident: 2021072112294531000_ref35 article-title: Functional molecular ecological networks publication-title: MBio doi: 10.1128/mBio.00169-10 – volume-title: Theory of probability year: 1948 ident: 2021072112294531000_ref92 – volume: 13 start-page: 260 year: 2012 ident: 2021072112294531000_ref3 article-title: The human microbiome: at the interface of health and disease publication-title: Nat Rev Genet doi: 10.1038/nrg3182 – volume: 10 start-page: 1200 year: 2013 ident: 2021072112294531000_ref50 article-title: Robust methods for differential abundance analysis in marker gene surveys publication-title: Nat Methods doi: 10.1038/nmeth.2658 – volume-title: Analysis of biological networks year: 2008 ident: 2021072112294531000_ref83 doi: 10.1002/9780470253489 – volume: 9 start-page: 559 year: 2008 ident: 2021072112294531000_ref52 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – year: 2018 ident: 2021072112294531000_ref66 article-title: Sparse semiparametric canonical correlation analysis for data of mixed types – volume: 29 start-page: 1165 year: 2001 ident: 2021072112294531000_ref70 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: The Annals of statistics doi: 10.1214/aos/1013699998 – volume-title: Weighted Network Analysis: Applications in Genomics and Systems Biology year: 2011 ident: 2021072112294531000_ref68 doi: 10.1007/978-1-4419-8819-5 – volume: 13 start-page: 2498 year: 2003 ident: 2021072112294531000_ref23 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res doi: 10.1101/gr.1239303 – volume-title: PLoS Comput Biol year: 2015 ident: 2021072112294531000_ref28 article-title: Sparse and compositionally robust inference of microbial ecological networks doi: 10.1371/journal.pcbi.1004226 – volume: 297 start-page: 1551 year: 2002 ident: 2021072112294531000_ref77 article-title: Hierarchical organization of modularity in metabolic networks publication-title: Science doi: 10.1126/science.1073374 – volume: 20 start-page: 172 year: 2007 ident: 2021072112294531000_ref88 article-title: On modularity clustering publication-title: IEEE transactions on knowledge and data engineering doi: 10.1109/TKDE.2007.190689 – volume: 4 start-page: e1000255 year: 2008 ident: 2021072112294531000_ref2 article-title: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000255 – volume: 4 start-page: 17 year: 2005 ident: 2021072112294531000_ref46 article-title: A general framework for weighted gene co-expression network analysis publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1128 – start-page: 211 volume-title: Lippard, Næss, and Sinding-Larsen year: 1999 ident: 2021072112294531000_ref94 article-title: A measure of difference for compositional data based on measures of divergence – volume: 20 start-page: 329 year: 2019 ident: 2021072112294531000_ref116 article-title: Difficulty in inferring microbial community structure based on co-occurrence network approaches publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2915-1 – volume: 34 start-page: 902 year: 2008 ident: 2021072112294531000_ref42 article-title: A modified EM alr-algorithm for replacing rounded zeros in compositional data sets publication-title: Comput Geosci doi: 10.1016/j.cageo.2007.09.015 – volume-title: Proceedings of the Annual Conference of the International Association for Mathematical Geology year: 2001 ident: 2021072112294531000_ref95 article-title: Some Practical Aspects on Multidimensional Scaling of Compositional Data – volume: 106 start-page: 1083 year: 2016 ident: 2021072112294531000_ref67 article-title: Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management publication-title: The American Phytopathological Society doi: 10.1094/PHYTO-02-16-0058-FI – volume: 13 start-page: e1005852 year: 2017 ident: 2021072112294531000_ref109 article-title: A Bayesian method for detecting pairwise associations in compositional data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005852 – volume: 30 start-page: i430 year: 2014 ident: 2021072112294531000_ref34 article-title: Alignment-free protein interaction network comparison publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu447 – volume-title: Local False Discovery Rates. Tech. rep year: 2005 ident: 2021072112294531000_ref72 |
SSID | ssj0020781 |
Score | 2.666206 |
SecondaryResourceType | review_article |
Snippet | Abstract
Motivation
Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at... Motivation Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at... Estimating microbial association networks from high-throughput sequencing data is a common exploratory data analysis approach aiming at understanding the... |
SourceID | pubmedcentral proquest crossref oup |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Associations Bioinformatics Computer applications Computer graphics Data analysis Estimation Heterogeneity Method Review Microbial activity Microbiomes Microorganisms Networks Next-generation sequencing Secondary analysis Software Statistical methods Workflow |
Title | NetCoMi: network construction and comparison for microbiome data in R |
URI | https://www.proquest.com/docview/2590045866 https://www.proquest.com/docview/2466770819 https://pubmed.ncbi.nlm.nih.gov/PMC8293835 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf2J1aoQ9CWVLk6apbzI2hrAJssHeSi5NsOBaYfPB_96k7aqVoX3NlbZ3KfmO--47hHqERaEMKPeNIMxnsSA-GKL8mKWKC0lBlCKu0xmfLNjTMlzWBNn1jhJ-TPuQQR9AyiB2qbk9fp1E_vx52eRVTq-maiKKfKfuXrfh_bq3dfC0mtkcpmwzIn8cMeMjdFhjQ_xYBfMY7en8BO1X0yI_T9FopjfDYpo94LzibmNVfOu_YpmnWDVTBbEFo3iVVTJLK40dExRnOX45Q4vxaD6c-PUUBF8xQTe-0WkquSDShFIJAywFM4DAEAZGAZHE-lQQaiQJwOZmNufUMShgA4iJ_XJOz1EnL3J9gXBECJUiNjR0ZVyIQRhqL2M0G2ib13jofuuiRNUS4W5SxVtSlappYv2Z1P70UK8xfq-UMXab3Vpf_23R3cYhqX-gdRK4aaYsFJx76K5Ztlvf1TNkrosPa8M4jyKHaTwUteLXPM6JZ7dX8uy1FNEWFudY9Hn57-tdoYPA8VhKim4XdWxY9bUFIhu4KbfhFzrN3Yg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NetCoMi%3A+network+construction+and+comparison+for+microbiome+data+in+R&rft.jtitle=Briefings+in+bioinformatics&rft.au=Peschel%2C+Stefanie&rft.au=M%C3%BCller%2C+Christian+L&rft.au=von+Mutius%2C+Erika&rft.au=Boulesteix%2C+Anne-Laure&rft.date=2021-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa290&rft.externalDocID=10.1093%2Fbib%2Fbbaa290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |