Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: what we can do and what we can learn
In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6×105m3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow t...
Saved in:
Published in | Natural hazards and earth system sciences Vol. 20; no. 2; pp. 505 - 520 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
21.02.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the morning of 23 August 2017, around 3×106 m3 of
granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland.
The initial rockslide–rockfall entrained 6×105m3
of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a
channelized debris flow that reached the village of Bondo at a distance of
6.5 km after a couple of minutes. Subsequent debris flow surges followed in
the next hours and days. The event resulted in eight fatalities along its
path and severely damaged Bondo. The most likely candidates for the water
causing the transformation of the rock avalanche into a long-runout debris
flow are the entrained glacier ice and water originating from the debris
beneath the rock avalanche. In the present work we try to reconstruct
conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in
terms of qualitative conceptual process models: (i) entrainment of most of
the glacier ice by the frontal part of the initial rockslide–rockfall
and/or injection of water from the basal sediments due to sudden rise in
pore pressure, leading to a frontal debris flow, with the rear part largely
remaining dry and depositing mid-valley, and (ii) most of the entrained
glacier ice remaining beneath or behind the frontal rock avalanche and
developing into an avalanching flow of ice and water, part of which overtops
and partially entrains the rock avalanche deposit, resulting in a debris
flow. Both scenarios can – with some limitations – be numerically
reproduced with an enhanced version of the two-phase mass flow model
(Pudasaini, 2012) implemented with the simulation software r.avaflow, based
on plausible assumptions of the model parameters. However, these simulation
results do not allow us to conclude on which of the two scenarios is the more
likely one. Future work will be directed towards the application of a
three-phase flow model (rock, ice, and fluid) including phase transitions in
order to better represent the melting of glacier ice and a more appropriate
consideration of deposition of debris flow material along the channel. |
---|---|
AbstractList | In the morning of 23 August 2017, around 3x10.sup.6 m.sup.3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide-rockfall entrained 6x10.sup.5 m.sup.3 of a glacier and continued as a rock (or rock-ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide-rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide-rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can - with some limitations - be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel. In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6×105m3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide–rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can – with some limitations – be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel. In the morning of 23 August 2017, around 3 ×106 m 3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6 ×105 m 3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide–rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can – with some limitations – be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel. In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6×105m3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide–rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can – with some limitations – be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel. |
Audience | Academic |
Author | Mergili, Martin Jaboyedoff, Michel Pudasaini, Shiva P. Pullarello, José |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0001-5085-4846 surname: Mergili fullname: Mergili, Martin – sequence: 2 givenname: Michel orcidid: 0000-0002-6419-695X surname: Jaboyedoff fullname: Jaboyedoff, Michel – sequence: 3 givenname: José surname: Pullarello fullname: Pullarello, José – sequence: 4 givenname: Shiva P. orcidid: 0000-0002-6741-0827 surname: Pudasaini fullname: Pudasaini, Shiva P. |
BookMark | eNp9ks1uEzEQx1eoSLSFB-BmiROHDf5Y79rc2qiUSJVAfJytWa-dOGzsYjss9MQ78IY8CU6CgCDEaezx7z-aGf_PqhMfvKmqxwTPOJHNM78yKdUU1xzzEii-V52SVjS1lIKc_HF-UJ2ltMaYSt7g02q6BP0BaRj1doTsgkfBorwyiGLSodfuDs2NX8IYvn_9dhn8ENAIfkijG0xRJQ0lTi6vUJzBJ7BjmJ6jaQUZTbt3j4qg8Eep0UD0D6v7FsZkHv2M59X7F1fv5i_rm1fXi_nFTa0bwXJtB0IllaaXIAUYygbJmABmmLaE4h7bHndyaKwgAmvS9tTwngAjWlLQHWXn1eJQdwiwVrfRbSB-UQGc2idCXCqI2enRKN6LVohe9JzRBmMOBKSxFiw0mFq8q_XkUOs2ho9bk7Jah230pX1FGZeMYyHb31TZmlHO25Aj6I1LWl20pGlpJ9qmULN_ULDb58bp8rfWlfyR4OmRoDDZfM5L2KakFm_fHLPkwOoYUorG_hqcYLWzi9rbRdFyw1zt7FI03V8a7fLeEaUxN_5H-QMTfMWH |
CitedBy_id | crossref_primary_10_3389_feart_2020_00313 crossref_primary_10_1155_2022_2864271 crossref_primary_10_1016_j_jhydrol_2024_132620 crossref_primary_10_3390_app10186501 crossref_primary_10_1007_s10064_022_02851_4 crossref_primary_10_1016_j_geomorph_2024_109110 crossref_primary_10_1016_j_enggeo_2021_106072 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103292 crossref_primary_10_1016_j_scitotenv_2023_163262 crossref_primary_10_1007_s10346_021_01690_w crossref_primary_10_1186_s40677_022_00210_9 crossref_primary_10_1051_e3sconf_202341501017 crossref_primary_10_1016_j_partic_2025_03_008 crossref_primary_10_1016_j_ijnonlinmec_2024_104860 crossref_primary_10_1146_annurev_earth_032320_085133 crossref_primary_10_1038_s44304_025_00059_6 crossref_primary_10_3390_geosciences11100417 crossref_primary_10_1109_JSTARS_2024_3522950 crossref_primary_10_1007_s10064_023_03480_1 crossref_primary_10_1061_JHEND8_HYENG_13736 crossref_primary_10_1007_s10346_020_01609_x crossref_primary_10_1051_e3sconf_202341507001 crossref_primary_10_1016_j_geomorph_2022_108550 crossref_primary_10_1016_j_enggeo_2024_107693 crossref_primary_10_5194_esurf_9_771_2021 crossref_primary_10_1016_j_enggeo_2021_106188 crossref_primary_10_1038_s41558_024_02026_x crossref_primary_10_1002_esp_5650 crossref_primary_10_1007_s10346_022_01897_5 crossref_primary_10_1038_s41598_020_74162_1 crossref_primary_10_1080_19475705_2024_2432365 crossref_primary_10_1016_j_enggeo_2023_107186 crossref_primary_10_1007_s10346_024_02261_5 crossref_primary_10_5194_nhess_21_1615_2021 crossref_primary_10_3390_land11101629 crossref_primary_10_1007_s11440_022_01653_y crossref_primary_10_1007_s11440_021_01296_5 crossref_primary_10_1016_j_geomorph_2022_108401 crossref_primary_10_1016_j_enggeo_2024_107586 crossref_primary_10_3390_app13179716 crossref_primary_10_1016_j_scitotenv_2021_150651 crossref_primary_10_1002_esp_5881 crossref_primary_10_1007_s10346_022_01848_0 crossref_primary_10_3390_app132312610 crossref_primary_10_1016_j_envsoft_2025_106366 crossref_primary_10_24850_j_tyca_16_4_10 crossref_primary_10_1007_s10064_024_03983_5 crossref_primary_10_1016_j_compgeo_2024_106691 crossref_primary_10_1016_j_ophoto_2024_100058 crossref_primary_10_1016_j_enggeo_2022_106866 crossref_primary_10_1007_s10346_022_01901_y crossref_primary_10_1109_JPHOT_2023_3281670 crossref_primary_10_1016_j_jfluidstructs_2020_103162 crossref_primary_10_5194_esurf_10_165_2022 crossref_primary_10_1016_j_ijnonlinmec_2020_103638 crossref_primary_10_3390_rs15194691 crossref_primary_10_1016_j_enggeo_2022_106957 crossref_primary_10_1007_s10346_024_02424_4 crossref_primary_10_1016_j_earscirev_2024_104886 crossref_primary_10_1007_s10346_024_02275_z crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416 crossref_primary_10_1007_s10346_022_01857_z crossref_primary_10_1016_j_compgeo_2025_107118 crossref_primary_10_1016_j_gloplacha_2021_103499 crossref_primary_10_1038_s41467_021_26959_5 crossref_primary_10_5194_nhess_22_1655_2022 crossref_primary_10_1016_j_enggeo_2022_106798 crossref_primary_10_1007_s10346_021_01804_4 crossref_primary_10_1016_j_enggeo_2022_106797 crossref_primary_10_1016_j_ijsrc_2022_09_005 crossref_primary_10_1007_s10346_024_02358_x crossref_primary_10_1051_e3sconf_202341505015 crossref_primary_10_3390_app11125751 crossref_primary_10_1016_j_enggeo_2020_105877 crossref_primary_10_1017_jfm_2021_348 crossref_primary_10_3390_w16091285 crossref_primary_10_1029_2022RG000791 crossref_primary_10_1007_s11069_023_05972_5 crossref_primary_10_1088_1748_9326_ad281d crossref_primary_10_1016_j_scitotenv_2022_155380 crossref_primary_10_3390_geotechnics2030025 crossref_primary_10_1016_j_enggeo_2024_107532 crossref_primary_10_1016_j_enggeo_2025_107995 crossref_primary_10_5194_tc_19_485_2025 crossref_primary_10_1016_j_enggeo_2023_107239 crossref_primary_10_1007_s10346_020_01478_4 crossref_primary_10_5194_esurf_9_1125_2021 crossref_primary_10_1007_s10346_023_02151_2 crossref_primary_10_1007_s10346_024_02421_7 crossref_primary_10_1155_2022_7835780 crossref_primary_10_3390_geosciences13120378 crossref_primary_10_1063_5_0211644 crossref_primary_10_1007_s10064_022_02656_5 crossref_primary_10_1002_esp_6033 crossref_primary_10_1016_j_geomorph_2020_107431 crossref_primary_10_1016_j_geomorph_2021_107992 crossref_primary_10_3389_feart_2020_00293 crossref_primary_10_1002_esp_5687 crossref_primary_10_1002_esp_5841 crossref_primary_10_1016_j_jhydrol_2023_129465 crossref_primary_10_1016_j_scitotenv_2021_151660 crossref_primary_10_1016_j_earscirev_2022_104135 crossref_primary_10_1007_s11629_021_7209_1 crossref_primary_10_1016_j_coldregions_2024_104130 crossref_primary_10_1029_2023JF007115 crossref_primary_10_1186_s00015_024_00470_7 crossref_primary_10_2139_ssrn_4057017 crossref_primary_10_3390_w16111594 crossref_primary_10_1007_s10346_023_02081_z crossref_primary_10_1007_s11069_022_05454_0 crossref_primary_10_1016_j_enggeo_2020_105771 crossref_primary_10_1016_j_enggeo_2022_106783 crossref_primary_10_1016_j_geomorph_2023_109048 |
Cites_doi | 10.1007/978-3-319-09057-3_338 10.1098/rsta.2005.1596 10.1029/97RG00426 10.1016/j.geomorph.2019.106933 10.1016/j.coldregions.2010.04.005 10.3189/2015JoG14J168 10.1002/2014JF003183 10.5194/adgeo-35-145-2014 10.5194/hess-20-4585-2016 10.5194/gmd-10-553-2017 10.1002/zamm.200310123 10.1016/j.enggeo.2019.105429 10.1016/j.earscirev.2008.12.002 10.1098/rspa.2013.0820 10.3189/2016AoG71A039 10.1029/2009JF001514 10.1126/science.290.5491.513 10.1016/j.enggeo.2009.06.020 10.1016/j.geomorph.2018.08.032 10.1139/t04-052 10.1029/2019JF005204 10.1007/BF01301796 10.1016/j.geomorph.2016.02.009 10.1002/esp.3374 10.1016/j.geomorph.2014.06.031 10.1130/REG15-p345 10.1016/0021-9991(90)90260-8 10.5194/hess-20-2519-2016 10.1098/rspa.2013.0819 10.1002/esp.4524 10.5194/nhess-5-173-2005 10.1002/esp.4318 10.1029/2011JF002186 10.1016/j.enggeo.2009.08.007 10.1006/jcph.2001.6946 10.1201/b21520-88 10.1016/j.jnnfm.2013.07.005 10.1017/S0022112089000340 10.1016/B978-0-12-394849-6.00001-9 10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2 10.1016/j.coldregions.2013.02.004 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/nhess-20-505-2020 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1684-9981 |
EndPage | 520 |
ExternalDocumentID | oai_doaj_org_article_5b8688b8b5324005a1a9effafa402f02 A614627864 10_5194_nhess_20_505_2020 |
GeographicLocations | Peru Switzerland |
GeographicLocations_xml | – name: Switzerland – name: Peru |
GroupedDBID | 123 29M 2WC 2XV 5VS 6KP 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c483t-fd12929eb9a98ae23d9338a3e3cf120b0fb079d4f8180c16b2e5b1a31c92ac723 |
IEDL.DBID | BENPR |
ISSN | 1684-9981 1561-8633 |
IngestDate | Wed Aug 27 01:26:59 EDT 2025 Thu Jul 10 06:12:53 EDT 2025 Tue Jun 17 21:14:42 EDT 2025 Tue Jun 10 20:24:32 EDT 2025 Fri Jun 27 03:38:44 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 Tue Jul 01 02:46:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-fd12929eb9a98ae23d9338a3e3cf120b0fb079d4f8180c16b2e5b1a31c92ac723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6741-0827 0000-0001-5085-4846 0000-0002-6419-695X |
OpenAccessLink | https://www.proquest.com/docview/2359350896?pq-origsite=%requestingapplication% |
PQID | 2359350896 |
PQPubID | 105722 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b8688b8b5324005a1a9effafa402f02 proquest_journals_2359350896 gale_infotracmisc_A614627864 gale_infotracacademiconefile_A614627864 gale_incontextgauss_ISR_A614627864 crossref_primary_10_5194_nhess_20_505_2020 crossref_citationtrail_10_5194_nhess_20_505_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-21 |
PublicationDateYYYYMMDD | 2020-02-21 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Natural hazards and earth system sciences |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref41 doi: 10.1007/978-3-319-09057-3_338 – ident: ref1 – ident: ref35 doi: 10.1098/rsta.2005.1596 – ident: ref5 – ident: ref22 doi: 10.1029/97RG00426 – ident: ref51 doi: 10.1016/j.geomorph.2019.106933 – ident: ref6 doi: 10.1016/j.coldregions.2010.04.005 – ident: ref12 doi: 10.3189/2015JoG14J168 – ident: ref39 doi: 10.1002/2014JF003183 – ident: ref44 doi: 10.5194/adgeo-35-145-2014 – ident: ref13 doi: 10.5194/hess-20-4585-2016 – ident: ref2 – ident: ref30 doi: 10.5194/gmd-10-553-2017 – ident: ref52 doi: 10.1002/zamm.200310123 – ident: ref37 doi: 10.1016/j.enggeo.2019.105429 – ident: ref50 – ident: ref19 doi: 10.1016/j.earscirev.2008.12.002 – ident: ref15 doi: 10.1098/rspa.2013.0820 – ident: ref26 doi: 10.3189/2016AoG71A039 – ident: ref54 – ident: ref25 doi: 10.1029/2009JF001514 – ident: ref24 doi: 10.1126/science.290.5491.513 – ident: ref3 – ident: ref10 doi: 10.1016/j.enggeo.2009.06.020 – ident: ref32 doi: 10.1016/j.geomorph.2018.08.032 – ident: ref29 – ident: ref28 doi: 10.1139/t04-052 – ident: ref48 – ident: ref40 doi: 10.1029/2019JF005204 – ident: ref43 doi: 10.1007/BF01301796 – ident: ref18 doi: 10.1016/j.geomorph.2016.02.009 – ident: ref27 doi: 10.1002/esp.3374 – ident: ref53 doi: 10.1016/j.geomorph.2014.06.031 – ident: ref20 doi: 10.1130/REG15-p345 – ident: ref33 doi: 10.1016/0021-9991(90)90260-8 – ident: ref45 doi: 10.5194/hess-20-2519-2016 – ident: ref4 – ident: ref23 doi: 10.1098/rspa.2013.0819 – ident: ref14 doi: 10.1002/esp.4524 – ident: ref21 doi: 10.5194/nhess-5-173-2005 – ident: ref38 – ident: ref31 doi: 10.1002/esp.4318 – ident: ref36 doi: 10.1029/2011JF002186 – ident: ref11 doi: 10.1016/j.enggeo.2009.08.007 – ident: ref46 – ident: ref47 doi: 10.1006/jcph.2001.6946 – ident: ref7 doi: 10.1201/b21520-88 – ident: ref49 – ident: ref9 doi: 10.1016/j.jnnfm.2013.07.005 – ident: ref42 doi: 10.1017/S0022112089000340 – ident: ref17 doi: 10.1016/B978-0-12-394849-6.00001-9 – ident: ref8 – ident: ref34 doi: 10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2 – ident: ref16 doi: 10.1016/j.coldregions.2013.02.004 |
SSID | ssj0029540 |
Score | 2.577524 |
Snippet | In the morning of 23 August 2017, around 3×106 m3 of
granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland.
The initial... In the morning of 23 August 2017, around 3x10.sup.6 m.sup.3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The... In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial... In the morning of 23 August 2017, around 3 ×106 m 3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 505 |
SubjectTerms | Analysis Avalanches Back calculation Computer simulation Debris flow Detritus Entrainment Glacial drift Glacier flow Glacier ice Glacier melting Glaciers Ice Landslides Mass flow Mathematical models Natural disaster damage Phase transitions Pore pressure Rock falls Rockfall Rocks Rockslides Sediments Sediments (Geology) Simulation Simulators (Training equipment) Surface-ice melting Two phase flow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Si17ET3xaJYggCGvzsckm3tpiqYIiaqG3kE9f6WNX6qsPPfk_-B_6lzizm1f6DurF07KbCdnMTDIzu5nfEPLEJJZ4wTNVndRNq3xCyNvYdNaGFJgJPGJy8pu3-vCofX2sji-V-sIzYRM88MS4HRWMNiaYoBA6jinPvc2l-OIh8ikTjCTYvHUwVUMtq6ZUSPAOGqOlnP5ngrfS7vRz2EJAORqw_XDBQt-XLNII3P-n7Xm0OQc3yPXqLNLd6SVvkiu5v0Wu1rrl82-3yWrPx1MKbI61ChcdCgWXjoLB7ei7k-90P_cwyPDrx08sIDzQMbV3cZIy9PqCZ-MpfomlZ8_9V18Ww-oFXc39kq6wvafQAeg3Ho1lJu6Qo4OXH_cPm1pKoYmtkcumJLDrwuZgvTU-C5ksxKZeZhkLFyywElhnU1sw9TtyHURWgXvJoxU-dkLeJVv90Od7hMrArUopeJZDK0JnrDY8dsorFVvtxYywNTtdrDjjWO5i4SDeQAm4UQJOwB1TDiUwI88uunyeQDb-RryHMrogRHzs8QFojata4_6lNTPyGCXsEAGjxyM2n_w5DPPqw3u3Cw6LFp3R7Yw8rURlgBlEXzMWgA8ImrVBub1BCUs0bjavFcnVLQKmJJWV4B5bff9_zOgBuYbcGbPt-TbZWp6d54fgLy3Do3Fp_AaUfQ9l priority: 102 providerName: Directory of Open Access Journals |
Title | Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: what we can do and what we can learn |
URI | https://www.proquest.com/docview/2359350896 https://doaj.org/article/5b8688b8b5324005a1a9effafa402f02 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1faxQxEA-2fdAX8S-e1iOIIAhrs8lmN_FFeqVnFSylWuhbyN9e8dit7dVDn_wOfkM_iTN7ucN7sE_LbiZkk0kmM5PM_Ah5qQILZcI7VY2oi0ragClvfdFo7YJjypUeg5M_HdYHJ9XHU3maHW5X-VrlUib2gjp0Hn3kO1xILUCb0PW7i28Fokbh6WqG0NggWyCCFRhfW6P9w6Pjlcml5SIkErSEQtVCLM41QWupdtoJiBKYJAXoAPBAwO9_dqY-gf__xHS_94zvkbtZaaS7Cy7fJ7di-4Dczvjlkx8PyXxk_VcKw-0zGhftEgXVjsLG29Cj8590L7bQSPfn128EEu5oH-I7PQ8Ral3hHXmKHll6-cZ-t2nazd_S-cTO6BzLWwoVgH7tUw838YicjPe_7B0UGVKh8JUSsyIF2N-5jk5brWzkImiwUa2IwqeSM8eSY40OVcIQcF_WjkfpSitKr7n1DRePyWbbtfEJocKVWobgLIuu4q4BzqjSN9JK6ava8gFhy-E0PucbR9iLqQG7Azlgeg4YDm9MGuTAgLxeVblYJNu4iXiEPFoRYp7s_kN3eWbysjPSqVopp5zExINM2tLqmJJNFuzmxOAnXyCHDWbCaPGqzZm9hmY-fD42u6C41LxRdTUgrzJR6qAH3ubIBRgHTJ61Rrm9RglL1a8XLyeSyaICurSa2E9vLn5G7mC_-3j6cptszi6v43PQiGZuSDbU-P0wT_5h71f4C_itCjM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXRHmIhRYsBEJCCk3sOLGREGoLyy59CEEr9eb62a1YJWW7ZVVO_Af-Bz-KX8JMNrtiD_TWU5R4rCSed-KZj5Bn0qc-i7inquRFkgvjseWtS0qlrLeptJnD4uS9_aJ3mH88EkdL5PesFga3Vc5sYmOofe3wG_kG40JxiCZU8fbsW4KoUfh3dQahMRWLnXA5gZTt_E3_HfD3OWPd9wfbvaRFFUhcLvk4iR5cHFPBKqOkCYx7yOml4YG7mLHUptGmpfJ5xCpolxWWBWEzwzOnmHElNjoAk38j51yhRsnuh3mCp8S0ABNikkQWnE__okKMlG9UAzBcIJIJRBxwQHjxf_xgAxfwP6fQeLrubXKrDVHp5lSmVslSqO6QlRYtfXB5l0y2jPtKgbmuxf6idaQQSFJw8yX9dPqDbocKblL_-fkLYYtr2hQUD099gFnnuCOf4vdfOnplvps4rCev6WRgxnSC4xWFCUC_cKkBt7hHDq9lqe-T5aquwgNCuc2U8N6aNNic2RLkQGauFEYIlxeGdUg6W07t2u7mCLIx1JDlIAd0wwHN4CwVGjnQIS_nU86mrT2uIt5CHs0JsSt3c6EenehWybWwspDSSiuwzWEqTGZUiNFEA1l6TOEhnyKHNfbdqHBjz4m5gNv0v3zWmxAmFayURd4hL1qiWMMbONPWScA6YKuuBcq1BUowDG5xeCZIujVM8EpzNXp49fATstI72NvVu_39nUfkJq5BU8mfrZHl8egirEMsNraPGwWg5Pi6Ne4v5_hD5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLamTgJu-EcUBrMQCAkpbeLEiY2E0LpRrYxN42did8F27HValYyupdqueAfehlfZHU_COfmpKBK72wVXUeNjpT75cnyc-HwfIU9F5meBwz1VSRh7EVcZUt4aL5FSZ9oXOjBYnLy9E2_uRW_3-f4S-dnUwuC2yiYmloE6Kwy-I--ykMsQsgkZd129LWJ3o__6-KuHClL4pbWR06ggsmVPZ7B8O3k12IB7_Yyx_ptP65terTDgmUiEE89lMN0xabVUUijLwgzW90KFNjQuYL72nfYTmUUOK6JNEGtmuQ5UGBjJlEmQ9ADC_7KIBWctstzrb7__PF_uSV6VY0KG4ok4DKtvqpAxRd18CGEMAOpB_gEHFBv_Y1YsxQP-NUWU817_BjlvPFZtdznqTCe6Y87-IpP8P116k1yv03G6Vj0_t8iSzW-Tq7Uy_PD0Dpn1lDmiAGRT65zRwlFImimkNAndPTyj6zYHFxa_vv9AieaClsXTo8PMQq8TrD6g-K6bjjvqm3KjYvaSzoZqQmfYnlPoAPYLp0ohj7tk71LGfY-08iK39wkNdSB5lmnlWx0xncANEoFJuOLcRLFibeI3YElNzeSOgiKjFFZ0iK-0xFfK4JfPU8RXm7yYdzmuaEwuMu4hAueGyEBenijGB2kd0FKuAfVCC82R0tHnKlDSOqecinzmfPiTTxC_KXKM5AitAzWFyww-fkjXICWMWSLiqE2e10augBEYVdeEgB-QlmzBcmXBEoKgWWxuIJ7WQRiGNMf3g4ubV8kVAH76brCz9ZBcQxeUpAXBCmlNxlP7CNLOiX5cP9-UfLls_P8GSkWRGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back+calculation+of+the+2017+Piz+Cengalo-Bondo+landslide+cascade+with+r.avaflow%3A+what+we+can+do+and+what+we+can+learn&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Mergili%2C+Martin&rft.au=Jaboyedoff%2C+Michel&rft.au=Pullarello%2C+Jos%C3%A9&rft.au=Pudasaini%2C+Shiva+P&rft.date=2020-02-21&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.volume=20&rft.issue=2&rft.spage=505&rft_id=info:doi/10.5194%2Fnhess-20-505-2020&rft.externalDocID=A614627864 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon |