Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: what we can do and what we can learn

In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6×105m3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow t...

Full description

Saved in:
Bibliographic Details
Published inNatural hazards and earth system sciences Vol. 20; no. 2; pp. 505 - 520
Main Authors Mergili, Martin, Jaboyedoff, Michel, Pullarello, José, Pudasaini, Shiva P.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 21.02.2020
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6×105m3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide–rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can – with some limitations – be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel.
AbstractList In the morning of 23 August 2017, around 3x10.sup.6  m.sup.3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide-rockfall entrained 6x10.sup.5 m.sup.3 of a glacier and continued as a rock (or rock-ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide-rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide-rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can - with some limitations - be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel.
In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6×105m3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide–rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can – with some limitations – be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel.
In the morning of 23 August 2017, around 3 ×106  m 3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6 ×105 m 3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide–rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can – with some limitations – be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel.
In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial rockslide–rockfall entrained 6×105m3 of a glacier and continued as a rock (or rock–ice) avalanche before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rockslide–rockfall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rockslide–rockfall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley, and (ii) most of the entrained glacier ice remaining beneath or behind the frontal rock avalanche and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can – with some limitations – be numerically reproduced with an enhanced version of the two-phase mass flow model (Pudasaini, 2012) implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow us to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, and fluid) including phase transitions in order to better represent the melting of glacier ice and a more appropriate consideration of deposition of debris flow material along the channel.
Audience Academic
Author Mergili, Martin
Jaboyedoff, Michel
Pudasaini, Shiva P.
Pullarello, José
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0001-5085-4846
  surname: Mergili
  fullname: Mergili, Martin
– sequence: 2
  givenname: Michel
  orcidid: 0000-0002-6419-695X
  surname: Jaboyedoff
  fullname: Jaboyedoff, Michel
– sequence: 3
  givenname: José
  surname: Pullarello
  fullname: Pullarello, José
– sequence: 4
  givenname: Shiva P.
  orcidid: 0000-0002-6741-0827
  surname: Pudasaini
  fullname: Pudasaini, Shiva P.
BookMark eNp9ks1uEzEQx1eoSLSFB-BmiROHDf5Y79rc2qiUSJVAfJytWa-dOGzsYjss9MQ78IY8CU6CgCDEaezx7z-aGf_PqhMfvKmqxwTPOJHNM78yKdUU1xzzEii-V52SVjS1lIKc_HF-UJ2ltMaYSt7g02q6BP0BaRj1doTsgkfBorwyiGLSodfuDs2NX8IYvn_9dhn8ENAIfkijG0xRJQ0lTi6vUJzBJ7BjmJ6jaQUZTbt3j4qg8Eep0UD0D6v7FsZkHv2M59X7F1fv5i_rm1fXi_nFTa0bwXJtB0IllaaXIAUYygbJmABmmLaE4h7bHndyaKwgAmvS9tTwngAjWlLQHWXn1eJQdwiwVrfRbSB-UQGc2idCXCqI2enRKN6LVohe9JzRBmMOBKSxFiw0mFq8q_XkUOs2ho9bk7Jah230pX1FGZeMYyHb31TZmlHO25Aj6I1LWl20pGlpJ9qmULN_ULDb58bp8rfWlfyR4OmRoDDZfM5L2KakFm_fHLPkwOoYUorG_hqcYLWzi9rbRdFyw1zt7FI03V8a7fLeEaUxN_5H-QMTfMWH
CitedBy_id crossref_primary_10_3389_feart_2020_00313
crossref_primary_10_1155_2022_2864271
crossref_primary_10_1016_j_jhydrol_2024_132620
crossref_primary_10_3390_app10186501
crossref_primary_10_1007_s10064_022_02851_4
crossref_primary_10_1016_j_geomorph_2024_109110
crossref_primary_10_1016_j_enggeo_2021_106072
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103292
crossref_primary_10_1016_j_scitotenv_2023_163262
crossref_primary_10_1007_s10346_021_01690_w
crossref_primary_10_1186_s40677_022_00210_9
crossref_primary_10_1051_e3sconf_202341501017
crossref_primary_10_1016_j_partic_2025_03_008
crossref_primary_10_1016_j_ijnonlinmec_2024_104860
crossref_primary_10_1146_annurev_earth_032320_085133
crossref_primary_10_1038_s44304_025_00059_6
crossref_primary_10_3390_geosciences11100417
crossref_primary_10_1109_JSTARS_2024_3522950
crossref_primary_10_1007_s10064_023_03480_1
crossref_primary_10_1061_JHEND8_HYENG_13736
crossref_primary_10_1007_s10346_020_01609_x
crossref_primary_10_1051_e3sconf_202341507001
crossref_primary_10_1016_j_geomorph_2022_108550
crossref_primary_10_1016_j_enggeo_2024_107693
crossref_primary_10_5194_esurf_9_771_2021
crossref_primary_10_1016_j_enggeo_2021_106188
crossref_primary_10_1038_s41558_024_02026_x
crossref_primary_10_1002_esp_5650
crossref_primary_10_1007_s10346_022_01897_5
crossref_primary_10_1038_s41598_020_74162_1
crossref_primary_10_1080_19475705_2024_2432365
crossref_primary_10_1016_j_enggeo_2023_107186
crossref_primary_10_1007_s10346_024_02261_5
crossref_primary_10_5194_nhess_21_1615_2021
crossref_primary_10_3390_land11101629
crossref_primary_10_1007_s11440_022_01653_y
crossref_primary_10_1007_s11440_021_01296_5
crossref_primary_10_1016_j_geomorph_2022_108401
crossref_primary_10_1016_j_enggeo_2024_107586
crossref_primary_10_3390_app13179716
crossref_primary_10_1016_j_scitotenv_2021_150651
crossref_primary_10_1002_esp_5881
crossref_primary_10_1007_s10346_022_01848_0
crossref_primary_10_3390_app132312610
crossref_primary_10_1016_j_envsoft_2025_106366
crossref_primary_10_24850_j_tyca_16_4_10
crossref_primary_10_1007_s10064_024_03983_5
crossref_primary_10_1016_j_compgeo_2024_106691
crossref_primary_10_1016_j_ophoto_2024_100058
crossref_primary_10_1016_j_enggeo_2022_106866
crossref_primary_10_1007_s10346_022_01901_y
crossref_primary_10_1109_JPHOT_2023_3281670
crossref_primary_10_1016_j_jfluidstructs_2020_103162
crossref_primary_10_5194_esurf_10_165_2022
crossref_primary_10_1016_j_ijnonlinmec_2020_103638
crossref_primary_10_3390_rs15194691
crossref_primary_10_1016_j_enggeo_2022_106957
crossref_primary_10_1007_s10346_024_02424_4
crossref_primary_10_1016_j_earscirev_2024_104886
crossref_primary_10_1007_s10346_024_02275_z
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416
crossref_primary_10_1007_s10346_022_01857_z
crossref_primary_10_1016_j_compgeo_2025_107118
crossref_primary_10_1016_j_gloplacha_2021_103499
crossref_primary_10_1038_s41467_021_26959_5
crossref_primary_10_5194_nhess_22_1655_2022
crossref_primary_10_1016_j_enggeo_2022_106798
crossref_primary_10_1007_s10346_021_01804_4
crossref_primary_10_1016_j_enggeo_2022_106797
crossref_primary_10_1016_j_ijsrc_2022_09_005
crossref_primary_10_1007_s10346_024_02358_x
crossref_primary_10_1051_e3sconf_202341505015
crossref_primary_10_3390_app11125751
crossref_primary_10_1016_j_enggeo_2020_105877
crossref_primary_10_1017_jfm_2021_348
crossref_primary_10_3390_w16091285
crossref_primary_10_1029_2022RG000791
crossref_primary_10_1007_s11069_023_05972_5
crossref_primary_10_1088_1748_9326_ad281d
crossref_primary_10_1016_j_scitotenv_2022_155380
crossref_primary_10_3390_geotechnics2030025
crossref_primary_10_1016_j_enggeo_2024_107532
crossref_primary_10_1016_j_enggeo_2025_107995
crossref_primary_10_5194_tc_19_485_2025
crossref_primary_10_1016_j_enggeo_2023_107239
crossref_primary_10_1007_s10346_020_01478_4
crossref_primary_10_5194_esurf_9_1125_2021
crossref_primary_10_1007_s10346_023_02151_2
crossref_primary_10_1007_s10346_024_02421_7
crossref_primary_10_1155_2022_7835780
crossref_primary_10_3390_geosciences13120378
crossref_primary_10_1063_5_0211644
crossref_primary_10_1007_s10064_022_02656_5
crossref_primary_10_1002_esp_6033
crossref_primary_10_1016_j_geomorph_2020_107431
crossref_primary_10_1016_j_geomorph_2021_107992
crossref_primary_10_3389_feart_2020_00293
crossref_primary_10_1002_esp_5687
crossref_primary_10_1002_esp_5841
crossref_primary_10_1016_j_jhydrol_2023_129465
crossref_primary_10_1016_j_scitotenv_2021_151660
crossref_primary_10_1016_j_earscirev_2022_104135
crossref_primary_10_1007_s11629_021_7209_1
crossref_primary_10_1016_j_coldregions_2024_104130
crossref_primary_10_1029_2023JF007115
crossref_primary_10_1186_s00015_024_00470_7
crossref_primary_10_2139_ssrn_4057017
crossref_primary_10_3390_w16111594
crossref_primary_10_1007_s10346_023_02081_z
crossref_primary_10_1007_s11069_022_05454_0
crossref_primary_10_1016_j_enggeo_2020_105771
crossref_primary_10_1016_j_enggeo_2022_106783
crossref_primary_10_1016_j_geomorph_2023_109048
Cites_doi 10.1007/978-3-319-09057-3_338
10.1098/rsta.2005.1596
10.1029/97RG00426
10.1016/j.geomorph.2019.106933
10.1016/j.coldregions.2010.04.005
10.3189/2015JoG14J168
10.1002/2014JF003183
10.5194/adgeo-35-145-2014
10.5194/hess-20-4585-2016
10.5194/gmd-10-553-2017
10.1002/zamm.200310123
10.1016/j.enggeo.2019.105429
10.1016/j.earscirev.2008.12.002
10.1098/rspa.2013.0820
10.3189/2016AoG71A039
10.1029/2009JF001514
10.1126/science.290.5491.513
10.1016/j.enggeo.2009.06.020
10.1016/j.geomorph.2018.08.032
10.1139/t04-052
10.1029/2019JF005204
10.1007/BF01301796
10.1016/j.geomorph.2016.02.009
10.1002/esp.3374
10.1016/j.geomorph.2014.06.031
10.1130/REG15-p345
10.1016/0021-9991(90)90260-8
10.5194/hess-20-2519-2016
10.1098/rspa.2013.0819
10.1002/esp.4524
10.5194/nhess-5-173-2005
10.1002/esp.4318
10.1029/2011JF002186
10.1016/j.enggeo.2009.08.007
10.1006/jcph.2001.6946
10.1201/b21520-88
10.1016/j.jnnfm.2013.07.005
10.1017/S0022112089000340
10.1016/B978-0-12-394849-6.00001-9
10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2
10.1016/j.coldregions.2013.02.004
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
HCIFZ
KL.
KR7
L.G
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/nhess-20-505-2020
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1684-9981
EndPage 520
ExternalDocumentID oai_doaj_org_article_5b8688b8b5324005a1a9effafa402f02
A614627864
10_5194_nhess_20_505_2020
GeographicLocations Peru
Switzerland
GeographicLocations_xml – name: Switzerland
– name: Peru
GroupedDBID 123
29M
2WC
2XV
5VS
6KP
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
KL.
KR7
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c483t-fd12929eb9a98ae23d9338a3e3cf120b0fb079d4f8180c16b2e5b1a31c92ac723
IEDL.DBID BENPR
ISSN 1684-9981
1561-8633
IngestDate Wed Aug 27 01:26:59 EDT 2025
Thu Jul 10 06:12:53 EDT 2025
Tue Jun 17 21:14:42 EDT 2025
Tue Jun 10 20:24:32 EDT 2025
Fri Jun 27 03:38:44 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Tue Jul 01 02:46:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-fd12929eb9a98ae23d9338a3e3cf120b0fb079d4f8180c16b2e5b1a31c92ac723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6741-0827
0000-0001-5085-4846
0000-0002-6419-695X
OpenAccessLink https://www.proquest.com/docview/2359350896?pq-origsite=%requestingapplication%
PQID 2359350896
PQPubID 105722
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_5b8688b8b5324005a1a9effafa402f02
proquest_journals_2359350896
gale_infotracmisc_A614627864
gale_infotracacademiconefile_A614627864
gale_incontextgauss_ISR_A614627864
crossref_primary_10_5194_nhess_20_505_2020
crossref_citationtrail_10_5194_nhess_20_505_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-21
PublicationDateYYYYMMDD 2020-02-21
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-21
  day: 21
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Natural hazards and earth system sciences
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref41
  doi: 10.1007/978-3-319-09057-3_338
– ident: ref1
– ident: ref35
  doi: 10.1098/rsta.2005.1596
– ident: ref5
– ident: ref22
  doi: 10.1029/97RG00426
– ident: ref51
  doi: 10.1016/j.geomorph.2019.106933
– ident: ref6
  doi: 10.1016/j.coldregions.2010.04.005
– ident: ref12
  doi: 10.3189/2015JoG14J168
– ident: ref39
  doi: 10.1002/2014JF003183
– ident: ref44
  doi: 10.5194/adgeo-35-145-2014
– ident: ref13
  doi: 10.5194/hess-20-4585-2016
– ident: ref2
– ident: ref30
  doi: 10.5194/gmd-10-553-2017
– ident: ref52
  doi: 10.1002/zamm.200310123
– ident: ref37
  doi: 10.1016/j.enggeo.2019.105429
– ident: ref50
– ident: ref19
  doi: 10.1016/j.earscirev.2008.12.002
– ident: ref15
  doi: 10.1098/rspa.2013.0820
– ident: ref26
  doi: 10.3189/2016AoG71A039
– ident: ref54
– ident: ref25
  doi: 10.1029/2009JF001514
– ident: ref24
  doi: 10.1126/science.290.5491.513
– ident: ref3
– ident: ref10
  doi: 10.1016/j.enggeo.2009.06.020
– ident: ref32
  doi: 10.1016/j.geomorph.2018.08.032
– ident: ref29
– ident: ref28
  doi: 10.1139/t04-052
– ident: ref48
– ident: ref40
  doi: 10.1029/2019JF005204
– ident: ref43
  doi: 10.1007/BF01301796
– ident: ref18
  doi: 10.1016/j.geomorph.2016.02.009
– ident: ref27
  doi: 10.1002/esp.3374
– ident: ref53
  doi: 10.1016/j.geomorph.2014.06.031
– ident: ref20
  doi: 10.1130/REG15-p345
– ident: ref33
  doi: 10.1016/0021-9991(90)90260-8
– ident: ref45
  doi: 10.5194/hess-20-2519-2016
– ident: ref4
– ident: ref23
  doi: 10.1098/rspa.2013.0819
– ident: ref14
  doi: 10.1002/esp.4524
– ident: ref21
  doi: 10.5194/nhess-5-173-2005
– ident: ref38
– ident: ref31
  doi: 10.1002/esp.4318
– ident: ref36
  doi: 10.1029/2011JF002186
– ident: ref11
  doi: 10.1016/j.enggeo.2009.08.007
– ident: ref46
– ident: ref47
  doi: 10.1006/jcph.2001.6946
– ident: ref7
  doi: 10.1201/b21520-88
– ident: ref49
– ident: ref9
  doi: 10.1016/j.jnnfm.2013.07.005
– ident: ref42
  doi: 10.1017/S0022112089000340
– ident: ref17
  doi: 10.1016/B978-0-12-394849-6.00001-9
– ident: ref8
– ident: ref34
  doi: 10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2
– ident: ref16
  doi: 10.1016/j.coldregions.2013.02.004
SSID ssj0029540
Score 2.577524
Snippet In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial...
In the morning of 23 August 2017, around 3x10.sup.6  m.sup.3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The...
In the morning of 23 August 2017, around 3×106 m3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial...
In the morning of 23 August 2017, around 3 ×106  m 3 of granitoid rock broke off from the eastern face of Piz Cengalo, southeastern Switzerland. The initial...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 505
SubjectTerms Analysis
Avalanches
Back calculation
Computer simulation
Debris flow
Detritus
Entrainment
Glacial drift
Glacier flow
Glacier ice
Glacier melting
Glaciers
Ice
Landslides
Mass flow
Mathematical models
Natural disaster damage
Phase transitions
Pore pressure
Rock falls
Rockfall
Rocks
Rockslides
Sediments
Sediments (Geology)
Simulation
Simulators (Training equipment)
Surface-ice melting
Two phase flow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Si17ET3xaJYggCGvzsckm3tpiqYIiaqG3kE9f6WNX6qsPPfk_-B_6lzizm1f6DurF07KbCdnMTDIzu5nfEPLEJJZ4wTNVndRNq3xCyNvYdNaGFJgJPGJy8pu3-vCofX2sji-V-sIzYRM88MS4HRWMNiaYoBA6jinPvc2l-OIh8ikTjCTYvHUwVUMtq6ZUSPAOGqOlnP5ngrfS7vRz2EJAORqw_XDBQt-XLNII3P-n7Xm0OQc3yPXqLNLd6SVvkiu5v0Wu1rrl82-3yWrPx1MKbI61ChcdCgWXjoLB7ei7k-90P_cwyPDrx08sIDzQMbV3cZIy9PqCZ-MpfomlZ8_9V18Ww-oFXc39kq6wvafQAeg3Ho1lJu6Qo4OXH_cPm1pKoYmtkcumJLDrwuZgvTU-C5ksxKZeZhkLFyywElhnU1sw9TtyHURWgXvJoxU-dkLeJVv90Od7hMrArUopeJZDK0JnrDY8dsorFVvtxYywNTtdrDjjWO5i4SDeQAm4UQJOwB1TDiUwI88uunyeQDb-RryHMrogRHzs8QFojata4_6lNTPyGCXsEAGjxyM2n_w5DPPqw3u3Cw6LFp3R7Yw8rURlgBlEXzMWgA8ImrVBub1BCUs0bjavFcnVLQKmJJWV4B5bff9_zOgBuYbcGbPt-TbZWp6d54fgLy3Do3Fp_AaUfQ9l
  priority: 102
  providerName: Directory of Open Access Journals
Title Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: what we can do and what we can learn
URI https://www.proquest.com/docview/2359350896
https://doaj.org/article/5b8688b8b5324005a1a9effafa402f02
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1faxQxEA-2fdAX8S-e1iOIIAhrs8lmN_FFeqVnFSylWuhbyN9e8dit7dVDn_wOfkM_iTN7ucN7sE_LbiZkk0kmM5PM_Ah5qQILZcI7VY2oi0ragClvfdFo7YJjypUeg5M_HdYHJ9XHU3maHW5X-VrlUib2gjp0Hn3kO1xILUCb0PW7i28Fokbh6WqG0NggWyCCFRhfW6P9w6Pjlcml5SIkErSEQtVCLM41QWupdtoJiBKYJAXoAPBAwO9_dqY-gf__xHS_94zvkbtZaaS7Cy7fJ7di-4Dczvjlkx8PyXxk_VcKw-0zGhftEgXVjsLG29Cj8590L7bQSPfn128EEu5oH-I7PQ8Ral3hHXmKHll6-cZ-t2nazd_S-cTO6BzLWwoVgH7tUw838YicjPe_7B0UGVKh8JUSsyIF2N-5jk5brWzkImiwUa2IwqeSM8eSY40OVcIQcF_WjkfpSitKr7n1DRePyWbbtfEJocKVWobgLIuu4q4BzqjSN9JK6ava8gFhy-E0PucbR9iLqQG7Azlgeg4YDm9MGuTAgLxeVblYJNu4iXiEPFoRYp7s_kN3eWbysjPSqVopp5zExINM2tLqmJJNFuzmxOAnXyCHDWbCaPGqzZm9hmY-fD42u6C41LxRdTUgrzJR6qAH3ubIBRgHTJ61Rrm9RglL1a8XLyeSyaICurSa2E9vLn5G7mC_-3j6cptszi6v43PQiGZuSDbU-P0wT_5h71f4C_itCjM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXRHmIhRYsBEJCCk3sOLGREGoLyy59CEEr9eb62a1YJWW7ZVVO_Af-Bz-KX8JMNrtiD_TWU5R4rCSed-KZj5Bn0qc-i7inquRFkgvjseWtS0qlrLeptJnD4uS9_aJ3mH88EkdL5PesFga3Vc5sYmOofe3wG_kG40JxiCZU8fbsW4KoUfh3dQahMRWLnXA5gZTt_E3_HfD3OWPd9wfbvaRFFUhcLvk4iR5cHFPBKqOkCYx7yOml4YG7mLHUptGmpfJ5xCpolxWWBWEzwzOnmHElNjoAk38j51yhRsnuh3mCp8S0ABNikkQWnE__okKMlG9UAzBcIJIJRBxwQHjxf_xgAxfwP6fQeLrubXKrDVHp5lSmVslSqO6QlRYtfXB5l0y2jPtKgbmuxf6idaQQSFJw8yX9dPqDbocKblL_-fkLYYtr2hQUD099gFnnuCOf4vdfOnplvps4rCev6WRgxnSC4xWFCUC_cKkBt7hHDq9lqe-T5aquwgNCuc2U8N6aNNic2RLkQGauFEYIlxeGdUg6W07t2u7mCLIx1JDlIAd0wwHN4CwVGjnQIS_nU86mrT2uIt5CHs0JsSt3c6EenehWybWwspDSSiuwzWEqTGZUiNFEA1l6TOEhnyKHNfbdqHBjz4m5gNv0v3zWmxAmFayURd4hL1qiWMMbONPWScA6YKuuBcq1BUowDG5xeCZIujVM8EpzNXp49fATstI72NvVu_39nUfkJq5BU8mfrZHl8egirEMsNraPGwWg5Pi6Ne4v5_hD5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLamTgJu-EcUBrMQCAkpbeLEiY2E0LpRrYxN42did8F27HValYyupdqueAfehlfZHU_COfmpKBK72wVXUeNjpT75cnyc-HwfIU9F5meBwz1VSRh7EVcZUt4aL5FSZ9oXOjBYnLy9E2_uRW_3-f4S-dnUwuC2yiYmloE6Kwy-I--ykMsQsgkZd129LWJ3o__6-KuHClL4pbWR06ggsmVPZ7B8O3k12IB7_Yyx_ptP65terTDgmUiEE89lMN0xabVUUijLwgzW90KFNjQuYL72nfYTmUUOK6JNEGtmuQ5UGBjJlEmQ9ADC_7KIBWctstzrb7__PF_uSV6VY0KG4ok4DKtvqpAxRd18CGEMAOpB_gEHFBv_Y1YsxQP-NUWU817_BjlvPFZtdznqTCe6Y87-IpP8P116k1yv03G6Vj0_t8iSzW-Tq7Uy_PD0Dpn1lDmiAGRT65zRwlFImimkNAndPTyj6zYHFxa_vv9AieaClsXTo8PMQq8TrD6g-K6bjjvqm3KjYvaSzoZqQmfYnlPoAPYLp0ohj7tk71LGfY-08iK39wkNdSB5lmnlWx0xncANEoFJuOLcRLFibeI3YElNzeSOgiKjFFZ0iK-0xFfK4JfPU8RXm7yYdzmuaEwuMu4hAueGyEBenijGB2kd0FKuAfVCC82R0tHnKlDSOqecinzmfPiTTxC_KXKM5AitAzWFyww-fkjXICWMWSLiqE2e10augBEYVdeEgB-QlmzBcmXBEoKgWWxuIJ7WQRiGNMf3g4ubV8kVAH76brCz9ZBcQxeUpAXBCmlNxlP7CNLOiX5cP9-UfLls_P8GSkWRGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back+calculation+of+the+2017+Piz+Cengalo-Bondo+landslide+cascade+with+r.avaflow%3A+what+we+can+do+and+what+we+can+learn&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Mergili%2C+Martin&rft.au=Jaboyedoff%2C+Michel&rft.au=Pullarello%2C+Jos%C3%A9&rft.au=Pudasaini%2C+Shiva+P&rft.date=2020-02-21&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.volume=20&rft.issue=2&rft.spage=505&rft_id=info:doi/10.5194%2Fnhess-20-505-2020&rft.externalDocID=A614627864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon