Casimir energy and modularity in higher-dimensional conformal field theories
A bstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the un...
Saved in:
Published in | The journal of high energy physics Vol. 2023; no. 7; pp. 28 - 40 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
04.07.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions
d >
2 on the spatial manifold
T
2
× ℝ
d−
3
which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli
τ
of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2
,
ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical
O
(
N
) model in
d
= 3 and holographic CFTs in
d ≥
3. |
---|---|
AbstractList | Abstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T 2 × ℝ d−3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2, ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O(N) model in d = 3 and holographic CFTs in d ≥ 3. An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T2 × ℝd−3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2, ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O(N) model in d = 3 and holographic CFTs in d ≥ 3. An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T 2 × ℝ d− 3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2 , ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O ( N ) model in d = 3 and holographic CFTs in d ≥ 3. A bstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T 2 × ℝ d− 3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2 , ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O ( N ) model in d = 3 and holographic CFTs in d ≥ 3. |
ArticleNumber | 28 |
Author | Luo, Conghuan Wang, Yifan |
Author_xml | – sequence: 1 givenname: Conghuan surname: Luo fullname: Luo, Conghuan email: cl4682@nyu.edu organization: Center for Cosmology and Particle Physics, New York University – sequence: 2 givenname: Yifan surname: Wang fullname: Wang, Yifan organization: Center for Cosmology and Particle Physics, New York University |
BookMark | eNp1kTtvFDEUhS2USORBTTsSDRRDrl9ru0SrkAStBAXUlte-s-vVjB3s2WL_PU4GBEJK5SP7fEf3-lySs5QTEvKWwkcKoG6-3N9-A_WeAeMfgOlX5IICM70Wypz9o1-Ty1oPAFRSAxdks3Y1TrF0mLDsTp1LoZtyOI6uxPnUxdTt426PpQ9xwlRjTm7sfE5DLlNTQ8QxdPMec4lYr8n54MaKb36fV-TH59vv6_t-8_XuYf1p03uh-dwPK8d1oE6gbkrQQIFvPYjAFUjDHbQXZIJLpKgF085zuTWopDDbQDXjV-RhyQ3ZHexjiZMrJ5tdtM8XueysK3P0I1qhOAMpZTCMCx-CAbVF74cVKOnVClrWuyXrseSfR6yzPeRjaVtWyzTnGszKiOaSi8uXXGvBwfo4u7l9x1xcHC0F-1SCXUqwTyXYVkLjbv7j_kz7MgELUZsz7bD8necl5BdOtJkC |
CitedBy_id | crossref_primary_10_1007_JHEP12_2023_054 crossref_primary_10_1007_JHEP12_2023_186 crossref_primary_10_1007_JHEP03_2025_169 crossref_primary_10_1007_JHEP02_2025_061 crossref_primary_10_1007_JHEP08_2023_078 crossref_primary_10_1007_JHEP07_2023_129 crossref_primary_10_1007_JHEP01_2025_080 crossref_primary_10_1007_JHEP09_2024_127 crossref_primary_10_1007_JHEP11_2024_023 crossref_primary_10_1007_JHEP11_2024_134 crossref_primary_10_1007_JHEP03_2024_115 crossref_primary_10_1007_JHEP10_2023_143 crossref_primary_10_1007_JHEP01_2025_200 crossref_primary_10_1103_PhysRevLett_132_101602 crossref_primary_10_1007_JHEP07_2024_235 |
Cites_doi | 10.1142/S0218271896000473 10.1007/JHEP03(2023)094 10.1016/j.physrep.2022.12.004 10.1090/gsm/053 10.1007/JHEP09(2012)046 10.1016/S0370-1573(03)00263-1 10.1007/BF01217730 10.1016/0370-2693(90)90685-Y 10.1007/JHEP12(2017)133 10.1007/JHEP03(2022)093 10.1016/0370-2693(90)90686-Z 10.1007/978-1-4614-7972-7 10.1007/JHEP11(2022)143 10.1016/0370-2693(93)90935-B 10.1007/JHEP12(2021)211 10.1103/PhysRevD.59.026005 10.1007/JHEP03(2017)011 10.1016/0550-3213(89)90414-8 10.1016/S0370-2693(98)00560-7 10.1007/JHEP04(2023)114 10.1016/0550-3213(92)90098-V 10.1007/JHEP03(2023)016 10.1016/j.physrep.2022.12.002 10.1007/JHEP10(2020)078 10.1007/BF02698547 10.1016/0550-3213(86)90552-3 10.4310/ATMP.1998.v2.n3.a3 10.1103/PhysRevLett.125.131603 10.1007/JHEP03(2017)067 10.1007/JHEP08(2022)195 10.1007/JHEP02(2015)172 10.1103/RevModPhys.91.015002 10.1016/S0370-2693(02)02980-5 10.1007/JHEP08(2021)148 10.1016/S0550-3213(97)00269-1 10.1103/PhysRevB.14.3110 10.1088/0264-9381/33/4/045009 10.1103/PhysRevB.49.11919 10.1007/JHEP09(2021)174 10.1016/0370-2693(92)91457-K 10.1016/S0550-3213(98)00514-8 10.1007/s00222-005-0488-2 10.1007/JHEP08(2013)115 10.4310/jdg/1214509283 10.4310/CNTP.2015.v9.n2.a3 10.1007/s00209-008-0314-9 10.1103/PhysRevD.107.026021 10.1080/10652461003643412 10.1103/PhysRevD.60.046002 10.1016/0370-2693(90)91400-6 10.1088/1126-6708/2008/10/091 10.1007/JHEP10(2018)070 10.1007/JHEP05(2018)039 10.1080/10586458.1992.10504562 10.1007/JHEP09(2010)115 10.1103/PhysRevA.73.042102 10.1073/pnas.82.11.3533 10.1016/0550-3213(81)90570-8 10.1103/PhysRevB.90.245109 10.1016/S0370-2693(99)00763-7 10.1103/PhysRevD.61.104010 10.1016/S0019-3577(02)90006-6 10.1016/S0370-2693(98)00377-3 10.1103/PhysRevD.14.985 10.1016/0370-2693(95)01303-2 10.21468/SciPostPhys.5.6.060 10.1007/s00220-012-1557-1 10.1007/JHEP03(2021)208 10.1016/0370-2693(83)91104-8 10.1007/JHEP02(2023)179 10.1103/PhysRevLett.36.691 10.4310/ATMP.1998.v2.n2.a1 10.1103/PhysRevD.72.105004 10.1016/S0550-3213(98)00309-5 10.1007/JHEP06(2015)051 10.1007/JHEP11(2021)142 10.1007/JHEP08(2020)064 10.1016/0370-2693(85)91171-2 10.1007/JHEP12(2014)031 10.1090/S0273-0979-2011-01323-4 10.1007/JHEP05(2021)246 10.1016/0370-2693(75)90161-6 10.1088/1126-6708/2002/07/013 10.1103/PhysRevD.93.126005 10.1103/PhysRevB.94.085134 10.4310/ATMP.1998.v2.n2.a2 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1007/JHEP07(2023)028 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 40 |
ExternalDocumentID | oai_doaj_org_article_47320555d9234cdd907beccf6075c760 10_1007_JHEP07_2023_028 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c483t-f6a38d1a4e86a341d103bc04d370593a0a4ee2435e1e8428ac35b9e7549bd1823 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Tue Aug 12 16:41:53 EDT 2025 Tue Jul 01 01:00:55 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Fri Feb 21 02:42:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Scale and Conformal Symmetries Effective Field Theories Nonperturbative Effects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-f6a38d1a4e86a341d103bc04d370593a0a4ee2435e1e8428ac35b9e7549bd1823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/JHEP07(2023)028 |
PQID | 2833809694 |
PQPubID | 2034718 |
PageCount | 40 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_47320555d9234cdd907beccf6075c760 proquest_journals_2833809694 crossref_citationtrail_10_1007_JHEP07_2023_028 crossref_primary_10_1007_JHEP07_2023_028 springer_journals_10_1007_JHEP07_2023_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-04 |
PublicationDateYYYYMMDD | 2023-07-04 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | P. Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc48 (2011) 211, [https://www.ams.org/journals/bull/2011-48-02/S0273-0979-2011-01323-4/]. M.B. Green, H.-H. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D61 (2000) 104010 [hep-th/9910055] [INSPIRE]. SachdevSPolylogarithm identities in a conformal field theory in three-dimensionsPhys. Lett. B19933092851993PhLB..309..285S1227282[hep-th/9305131] [INSPIRE] SarnakPStrömbergssonAMinima of Epstein’s Zeta function and heights of flat toriInvent. Math.20061651152006InMat.165..115S22211381145.11033 W.A. Bardeen, B.W. Lee and R.E. Shrock, Phase Transition in the Nonlinear σ Model in 2 + ϵ Dimensional Continuum, Phys. Rev. D14 (1976) 985 [INSPIRE]. GubserSSKlebanovIRTseytlinAACoupling constant dependence in the thermodynamics of N=4 supersymmetric Yang-Mills theoryNucl. Phys. B19985342021998NuPhB.534..202G16621621078.81563[hep-th/9805156] [INSPIRE] LinY-HOkadaMSeifnashriSTachikawaYAsymptotic density of states in 2d CFTs with non-invertible symmetriesJHEP2023030942023JHEP...03..094L456175007690658[arXiv:2208.05495] [INSPIRE] GallowayGJWoolgarEOn static Poincaré-Einstein metricsJHEP2015060512015JHEP...06..051G1388.83041[arXiv:1502.04646] [INSPIRE] DeshouillersJ-MIwaniecHPhillipsRSSarnakPMaass cusp formsPro. Nat. Academy of Sciences19858235331985PNAS...82.3533D7917410566.10017 S. Whitsitt and S. Sachdev, Transition from the ℤ2spin liquid to antiferromagnetic order: Spectrum on the torus, Phys. Rev. B94 (2016) 085134. BonifacioJBootstrapping closed hyperbolic surfacesJHEP2022030932022JHEP...03..093B442618407609935[arXiv:2111.13215] [INSPIRE] IliesiuLThe Conformal Bootstrap at Finite TemperatureJHEP2018100702018JHEP...10..070I3891026[arXiv:1802.10266] [INSPIRE] H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate studies in mathematics, American Mathematical Society (2002). D. Dorigoni, M.B. Green, C. Wen and H. Xie, Modular-invariant large-N completion of an integrated correlator inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}= 4 supersymmetric Yang-Mills theory, JHEP04 (2023) 114 [arXiv:2210.14038] [INSPIRE]. AharonyOChesterSMUrbachEYA Derivation of AdS/CFT for Vector ModelsJHEP2021032082021JHEP...03..208A42610201461.81065[arXiv:2011.06328] [INSPIRE] RankinRAA minimum problem for the epstein zeta-functionGlasgow Mathematical Journal19531149593000052.28005 DianandaPNotes on two lemmas concerning the epstein zeta-functionGlasgow Mathematical Journal196462021685370128.04501 BelinADe BoerJKruthoffJComments on a state-operator correspondence for the torusSciPost Phys.201850602018ScPP....5...60B[arXiv:1802.00006] [INSPIRE] VasilievMAMore on equations of motion for interacting massless fields of all spins in (3+1)-dimensionsPhys. Lett. B19922852251992PhLB..285..225V1173846[INSPIRE] HenrikssonJThe critical O(N) CFT: Methods and conformal dataPhys. Rept.2023100212023PhR..1002....1H45240791518.81089[arXiv:2201.09520] [INSPIRE] VasilievMAHigher spin gauge theories in four-dimensions, three-dimensions, and two-dimensionsInt. J. Mod. Phys. D199657631996IJMPD...5..763V1461633[hep-th/9611024] [INSPIRE] VasilievMAConsistent equation for interacting gauge fields of all spins in (3+1)-dimensionsPhys. Lett. B19902433781990PhLB..243..378V10628241332.81084[INSPIRE] C. Klein, A. Kokotov and D. Korotkin, Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces, Mathematische Zeitschrift261 (2009) 73 [math/0511217]. M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math.68 (1989) 175 [INSPIRE]. P.B. Wiegmann, Exact solution of the O(3) nonlinear sigma model, Phys. Lett. B152 (1985) 209 [INSPIRE]. M.J. Kang, J. Lee and H. Ooguri, Universal formula for the density of states with continuous symmetry, Phys. Rev. D107 (2023) 026021 [arXiv:2206.14814] [INSPIRE]. BelinAUniversality of sparse d > 2 conformal field theory at large NJHEP2017030672017JHEP...03..067B3657630[arXiv:1610.06186] [INSPIRE] G.T. Horowitz and R.C. Myers, The AdS / CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D59 (1998) 026005 [hep-th/9808079] [INSPIRE]. N. Chai et al., Symmetry Breaking at All Temperatures, Phys. Rev. Lett.125 (2020) 131603 [INSPIRE]. CappelliACosteAOn the Stress Tensor of Conformal Field Theories in Higher DimensionsNucl. Phys. B19893147071989NuPhB.314..707C984582[INSPIRE] N. Kurokawa and M. Wakayama, Casimir effects on riemann surfaces, Indagationes Mathematicae13 (2002) 63. GaiottoDKapustinASeibergNWillettBGeneralized Global SymmetriesJHEP2015021722015JHEP...02..172G33212811388.83656[arXiv:1412.5148] [INSPIRE] BrezinEZinn-JustinJSpontaneous Breakdown of Continuous Symmetries Near Two-DimensionsPhys. Rev. B19761431101976PhRvB..14.3110B[INSPIRE] P. Kravchuk, D. Mazac and S. Pal, Automorphic Spectra and the Conformal Bootstrap, arXiv:2111.12716 [INSPIRE]. MosheMZinn-JustinJQuantum field theory in the large N limit: A ReviewPhys. Rept.2003385692003PhR...385...69M20101681031.81065[hep-th/0306133] [INSPIRE] BenjaminNHarmonic analysis of 2d CFT partition functionsJHEP2021091742021JHEP...09..174B43271421472.81215[arXiv:2107.10744] [INSPIRE] CheamsawatKFischettiSWallisLWisemanTA surprising similarity between holographic CFTs and a free fermion in (2 + 1) dimensionsJHEP2021052462021JHEP...05..246C42957971466.83098[arXiv:2012.14437] [INSPIRE] KarabaliDKimC-JNairVPPlanar Yang-Mills theory: Hamiltonian, regulators and mass gapNucl. Phys. B19985246611998NuPhB.524..661K16330941031.81561[hep-th/9705087] [INSPIRE] D. Tong, NS5-branes, T duality and world sheet instantons, JHEP07 (2002) 013 [hep-th/0204186] [INSPIRE]. GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE] AharonyOChesterSMSheafferTUrbachEYExplicit holography for vector models at finite N, volume and temperatureJHEP2023030162023JHEP...03..016A455784807690580[arXiv:2208.13607] [INSPIRE] AharonyOBergmanOJafferisDLMaldacenaJN=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity dualsJHEP2008100912008JHEP...10..091A24529541245.81130[arXiv:0806.1218] [INSPIRE] LevineAShaghoulianEEncoding beyond cosmological horizons in de Sitter JT gravityJHEP2023021792023JHEP...02..179L455529207685602[arXiv:2204.08503] [INSPIRE] EnnolaVA lemma about the epstein zeta-functionGlasgow Mathematical Journal196461981685360128.04402 M. Schaden, Comments on the sign and other aspects of semiclassical Casimir energies, Phys. Rev. A73 (2006) 042102 [hep-th/0509124] [INSPIRE]. CardyJLOperator Content of Two-Dimensional Conformally Invariant TheoriesNucl. Phys. B19862701861986NuPhB.270..186C8459400689.17016[INSPIRE] PolyakovAMWiegmannPBTheory of Nonabelian Goldstone BosonsPhys. Lett. B19831311211983PhLB..131..121P722389[INSPIRE] HasenfratzPNiedermayerFThe Exact mass gap of the O(N) sigma model for arbitrary N is >= 3 in d = 2Phys. Lett. B19902455291990PhLB..245..529H1070072[INSPIRE] C. Luo and Y. Wang, Casimir Energy and Modularity in Fermionic Conformal Field Theories of d > 2, to appear. G.V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogeneous fields, Phys. Rev. D72 (2005) 105004 [hep-th/0507174] [INSPIRE]. StrohmaierAUskiVAn Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic SurfacesCommun. Math. Phys.20123178272013CMaPh.317..827S30097261261.65113 BrandhuberAOzYThe D-4 - D-8 brane system and five-dimensional fixed pointsPhys. Lett. B19994603071999PhLB..460..307B17068280987.81590[hep-th/9905148] [INSPIRE] A. Hickling and T. Wiseman, Vacuum energy is non-positive for (2 + 1)-dimensional holographic CFTs, Class. Quant. Grav.33 (2016) 045009 [arXiv:1508.04460] [INSPIRE]. FischettiSWisemanTOn universality of holographic results for (2 + 1)-dimensional CFTs on curved spacetimesJHEP2017121332017JHEP...12..133F37566571383.83039[arXiv:1707.03825] [INSPIRE] AharonyOSeibergNTachikawaYReading between the lines of four-dimensional gauge theoriesJHEP2013081152013JHEP...08..115A31063231342.81248[arXiv:1305.0318] [INSPIRE] AlessioFBarnichGBonteMNotes on massless scalar field partition functions, modular invariance and Eisenstein seriesJHEP2021122112021JHEP...12..211A436939007602050[arXiv:2111.03164] [INSPIRE] FischettiSWallisLWisemanTDoes the Round Sphere Maximize the Free Energy of (2+1)-Dimensional QFTs?JHEP2020100782020JHEP...10..078F42040271456.81374[arXiv:2003.09428] [INSPIRE] Di PietroLKomargodskiZCardy formulae for SUSY theories in d = 4 and d = 6JHEP2014120311390.81586[arXiv:1407.6061] [INSPIRE] HejhalDARacknerBNOn the Topography of Maass Waveforms for PSL(2, Z)Exper. Math.1992127512572860813.11035 G. Segal, The definition of conformal field theory, in the proceedings of the Symposium on Topology, Geometry and Quantum Field Theory (Segalfest), (2002), p. 421–575 [INSPIRE]. ShaghoulianEEmergent gravity from Eguchi-Kawai reductionJHEP2017030112017JHEP...03..011S36576861377.81183[arXiv:1611.04189] [INSPIRE] KirstenKElizaldeECasimir energy of a massive field in a genus 1 surfacePhys. Lett. B1996365721996PhLB..365...72K1371318[hep-th/9508086] [INSPIRE] S. Pal and Z. Sun, High Energy Modular Bootstrap, Global Symmetries and Defects, JHEP08 (2020) 064 [arXiv:2004.12557] [INSPIRE]. KlebanovIRPolyakovAMAdS dual of the critical O(N) vector modelPhys. Lett. B20025502132002PhLB..550..213K19485471001.81057[hep-th/0210114] [INSPIRE] DelmastroDGaiottoDGomisJGlobal anomalies on the Hilbert spaceJHEP2021111422021JHEP...11..142D436830207598804[arXiv:2101.02218] [INSPIRE] A.M. Polyakov, Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields, Phys. Lett. B59 (1975) 79 [INSPIRE]. GreenMBMillerSDVa E Witten (21240_CR18) 1998; 2 A Levine (21240_CR73) 2023; 02 21240_CR7 DA Hejhal (21240_CR35) 1992; 1 GJ Galloway (21240_CR76) 2015; 06 21240_CR2 IR Klebanov (21240_CR45) 2002; 550 21240_CR51 21240_CR1 21240_CR50 21240_CR94 N Banerjee (21240_CR21) 2012; 09 J Henriksson (21240_CR41) 2023; 1002 S Giombi (21240_CR46) 2010; 09 21240_CR92 21240_CR6 21240_CR11 21240_CR55 21240_CR10 R Szmytkowski (21240_CR37) 2010; 21 L Iliesiu (21240_CR20) 2018; 10 21240_CR53 21240_CR3 D Gaiotto (21240_CR5) 2015; 02 J Bonifacio (21240_CR83) 2022; 03 RA Rankin (21240_CR85) 1953; 1 A Belin (21240_CR12) 2017; 03 C-M Chang (21240_CR67) 2018; 05 A Strohmaier (21240_CR82) 2012; 317 AM Polyakov (21240_CR56) 1983; 131 P Sarnak (21240_CR89) 2006; 165 21240_CR80 DM Dantchev (21240_CR9) 2023; 1005 E Shaghoulian (21240_CR62) 2017; 03 21240_CR84 21240_CR81 P Diananda (21240_CR88) 1964; 6 MA Vasiliev (21240_CR42) 1990; 243 MA Vasiliev (21240_CR44) 1996; 5 O Aharony (21240_CR47) 2021; 03 M Gromov (21240_CR90) 1983; 18 21240_CR36 21240_CR79 V Ennola (21240_CR87) 1964; 6 O Aharony (21240_CR4) 2013; 08 O Aharony (21240_CR63) 2008; 10 SS Gubser (21240_CR68) 1998; 534 K Kirsten (21240_CR39) 1996; 365 SS Gubser (21240_CR17) 1998; 428 S Chaudhuri (21240_CR24) 2021; 08 K Cheamsawat (21240_CR78) 2021; 05 21240_CR72 G Munster (21240_CR70) 1981; 190 S Ferrara (21240_CR64) 1998; 431 21240_CR33 21240_CR32 21240_CR30 21240_CR74 21240_CR26 21240_CR25 21240_CR69 21240_CR23 N Benjamin (21240_CR28) 2021; 09 F Alessio (21240_CR40) 2021; 12 21240_CR27 S Fischetti (21240_CR77) 2020; 10 S Sachdev (21240_CR13) 1993; 309 J-M Deshouillers (21240_CR34) 1985; 82 A Cappelli (21240_CR38) 1989; 314 P Hasenfratz (21240_CR58) 1990; 245 N Benjamin (21240_CR29) 2022; 11 E Brezin (21240_CR54) 1976; 14 O Aharony (21240_CR48) 2023; 03 M Moshe (21240_CR49) 2003; 385 MB Green (21240_CR66) 1997; 498 E Witten (21240_CR96) 1989; 121 MA Vasiliev (21240_CR43) 1992; 285 E Brezin (21240_CR52) 1976; 36 P Hasenfratz (21240_CR59) 1990; 245 21240_CR61 21240_CR60 MB Green (21240_CR31) 2015; 09 21240_CR15 JM Maldacena (21240_CR16) 1998; 2 S Fischetti (21240_CR75) 2017; 12 21240_CR14 JL Cardy (21240_CR91) 1986; 270 21240_CR57 Y-H Lin (21240_CR93) 2023; 03 A Brandhuber (21240_CR65) 1999; 460 D Karabali (21240_CR71) 1998; 524 JW Cassels (21240_CR86) 1959; 4 L Di Pietro (21240_CR22) 2014; 12 D Delmastro (21240_CR95) 2021; 11 A Belin (21240_CR8) 2018; 5 E Witten (21240_CR19) 1998; 2 |
References_xml | – reference: A.V. Chubukov, S. Sachdev and J. Ye, Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state, Phys. Rev. B49 (1994) 11919 [cond-mat/9304046] [INSPIRE]. – reference: MunsterGStrong Coupling Expansions for the Mass Gap in Lattice Gauge TheoriesNucl. Phys. B19811904391981NuPhB.190..439M603978[INSPIRE] – reference: S. Whitsitt and S. Sachdev, Transition from the ℤ2spin liquid to antiferromagnetic order: Spectrum on the torus, Phys. Rev. B94 (2016) 085134. – reference: EnnolaVA lemma about the epstein zeta-functionGlasgow Mathematical Journal196461981685360128.04402 – reference: A. Hickling and T. Wiseman, Vacuum energy is non-positive for (2 + 1)-dimensional holographic CFTs, Class. Quant. Grav.33 (2016) 045009 [arXiv:1508.04460] [INSPIRE]. – reference: M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B385 (1992) 145 [hep-ph/9205205] [INSPIRE]. – reference: AlessioFBarnichGBonteMNotes on massless scalar field partition functions, modular invariance and Eisenstein seriesJHEP2021122112021JHEP...12..211A436939007602050[arXiv:2111.03164] [INSPIRE] – reference: ChangC-MFluderMLinY-HWangYRomans Supergravity from Five-Dimensional HologramsJHEP2018050392018JHEP...05..039C38327241391.83125[arXiv:1712.10313] [INSPIRE] – reference: VasilievMAConsistent equation for interacting gauge fields of all spins in (3+1)-dimensionsPhys. Lett. B19902433781990PhLB..243..378V10628241332.81084[INSPIRE] – reference: MosheMZinn-JustinJQuantum field theory in the large N limit: A ReviewPhys. Rept.2003385692003PhR...385...69M20101681031.81065[hep-th/0306133] [INSPIRE] – reference: GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE] – reference: P.B. Wiegmann, Exact solution of the O(3) nonlinear sigma model, Phys. Lett. B152 (1985) 209 [INSPIRE]. – reference: AharonyOBergmanOJafferisDLMaldacenaJN=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity dualsJHEP2008100912008JHEP...10..091A24529541245.81130[arXiv:0806.1218] [INSPIRE] – reference: M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math.68 (1989) 175 [INSPIRE]. – reference: MaldacenaJMThe Large N limit of superconformal field theories and supergravityAdv. Theor. Math. Phys.199822311998AdTMP...2..231M16330160914.53047[hep-th/9711200] [INSPIRE] – reference: CappelliACosteAOn the Stress Tensor of Conformal Field Theories in Higher DimensionsNucl. Phys. B19893147071989NuPhB.314..707C984582[INSPIRE] – reference: SachdevSPolylogarithm identities in a conformal field theory in three-dimensionsPhys. Lett. B19933092851993PhLB..309..285S1227282[hep-th/9305131] [INSPIRE] – reference: D. Tong, NS5-branes, T duality and world sheet instantons, JHEP07 (2002) 013 [hep-th/0204186] [INSPIRE]. – reference: C. Klein, A. Kokotov and D. Korotkin, Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces, Mathematische Zeitschrift261 (2009) 73 [math/0511217]. – reference: LevineAShaghoulianEEncoding beyond cosmological horizons in de Sitter JT gravityJHEP2023021792023JHEP...02..179L455529207685602[arXiv:2204.08503] [INSPIRE] – reference: SarnakPStrömbergssonAMinima of Epstein’s Zeta function and heights of flat toriInvent. Math.20061651152006InMat.165..115S22211381145.11033 – reference: RankinRAA minimum problem for the epstein zeta-functionGlasgow Mathematical Journal19531149593000052.28005 – reference: HejhalDARacknerBNOn the Topography of Maass Waveforms for PSL(2, Z)Exper. Math.1992127512572860813.11035 – reference: HasenfratzPMaggioreMNiedermayerFThe Exact mass gap of the O(3) and O(4) nonlinear sigma models in d = 2Phys. Lett. B19902455221990PhLB..245..522H1070071[INSPIRE] – reference: VasilievMAMore on equations of motion for interacting massless fields of all spins in (3+1)-dimensionsPhys. Lett. B19922852251992PhLB..285..225V1173846[INSPIRE] – reference: GubserSSKlebanovIRTseytlinAACoupling constant dependence in the thermodynamics of N=4 supersymmetric Yang-Mills theoryNucl. Phys. B19985342021998NuPhB.534..202G16621621078.81563[hep-th/9805156] [INSPIRE] – reference: A. Terras, Harmonic Analysis on Symmetric Spaces – Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane, Springer, New York (2013). – reference: ChaudhuriSRabinoviciESymmetry breaking at high temperatures in large N gauge theoriesJHEP2021081482021JHEP...08..148C4317122[arXiv:2106.11323] [INSPIRE] – reference: DeshouillersJ-MIwaniecHPhillipsRSSarnakPMaass cusp formsPro. Nat. Academy of Sciences19858235331985PNAS...82.3533D7917410566.10017 – reference: HasenfratzPNiedermayerFThe Exact mass gap of the O(N) sigma model for arbitrary N is >= 3 in d = 2Phys. Lett. B19902455291990PhLB..245..529H1070072[INSPIRE] – reference: DelmastroDGaiottoDGomisJGlobal anomalies on the Hilbert spaceJHEP2021111422021JHEP...11..142D436830207598804[arXiv:2101.02218] [INSPIRE] – reference: IliesiuLThe Conformal Bootstrap at Finite TemperatureJHEP2018100702018JHEP...10..070I3891026[arXiv:1802.10266] [INSPIRE] – reference: GaiottoDKapustinASeibergNWillettBGeneralized Global SymmetriesJHEP2015021722015JHEP...02..172G33212811388.83656[arXiv:1412.5148] [INSPIRE] – reference: S. Pal and Z. Sun, High Energy Modular Bootstrap, Global Symmetries and Defects, JHEP08 (2020) 064 [arXiv:2004.12557] [INSPIRE]. – reference: E. Katz, S. Sachdev, E.S. Sørensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: Operator product expansions, Monte Carlo, and holography, Phys. Rev. B90 (2014) 245109 [arXiv:1409.3841] [INSPIRE]. – reference: KirstenKElizaldeECasimir energy of a massive field in a genus 1 surfacePhys. Lett. B1996365721996PhLB..365...72K1371318[hep-th/9508086] [INSPIRE] – reference: P. Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc48 (2011) 211, [https://www.ams.org/journals/bull/2011-48-02/S0273-0979-2011-01323-4/]. – reference: N. Kurokawa and M. Wakayama, Casimir effects on riemann surfaces, Indagationes Mathematicae13 (2002) 63. – reference: A.M. Polyakov, Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields, Phys. Lett. B59 (1975) 79 [INSPIRE]. – reference: M. Schaden, Comments on the sign and other aspects of semiclassical Casimir energies, Phys. Rev. A73 (2006) 042102 [hep-th/0509124] [INSPIRE]. – reference: BenjaminNChangC-HScalar modular bootstrap and zeros of the Riemann zeta functionJHEP2022111432022JHEP...11..143B451706407657466[arXiv:2208.02259] [INSPIRE] – reference: LinY-HOkadaMSeifnashriSTachikawaYAsymptotic density of states in 2d CFTs with non-invertible symmetriesJHEP2023030942023JHEP...03..094L456175007690658[arXiv:2208.05495] [INSPIRE] – reference: AharonyOChesterSMSheafferTUrbachEYExplicit holography for vector models at finite N, volume and temperatureJHEP2023030162023JHEP...03..016A455784807690580[arXiv:2208.13607] [INSPIRE] – reference: BrandhuberAOzYThe D-4 - D-8 brane system and five-dimensional fixed pointsPhys. Lett. B19994603071999PhLB..460..307B17068280987.81590[hep-th/9905148] [INSPIRE] – reference: DianandaPNotes on two lemmas concerning the epstein zeta-functionGlasgow Mathematical Journal196462021685370128.04501 – reference: D. Dorigoni, M.B. Green, C. Wen and H. Xie, Modular-invariant large-N completion of an integrated correlator inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}= 4 supersymmetric Yang-Mills theory, JHEP04 (2023) 114 [arXiv:2210.14038] [INSPIRE]. – reference: AharonyOChesterSMUrbachEYA Derivation of AdS/CFT for Vector ModelsJHEP2021032082021JHEP...03..208A42610201461.81065[arXiv:2011.06328] [INSPIRE] – reference: GallowayGJWoolgarEOn static Poincaré-Einstein metricsJHEP2015060512015JHEP...06..051G1388.83041[arXiv:1502.04646] [INSPIRE] – reference: HenrikssonJThe critical O(N) CFT: Methods and conformal dataPhys. Rept.2023100212023PhR..1002....1H45240791518.81089[arXiv:2201.09520] [INSPIRE] – reference: StrohmaierAUskiVAn Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic SurfacesCommun. Math. Phys.20123178272013CMaPh.317..827S30097261261.65113 – reference: ShaghoulianEEmergent gravity from Eguchi-Kawai reductionJHEP2017030112017JHEP...03..011S36576861377.81183[arXiv:1611.04189] [INSPIRE] – reference: WittenEQuantum Field Theory and the Jones PolynomialCommun. Math. Phys.19891213511989CMaPh.121..351W9907720667.57005[INSPIRE] – reference: P. Kravchuk, D. Mazac and S. Pal, Automorphic Spectra and the Conformal Bootstrap, arXiv:2111.12716 [INSPIRE]. – reference: GiombiSYinXHigher Spin Gauge Theory and Holography: The Three-Point FunctionsJHEP2010091152010JHEP...09..115G27769321291.83107[arXiv:0912.3462] [INSPIRE] – reference: E. Shaghoulian, Modular forms and a generalized Cardy formula in higher dimensions, Phys. Rev. D93 (2016) 126005 [arXiv:1508.02728] [INSPIRE]. – reference: GromovMFilling riemannian manifoldsJournal of Differential Geometry19831816979840515.53037 – reference: G. Segal, The definition of conformal field theory, in the proceedings of the Symposium on Topology, Geometry and Quantum Field Theory (Segalfest), (2002), p. 421–575 [INSPIRE]. – reference: GreenMBGutperleMEffects of D instantonsNucl. Phys. B19974981951997NuPhB.498..195G14590790979.81566[hep-th/9701093] [INSPIRE] – reference: AharonyOSeibergNTachikawaYReading between the lines of four-dimensional gauge theoriesJHEP2013081152013JHEP...08..115A31063231342.81248[arXiv:1305.0318] [INSPIRE] – reference: WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W16330120914.53048[hep-th/9802150] [INSPIRE] – reference: M.B. Green, H.-H. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D61 (2000) 104010 [hep-th/9910055] [INSPIRE]. – reference: FischettiSWisemanTOn universality of holographic results for (2 + 1)-dimensional CFTs on curved spacetimesJHEP2017121332017JHEP...12..133F37566571383.83039[arXiv:1707.03825] [INSPIRE] – reference: C. Luo and Y. Wang, Casimir Energy and Modularity in Fermionic Conformal Field Theories of d > 2, to appear. – reference: G.T. Horowitz and R.C. Myers, The AdS / CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D59 (1998) 026005 [hep-th/9808079] [INSPIRE]. – reference: H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate studies in mathematics, American Mathematical Society (2002). – reference: SzmytkowskiRBielskiSAn orthogonality relation for the Whittaker functions of the second kind of imaginary orderIntegral Transforms and Special Functions20102173927435411205.33010[arXiv:0910.1492] – reference: Di PietroLKomargodskiZCardy formulae for SUSY theories in d = 4 and d = 6JHEP2014120311390.81586[arXiv:1407.6061] [INSPIRE] – reference: R.C. Myers, Stress tensors and Casimir energies in the AdS / CFT correspondence, Phys. Rev. D60 (1999) 046002 [hep-th/9903203] [INSPIRE]. – reference: BonifacioJBootstrapping closed hyperbolic surfacesJHEP2022030932022JHEP...03..093B442618407609935[arXiv:2111.13215] [INSPIRE] – reference: BenjaminNHarmonic analysis of 2d CFT partition functionsJHEP2021091742021JHEP...09..174B43271421472.81215[arXiv:2107.10744] [INSPIRE] – reference: FischettiSWallisLWisemanTDoes the Round Sphere Maximize the Free Energy of (2+1)-Dimensional QFTs?JHEP2020100782020JHEP...10..078F42040271456.81374[arXiv:2003.09428] [INSPIRE] – reference: T. Hartman, D. Mazac, D. Simmons-Duffin and A. Zhiboedov, Snowmass White Paper: The Analytic Conformal Bootstrap, in the proceedings of the 2022 Snowmass Summer Study, [arXiv:2202.11012] [INSPIRE]. – reference: BanerjeeNConstraints on Fluid Dynamics from Equilibrium Partition FunctionsJHEP2012090462012JHEP...09..046B3044956[arXiv:1203.3544] [INSPIRE] – reference: N. Chai et al., Symmetry Breaking at All Temperatures, Phys. Rev. Lett.125 (2020) 131603 [INSPIRE]. – reference: G.V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogeneous fields, Phys. Rev. D72 (2005) 105004 [hep-th/0507174] [INSPIRE]. – reference: M.J. Kang, J. Lee and H. Ooguri, Universal formula for the density of states with continuous symmetry, Phys. Rev. D107 (2023) 026021 [arXiv:2206.14814] [INSPIRE]. – reference: BelinAUniversality of sparse d > 2 conformal field theory at large NJHEP2017030672017JHEP...03..067B3657630[arXiv:1610.06186] [INSPIRE] – reference: CasselsJWOn a problem of rankin about the epstein zeta-functionGlasgow Mathematical Journal19594731171930103.27602 – reference: CardyJLOperator Content of Two-Dimensional Conformally Invariant TheoriesNucl. Phys. B19862701861986NuPhB.270..186C8459400689.17016[INSPIRE] – reference: WittenEAnti-de Sitter space, thermal phase transition, and confinement in gauge theoriesAdv. Theor. Math. Phys.1998250516468951057.81550[hep-th/9803131] [INSPIRE] – reference: PolyakovAMWiegmannPBTheory of Nonabelian Goldstone BosonsPhys. Lett. B19831311211983PhLB..131..121P722389[INSPIRE] – reference: W.A. Bardeen, B.W. Lee and R.E. Shrock, Phase Transition in the Nonlinear σ Model in 2 + ϵ Dimensional Continuum, Phys. Rev. D14 (1976) 985 [INSPIRE]. – reference: S. Collier and E. Perlmutter, Harnessing S-duality inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}= 4 SYM & supergravity as SL(2, ℤ)-averaged strings, JHEP08 (2022) 195 [arXiv:2201.05093] [INSPIRE]. – reference: KlebanovIRPolyakovAMAdS dual of the critical O(N) vector modelPhys. Lett. B20025502132002PhLB..550..213K19485471001.81057[hep-th/0210114] [INSPIRE] – reference: BrezinEZinn-JustinJSpontaneous Breakdown of Continuous Symmetries Near Two-DimensionsPhys. Rev. B19761431101976PhRvB..14.3110B[INSPIRE] – reference: VasilievMAHigher spin gauge theories in four-dimensions, three-dimensions, and two-dimensionsInt. J. Mod. Phys. D199657631996IJMPD...5..763V1461633[hep-th/9611024] [INSPIRE] – reference: FerraraSKehagiasAPartoucheHZaffaroniAAdS(6) interpretation of 5-D superconformal field theoriesPhys. Lett. B1998431571998PhLB..431...57F1634949[hep-th/9804006] [INSPIRE] – reference: KarabaliDKimC-JNairVPPlanar Yang-Mills theory: Hamiltonian, regulators and mass gapNucl. Phys. B19985246611998NuPhB.524..661K16330941031.81561[hep-th/9705087] [INSPIRE] – reference: D. Poland and D. Simmons-Duffin, Snowmass White Paper: The Numerical Conformal Bootstrap, in the proceedings of the 2021 Snowmass Summer Study, (2022) [arXiv:2203.08117] [INSPIRE]. – reference: BrezinEZinn-JustinJRenormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnetsPhys. Rev. Lett.1976366911976PhRvL..36..691B[INSPIRE] – reference: CheamsawatKFischettiSWallisLWisemanTA surprising similarity between holographic CFTs and a free fermion in (2 + 1) dimensionsJHEP2021052462021JHEP...05..246C42957971466.83098[arXiv:2012.14437] [INSPIRE] – reference: D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE]. – reference: BelinADe BoerJKruthoffJComments on a state-operator correspondence for the torusSciPost Phys.201850602018ScPP....5...60B[arXiv:1802.00006] [INSPIRE] – reference: S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge Books Online, Cambridge University Press (1988). – reference: DantchevDMDietrichSCritical Casimir effect: Exact resultsPhys. Rept.2023100512023PhR..1005....1D452658007660964[arXiv:2203.15050] [INSPIRE] – reference: GreenMBMillerSDVanhovePSL(2, ℤ)-invariance and D-instanton contributions to the D6R4interactionCommun. Num. Theor. Phys.2015093071338.81322[arXiv:1404.2192] [INSPIRE] – volume: 5 start-page: 763 year: 1996 ident: 21240_CR44 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271896000473 – volume: 03 start-page: 094 year: 2023 ident: 21240_CR93 publication-title: JHEP doi: 10.1007/JHEP03(2023)094 – volume: 1005 start-page: 1 year: 2023 ident: 21240_CR9 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2022.12.004 – ident: 21240_CR32 doi: 10.1090/gsm/053 – volume: 09 start-page: 046 year: 2012 ident: 21240_CR21 publication-title: JHEP doi: 10.1007/JHEP09(2012)046 – volume: 385 start-page: 69 year: 2003 ident: 21240_CR49 publication-title: Phys. Rept. doi: 10.1016/S0370-1573(03)00263-1 – volume: 121 start-page: 351 year: 1989 ident: 21240_CR96 publication-title: Commun. Math. Phys. doi: 10.1007/BF01217730 – volume: 245 start-page: 522 year: 1990 ident: 21240_CR58 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(90)90685-Y – volume: 12 start-page: 133 year: 2017 ident: 21240_CR75 publication-title: JHEP doi: 10.1007/JHEP12(2017)133 – volume: 03 start-page: 093 year: 2022 ident: 21240_CR83 publication-title: JHEP doi: 10.1007/JHEP03(2022)093 – volume: 245 start-page: 529 year: 1990 ident: 21240_CR59 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(90)90686-Z – ident: 21240_CR33 doi: 10.1007/978-1-4614-7972-7 – volume: 11 start-page: 143 year: 2022 ident: 21240_CR29 publication-title: JHEP doi: 10.1007/JHEP11(2022)143 – volume: 309 start-page: 285 year: 1993 ident: 21240_CR13 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(93)90935-B – volume: 12 start-page: 211 year: 2021 ident: 21240_CR40 publication-title: JHEP doi: 10.1007/JHEP12(2021)211 – ident: 21240_CR60 doi: 10.1103/PhysRevD.59.026005 – volume: 03 start-page: 011 year: 2017 ident: 21240_CR62 publication-title: JHEP doi: 10.1007/JHEP03(2017)011 – volume: 314 start-page: 707 year: 1989 ident: 21240_CR38 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90414-8 – volume: 431 start-page: 57 year: 1998 ident: 21240_CR64 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00560-7 – ident: 21240_CR51 doi: 10.1007/JHEP04(2023)114 – ident: 21240_CR25 doi: 10.1016/0550-3213(92)90098-V – volume: 03 start-page: 016 year: 2023 ident: 21240_CR48 publication-title: JHEP doi: 10.1007/JHEP03(2023)016 – volume: 1002 start-page: 1 year: 2023 ident: 21240_CR41 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2022.12.002 – volume: 10 start-page: 078 year: 2020 ident: 21240_CR77 publication-title: JHEP doi: 10.1007/JHEP10(2020)078 – ident: 21240_CR6 doi: 10.1007/BF02698547 – volume: 270 start-page: 186 year: 1986 ident: 21240_CR91 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90552-3 – volume: 2 start-page: 505 year: 1998 ident: 21240_CR19 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n3.a3 – ident: 21240_CR23 doi: 10.1103/PhysRevLett.125.131603 – volume: 03 start-page: 067 year: 2017 ident: 21240_CR12 publication-title: JHEP doi: 10.1007/JHEP03(2017)067 – ident: 21240_CR30 doi: 10.1007/JHEP08(2022)195 – volume: 02 start-page: 172 year: 2015 ident: 21240_CR5 publication-title: JHEP doi: 10.1007/JHEP02(2015)172 – ident: 21240_CR1 doi: 10.1103/RevModPhys.91.015002 – ident: 21240_CR7 – volume: 550 start-page: 213 year: 2002 ident: 21240_CR45 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)02980-5 – volume: 08 start-page: 148 year: 2021 ident: 21240_CR24 publication-title: JHEP doi: 10.1007/JHEP08(2021)148 – volume: 498 start-page: 195 year: 1997 ident: 21240_CR66 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00269-1 – volume: 14 start-page: 3110 year: 1976 ident: 21240_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.14.3110 – ident: 21240_CR74 doi: 10.1088/0264-9381/33/4/045009 – ident: 21240_CR27 – ident: 21240_CR14 doi: 10.1103/PhysRevB.49.11919 – volume: 09 start-page: 174 year: 2021 ident: 21240_CR28 publication-title: JHEP doi: 10.1007/JHEP09(2021)174 – volume: 285 start-page: 225 year: 1992 ident: 21240_CR43 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(92)91457-K – volume: 534 start-page: 202 year: 1998 ident: 21240_CR68 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(98)00514-8 – volume: 165 start-page: 115 year: 2006 ident: 21240_CR89 publication-title: Invent. Math. doi: 10.1007/s00222-005-0488-2 – volume: 08 start-page: 115 year: 2013 ident: 21240_CR4 publication-title: JHEP doi: 10.1007/JHEP08(2013)115 – volume: 6 start-page: 198 year: 1964 ident: 21240_CR87 publication-title: Glasgow Mathematical Journal – volume: 18 start-page: 1 year: 1983 ident: 21240_CR90 publication-title: Journal of Differential Geometry doi: 10.4310/jdg/1214509283 – ident: 21240_CR10 – volume: 09 start-page: 307 year: 2015 ident: 21240_CR31 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2015.v9.n2.a3 – ident: 21240_CR81 doi: 10.1007/s00209-008-0314-9 – ident: 21240_CR94 doi: 10.1103/PhysRevD.107.026021 – volume: 21 start-page: 739 year: 2010 ident: 21240_CR37 publication-title: Integral Transforms and Special Functions doi: 10.1080/10652461003643412 – ident: 21240_CR61 doi: 10.1103/PhysRevD.60.046002 – volume: 1 start-page: 149 year: 1953 ident: 21240_CR85 publication-title: Glasgow Mathematical Journal – volume: 243 start-page: 378 year: 1990 ident: 21240_CR42 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(90)91400-6 – volume: 10 start-page: 091 year: 2008 ident: 21240_CR63 publication-title: JHEP doi: 10.1088/1126-6708/2008/10/091 – volume: 10 start-page: 070 year: 2018 ident: 21240_CR20 publication-title: JHEP doi: 10.1007/JHEP10(2018)070 – ident: 21240_CR3 – volume: 05 start-page: 039 year: 2018 ident: 21240_CR67 publication-title: JHEP doi: 10.1007/JHEP05(2018)039 – volume: 1 start-page: 275 year: 1992 ident: 21240_CR35 publication-title: Exper. Math. doi: 10.1080/10586458.1992.10504562 – volume: 09 start-page: 115 year: 2010 ident: 21240_CR46 publication-title: JHEP doi: 10.1007/JHEP09(2010)115 – ident: 21240_CR79 doi: 10.1103/PhysRevA.73.042102 – volume: 82 start-page: 3533 year: 1985 ident: 21240_CR34 publication-title: Pro. Nat. Academy of Sciences doi: 10.1073/pnas.82.11.3533 – volume: 4 start-page: 73 year: 1959 ident: 21240_CR86 publication-title: Glasgow Mathematical Journal – volume: 190 start-page: 439 year: 1981 ident: 21240_CR70 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(81)90570-8 – ident: 21240_CR15 doi: 10.1103/PhysRevB.90.245109 – volume: 460 start-page: 307 year: 1999 ident: 21240_CR65 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(99)00763-7 – ident: 21240_CR69 doi: 10.1103/PhysRevD.61.104010 – ident: 21240_CR80 doi: 10.1016/S0019-3577(02)90006-6 – volume: 428 start-page: 105 year: 1998 ident: 21240_CR17 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00377-3 – ident: 21240_CR55 doi: 10.1103/PhysRevD.14.985 – volume: 365 start-page: 72 year: 1996 ident: 21240_CR39 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(95)01303-2 – volume: 5 start-page: 060 year: 2018 ident: 21240_CR8 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.5.6.060 – volume: 317 start-page: 827 year: 2012 ident: 21240_CR82 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-012-1557-1 – volume: 03 start-page: 208 year: 2021 ident: 21240_CR47 publication-title: JHEP doi: 10.1007/JHEP03(2021)208 – volume: 131 start-page: 121 year: 1983 ident: 21240_CR56 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)91104-8 – volume: 02 start-page: 179 year: 2023 ident: 21240_CR73 publication-title: JHEP doi: 10.1007/JHEP02(2023)179 – volume: 36 start-page: 691 year: 1976 ident: 21240_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.36.691 – volume: 2 start-page: 231 year: 1998 ident: 21240_CR16 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – ident: 21240_CR26 doi: 10.1103/PhysRevD.72.105004 – volume: 524 start-page: 661 year: 1998 ident: 21240_CR71 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(98)00309-5 – volume: 06 start-page: 051 year: 2015 ident: 21240_CR76 publication-title: JHEP doi: 10.1007/JHEP06(2015)051 – volume: 11 start-page: 142 year: 2021 ident: 21240_CR95 publication-title: JHEP doi: 10.1007/JHEP11(2021)142 – ident: 21240_CR92 doi: 10.1007/JHEP08(2020)064 – ident: 21240_CR57 doi: 10.1016/0370-2693(85)91171-2 – volume: 12 start-page: 031 year: 2014 ident: 21240_CR22 publication-title: JHEP doi: 10.1007/JHEP12(2014)031 – ident: 21240_CR36 doi: 10.1090/S0273-0979-2011-01323-4 – volume: 05 start-page: 246 year: 2021 ident: 21240_CR78 publication-title: JHEP doi: 10.1007/JHEP05(2021)246 – ident: 21240_CR53 doi: 10.1016/0370-2693(75)90161-6 – volume: 6 start-page: 202 year: 1964 ident: 21240_CR88 publication-title: Glasgow Mathematical Journal – ident: 21240_CR2 – ident: 21240_CR72 doi: 10.1088/1126-6708/2002/07/013 – ident: 21240_CR11 doi: 10.1103/PhysRevD.93.126005 – ident: 21240_CR50 doi: 10.1103/PhysRevB.94.085134 – volume: 2 start-page: 253 year: 1998 ident: 21240_CR18 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – ident: 21240_CR84 |
SSID | ssj0015190 |
Score | 2.498002 |
Snippet | A
bstract
An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such... An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such... Abstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28 |
SubjectTerms | Classical and Quantum Gravitation Effective Field Theories Elementary Particles Ground state High energy physics Hilbert space Instantons Manifolds (mathematics) Modularity Nonperturbative Effects Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Regular Article - Theoretical Physics Relativity Relativity Theory Scale and Conformal Symmetries Spacetime Spectral theory String Theory Topology Toruses Yang-Mills theory |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP7E6JQcP26EubdImPepwjKHiwcFuJc0PHGydbPP_9yVt5xSGF2-lSdvHeynv-8jL9xC6JczyWMdFmFojQmasCQshRcitUnEiAcB6Edfnl3Q4ZqNJMtlq9eVqwip54MpxPcZp7ESpNCARprQGMuc-a1PIdYqnnq1DzmvIVL1_ALiENEI-hPdGw8dXwjuuVXiXuMbrWznIS_X_wJe_tkR9phkcocMaIuL7yrRjtGfKE7TvSzXV6hQ99eVqOp8usfHH9rAsNZ4vtCsnBUSNpyV-97UboXbC_ZXoBgbW69HpDPuSNezPLwJJPkPjweNbfxjWPRFCxQRdhzaVVOhIMiPgikU6IrRQhGnKXXM-SWDExICBTGQEUAupaFJkhgMNLDRwCXqOWuWiNBcIc04yZbMosUYCjMoKoZhJRMQs1cALSYDuGi_lqhYMd30rZnkjdVy5NXduzcGtAepsHviotDJ2T31wbt9McyLX_gaEPq9Dn_8V-gC1m6Dl9Z-3ygEuUQG8LGMB6jaB_B7eYc_lf9hzhQ7c-3wxL2uj1nr5aa4BsqyLG786vwBaluUc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46EXwRrzidkgcf9CGaNmmTPomTyRAVEQXfSpqLDman2_z_nmTpvIC-lSYt4eT2fTkn30HokHInUpNWJHdWEm6dJZVUkgindZopALBBxPXmNu8_8qun7CkeuE1iWGWzJoaF2oy0PyM_hW2QScDbBT97eyc-a5T3rsYUGotoCZZgKVtoqdu7vbuf-xEAn9BG0IeK06t-746KI58y_Jj6BOzf9qIg2f8DZ_5yjYYd53INrUaoiM9nfbuOFmy9gZZDyKaebKLrCzUZvA7G2Ibre1jVBr-OjA8rBWSNBzV-CTEcxHgB_5n4Bgb2G1DqEIfQNRzuMQJZ3kKPl72Hiz6JuRGI5pJNicsVkyZR3Ep44olJKKs05YYJn6RPUSixKWAhm1gJFENpllWFFUAHKwOcgm2jVj2q7Q7CQtBCuyLJnFUAp4pKam4zmXDHDPBD2kYnjZVKHYXDff6KYdlIHs_MWnqzlmDWNjqaf_A208z4u2rXm31ezYtdhxej8XMZ507JBUu9LpkBMMq1McDn_chzOcAdLXJoYKfptDLOwEn5NV7a6LjpyK_iP9qz-_-v9tCKrxnCdXkHtabjD7sPoGRaHcSR9wmW1t64 priority: 102 providerName: ProQuest |
Title | Casimir energy and modularity in higher-dimensional conformal field theories |
URI | https://link.springer.com/article/10.1007/JHEP07(2023)028 https://www.proquest.com/docview/2833809694 https://doaj.org/article/47320555d9234cdd907beccf6075c760 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4DcGL-InTOXLw4A7Vtkmb9DjL5hgqQxx4K20-cKCbbPP_9yVrJ0528FLSfEB4LyG_H3n5PYArnxkeqrDwYqOFx7TRXiFy4XEjZRjlCGCdiOvjUzwYs-Fr9FqKJNm3MBv397fDQW_k82ub5LuDR2ENGlFAuc3RkMbp-roAYYhf6fb8HfTryHHK_L_g5MYNqDtY-gewXyJC0l258BB29PQIdl1kplwcw0OaLyYfkznR7pUeQeZPPmbKRo8igCaTKXlzoRqesjr9K40NgiTXgdF34iLUiHuuiJz4BMb93ks68MoUCJ5kgi49E-dUqCBnWmCJBSrwaSF9ptAGUUJzH1t0iJBHB1ogk8gljYpEc2R9hULqQE-hPp1N9RkQzv1EmiSIjM4RNSWFkExHImCGKqSBfhNuKitlstQHt2kq3rNK2Xhl1syaNUOzNuF6PeBzJY2xveudNfu6m9W0dhXo6qzcIhnjNLTyYwoxJ5NKIW23C8zEiGokj3GCrcppWbnRFhmiIyqQhiWsCZ3KkT_NW-Zz_o--F7Bniy5El7Wgvpx_6UsEIsuiDTXRv29D4673NHrGvzRkbbcw247a43ccdr8BbmPZ8A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNdWsAHkNqDqRM7sXNACEqXbbutOLRSb8bxA1Zqs-3uIsSf4jcydpItIJVbb1FiW9Z47PkmnpkP4BUTQeYur2kZvKLCB09rZRSVwdq8MAhgUxHXw6NydCL2T4vTFfjV58LEsMr-TEwHtZva-I98G80gV4i3K_Hu4pJG1qh4u9pTaLRqceB__kCXbf527yOu7-s8H-4e74xoxypArVB8QUNpuHKZEV7hk8hcxnhtmXBcRno7w_CLzxFF-MwrBOfG8qKuvERHqnaIxjmOewtuC46WPGamDz8tby0QDbG-fBCT2_uj3c9MbkaC8i0W6d7_sHyJIOAvVPvPRWyyb8MHcL8DpuR9q0kPYcU3j-BOChC188cw3jHzyflkRnxKFiSmceR86mIQK-J4MmnItxQxQl2kC2hLfRD0tRMmPiMpUI6krEl0zZ_AyY3I7CmsNtPGrwGRklU2VFkRvEHwVtXKCl-oTATu0BtlA3jTS0nbrkx5ZMs4032B5VasOopVo1gHsLnscNFW6Li-6Yco9mWzWFo7vZjOvupup2oheR6roDmEvsI6VzEZ9TyUCK6sLHGCG_2i6W6_z_WVdg5gq1_Iq8_XzOfZ_4d6CXdHx4djPd47OliHe7FXChQWG7C6mH33zxEOLeoXSQcJfLlppf8NP2oZLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IK5aYYAfQNoeTJ3EiZ0HhNjWqrtQVYhJezOOL1BpS0dbhPhr_DqOnaQDpPG2tyixLev42P5OfPx9AK8Y9yK1aUUL7yTlzjtaSS2p8MakuUYAG0lcP0yK8Sk_OsvPNuBXdxcmpFV2a2JcqO3chH_kA9wGM4l4u-QD36ZFTA9G7y6_0aAgFU5aOzmNxkWO3c8fGL4t3x4e4Fi_TtPR8NP-mLYKA9Rwma2oL3QmbaK5k_jEE5uwrDKM20wEqTvN8ItLEVG4xEkE6tpkeVU6gUFVZRGZZ9juLdgUISrqwebecDL9uD7DQGzEOjIhJgZH4-GUiZ0gV77Lgvj7H_tglAv4C-P-cywbd7vRfbjXwlTyvvGrB7Dh6odwO6aLmuUjONnXy9nFbEFcvDpIdG3JxdyGlFZE9WRWk68xf4TaIB7QEH8QjLwjQj4nMW2OxDuUGKg_htMbsdoT6NXz2m0BEYKVxpdJ7p1GKFdW0nCXy4T7zGJsyvrwprOSMi1pedDOOFcd3XJjVhXMqtCsfdhZV7hs-DquL7oXzL4uFoi244v54otq563iIksDJ5pFIMyNtSUTwet9gVDLiAI7uN0Nmmpn_1Jd-WofdruBvPp8TX-e_r-pl3AHHV6dHE6On8HdUClmDfNt6K0W391zxEar6kXrhAQ-37Tf_wYpKh7B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Casimir+energy+and+modularity+in+higher-dimensional+conformal+field+theories&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Luo%2C+Conghuan&rft.au=Wang%2C+Yifan&rft.date=2023-07-04&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282023%29028&rft.externalDocID=10_1007_JHEP07_2023_028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |