Casimir energy and modularity in higher-dimensional conformal field theories

A bstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the un...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 7; pp. 28 - 40
Main Authors Luo, Conghuan, Wang, Yifan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 04.07.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T 2 × ℝ d− 3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2 , ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O ( N ) model in d = 3 and holographic CFTs in d ≥ 3.
AbstractList Abstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T 2 × ℝ d−3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2, ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O(N) model in d = 3 and holographic CFTs in d ≥ 3.
An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T2 × ℝd−3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2, ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O(N) model in d = 3 and holographic CFTs in d ≥ 3.
An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T 2 × ℝ d− 3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2 , ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O ( N ) model in d = 3 and holographic CFTs in d ≥ 3.
A bstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensions d > 2 on the spatial manifold T 2 × ℝ d− 3 which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduli τ of the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2 , ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the critical O ( N ) model in d = 3 and holographic CFTs in d ≥ 3.
ArticleNumber 28
Author Luo, Conghuan
Wang, Yifan
Author_xml – sequence: 1
  givenname: Conghuan
  surname: Luo
  fullname: Luo, Conghuan
  email: cl4682@nyu.edu
  organization: Center for Cosmology and Particle Physics, New York University
– sequence: 2
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
  organization: Center for Cosmology and Particle Physics, New York University
BookMark eNp1kTtvFDEUhS2USORBTTsSDRRDrl9ru0SrkAStBAXUlte-s-vVjB3s2WL_PU4GBEJK5SP7fEf3-lySs5QTEvKWwkcKoG6-3N9-A_WeAeMfgOlX5IICM70Wypz9o1-Ty1oPAFRSAxdks3Y1TrF0mLDsTp1LoZtyOI6uxPnUxdTt426PpQ9xwlRjTm7sfE5DLlNTQ8QxdPMec4lYr8n54MaKb36fV-TH59vv6_t-8_XuYf1p03uh-dwPK8d1oE6gbkrQQIFvPYjAFUjDHbQXZIJLpKgF085zuTWopDDbQDXjV-RhyQ3ZHexjiZMrJ5tdtM8XueysK3P0I1qhOAMpZTCMCx-CAbVF74cVKOnVClrWuyXrseSfR6yzPeRjaVtWyzTnGszKiOaSi8uXXGvBwfo4u7l9x1xcHC0F-1SCXUqwTyXYVkLjbv7j_kz7MgELUZsz7bD8necl5BdOtJkC
CitedBy_id crossref_primary_10_1007_JHEP12_2023_054
crossref_primary_10_1007_JHEP12_2023_186
crossref_primary_10_1007_JHEP03_2025_169
crossref_primary_10_1007_JHEP02_2025_061
crossref_primary_10_1007_JHEP08_2023_078
crossref_primary_10_1007_JHEP07_2023_129
crossref_primary_10_1007_JHEP01_2025_080
crossref_primary_10_1007_JHEP09_2024_127
crossref_primary_10_1007_JHEP11_2024_023
crossref_primary_10_1007_JHEP11_2024_134
crossref_primary_10_1007_JHEP03_2024_115
crossref_primary_10_1007_JHEP10_2023_143
crossref_primary_10_1007_JHEP01_2025_200
crossref_primary_10_1103_PhysRevLett_132_101602
crossref_primary_10_1007_JHEP07_2024_235
Cites_doi 10.1142/S0218271896000473
10.1007/JHEP03(2023)094
10.1016/j.physrep.2022.12.004
10.1090/gsm/053
10.1007/JHEP09(2012)046
10.1016/S0370-1573(03)00263-1
10.1007/BF01217730
10.1016/0370-2693(90)90685-Y
10.1007/JHEP12(2017)133
10.1007/JHEP03(2022)093
10.1016/0370-2693(90)90686-Z
10.1007/978-1-4614-7972-7
10.1007/JHEP11(2022)143
10.1016/0370-2693(93)90935-B
10.1007/JHEP12(2021)211
10.1103/PhysRevD.59.026005
10.1007/JHEP03(2017)011
10.1016/0550-3213(89)90414-8
10.1016/S0370-2693(98)00560-7
10.1007/JHEP04(2023)114
10.1016/0550-3213(92)90098-V
10.1007/JHEP03(2023)016
10.1016/j.physrep.2022.12.002
10.1007/JHEP10(2020)078
10.1007/BF02698547
10.1016/0550-3213(86)90552-3
10.4310/ATMP.1998.v2.n3.a3
10.1103/PhysRevLett.125.131603
10.1007/JHEP03(2017)067
10.1007/JHEP08(2022)195
10.1007/JHEP02(2015)172
10.1103/RevModPhys.91.015002
10.1016/S0370-2693(02)02980-5
10.1007/JHEP08(2021)148
10.1016/S0550-3213(97)00269-1
10.1103/PhysRevB.14.3110
10.1088/0264-9381/33/4/045009
10.1103/PhysRevB.49.11919
10.1007/JHEP09(2021)174
10.1016/0370-2693(92)91457-K
10.1016/S0550-3213(98)00514-8
10.1007/s00222-005-0488-2
10.1007/JHEP08(2013)115
10.4310/jdg/1214509283
10.4310/CNTP.2015.v9.n2.a3
10.1007/s00209-008-0314-9
10.1103/PhysRevD.107.026021
10.1080/10652461003643412
10.1103/PhysRevD.60.046002
10.1016/0370-2693(90)91400-6
10.1088/1126-6708/2008/10/091
10.1007/JHEP10(2018)070
10.1007/JHEP05(2018)039
10.1080/10586458.1992.10504562
10.1007/JHEP09(2010)115
10.1103/PhysRevA.73.042102
10.1073/pnas.82.11.3533
10.1016/0550-3213(81)90570-8
10.1103/PhysRevB.90.245109
10.1016/S0370-2693(99)00763-7
10.1103/PhysRevD.61.104010
10.1016/S0019-3577(02)90006-6
10.1016/S0370-2693(98)00377-3
10.1103/PhysRevD.14.985
10.1016/0370-2693(95)01303-2
10.21468/SciPostPhys.5.6.060
10.1007/s00220-012-1557-1
10.1007/JHEP03(2021)208
10.1016/0370-2693(83)91104-8
10.1007/JHEP02(2023)179
10.1103/PhysRevLett.36.691
10.4310/ATMP.1998.v2.n2.a1
10.1103/PhysRevD.72.105004
10.1016/S0550-3213(98)00309-5
10.1007/JHEP06(2015)051
10.1007/JHEP11(2021)142
10.1007/JHEP08(2020)064
10.1016/0370-2693(85)91171-2
10.1007/JHEP12(2014)031
10.1090/S0273-0979-2011-01323-4
10.1007/JHEP05(2021)246
10.1016/0370-2693(75)90161-6
10.1088/1126-6708/2002/07/013
10.1103/PhysRevD.93.126005
10.1103/PhysRevB.94.085134
10.4310/ATMP.1998.v2.n2.a2
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1007/JHEP07(2023)028
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 40
ExternalDocumentID oai_doaj_org_article_47320555d9234cdd907beccf6075c760
10_1007_JHEP07_2023_028
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c483t-f6a38d1a4e86a341d103bc04d370593a0a4ee2435e1e8428ac35b9e7549bd1823
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Wed Aug 27 01:30:27 EDT 2025
Tue Aug 12 16:41:53 EDT 2025
Tue Jul 01 01:00:55 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Fri Feb 21 02:42:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Scale and Conformal Symmetries
Effective Field Theories
Nonperturbative Effects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-f6a38d1a4e86a341d103bc04d370593a0a4ee2435e1e8428ac35b9e7549bd1823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/JHEP07(2023)028
PQID 2833809694
PQPubID 2034718
PageCount 40
ParticipantIDs doaj_primary_oai_doaj_org_article_47320555d9234cdd907beccf6075c760
proquest_journals_2833809694
crossref_citationtrail_10_1007_JHEP07_2023_028
crossref_primary_10_1007_JHEP07_2023_028
springer_journals_10_1007_JHEP07_2023_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-04
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-04
  day: 04
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References P. Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc48 (2011) 211, [https://www.ams.org/journals/bull/2011-48-02/S0273-0979-2011-01323-4/].
M.B. Green, H.-H. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D61 (2000) 104010 [hep-th/9910055] [INSPIRE].
SachdevSPolylogarithm identities in a conformal field theory in three-dimensionsPhys. Lett. B19933092851993PhLB..309..285S1227282[hep-th/9305131] [INSPIRE]
SarnakPStrömbergssonAMinima of Epstein’s Zeta function and heights of flat toriInvent. Math.20061651152006InMat.165..115S22211381145.11033
W.A. Bardeen, B.W. Lee and R.E. Shrock, Phase Transition in the Nonlinear σ Model in 2 + ϵ Dimensional Continuum, Phys. Rev. D14 (1976) 985 [INSPIRE].
GubserSSKlebanovIRTseytlinAACoupling constant dependence in the thermodynamics of N=4 supersymmetric Yang-Mills theoryNucl. Phys. B19985342021998NuPhB.534..202G16621621078.81563[hep-th/9805156] [INSPIRE]
LinY-HOkadaMSeifnashriSTachikawaYAsymptotic density of states in 2d CFTs with non-invertible symmetriesJHEP2023030942023JHEP...03..094L456175007690658[arXiv:2208.05495] [INSPIRE]
GallowayGJWoolgarEOn static Poincaré-Einstein metricsJHEP2015060512015JHEP...06..051G1388.83041[arXiv:1502.04646] [INSPIRE]
DeshouillersJ-MIwaniecHPhillipsRSSarnakPMaass cusp formsPro. Nat. Academy of Sciences19858235331985PNAS...82.3533D7917410566.10017
S. Whitsitt and S. Sachdev, Transition from the ℤ2spin liquid to antiferromagnetic order: Spectrum on the torus, Phys. Rev. B94 (2016) 085134.
BonifacioJBootstrapping closed hyperbolic surfacesJHEP2022030932022JHEP...03..093B442618407609935[arXiv:2111.13215] [INSPIRE]
IliesiuLThe Conformal Bootstrap at Finite TemperatureJHEP2018100702018JHEP...10..070I3891026[arXiv:1802.10266] [INSPIRE]
H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate studies in mathematics, American Mathematical Society (2002).
D. Dorigoni, M.B. Green, C. Wen and H. Xie, Modular-invariant large-N completion of an integrated correlator inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}= 4 supersymmetric Yang-Mills theory, JHEP04 (2023) 114 [arXiv:2210.14038] [INSPIRE].
AharonyOChesterSMUrbachEYA Derivation of AdS/CFT for Vector ModelsJHEP2021032082021JHEP...03..208A42610201461.81065[arXiv:2011.06328] [INSPIRE]
RankinRAA minimum problem for the epstein zeta-functionGlasgow Mathematical Journal19531149593000052.28005
DianandaPNotes on two lemmas concerning the epstein zeta-functionGlasgow Mathematical Journal196462021685370128.04501
BelinADe BoerJKruthoffJComments on a state-operator correspondence for the torusSciPost Phys.201850602018ScPP....5...60B[arXiv:1802.00006] [INSPIRE]
VasilievMAMore on equations of motion for interacting massless fields of all spins in (3+1)-dimensionsPhys. Lett. B19922852251992PhLB..285..225V1173846[INSPIRE]
HenrikssonJThe critical O(N) CFT: Methods and conformal dataPhys. Rept.2023100212023PhR..1002....1H45240791518.81089[arXiv:2201.09520] [INSPIRE]
VasilievMAHigher spin gauge theories in four-dimensions, three-dimensions, and two-dimensionsInt. J. Mod. Phys. D199657631996IJMPD...5..763V1461633[hep-th/9611024] [INSPIRE]
VasilievMAConsistent equation for interacting gauge fields of all spins in (3+1)-dimensionsPhys. Lett. B19902433781990PhLB..243..378V10628241332.81084[INSPIRE]
C. Klein, A. Kokotov and D. Korotkin, Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces, Mathematische Zeitschrift261 (2009) 73 [math/0511217].
M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math.68 (1989) 175 [INSPIRE].
P.B. Wiegmann, Exact solution of the O(3) nonlinear sigma model, Phys. Lett. B152 (1985) 209 [INSPIRE].
M.J. Kang, J. Lee and H. Ooguri, Universal formula for the density of states with continuous symmetry, Phys. Rev. D107 (2023) 026021 [arXiv:2206.14814] [INSPIRE].
BelinAUniversality of sparse d > 2 conformal field theory at large NJHEP2017030672017JHEP...03..067B3657630[arXiv:1610.06186] [INSPIRE]
G.T. Horowitz and R.C. Myers, The AdS / CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D59 (1998) 026005 [hep-th/9808079] [INSPIRE].
N. Chai et al., Symmetry Breaking at All Temperatures, Phys. Rev. Lett.125 (2020) 131603 [INSPIRE].
CappelliACosteAOn the Stress Tensor of Conformal Field Theories in Higher DimensionsNucl. Phys. B19893147071989NuPhB.314..707C984582[INSPIRE]
N. Kurokawa and M. Wakayama, Casimir effects on riemann surfaces, Indagationes Mathematicae13 (2002) 63.
GaiottoDKapustinASeibergNWillettBGeneralized Global SymmetriesJHEP2015021722015JHEP...02..172G33212811388.83656[arXiv:1412.5148] [INSPIRE]
BrezinEZinn-JustinJSpontaneous Breakdown of Continuous Symmetries Near Two-DimensionsPhys. Rev. B19761431101976PhRvB..14.3110B[INSPIRE]
P. Kravchuk, D. Mazac and S. Pal, Automorphic Spectra and the Conformal Bootstrap, arXiv:2111.12716 [INSPIRE].
MosheMZinn-JustinJQuantum field theory in the large N limit: A ReviewPhys. Rept.2003385692003PhR...385...69M20101681031.81065[hep-th/0306133] [INSPIRE]
BenjaminNHarmonic analysis of 2d CFT partition functionsJHEP2021091742021JHEP...09..174B43271421472.81215[arXiv:2107.10744] [INSPIRE]
CheamsawatKFischettiSWallisLWisemanTA surprising similarity between holographic CFTs and a free fermion in (2 + 1) dimensionsJHEP2021052462021JHEP...05..246C42957971466.83098[arXiv:2012.14437] [INSPIRE]
KarabaliDKimC-JNairVPPlanar Yang-Mills theory: Hamiltonian, regulators and mass gapNucl. Phys. B19985246611998NuPhB.524..661K16330941031.81561[hep-th/9705087] [INSPIRE]
D. Tong, NS5-branes, T duality and world sheet instantons, JHEP07 (2002) 013 [hep-th/0204186] [INSPIRE].
GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE]
AharonyOChesterSMSheafferTUrbachEYExplicit holography for vector models at finite N, volume and temperatureJHEP2023030162023JHEP...03..016A455784807690580[arXiv:2208.13607] [INSPIRE]
AharonyOBergmanOJafferisDLMaldacenaJN=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity dualsJHEP2008100912008JHEP...10..091A24529541245.81130[arXiv:0806.1218] [INSPIRE]
LevineAShaghoulianEEncoding beyond cosmological horizons in de Sitter JT gravityJHEP2023021792023JHEP...02..179L455529207685602[arXiv:2204.08503] [INSPIRE]
EnnolaVA lemma about the epstein zeta-functionGlasgow Mathematical Journal196461981685360128.04402
M. Schaden, Comments on the sign and other aspects of semiclassical Casimir energies, Phys. Rev. A73 (2006) 042102 [hep-th/0509124] [INSPIRE].
CardyJLOperator Content of Two-Dimensional Conformally Invariant TheoriesNucl. Phys. B19862701861986NuPhB.270..186C8459400689.17016[INSPIRE]
PolyakovAMWiegmannPBTheory of Nonabelian Goldstone BosonsPhys. Lett. B19831311211983PhLB..131..121P722389[INSPIRE]
HasenfratzPNiedermayerFThe Exact mass gap of the O(N) sigma model for arbitrary N is >= 3 in d = 2Phys. Lett. B19902455291990PhLB..245..529H1070072[INSPIRE]
C. Luo and Y. Wang, Casimir Energy and Modularity in Fermionic Conformal Field Theories of d > 2, to appear.
G.V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogeneous fields, Phys. Rev. D72 (2005) 105004 [hep-th/0507174] [INSPIRE].
StrohmaierAUskiVAn Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic SurfacesCommun. Math. Phys.20123178272013CMaPh.317..827S30097261261.65113
BrandhuberAOzYThe D-4 - D-8 brane system and five-dimensional fixed pointsPhys. Lett. B19994603071999PhLB..460..307B17068280987.81590[hep-th/9905148] [INSPIRE]
A. Hickling and T. Wiseman, Vacuum energy is non-positive for (2 + 1)-dimensional holographic CFTs, Class. Quant. Grav.33 (2016) 045009 [arXiv:1508.04460] [INSPIRE].
FischettiSWisemanTOn universality of holographic results for (2 + 1)-dimensional CFTs on curved spacetimesJHEP2017121332017JHEP...12..133F37566571383.83039[arXiv:1707.03825] [INSPIRE]
AharonyOSeibergNTachikawaYReading between the lines of four-dimensional gauge theoriesJHEP2013081152013JHEP...08..115A31063231342.81248[arXiv:1305.0318] [INSPIRE]
AlessioFBarnichGBonteMNotes on massless scalar field partition functions, modular invariance and Eisenstein seriesJHEP2021122112021JHEP...12..211A436939007602050[arXiv:2111.03164] [INSPIRE]
FischettiSWallisLWisemanTDoes the Round Sphere Maximize the Free Energy of (2+1)-Dimensional QFTs?JHEP2020100782020JHEP...10..078F42040271456.81374[arXiv:2003.09428] [INSPIRE]
Di PietroLKomargodskiZCardy formulae for SUSY theories in d = 4 and d = 6JHEP2014120311390.81586[arXiv:1407.6061] [INSPIRE]
HejhalDARacknerBNOn the Topography of Maass Waveforms for PSL(2, Z)Exper. Math.1992127512572860813.11035
G. Segal, The definition of conformal field theory, in the proceedings of the Symposium on Topology, Geometry and Quantum Field Theory (Segalfest), (2002), p. 421–575 [INSPIRE].
ShaghoulianEEmergent gravity from Eguchi-Kawai reductionJHEP2017030112017JHEP...03..011S36576861377.81183[arXiv:1611.04189] [INSPIRE]
KirstenKElizaldeECasimir energy of a massive field in a genus 1 surfacePhys. Lett. B1996365721996PhLB..365...72K1371318[hep-th/9508086] [INSPIRE]
S. Pal and Z. Sun, High Energy Modular Bootstrap, Global Symmetries and Defects, JHEP08 (2020) 064 [arXiv:2004.12557] [INSPIRE].
KlebanovIRPolyakovAMAdS dual of the critical O(N) vector modelPhys. Lett. B20025502132002PhLB..550..213K19485471001.81057[hep-th/0210114] [INSPIRE]
DelmastroDGaiottoDGomisJGlobal anomalies on the Hilbert spaceJHEP2021111422021JHEP...11..142D436830207598804[arXiv:2101.02218] [INSPIRE]
A.M. Polyakov, Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields, Phys. Lett. B59 (1975) 79 [INSPIRE].
GreenMBMillerSDVa
E Witten (21240_CR18) 1998; 2
A Levine (21240_CR73) 2023; 02
21240_CR7
DA Hejhal (21240_CR35) 1992; 1
GJ Galloway (21240_CR76) 2015; 06
21240_CR2
IR Klebanov (21240_CR45) 2002; 550
21240_CR51
21240_CR1
21240_CR50
21240_CR94
N Banerjee (21240_CR21) 2012; 09
J Henriksson (21240_CR41) 2023; 1002
S Giombi (21240_CR46) 2010; 09
21240_CR92
21240_CR6
21240_CR11
21240_CR55
21240_CR10
R Szmytkowski (21240_CR37) 2010; 21
L Iliesiu (21240_CR20) 2018; 10
21240_CR53
21240_CR3
D Gaiotto (21240_CR5) 2015; 02
J Bonifacio (21240_CR83) 2022; 03
RA Rankin (21240_CR85) 1953; 1
A Belin (21240_CR12) 2017; 03
C-M Chang (21240_CR67) 2018; 05
A Strohmaier (21240_CR82) 2012; 317
AM Polyakov (21240_CR56) 1983; 131
P Sarnak (21240_CR89) 2006; 165
21240_CR80
DM Dantchev (21240_CR9) 2023; 1005
E Shaghoulian (21240_CR62) 2017; 03
21240_CR84
21240_CR81
P Diananda (21240_CR88) 1964; 6
MA Vasiliev (21240_CR42) 1990; 243
MA Vasiliev (21240_CR44) 1996; 5
O Aharony (21240_CR47) 2021; 03
M Gromov (21240_CR90) 1983; 18
21240_CR36
21240_CR79
V Ennola (21240_CR87) 1964; 6
O Aharony (21240_CR4) 2013; 08
O Aharony (21240_CR63) 2008; 10
SS Gubser (21240_CR68) 1998; 534
K Kirsten (21240_CR39) 1996; 365
SS Gubser (21240_CR17) 1998; 428
S Chaudhuri (21240_CR24) 2021; 08
K Cheamsawat (21240_CR78) 2021; 05
21240_CR72
G Munster (21240_CR70) 1981; 190
S Ferrara (21240_CR64) 1998; 431
21240_CR33
21240_CR32
21240_CR30
21240_CR74
21240_CR26
21240_CR25
21240_CR69
21240_CR23
N Benjamin (21240_CR28) 2021; 09
F Alessio (21240_CR40) 2021; 12
21240_CR27
S Fischetti (21240_CR77) 2020; 10
S Sachdev (21240_CR13) 1993; 309
J-M Deshouillers (21240_CR34) 1985; 82
A Cappelli (21240_CR38) 1989; 314
P Hasenfratz (21240_CR58) 1990; 245
N Benjamin (21240_CR29) 2022; 11
E Brezin (21240_CR54) 1976; 14
O Aharony (21240_CR48) 2023; 03
M Moshe (21240_CR49) 2003; 385
MB Green (21240_CR66) 1997; 498
E Witten (21240_CR96) 1989; 121
MA Vasiliev (21240_CR43) 1992; 285
E Brezin (21240_CR52) 1976; 36
P Hasenfratz (21240_CR59) 1990; 245
21240_CR61
21240_CR60
MB Green (21240_CR31) 2015; 09
21240_CR15
JM Maldacena (21240_CR16) 1998; 2
S Fischetti (21240_CR75) 2017; 12
21240_CR14
JL Cardy (21240_CR91) 1986; 270
21240_CR57
Y-H Lin (21240_CR93) 2023; 03
A Brandhuber (21240_CR65) 1999; 460
D Karabali (21240_CR71) 1998; 524
JW Cassels (21240_CR86) 1959; 4
L Di Pietro (21240_CR22) 2014; 12
D Delmastro (21240_CR95) 2021; 11
A Belin (21240_CR8) 2018; 5
E Witten (21240_CR19) 1998; 2
References_xml – reference: A.V. Chubukov, S. Sachdev and J. Ye, Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state, Phys. Rev. B49 (1994) 11919 [cond-mat/9304046] [INSPIRE].
– reference: MunsterGStrong Coupling Expansions for the Mass Gap in Lattice Gauge TheoriesNucl. Phys. B19811904391981NuPhB.190..439M603978[INSPIRE]
– reference: S. Whitsitt and S. Sachdev, Transition from the ℤ2spin liquid to antiferromagnetic order: Spectrum on the torus, Phys. Rev. B94 (2016) 085134.
– reference: EnnolaVA lemma about the epstein zeta-functionGlasgow Mathematical Journal196461981685360128.04402
– reference: A. Hickling and T. Wiseman, Vacuum energy is non-positive for (2 + 1)-dimensional holographic CFTs, Class. Quant. Grav.33 (2016) 045009 [arXiv:1508.04460] [INSPIRE].
– reference: M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B385 (1992) 145 [hep-ph/9205205] [INSPIRE].
– reference: AlessioFBarnichGBonteMNotes on massless scalar field partition functions, modular invariance and Eisenstein seriesJHEP2021122112021JHEP...12..211A436939007602050[arXiv:2111.03164] [INSPIRE]
– reference: ChangC-MFluderMLinY-HWangYRomans Supergravity from Five-Dimensional HologramsJHEP2018050392018JHEP...05..039C38327241391.83125[arXiv:1712.10313] [INSPIRE]
– reference: VasilievMAConsistent equation for interacting gauge fields of all spins in (3+1)-dimensionsPhys. Lett. B19902433781990PhLB..243..378V10628241332.81084[INSPIRE]
– reference: MosheMZinn-JustinJQuantum field theory in the large N limit: A ReviewPhys. Rept.2003385692003PhR...385...69M20101681031.81065[hep-th/0306133] [INSPIRE]
– reference: GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G16307661355.81126[hep-th/9802109] [INSPIRE]
– reference: P.B. Wiegmann, Exact solution of the O(3) nonlinear sigma model, Phys. Lett. B152 (1985) 209 [INSPIRE].
– reference: AharonyOBergmanOJafferisDLMaldacenaJN=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity dualsJHEP2008100912008JHEP...10..091A24529541245.81130[arXiv:0806.1218] [INSPIRE]
– reference: M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math.68 (1989) 175 [INSPIRE].
– reference: MaldacenaJMThe Large N limit of superconformal field theories and supergravityAdv. Theor. Math. Phys.199822311998AdTMP...2..231M16330160914.53047[hep-th/9711200] [INSPIRE]
– reference: CappelliACosteAOn the Stress Tensor of Conformal Field Theories in Higher DimensionsNucl. Phys. B19893147071989NuPhB.314..707C984582[INSPIRE]
– reference: SachdevSPolylogarithm identities in a conformal field theory in three-dimensionsPhys. Lett. B19933092851993PhLB..309..285S1227282[hep-th/9305131] [INSPIRE]
– reference: D. Tong, NS5-branes, T duality and world sheet instantons, JHEP07 (2002) 013 [hep-th/0204186] [INSPIRE].
– reference: C. Klein, A. Kokotov and D. Korotkin, Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces, Mathematische Zeitschrift261 (2009) 73 [math/0511217].
– reference: LevineAShaghoulianEEncoding beyond cosmological horizons in de Sitter JT gravityJHEP2023021792023JHEP...02..179L455529207685602[arXiv:2204.08503] [INSPIRE]
– reference: SarnakPStrömbergssonAMinima of Epstein’s Zeta function and heights of flat toriInvent. Math.20061651152006InMat.165..115S22211381145.11033
– reference: RankinRAA minimum problem for the epstein zeta-functionGlasgow Mathematical Journal19531149593000052.28005
– reference: HejhalDARacknerBNOn the Topography of Maass Waveforms for PSL(2, Z)Exper. Math.1992127512572860813.11035
– reference: HasenfratzPMaggioreMNiedermayerFThe Exact mass gap of the O(3) and O(4) nonlinear sigma models in d = 2Phys. Lett. B19902455221990PhLB..245..522H1070071[INSPIRE]
– reference: VasilievMAMore on equations of motion for interacting massless fields of all spins in (3+1)-dimensionsPhys. Lett. B19922852251992PhLB..285..225V1173846[INSPIRE]
– reference: GubserSSKlebanovIRTseytlinAACoupling constant dependence in the thermodynamics of N=4 supersymmetric Yang-Mills theoryNucl. Phys. B19985342021998NuPhB.534..202G16621621078.81563[hep-th/9805156] [INSPIRE]
– reference: A. Terras, Harmonic Analysis on Symmetric Spaces – Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane, Springer, New York (2013).
– reference: ChaudhuriSRabinoviciESymmetry breaking at high temperatures in large N gauge theoriesJHEP2021081482021JHEP...08..148C4317122[arXiv:2106.11323] [INSPIRE]
– reference: DeshouillersJ-MIwaniecHPhillipsRSSarnakPMaass cusp formsPro. Nat. Academy of Sciences19858235331985PNAS...82.3533D7917410566.10017
– reference: HasenfratzPNiedermayerFThe Exact mass gap of the O(N) sigma model for arbitrary N is >= 3 in d = 2Phys. Lett. B19902455291990PhLB..245..529H1070072[INSPIRE]
– reference: DelmastroDGaiottoDGomisJGlobal anomalies on the Hilbert spaceJHEP2021111422021JHEP...11..142D436830207598804[arXiv:2101.02218] [INSPIRE]
– reference: IliesiuLThe Conformal Bootstrap at Finite TemperatureJHEP2018100702018JHEP...10..070I3891026[arXiv:1802.10266] [INSPIRE]
– reference: GaiottoDKapustinASeibergNWillettBGeneralized Global SymmetriesJHEP2015021722015JHEP...02..172G33212811388.83656[arXiv:1412.5148] [INSPIRE]
– reference: S. Pal and Z. Sun, High Energy Modular Bootstrap, Global Symmetries and Defects, JHEP08 (2020) 064 [arXiv:2004.12557] [INSPIRE].
– reference: E. Katz, S. Sachdev, E.S. Sørensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: Operator product expansions, Monte Carlo, and holography, Phys. Rev. B90 (2014) 245109 [arXiv:1409.3841] [INSPIRE].
– reference: KirstenKElizaldeECasimir energy of a massive field in a genus 1 surfacePhys. Lett. B1996365721996PhLB..365...72K1371318[hep-th/9508086] [INSPIRE]
– reference: P. Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc48 (2011) 211, [https://www.ams.org/journals/bull/2011-48-02/S0273-0979-2011-01323-4/].
– reference: N. Kurokawa and M. Wakayama, Casimir effects on riemann surfaces, Indagationes Mathematicae13 (2002) 63.
– reference: A.M. Polyakov, Interaction of Goldstone Particles in Two-Dimensions. Applications to Ferromagnets and Massive Yang-Mills Fields, Phys. Lett. B59 (1975) 79 [INSPIRE].
– reference: M. Schaden, Comments on the sign and other aspects of semiclassical Casimir energies, Phys. Rev. A73 (2006) 042102 [hep-th/0509124] [INSPIRE].
– reference: BenjaminNChangC-HScalar modular bootstrap and zeros of the Riemann zeta functionJHEP2022111432022JHEP...11..143B451706407657466[arXiv:2208.02259] [INSPIRE]
– reference: LinY-HOkadaMSeifnashriSTachikawaYAsymptotic density of states in 2d CFTs with non-invertible symmetriesJHEP2023030942023JHEP...03..094L456175007690658[arXiv:2208.05495] [INSPIRE]
– reference: AharonyOChesterSMSheafferTUrbachEYExplicit holography for vector models at finite N, volume and temperatureJHEP2023030162023JHEP...03..016A455784807690580[arXiv:2208.13607] [INSPIRE]
– reference: BrandhuberAOzYThe D-4 - D-8 brane system and five-dimensional fixed pointsPhys. Lett. B19994603071999PhLB..460..307B17068280987.81590[hep-th/9905148] [INSPIRE]
– reference: DianandaPNotes on two lemmas concerning the epstein zeta-functionGlasgow Mathematical Journal196462021685370128.04501
– reference: D. Dorigoni, M.B. Green, C. Wen and H. Xie, Modular-invariant large-N completion of an integrated correlator inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}= 4 supersymmetric Yang-Mills theory, JHEP04 (2023) 114 [arXiv:2210.14038] [INSPIRE].
– reference: AharonyOChesterSMUrbachEYA Derivation of AdS/CFT for Vector ModelsJHEP2021032082021JHEP...03..208A42610201461.81065[arXiv:2011.06328] [INSPIRE]
– reference: GallowayGJWoolgarEOn static Poincaré-Einstein metricsJHEP2015060512015JHEP...06..051G1388.83041[arXiv:1502.04646] [INSPIRE]
– reference: HenrikssonJThe critical O(N) CFT: Methods and conformal dataPhys. Rept.2023100212023PhR..1002....1H45240791518.81089[arXiv:2201.09520] [INSPIRE]
– reference: StrohmaierAUskiVAn Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-Determinants on Hyperbolic SurfacesCommun. Math. Phys.20123178272013CMaPh.317..827S30097261261.65113
– reference: ShaghoulianEEmergent gravity from Eguchi-Kawai reductionJHEP2017030112017JHEP...03..011S36576861377.81183[arXiv:1611.04189] [INSPIRE]
– reference: WittenEQuantum Field Theory and the Jones PolynomialCommun. Math. Phys.19891213511989CMaPh.121..351W9907720667.57005[INSPIRE]
– reference: P. Kravchuk, D. Mazac and S. Pal, Automorphic Spectra and the Conformal Bootstrap, arXiv:2111.12716 [INSPIRE].
– reference: GiombiSYinXHigher Spin Gauge Theory and Holography: The Three-Point FunctionsJHEP2010091152010JHEP...09..115G27769321291.83107[arXiv:0912.3462] [INSPIRE]
– reference: E. Shaghoulian, Modular forms and a generalized Cardy formula in higher dimensions, Phys. Rev. D93 (2016) 126005 [arXiv:1508.02728] [INSPIRE].
– reference: GromovMFilling riemannian manifoldsJournal of Differential Geometry19831816979840515.53037
– reference: G. Segal, The definition of conformal field theory, in the proceedings of the Symposium on Topology, Geometry and Quantum Field Theory (Segalfest), (2002), p. 421–575 [INSPIRE].
– reference: GreenMBGutperleMEffects of D instantonsNucl. Phys. B19974981951997NuPhB.498..195G14590790979.81566[hep-th/9701093] [INSPIRE]
– reference: AharonyOSeibergNTachikawaYReading between the lines of four-dimensional gauge theoriesJHEP2013081152013JHEP...08..115A31063231342.81248[arXiv:1305.0318] [INSPIRE]
– reference: WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W16330120914.53048[hep-th/9802150] [INSPIRE]
– reference: M.B. Green, H.-H. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D61 (2000) 104010 [hep-th/9910055] [INSPIRE].
– reference: FischettiSWisemanTOn universality of holographic results for (2 + 1)-dimensional CFTs on curved spacetimesJHEP2017121332017JHEP...12..133F37566571383.83039[arXiv:1707.03825] [INSPIRE]
– reference: C. Luo and Y. Wang, Casimir Energy and Modularity in Fermionic Conformal Field Theories of d > 2, to appear.
– reference: G.T. Horowitz and R.C. Myers, The AdS / CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D59 (1998) 026005 [hep-th/9808079] [INSPIRE].
– reference: H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate studies in mathematics, American Mathematical Society (2002).
– reference: SzmytkowskiRBielskiSAn orthogonality relation for the Whittaker functions of the second kind of imaginary orderIntegral Transforms and Special Functions20102173927435411205.33010[arXiv:0910.1492]
– reference: Di PietroLKomargodskiZCardy formulae for SUSY theories in d = 4 and d = 6JHEP2014120311390.81586[arXiv:1407.6061] [INSPIRE]
– reference: R.C. Myers, Stress tensors and Casimir energies in the AdS / CFT correspondence, Phys. Rev. D60 (1999) 046002 [hep-th/9903203] [INSPIRE].
– reference: BonifacioJBootstrapping closed hyperbolic surfacesJHEP2022030932022JHEP...03..093B442618407609935[arXiv:2111.13215] [INSPIRE]
– reference: BenjaminNHarmonic analysis of 2d CFT partition functionsJHEP2021091742021JHEP...09..174B43271421472.81215[arXiv:2107.10744] [INSPIRE]
– reference: FischettiSWallisLWisemanTDoes the Round Sphere Maximize the Free Energy of (2+1)-Dimensional QFTs?JHEP2020100782020JHEP...10..078F42040271456.81374[arXiv:2003.09428] [INSPIRE]
– reference: T. Hartman, D. Mazac, D. Simmons-Duffin and A. Zhiboedov, Snowmass White Paper: The Analytic Conformal Bootstrap, in the proceedings of the 2022 Snowmass Summer Study, [arXiv:2202.11012] [INSPIRE].
– reference: BanerjeeNConstraints on Fluid Dynamics from Equilibrium Partition FunctionsJHEP2012090462012JHEP...09..046B3044956[arXiv:1203.3544] [INSPIRE]
– reference: N. Chai et al., Symmetry Breaking at All Temperatures, Phys. Rev. Lett.125 (2020) 131603 [INSPIRE].
– reference: G.V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogeneous fields, Phys. Rev. D72 (2005) 105004 [hep-th/0507174] [INSPIRE].
– reference: M.J. Kang, J. Lee and H. Ooguri, Universal formula for the density of states with continuous symmetry, Phys. Rev. D107 (2023) 026021 [arXiv:2206.14814] [INSPIRE].
– reference: BelinAUniversality of sparse d > 2 conformal field theory at large NJHEP2017030672017JHEP...03..067B3657630[arXiv:1610.06186] [INSPIRE]
– reference: CasselsJWOn a problem of rankin about the epstein zeta-functionGlasgow Mathematical Journal19594731171930103.27602
– reference: CardyJLOperator Content of Two-Dimensional Conformally Invariant TheoriesNucl. Phys. B19862701861986NuPhB.270..186C8459400689.17016[INSPIRE]
– reference: WittenEAnti-de Sitter space, thermal phase transition, and confinement in gauge theoriesAdv. Theor. Math. Phys.1998250516468951057.81550[hep-th/9803131] [INSPIRE]
– reference: PolyakovAMWiegmannPBTheory of Nonabelian Goldstone BosonsPhys. Lett. B19831311211983PhLB..131..121P722389[INSPIRE]
– reference: W.A. Bardeen, B.W. Lee and R.E. Shrock, Phase Transition in the Nonlinear σ Model in 2 + ϵ Dimensional Continuum, Phys. Rev. D14 (1976) 985 [INSPIRE].
– reference: S. Collier and E. Perlmutter, Harnessing S-duality inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}= 4 SYM & supergravity as SL(2, ℤ)-averaged strings, JHEP08 (2022) 195 [arXiv:2201.05093] [INSPIRE].
– reference: KlebanovIRPolyakovAMAdS dual of the critical O(N) vector modelPhys. Lett. B20025502132002PhLB..550..213K19485471001.81057[hep-th/0210114] [INSPIRE]
– reference: BrezinEZinn-JustinJSpontaneous Breakdown of Continuous Symmetries Near Two-DimensionsPhys. Rev. B19761431101976PhRvB..14.3110B[INSPIRE]
– reference: VasilievMAHigher spin gauge theories in four-dimensions, three-dimensions, and two-dimensionsInt. J. Mod. Phys. D199657631996IJMPD...5..763V1461633[hep-th/9611024] [INSPIRE]
– reference: FerraraSKehagiasAPartoucheHZaffaroniAAdS(6) interpretation of 5-D superconformal field theoriesPhys. Lett. B1998431571998PhLB..431...57F1634949[hep-th/9804006] [INSPIRE]
– reference: KarabaliDKimC-JNairVPPlanar Yang-Mills theory: Hamiltonian, regulators and mass gapNucl. Phys. B19985246611998NuPhB.524..661K16330941031.81561[hep-th/9705087] [INSPIRE]
– reference: D. Poland and D. Simmons-Duffin, Snowmass White Paper: The Numerical Conformal Bootstrap, in the proceedings of the 2021 Snowmass Summer Study, (2022) [arXiv:2203.08117] [INSPIRE].
– reference: BrezinEZinn-JustinJRenormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnetsPhys. Rev. Lett.1976366911976PhRvL..36..691B[INSPIRE]
– reference: CheamsawatKFischettiSWallisLWisemanTA surprising similarity between holographic CFTs and a free fermion in (2 + 1) dimensionsJHEP2021052462021JHEP...05..246C42957971466.83098[arXiv:2012.14437] [INSPIRE]
– reference: D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
– reference: BelinADe BoerJKruthoffJComments on a state-operator correspondence for the torusSciPost Phys.201850602018ScPP....5...60B[arXiv:1802.00006] [INSPIRE]
– reference: S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge Books Online, Cambridge University Press (1988).
– reference: DantchevDMDietrichSCritical Casimir effect: Exact resultsPhys. Rept.2023100512023PhR..1005....1D452658007660964[arXiv:2203.15050] [INSPIRE]
– reference: GreenMBMillerSDVanhovePSL(2, ℤ)-invariance and D-instanton contributions to the D6R4interactionCommun. Num. Theor. Phys.2015093071338.81322[arXiv:1404.2192] [INSPIRE]
– volume: 5
  start-page: 763
  year: 1996
  ident: 21240_CR44
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271896000473
– volume: 03
  start-page: 094
  year: 2023
  ident: 21240_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP03(2023)094
– volume: 1005
  start-page: 1
  year: 2023
  ident: 21240_CR9
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2022.12.004
– ident: 21240_CR32
  doi: 10.1090/gsm/053
– volume: 09
  start-page: 046
  year: 2012
  ident: 21240_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP09(2012)046
– volume: 385
  start-page: 69
  year: 2003
  ident: 21240_CR49
  publication-title: Phys. Rept.
  doi: 10.1016/S0370-1573(03)00263-1
– volume: 121
  start-page: 351
  year: 1989
  ident: 21240_CR96
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01217730
– volume: 245
  start-page: 522
  year: 1990
  ident: 21240_CR58
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(90)90685-Y
– volume: 12
  start-page: 133
  year: 2017
  ident: 21240_CR75
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)133
– volume: 03
  start-page: 093
  year: 2022
  ident: 21240_CR83
  publication-title: JHEP
  doi: 10.1007/JHEP03(2022)093
– volume: 245
  start-page: 529
  year: 1990
  ident: 21240_CR59
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(90)90686-Z
– ident: 21240_CR33
  doi: 10.1007/978-1-4614-7972-7
– volume: 11
  start-page: 143
  year: 2022
  ident: 21240_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP11(2022)143
– volume: 309
  start-page: 285
  year: 1993
  ident: 21240_CR13
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(93)90935-B
– volume: 12
  start-page: 211
  year: 2021
  ident: 21240_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)211
– ident: 21240_CR60
  doi: 10.1103/PhysRevD.59.026005
– volume: 03
  start-page: 011
  year: 2017
  ident: 21240_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP03(2017)011
– volume: 314
  start-page: 707
  year: 1989
  ident: 21240_CR38
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90414-8
– volume: 431
  start-page: 57
  year: 1998
  ident: 21240_CR64
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00560-7
– ident: 21240_CR51
  doi: 10.1007/JHEP04(2023)114
– ident: 21240_CR25
  doi: 10.1016/0550-3213(92)90098-V
– volume: 03
  start-page: 016
  year: 2023
  ident: 21240_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP03(2023)016
– volume: 1002
  start-page: 1
  year: 2023
  ident: 21240_CR41
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2022.12.002
– volume: 10
  start-page: 078
  year: 2020
  ident: 21240_CR77
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)078
– ident: 21240_CR6
  doi: 10.1007/BF02698547
– volume: 270
  start-page: 186
  year: 1986
  ident: 21240_CR91
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90552-3
– volume: 2
  start-page: 505
  year: 1998
  ident: 21240_CR19
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n3.a3
– ident: 21240_CR23
  doi: 10.1103/PhysRevLett.125.131603
– volume: 03
  start-page: 067
  year: 2017
  ident: 21240_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP03(2017)067
– ident: 21240_CR30
  doi: 10.1007/JHEP08(2022)195
– volume: 02
  start-page: 172
  year: 2015
  ident: 21240_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)172
– ident: 21240_CR1
  doi: 10.1103/RevModPhys.91.015002
– ident: 21240_CR7
– volume: 550
  start-page: 213
  year: 2002
  ident: 21240_CR45
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)02980-5
– volume: 08
  start-page: 148
  year: 2021
  ident: 21240_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)148
– volume: 498
  start-page: 195
  year: 1997
  ident: 21240_CR66
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00269-1
– volume: 14
  start-page: 3110
  year: 1976
  ident: 21240_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.3110
– ident: 21240_CR74
  doi: 10.1088/0264-9381/33/4/045009
– ident: 21240_CR27
– ident: 21240_CR14
  doi: 10.1103/PhysRevB.49.11919
– volume: 09
  start-page: 174
  year: 2021
  ident: 21240_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP09(2021)174
– volume: 285
  start-page: 225
  year: 1992
  ident: 21240_CR43
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(92)91457-K
– volume: 534
  start-page: 202
  year: 1998
  ident: 21240_CR68
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(98)00514-8
– volume: 165
  start-page: 115
  year: 2006
  ident: 21240_CR89
  publication-title: Invent. Math.
  doi: 10.1007/s00222-005-0488-2
– volume: 08
  start-page: 115
  year: 2013
  ident: 21240_CR4
  publication-title: JHEP
  doi: 10.1007/JHEP08(2013)115
– volume: 6
  start-page: 198
  year: 1964
  ident: 21240_CR87
  publication-title: Glasgow Mathematical Journal
– volume: 18
  start-page: 1
  year: 1983
  ident: 21240_CR90
  publication-title: Journal of Differential Geometry
  doi: 10.4310/jdg/1214509283
– ident: 21240_CR10
– volume: 09
  start-page: 307
  year: 2015
  ident: 21240_CR31
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2015.v9.n2.a3
– ident: 21240_CR81
  doi: 10.1007/s00209-008-0314-9
– ident: 21240_CR94
  doi: 10.1103/PhysRevD.107.026021
– volume: 21
  start-page: 739
  year: 2010
  ident: 21240_CR37
  publication-title: Integral Transforms and Special Functions
  doi: 10.1080/10652461003643412
– ident: 21240_CR61
  doi: 10.1103/PhysRevD.60.046002
– volume: 1
  start-page: 149
  year: 1953
  ident: 21240_CR85
  publication-title: Glasgow Mathematical Journal
– volume: 243
  start-page: 378
  year: 1990
  ident: 21240_CR42
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(90)91400-6
– volume: 10
  start-page: 091
  year: 2008
  ident: 21240_CR63
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/10/091
– volume: 10
  start-page: 070
  year: 2018
  ident: 21240_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)070
– ident: 21240_CR3
– volume: 05
  start-page: 039
  year: 2018
  ident: 21240_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)039
– volume: 1
  start-page: 275
  year: 1992
  ident: 21240_CR35
  publication-title: Exper. Math.
  doi: 10.1080/10586458.1992.10504562
– volume: 09
  start-page: 115
  year: 2010
  ident: 21240_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP09(2010)115
– ident: 21240_CR79
  doi: 10.1103/PhysRevA.73.042102
– volume: 82
  start-page: 3533
  year: 1985
  ident: 21240_CR34
  publication-title: Pro. Nat. Academy of Sciences
  doi: 10.1073/pnas.82.11.3533
– volume: 4
  start-page: 73
  year: 1959
  ident: 21240_CR86
  publication-title: Glasgow Mathematical Journal
– volume: 190
  start-page: 439
  year: 1981
  ident: 21240_CR70
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(81)90570-8
– ident: 21240_CR15
  doi: 10.1103/PhysRevB.90.245109
– volume: 460
  start-page: 307
  year: 1999
  ident: 21240_CR65
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(99)00763-7
– ident: 21240_CR69
  doi: 10.1103/PhysRevD.61.104010
– ident: 21240_CR80
  doi: 10.1016/S0019-3577(02)90006-6
– volume: 428
  start-page: 105
  year: 1998
  ident: 21240_CR17
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00377-3
– ident: 21240_CR55
  doi: 10.1103/PhysRevD.14.985
– volume: 365
  start-page: 72
  year: 1996
  ident: 21240_CR39
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(95)01303-2
– volume: 5
  start-page: 060
  year: 2018
  ident: 21240_CR8
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.5.6.060
– volume: 317
  start-page: 827
  year: 2012
  ident: 21240_CR82
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-012-1557-1
– volume: 03
  start-page: 208
  year: 2021
  ident: 21240_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)208
– volume: 131
  start-page: 121
  year: 1983
  ident: 21240_CR56
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)91104-8
– volume: 02
  start-page: 179
  year: 2023
  ident: 21240_CR73
  publication-title: JHEP
  doi: 10.1007/JHEP02(2023)179
– volume: 36
  start-page: 691
  year: 1976
  ident: 21240_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.36.691
– volume: 2
  start-page: 231
  year: 1998
  ident: 21240_CR16
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a1
– ident: 21240_CR26
  doi: 10.1103/PhysRevD.72.105004
– volume: 524
  start-page: 661
  year: 1998
  ident: 21240_CR71
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(98)00309-5
– volume: 06
  start-page: 051
  year: 2015
  ident: 21240_CR76
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)051
– volume: 11
  start-page: 142
  year: 2021
  ident: 21240_CR95
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)142
– ident: 21240_CR92
  doi: 10.1007/JHEP08(2020)064
– ident: 21240_CR57
  doi: 10.1016/0370-2693(85)91171-2
– volume: 12
  start-page: 031
  year: 2014
  ident: 21240_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)031
– ident: 21240_CR36
  doi: 10.1090/S0273-0979-2011-01323-4
– volume: 05
  start-page: 246
  year: 2021
  ident: 21240_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)246
– ident: 21240_CR53
  doi: 10.1016/0370-2693(75)90161-6
– volume: 6
  start-page: 202
  year: 1964
  ident: 21240_CR88
  publication-title: Glasgow Mathematical Journal
– ident: 21240_CR2
– ident: 21240_CR72
  doi: 10.1088/1126-6708/2002/07/013
– ident: 21240_CR11
  doi: 10.1103/PhysRevD.93.126005
– ident: 21240_CR50
  doi: 10.1103/PhysRevB.94.085134
– volume: 2
  start-page: 253
  year: 1998
  ident: 21240_CR18
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– ident: 21240_CR84
SSID ssj0015190
Score 2.498002
Snippet A bstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such...
An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such...
Abstract An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms Classical and Quantum Gravitation
Effective Field Theories
Elementary Particles
Ground state
High energy physics
Hilbert space
Instantons
Manifolds (mathematics)
Modularity
Nonperturbative Effects
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Regular Article - Theoretical Physics
Relativity
Relativity Theory
Scale and Conformal Symmetries
Spacetime
Spectral theory
String Theory
Topology
Toruses
Yang-Mills theory
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP7E6JQcP26EubdImPepwjKHiwcFuJc0PHGydbPP_9yVt5xSGF2-lSdvHeynv-8jL9xC6JczyWMdFmFojQmasCQshRcitUnEiAcB6Edfnl3Q4ZqNJMtlq9eVqwip54MpxPcZp7ESpNCARprQGMuc-a1PIdYqnnq1DzmvIVL1_ALiENEI-hPdGw8dXwjuuVXiXuMbrWznIS_X_wJe_tkR9phkcocMaIuL7yrRjtGfKE7TvSzXV6hQ99eVqOp8usfHH9rAsNZ4vtCsnBUSNpyV-97UboXbC_ZXoBgbW69HpDPuSNezPLwJJPkPjweNbfxjWPRFCxQRdhzaVVOhIMiPgikU6IrRQhGnKXXM-SWDExICBTGQEUAupaFJkhgMNLDRwCXqOWuWiNBcIc04yZbMosUYCjMoKoZhJRMQs1cALSYDuGi_lqhYMd30rZnkjdVy5NXduzcGtAepsHviotDJ2T31wbt9McyLX_gaEPq9Dn_8V-gC1m6Dl9Z-3ygEuUQG8LGMB6jaB_B7eYc_lf9hzhQ7c-3wxL2uj1nr5aa4BsqyLG786vwBaluUc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46EXwRrzidkgcf9CGaNmmTPomTyRAVEQXfSpqLDman2_z_nmTpvIC-lSYt4eT2fTkn30HokHInUpNWJHdWEm6dJZVUkgindZopALBBxPXmNu8_8qun7CkeuE1iWGWzJoaF2oy0PyM_hW2QScDbBT97eyc-a5T3rsYUGotoCZZgKVtoqdu7vbuf-xEAn9BG0IeK06t-746KI58y_Jj6BOzf9qIg2f8DZ_5yjYYd53INrUaoiM9nfbuOFmy9gZZDyKaebKLrCzUZvA7G2Ibre1jVBr-OjA8rBWSNBzV-CTEcxHgB_5n4Bgb2G1DqEIfQNRzuMQJZ3kKPl72Hiz6JuRGI5pJNicsVkyZR3Ep44olJKKs05YYJn6RPUSixKWAhm1gJFENpllWFFUAHKwOcgm2jVj2q7Q7CQtBCuyLJnFUAp4pKam4zmXDHDPBD2kYnjZVKHYXDff6KYdlIHs_MWnqzlmDWNjqaf_A208z4u2rXm31ezYtdhxej8XMZ507JBUu9LpkBMMq1McDn_chzOcAdLXJoYKfptDLOwEn5NV7a6LjpyK_iP9qz-_-v9tCKrxnCdXkHtabjD7sPoGRaHcSR9wmW1t64
  priority: 102
  providerName: ProQuest
Title Casimir energy and modularity in higher-dimensional conformal field theories
URI https://link.springer.com/article/10.1007/JHEP07(2023)028
https://www.proquest.com/docview/2833809694
https://doaj.org/article/47320555d9234cdd907beccf6075c760
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4DcGL-InTOXLw4A7Vtkmb9DjL5hgqQxx4K20-cKCbbPP_9yVrJ0528FLSfEB4LyG_H3n5PYArnxkeqrDwYqOFx7TRXiFy4XEjZRjlCGCdiOvjUzwYs-Fr9FqKJNm3MBv397fDQW_k82ub5LuDR2ENGlFAuc3RkMbp-roAYYhf6fb8HfTryHHK_L_g5MYNqDtY-gewXyJC0l258BB29PQIdl1kplwcw0OaLyYfkznR7pUeQeZPPmbKRo8igCaTKXlzoRqesjr9K40NgiTXgdF34iLUiHuuiJz4BMb93ks68MoUCJ5kgi49E-dUqCBnWmCJBSrwaSF9ptAGUUJzH1t0iJBHB1ogk8gljYpEc2R9hULqQE-hPp1N9RkQzv1EmiSIjM4RNSWFkExHImCGKqSBfhNuKitlstQHt2kq3rNK2Xhl1syaNUOzNuF6PeBzJY2xveudNfu6m9W0dhXo6qzcIhnjNLTyYwoxJ5NKIW23C8zEiGokj3GCrcppWbnRFhmiIyqQhiWsCZ3KkT_NW-Zz_o--F7Bniy5El7Wgvpx_6UsEIsuiDTXRv29D4673NHrGvzRkbbcw247a43ccdr8BbmPZ8A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNdWsAHkNqDqRM7sXNACEqXbbutOLRSb8bxA1Zqs-3uIsSf4jcydpItIJVbb1FiW9Z47PkmnpkP4BUTQeYur2kZvKLCB09rZRSVwdq8MAhgUxHXw6NydCL2T4vTFfjV58LEsMr-TEwHtZva-I98G80gV4i3K_Hu4pJG1qh4u9pTaLRqceB__kCXbf527yOu7-s8H-4e74xoxypArVB8QUNpuHKZEV7hk8hcxnhtmXBcRno7w_CLzxFF-MwrBOfG8qKuvERHqnaIxjmOewtuC46WPGamDz8tby0QDbG-fBCT2_uj3c9MbkaC8i0W6d7_sHyJIOAvVPvPRWyyb8MHcL8DpuR9q0kPYcU3j-BOChC188cw3jHzyflkRnxKFiSmceR86mIQK-J4MmnItxQxQl2kC2hLfRD0tRMmPiMpUI6krEl0zZ_AyY3I7CmsNtPGrwGRklU2VFkRvEHwVtXKCl-oTATu0BtlA3jTS0nbrkx5ZMs4032B5VasOopVo1gHsLnscNFW6Li-6Yco9mWzWFo7vZjOvupup2oheR6roDmEvsI6VzEZ9TyUCK6sLHGCG_2i6W6_z_WVdg5gq1_Iq8_XzOfZ_4d6CXdHx4djPd47OliHe7FXChQWG7C6mH33zxEOLeoXSQcJfLlppf8NP2oZLw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IK5aYYAfQNoeTJ3EiZ0HhNjWqrtQVYhJezOOL1BpS0dbhPhr_DqOnaQDpPG2tyixLev42P5OfPx9AK8Y9yK1aUUL7yTlzjtaSS2p8MakuUYAG0lcP0yK8Sk_OsvPNuBXdxcmpFV2a2JcqO3chH_kA9wGM4l4u-QD36ZFTA9G7y6_0aAgFU5aOzmNxkWO3c8fGL4t3x4e4Fi_TtPR8NP-mLYKA9Rwma2oL3QmbaK5k_jEE5uwrDKM20wEqTvN8ItLEVG4xEkE6tpkeVU6gUFVZRGZZ9juLdgUISrqwebecDL9uD7DQGzEOjIhJgZH4-GUiZ0gV77Lgvj7H_tglAv4C-P-cywbd7vRfbjXwlTyvvGrB7Dh6odwO6aLmuUjONnXy9nFbEFcvDpIdG3JxdyGlFZE9WRWk68xf4TaIB7QEH8QjLwjQj4nMW2OxDuUGKg_htMbsdoT6NXz2m0BEYKVxpdJ7p1GKFdW0nCXy4T7zGJsyvrwprOSMi1pedDOOFcd3XJjVhXMqtCsfdhZV7hs-DquL7oXzL4uFoi244v54otq563iIksDJ5pFIMyNtSUTwet9gVDLiAI7uN0Nmmpn_1Jd-WofdruBvPp8TX-e_r-pl3AHHV6dHE6On8HdUClmDfNt6K0W391zxEar6kXrhAQ-37Tf_wYpKh7B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Casimir+energy+and+modularity+in+higher-dimensional+conformal+field+theories&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Luo%2C+Conghuan&rft.au=Wang%2C+Yifan&rft.date=2023-07-04&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=7&rft_id=info:doi/10.1007%2FJHEP07%282023%29028&rft.externalDocID=10_1007_JHEP07_2023_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon