Ancestral Mutations Acquired in Refrex-1, a Restriction Factor against Feline Retroviruses, during its Cooption and Domestication

Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been “domesticated” by their hosts eventual...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 90; no. 3; pp. 1470 - 1485
Main Authors Ito, Jumpei, Baba, Takuya, Kawasaki, Junna, Nishigaki, Kazuo
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been “domesticated” by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes ( env ) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period. IMPORTANCE Domestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were “domesticated” by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.
AbstractList Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been “domesticated” by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes ( env ) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period. IMPORTANCE Domestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were “domesticated” by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.
Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been "domesticated" by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes (env) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period. IMPORTANCE Domestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were "domesticated" by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.
Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been "domesticated" by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes (env) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period. Domestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were "domesticated" by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.
Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been "domesticated" by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes (env) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period.UNLABELLEDEndogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been "domesticated" by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes (env) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period.Domestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were "domesticated" by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.IMPORTANCEDomestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were "domesticated" by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.
Author Kawasaki, Junna
Ito, Jumpei
Baba, Takuya
Nishigaki, Kazuo
Author_xml – sequence: 1
  givenname: Jumpei
  surname: Ito
  fullname: Ito, Jumpei
  organization: Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
– sequence: 2
  givenname: Takuya
  surname: Baba
  fullname: Baba, Takuya
  organization: Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
– sequence: 3
  givenname: Junna
  surname: Kawasaki
  fullname: Kawasaki, Junna
  organization: Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
– sequence: 4
  givenname: Kazuo
  surname: Nishigaki
  fullname: Nishigaki, Kazuo
  organization: Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26581999$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFvEzEQhS1URNPCjTPykUO2jL3rXfuCFAUCRUVICBA3y7Fng9HGTu3dCo78c5ykVIA4cPJI_ubNPM07IychBiTkMYMLxrh89ubT5QUwBU3FxD0yY6BkJQRrTsgMgPNK1PLzKTnL-SsAa5q2eUBOeSskU0rNyI9FsJjHZAb6dhrN6GPIdGGvJ5_QUR_oe-wTfqvYnJpSF9LbPURXxo4xUbMxPuSRrnDwAQsxpnjj05Qxz6mbkg8b6sdMlzHuDn0mOPoibouSt4dxD8n93gwZH92-5-Tj6uWH5evq6t2ry-XiqrKNrMeqB3Rr0bJetbWQ4EzdoK07bgQ46CQKVNYWyLhauhobXis0XDHerttim9fn5PlRdzett-gshr1rvUt-a9J3HY3Xf_4E_0Vv4o1uOqZagCLw9FYgxeupGNBbny0OgwkYp6xZ10rRAXT_hYICEGyPPvl9rbt9fp2oAPMjYFPMOWF_hzDQ-wTokgB9SIBmouD8L9z6412LKT_8u-knqaO1oQ
CitedBy_id crossref_primary_10_1073_pnas_2114441119
crossref_primary_10_1186_s12977_017_0351_8
crossref_primary_10_1038_s41579_019_0189_2
crossref_primary_10_3389_fcimb_2024_1404431
crossref_primary_10_1128_jvi_00229_22
crossref_primary_10_3390_v10010029
crossref_primary_10_1371_journal_pbio_3001826
crossref_primary_10_7554_eLife_22519
crossref_primary_10_3390_v10040179
crossref_primary_10_1016_j_celrep_2023_113065
crossref_primary_10_1128_JVI_01324_19
crossref_primary_10_1093_molbev_msae061
Cites_doi 10.1016/S1672-0229(07)60007-2
10.1128/jvi.58.3.825-834.1986
10.1038/35057062
10.1128/JVI.01267-13
10.1002/9780470649367
10.1128/jvi.69.8.4675-4682.1995
10.1128/JVI.75.22.11244-11248.2001
10.1128/JVI.72.7.5955-5966.1998
10.1016/j.placenta.2012.05.005
10.1371/journal.pone.0061009
10.1016/S0378-1119(97)00384-3
10.1073/pnas.071432398
10.1093/molbev/mst197
10.1186/1742-4690-2-52
10.1128/jvi.61.9.2852-2856.1987
10.1038/382826a0
10.1007/BF01731581
10.1155/2012/682850
10.1128/JVI.00288-14
10.1128/jvi.66.2.865-874.1992
10.1016/j.ympev.2009.02.023
10.1016/0042-6822(83)90324-0
10.1128/JVI.00280-12
10.1093/molbev/msi088
10.1016/S0021-9258(18)53779-0
10.1016/j.virol.2010.06.004
10.1128/JVI.73.7.5621-5629.1999
10.1038/360358a0
10.1038/35001608
10.1016/j.vetimm.2011.06.003
10.1182/blood.V95.3.1093.003k01_1093_1099
10.1126/science.287.5459.1828
10.1128/JVI.75.22.10563-10572.2001
10.1128/JVI.73.8.6500-6505.1999
10.1073/pnas.0307800101
10.1128/JVI.73.1.152-160.1999
10.1016/j.micinf.2007.09.012
10.1093/nar/gkr562
10.1128/jvi.63.10.4234-4241.1989
10.1073/pnas.0704313104
10.1016/0168-1702(88)90035-4
10.1016/j.virol.2010.06.017
10.1128/JVI.80.7.3378-3385.2006
10.1128/JVI.03653-14
10.1038/onc.2013.366
10.1007/s00018-006-6201-9
10.1128/JVI.79.24.15573-15577.2005
10.1093/oxfordjournals.molbev.a004108
10.1128/jvi.63.12.5405-5412.1989
10.1371/journal.ppat.0030010
10.1128/JVI.79.15.9677-9684.2005
10.1128/jvi.66.8.4966-4971.1992
10.1128/jvi.64.3.1033-1043.1990
10.1128/jvi.4.5.549-553.1969
10.1128/JVI.73.6.5034-5042.1999
10.1126/science.155.3761.461
10.1128/JVI.76.16.8218-8224.2002
10.1038/nature01262
10.1128/jvi.71.7.5652-5657.1997
10.3390/v7010001
10.1126/science.277.5332.1662
10.1128/jvi.49.2.629-632.1984
10.1093/nar/gkh340
10.1128/jvi.66.2.1219-1222.1992
10.1128/jvi.45.1.1-9.1983
10.1128/jvi.55.3.768-777.1985
10.1099/0022-1317-36-1-59
10.1128/jvi.71.9.7012-7019.1997
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U9
H94
5PM
DOI 10.1128/JVI.01904-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList
AIDS and Cancer Research Abstracts
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Refrex-1 Ancestral Mutations Acquired in Domestication
EISSN 1098-5514
EndPage 1485
ExternalDocumentID PMC4719600
26581999
10_1128_JVI_01904_15
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 15H04602
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
7X8
7U9
H94
5PM
ID FETCH-LOGICAL-c483t-f0edb561f963580da34ec372a50d078e5e9ccf0ead38d3e4239ea29126b614423
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:15:29 EDT 2025
Fri Jul 11 03:29:35 EDT 2025
Fri Jul 11 11:26:25 EDT 2025
Thu Jan 02 23:11:04 EST 2025
Tue Jul 01 01:02:42 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-f0edb561f963580da34ec372a50d078e5e9ccf0ead38d3e4239ea29126b614423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Ito J, Baba T, Kawasaki J, Nishigaki K. 2016. Ancestral mutations acquired in Refrex-1, a restriction factor against feline retroviruses, during its cooption and domestication. J Virol 90:1470–1485. doi:10.1128/JVI.01904-15.
OpenAccessLink https://jvi.asm.org/content/jvi/90/3/1470.full.pdf
PMID 26581999
PQID 1760900510
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719600
proquest_miscellaneous_1768570070
proquest_miscellaneous_1760900510
pubmed_primary_26581999
crossref_primary_10_1128_JVI_01904_15
crossref_citationtrail_10_1128_JVI_01904_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
Rasheed S (e_1_3_3_51_2) 1980
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
Nei M (e_1_3_3_61_2) 1986; 3
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
Jones DT (e_1_3_3_57_2) 1992; 8
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
9358069 - Gene. 1997 Oct 15;199(1-2):293-301
23966402 - J Virol. 2013 Nov;87(22):12029-40
16107223 - Retrovirology. 2005;2:52
20591459 - Virology. 2010 Sep 15;405(1):214-24
7609032 - J Virol. 1995 Aug;69(8):4675-82
8381404 - J Biol Chem. 1993 Feb 5;268(4):2329-36
2304138 - J Virol. 1990 Mar;64(3):1033-43
22695103 - Placenta. 2012 Sep;33(9):663-71
10710311 - Science. 2000 Mar 10;287(5459):1828-30
25549291 - Viruses. 2015 Jan;7(1):1-26
10400745 - J Virol. 1999 Aug;73(8):6500-5
9261431 - J Virol. 1997 Sep;71(9):7012-9
15659556 - Mol Biol Evol. 2005 Apr;22(4):814-7
8752279 - Nature. 1996 Aug 29;382(6594):826-9
1309898 - J Virol. 1992 Feb;66(2):1219-22
17257061 - PLoS Pathog. 2007 Jan;3(1):e10
22811910 - Mol Biol Int. 2012;2012:682850
11602766 - J Virol. 2001 Nov;75(22):11244-8
9287219 - Science. 1997 Sep 12;277(5332):1662-6
11919294 - Mol Biol Evol. 2002 Apr;19(4):526-33
10648427 - Blood. 2000 Feb 1;95(3):1093-9
15044706 - Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4894-9
6192586 - Virology. 1983 Jul 15;128(1):127-39
10364311 - J Virol. 1999 Jul;73(7):5621-9
11602698 - J Virol. 2001 Nov;75(22):10563-72
22674983 - J Virol. 2012 Aug;86(16):8634-44
17531802 - Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63
24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9
9188643 - J Virol. 1997 Jul;71(7):5652-7
6296423 - J Virol. 1983 Jan;45(1):1-9
21771862 - Nucleic Acids Res. 2011 Nov 1;39(20):8728-39
1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
6319767 - J Virol. 1984 Feb;49(2):629-32
24013223 - Oncogene. 2014 Jul 24;33(30):3947-58
19298858 - Mol Phylogenet Evol. 2009 Jun;51(3):465-71
11274436 - Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4113-8
16014929 - J Virol. 2005 Aug;79(15):9677-84
16306628 - J Virol. 2005 Dec;79(24):15573-7
10233966 - J Virol. 1999 Jun;73(6):5034-42
1360148 - Nature. 1992 Nov 26;360(6402):358-61
17959780 - Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17506-11
10693809 - Nature. 2000 Feb 17;403(6771):785-9
16871371 - Cell Mol Life Sci. 2006 Aug;63(16):1906-11
12466850 - Nature. 2002 Dec 5;420(6915):520-62
886304 - J Gen Virol. 1977 Jul;36(1):59-74
25653437 - J Virol. 2015 Apr;89(8):4047-50
9621058 - J Virol. 1998 Jul;72(7):5955-66
2555565 - J Virol. 1989 Dec;63(12):5405-12
15034147 - Nucleic Acids Res. 2004;32(5):1792-7
21807418 - Vet Immunol Immunopathol. 2011 Oct 15;143(3-4):190-201
18023391 - Microbes Infect. 2007 Nov-Dec;9(14-15):1590-6
3039173 - J Virol. 1987 Sep;61(9):2852-6
16537605 - J Virol. 2006 Apr;80(7):3378-85
1370559 - J Virol. 1992 Feb;66(2):865-74
1629961 - J Virol. 1992 Aug;66(8):4966-71
12134027 - J Virol. 2002 Aug;76(16):8218-24
2778873 - J Virol. 1989 Oct;63(10):4234-41
2833049 - Virus Res. 1988 Feb;9(2-3):263-83
3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26
11237011 - Nature. 2001 Feb 15;409(6822):860-921
20655565 - Virology. 2010 Sep 30;405(2):548-55
4311790 - J Virol. 1969 Nov;4(5):549-53
24696495 - J Virol. 2014 Jun;88(12):6896-905
7463489 - J Mol Evol. 1980 Dec;16(2):111-20
23593376 - PLoS One. 2013;8(4):e61009
2991595 - J Virol. 1985 Sep;55(3):768-77
3009890 - J Virol. 1986 Jun;58(3):825-34
6015694 - Science. 1967 Jan 27;155(3761):461-2
9847317 - J Virol. 1999 Jan;73(1):152-60
References_xml – ident: e_1_3_3_62_2
  doi: 10.1016/S1672-0229(07)60007-2
– ident: e_1_3_3_52_2
  doi: 10.1128/jvi.58.3.825-834.1986
– volume: 3
  start-page: 418
  year: 1986
  ident: e_1_3_3_61_2
  article-title: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions
  publication-title: Mol Biol Evol
– ident: e_1_3_3_3_2
  doi: 10.1038/35057062
– ident: e_1_3_3_42_2
  doi: 10.1128/JVI.01267-13
– ident: e_1_3_3_54_2
  doi: 10.1002/9780470649367
– ident: e_1_3_3_18_2
  doi: 10.1128/jvi.69.8.4675-4682.1995
– ident: e_1_3_3_35_2
  doi: 10.1128/JVI.75.22.11244-11248.2001
– ident: e_1_3_3_2_2
  doi: 10.1128/JVI.72.7.5955-5966.1998
– ident: e_1_3_3_28_2
  doi: 10.1016/j.placenta.2012.05.005
– ident: e_1_3_3_40_2
  doi: 10.1371/journal.pone.0061009
– ident: e_1_3_3_49_2
  doi: 10.1016/S0378-1119(97)00384-3
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.071432398
– ident: e_1_3_3_59_2
  doi: 10.1093/molbev/mst197
– ident: e_1_3_3_29_2
  doi: 10.1186/1742-4690-2-52
– ident: e_1_3_3_17_2
  doi: 10.1128/jvi.61.9.2852-2856.1987
– ident: e_1_3_3_24_2
  doi: 10.1038/382826a0
– start-page: 393
  volume-title: Proceedings of the Third International Feline Leukemia Virus Meeting. Elsevier/North-Holland Publishing Co.
  year: 1980
  ident: e_1_3_3_51_2
– ident: e_1_3_3_58_2
  doi: 10.1007/BF01731581
– ident: e_1_3_3_16_2
  doi: 10.1155/2012/682850
– ident: e_1_3_3_12_2
  doi: 10.1128/JVI.00288-14
– ident: e_1_3_3_19_2
  doi: 10.1128/jvi.66.2.865-874.1992
– ident: e_1_3_3_68_2
  doi: 10.1016/j.ympev.2009.02.023
– ident: e_1_3_3_31_2
  doi: 10.1016/0042-6822(83)90324-0
– ident: e_1_3_3_41_2
  doi: 10.1128/JVI.00280-12
– ident: e_1_3_3_5_2
  doi: 10.1093/molbev/msi088
– ident: e_1_3_3_20_2
  doi: 10.1016/S0021-9258(18)53779-0
– ident: e_1_3_3_63_2
  doi: 10.1016/j.virol.2010.06.004
– ident: e_1_3_3_65_2
  doi: 10.1128/JVI.73.7.5621-5629.1999
– ident: e_1_3_3_21_2
  doi: 10.1038/360358a0
– ident: e_1_3_3_22_2
  doi: 10.1038/35001608
– ident: e_1_3_3_39_2
  doi: 10.1016/j.vetimm.2011.06.003
– ident: e_1_3_3_47_2
  doi: 10.1182/blood.V95.3.1093.003k01_1093_1099
– ident: e_1_3_3_71_2
  doi: 10.1126/science.287.5459.1828
– ident: e_1_3_3_45_2
  doi: 10.1128/JVI.75.22.10563-10572.2001
– ident: e_1_3_3_46_2
  doi: 10.1128/JVI.73.8.6500-6505.1999
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.0307800101
– ident: e_1_3_3_60_2
  doi: 10.1128/JVI.73.1.152-160.1999
– ident: e_1_3_3_70_2
  doi: 10.1016/j.micinf.2007.09.012
– ident: e_1_3_3_36_2
  doi: 10.1093/nar/gkr562
– ident: e_1_3_3_9_2
  doi: 10.1128/jvi.63.10.4234-4241.1989
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0704313104
– ident: e_1_3_3_8_2
  doi: 10.1016/0168-1702(88)90035-4
– ident: e_1_3_3_67_2
  doi: 10.1016/j.virol.2010.06.017
– ident: e_1_3_3_43_2
  doi: 10.1128/JVI.80.7.3378-3385.2006
– ident: e_1_3_3_30_2
  doi: 10.1128/JVI.03653-14
– ident: e_1_3_3_38_2
  doi: 10.1038/onc.2013.366
– ident: e_1_3_3_37_2
  doi: 10.1007/s00018-006-6201-9
– ident: e_1_3_3_69_2
  doi: 10.1128/JVI.79.24.15573-15577.2005
– ident: e_1_3_3_7_2
  doi: 10.1093/oxfordjournals.molbev.a004108
– volume: 8
  start-page: 275
  year: 1992
  ident: e_1_3_3_57_2
  article-title: The rapid generation of mutation data matrices from protein sequences
  publication-title: Comput Appl Biosci
– ident: e_1_3_3_33_2
  doi: 10.1128/jvi.63.12.5405-5412.1989
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.ppat.0030010
– ident: e_1_3_3_27_2
  doi: 10.1128/JVI.79.15.9677-9684.2005
– ident: e_1_3_3_66_2
  doi: 10.1128/jvi.66.8.4966-4971.1992
– ident: e_1_3_3_34_2
  doi: 10.1128/jvi.64.3.1033-1043.1990
– ident: e_1_3_3_50_2
  doi: 10.1128/jvi.4.5.549-553.1969
– ident: e_1_3_3_72_2
  doi: 10.1128/JVI.73.6.5034-5042.1999
– ident: e_1_3_3_23_2
  doi: 10.1126/science.155.3761.461
– ident: e_1_3_3_26_2
  doi: 10.1128/JVI.76.16.8218-8224.2002
– ident: e_1_3_3_4_2
  doi: 10.1038/nature01262
– ident: e_1_3_3_25_2
  doi: 10.1128/jvi.71.7.5652-5657.1997
– ident: e_1_3_3_13_2
  doi: 10.3390/v7010001
– ident: e_1_3_3_14_2
  doi: 10.1126/science.277.5332.1662
– ident: e_1_3_3_53_2
  doi: 10.1128/jvi.49.2.629-632.1984
– ident: e_1_3_3_56_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_44_2
  doi: 10.1128/jvi.66.2.1219-1222.1992
– ident: e_1_3_3_55_2
  doi: 10.1128/jvi.45.1.1-9.1983
– ident: e_1_3_3_32_2
  doi: 10.1128/jvi.55.3.768-777.1985
– ident: e_1_3_3_48_2
  doi: 10.1099/0022-1317-36-1-59
– ident: e_1_3_3_64_2
  doi: 10.1128/jvi.71.9.7012-7019.1997
– reference: 15659556 - Mol Biol Evol. 2005 Apr;22(4):814-7
– reference: 10710311 - Science. 2000 Mar 10;287(5459):1828-30
– reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921
– reference: 10233966 - J Virol. 1999 Jun;73(6):5034-42
– reference: 16107223 - Retrovirology. 2005;2:52
– reference: 886304 - J Gen Virol. 1977 Jul;36(1):59-74
– reference: 9358069 - Gene. 1997 Oct 15;199(1-2):293-301
– reference: 9261431 - J Virol. 1997 Sep;71(9):7012-9
– reference: 22695103 - Placenta. 2012 Sep;33(9):663-71
– reference: 20591459 - Virology. 2010 Sep 15;405(1):214-24
– reference: 8752279 - Nature. 1996 Aug 29;382(6594):826-9
– reference: 9621058 - J Virol. 1998 Jul;72(7):5955-66
– reference: 9847317 - J Virol. 1999 Jan;73(1):152-60
– reference: 22811910 - Mol Biol Int. 2012;2012:682850
– reference: 9188643 - J Virol. 1997 Jul;71(7):5652-7
– reference: 6015694 - Science. 1967 Jan 27;155(3761):461-2
– reference: 24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9
– reference: 11919294 - Mol Biol Evol. 2002 Apr;19(4):526-33
– reference: 22674983 - J Virol. 2012 Aug;86(16):8634-44
– reference: 23966402 - J Virol. 2013 Nov;87(22):12029-40
– reference: 16871371 - Cell Mol Life Sci. 2006 Aug;63(16):1906-11
– reference: 15044706 - Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4894-9
– reference: 1360148 - Nature. 1992 Nov 26;360(6402):358-61
– reference: 3039173 - J Virol. 1987 Sep;61(9):2852-6
– reference: 24013223 - Oncogene. 2014 Jul 24;33(30):3947-58
– reference: 1629961 - J Virol. 1992 Aug;66(8):4966-71
– reference: 10364311 - J Virol. 1999 Jul;73(7):5621-9
– reference: 7609032 - J Virol. 1995 Aug;69(8):4675-82
– reference: 11602698 - J Virol. 2001 Nov;75(22):10563-72
– reference: 25549291 - Viruses. 2015 Jan;7(1):1-26
– reference: 2555565 - J Virol. 1989 Dec;63(12):5405-12
– reference: 6296423 - J Virol. 1983 Jan;45(1):1-9
– reference: 20655565 - Virology. 2010 Sep 30;405(2):548-55
– reference: 3009890 - J Virol. 1986 Jun;58(3):825-34
– reference: 12466850 - Nature. 2002 Dec 5;420(6915):520-62
– reference: 1309898 - J Virol. 1992 Feb;66(2):1219-22
– reference: 21771862 - Nucleic Acids Res. 2011 Nov 1;39(20):8728-39
– reference: 2778873 - J Virol. 1989 Oct;63(10):4234-41
– reference: 2833049 - Virus Res. 1988 Feb;9(2-3):263-83
– reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
– reference: 19298858 - Mol Phylogenet Evol. 2009 Jun;51(3):465-71
– reference: 21807418 - Vet Immunol Immunopathol. 2011 Oct 15;143(3-4):190-201
– reference: 10648427 - Blood. 2000 Feb 1;95(3):1093-9
– reference: 1370559 - J Virol. 1992 Feb;66(2):865-74
– reference: 16014929 - J Virol. 2005 Aug;79(15):9677-84
– reference: 18023391 - Microbes Infect. 2007 Nov-Dec;9(14-15):1590-6
– reference: 10400745 - J Virol. 1999 Aug;73(8):6500-5
– reference: 2991595 - J Virol. 1985 Sep;55(3):768-77
– reference: 11274436 - Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4113-8
– reference: 16306628 - J Virol. 2005 Dec;79(24):15573-7
– reference: 25653437 - J Virol. 2015 Apr;89(8):4047-50
– reference: 17257061 - PLoS Pathog. 2007 Jan;3(1):e10
– reference: 12134027 - J Virol. 2002 Aug;76(16):8218-24
– reference: 10693809 - Nature. 2000 Feb 17;403(6771):785-9
– reference: 17959780 - Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17506-11
– reference: 7463489 - J Mol Evol. 1980 Dec;16(2):111-20
– reference: 9287219 - Science. 1997 Sep 12;277(5332):1662-6
– reference: 4311790 - J Virol. 1969 Nov;4(5):549-53
– reference: 6192586 - Virology. 1983 Jul 15;128(1):127-39
– reference: 8381404 - J Biol Chem. 1993 Feb 5;268(4):2329-36
– reference: 24696495 - J Virol. 2014 Jun;88(12):6896-905
– reference: 3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26
– reference: 16537605 - J Virol. 2006 Apr;80(7):3378-85
– reference: 6319767 - J Virol. 1984 Feb;49(2):629-32
– reference: 23593376 - PLoS One. 2013;8(4):e61009
– reference: 2304138 - J Virol. 1990 Mar;64(3):1033-43
– reference: 17531802 - Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63
– reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7
– reference: 11602766 - J Virol. 2001 Nov;75(22):11244-8
SSID ssj0014464
Score 2.2621748
Snippet Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1470
SubjectTerms Animals
Cats
Endogenous Retroviruses - immunology
Feline leukemia virus
Gene Expression Profiling
Genetic Diversity and Evolution
Host-Pathogen Interactions
Leukemia Virus, Feline - immunology
Molecular Sequence Data
Mutant Proteins - genetics
Mutant Proteins - metabolism
Retrovirus
Reverse Genetics
Sequence Analysis, DNA
Viral Envelope Proteins - genetics
Viral Envelope Proteins - metabolism
Virus Assembly
Virus Replication
Title Ancestral Mutations Acquired in Refrex-1, a Restriction Factor against Feline Retroviruses, during its Cooption and Domestication
URI https://www.ncbi.nlm.nih.gov/pubmed/26581999
https://www.proquest.com/docview/1760900510
https://www.proquest.com/docview/1768570070
https://pubmed.ncbi.nlm.nih.gov/PMC4719600
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6FIiQuiJ2waZDglLrY4_F2jCqiNhU9oBT1Zs2WEkHtKrEF7Q1-Oe_N2I5DKAIuVuSZxJK_L2--efMWQl5HTCUqTjOPJ5p5XHPtCW2YJ7NYmjnPQmFsgOxxfHDCp6fR6WDwoxe1VFdyT139Nq_kf1CFe4ArZsn-A7Ldj8IN-Az4whUQhutfYTzGGGh0VYze11UT0zZWGNtrsKQSvLv50nzzAhuiiZ56LMdvAZ_YNjsjcSYWoA9HE2PV5gdToYdhWa-c8WhyGPFsYb8snXGxocvlORbnUGtUt-Ut5s_1PfaHlTvjAfqYxdp_Kq14nYnP9WW3QByJr2IlXD_tKQjsbuAYHWZnzciRuKrLvtMi6OKccc1xhhbrmKJa61ti1zi0YVzYM6sBd91Ftu09wxyG6cfDPcyJ555LDe1Bf3FusWcgtLDgwnrV62IR26Eb5CaDrUbYenyakyjYLvM2YYKlb_uPwkLSzZc3Vc3WVuXXiNuehJndJXcacOjYEekeGZjiPrnlupFePiDfOzrRjk60pRNdFLSl0y4VtEcm6shEGzJRRybaJ9MudVSiQCXaUokClegGlR6Sk8m72f6B13To8BRPw8qb-0ZLUOBzMONR6msRcqPChInI16A9TWQypWCS0GGqQ4PFJo1gWcBiiY4IFj4iO0VZmCeERiYIpOBSSBlyGcTZPFBMZ1z7sGXIYjMko_YN56opX49dVL7kdhvL0hygyS00eRANyZtu9oUr23LNvFctWDnYVTwsE4Up61UeJLGf2SXrj3Nsf4gE5jx2AHdPa5kxJMkG9N0ErOu-OVIsPtn67qAXM9iHPL32N5-R2-s_1XOyUy1r8wK0cSVfWvL-BJFVvzk
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ancestral+Mutations+Acquired+in+Refrex-1%2C+a+Restriction+Factor+against+Feline+Retroviruses%2C+during+its+Cooption+and+Domestication&rft.jtitle=Journal+of+virology&rft.au=Ito%2C+Jumpei&rft.au=Baba%2C+Takuya&rft.au=Kawasaki%2C+Junna&rft.au=Nishigaki%2C+Kazuo&rft.date=2016-02-01&rft.eissn=1098-5514&rft.volume=90&rft.issue=3&rft.spage=1470&rft_id=info:doi/10.1128%2FJVI.01904-15&rft_id=info%3Apmid%2F26581999&rft.externalDocID=26581999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon