Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites

The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lack...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 19; pp. 6900 - 6904
Main Authors Kim, Minsung, Im, Jino, Freeman, Arthur J., Ihm, Jisoon, Jin, Hosub
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.05.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that [Formula] and [Formula] Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.
AbstractList The Rashba effect is spin degeneracy lift originated from spin– orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that S = 1/2 and J = 1/2 Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.
The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that S = 1/2 and J = 1/2 Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that S = 1/2 and J = 1/2 Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.
The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that [Formula] and [Formula] Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.
Manipulation of electron spins is an important research subject to achieve breakthroughs in current electronics. The Rashba effect is the spin energy level splitting due to broken inversion symmetry and spin–orbit coupling, and the controllability of Rashba splitting is crucial to spin manipulation. Here, we report a theoretical investigation of Rashba band splitting in ferroelectric halide perovskite materials. Since the polarization direction in ferroelectric materials can be switched by external electric fields, Rashba splitting can be controlled conveniently in these materials. Interestingly, ferroelctric polarizations give rise to two distinct Rashba bands of contrasting orbital and spin characters. Taking advantage of the unique band characteristics, these materials prove promising candidates for the switchable Rashba effect. The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that and Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.
Author Im, Jino
Freeman, Arthur J.
Ihm, Jisoon
Jin, Hosub
Kim, Minsung
Author_xml – sequence: 1
  givenname: Minsung
  surname: Kim
  fullname: Kim, Minsung
– sequence: 2
  givenname: Jino
  surname: Im
  fullname: Im, Jino
– sequence: 3
  givenname: Arthur J.
  surname: Freeman
  fullname: Freeman, Arthur J.
– sequence: 4
  givenname: Jisoon
  surname: Ihm
  fullname: Ihm, Jisoon
– sequence: 5
  givenname: Hosub
  surname: Jin
  fullname: Jin, Hosub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24785294$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9v0zAYhi00xLrBmRMQiQuXrJ8dO7YPIKGJn5o0ibKzZTtfVpc07ux0iP-eRO1WmIQ42bKf79FrvyfkqI89EvKcwhkFWc03vc1nlIOQCiilj8iMgqZlzTUckRkAk6XijB-Tk5xXAKCFgifkmHGpBNN8Ri4XP8Pgl9Z1WCyKtwWds8L2TfF1v_9m89LZwo1nuQh90WJKETv0Qwq-WNouNFhsMMXb_CMMmJ-Sx63tMj7br6fk6uOH7-efy4vLT1_O31-UnqtqKNGC9uBa7RQVtfcOGXqprJONaoWjrfJK1soJh21bac9QKK0b9KpGxqiuTsm7nXezdWtsPPZDsp3ZpLC26ZeJNpi_b_qwNNfx1nBgXIl6FLzZC1K82WIezDpkj11ne4zbbKiCCpRkiv8fFaOSyhqmWK8foKu4Tf34ExOloa4AJuHLP8Pfp76rZQTEDvAp5pywNT4MdghxekvoDAUz1W-m-s2h_nFu_mDuTv3viVf7KNPFPU2podrUGmAkXuyIVR5iOmStpGS1FgdDa6Ox1ylkc7VgQGsAyitFofoNoeXNFA
CitedBy_id crossref_primary_10_1039_C5CP05982H
crossref_primary_10_1002_adma_202301854
crossref_primary_10_1021_acs_jpclett_8b01004
crossref_primary_10_1038_nature25147
crossref_primary_10_1039_D2TA09069D
crossref_primary_10_1103_PhysRevB_104_115145
crossref_primary_10_1038_s41467_020_19740_7
crossref_primary_10_1021_acs_jpclett_6b01749
crossref_primary_10_1038_ncomms6900
crossref_primary_10_1021_nl5039314
crossref_primary_10_1021_jp5126365
crossref_primary_10_1088_0957_4484_26_34_342001
crossref_primary_10_1016_j_nanoen_2020_104999
crossref_primary_10_1021_acs_jpcc_9b02140
crossref_primary_10_7498_aps_69_20201433
crossref_primary_10_1021_acs_jpcc_7b05929
crossref_primary_10_1016_j_apsusc_2019_03_184
crossref_primary_10_1021_acs_chemmater_2c03320
crossref_primary_10_1103_PhysRevB_99_134442
crossref_primary_10_1002_adma_202008611
crossref_primary_10_1103_PhysRevB_98_085108
crossref_primary_10_1002_adom_202001470
crossref_primary_10_1039_C7TC05916G
crossref_primary_10_1021_acsami_1c04636
crossref_primary_10_1002_adfm_202314427
crossref_primary_10_1021_acs_nanolett_0c03470
crossref_primary_10_1021_acs_jpclett_7b01015
crossref_primary_10_1039_D2NR06919A
crossref_primary_10_1038_srep28576
crossref_primary_10_1063_5_0237390
crossref_primary_10_1021_acs_jpclett_7b02902
crossref_primary_10_1021_acs_jpclett_3c00523
crossref_primary_10_1103_PhysRevB_94_195402
crossref_primary_10_1021_acs_inorgchem_2c02900
crossref_primary_10_1039_C7CP07949D
crossref_primary_10_1021_jacs_4c00679
crossref_primary_10_1063_5_0170250
crossref_primary_10_1103_PhysRevB_93_245159
crossref_primary_10_1021_acs_jpclett_0c00842
crossref_primary_10_1126_sciadv_aay4213
crossref_primary_10_1039_D4NR03682D
crossref_primary_10_1103_PhysRevB_108_085432
crossref_primary_10_1021_acsenergylett_7b00790
crossref_primary_10_1002_adma_201603667
crossref_primary_10_1021_jacs_2c10149
crossref_primary_10_1016_j_solmat_2016_06_025
crossref_primary_10_1038_s41467_023_37721_4
crossref_primary_10_1103_PhysRevB_102_035116
crossref_primary_10_1039_C5CP00599J
crossref_primary_10_1021_acsnano_5b04409
crossref_primary_10_1021_acs_jpcc_2c00968
crossref_primary_10_7498_aps_71_20211872
crossref_primary_10_1021_acs_jpcc_3c05604
crossref_primary_10_1103_PhysRevMaterials_1_054201
crossref_primary_10_1140_epjb_e2020_10143_1
crossref_primary_10_1038_s41467_022_28127_9
crossref_primary_10_1002_aelm_202100026
crossref_primary_10_1021_acs_jpclett_5b01738
crossref_primary_10_1021_jacs_1c08514
crossref_primary_10_1038_s41467_019_12805_2
crossref_primary_10_1103_PhysRevApplied_12_024056
crossref_primary_10_1063_1_5137753
crossref_primary_10_1007_s12274_022_4206_9
crossref_primary_10_1039_C8EE03369B
crossref_primary_10_1021_acs_jpclett_8b02498
crossref_primary_10_1016_j_ssc_2017_06_008
crossref_primary_10_1063_1_5127459
crossref_primary_10_1002_adfm_202424619
crossref_primary_10_1038_s41578_020_0185_1
crossref_primary_10_1002_adom_201701254
crossref_primary_10_1038_s41467_020_19471_9
crossref_primary_10_1103_PhysRevB_95_075207
crossref_primary_10_1103_PhysRevMaterials_8_054604
crossref_primary_10_1088_1361_648X_ac577d
crossref_primary_10_1002_adma_202001069
crossref_primary_10_1063_5_0031821
crossref_primary_10_1063_5_0222322
crossref_primary_10_1038_s41467_019_08625_z
crossref_primary_10_1021_acs_jpclett_5b00905
crossref_primary_10_1002_adma_202411913
crossref_primary_10_1021_acsnano_6b05944
crossref_primary_10_1002_anie_202421463
crossref_primary_10_1038_ncomms11621
crossref_primary_10_1002_adfm_201904046
crossref_primary_10_1016_j_nanoen_2017_05_061
crossref_primary_10_1002_adom_201900350
crossref_primary_10_1063_5_0015965
crossref_primary_10_1103_PhysRevB_93_214106
crossref_primary_10_1063_5_0187847
crossref_primary_10_1088_1361_648X_aad986
crossref_primary_10_1002_smtd_202000149
crossref_primary_10_1021_acs_chemmater_7b01781
crossref_primary_10_1038_s41467_023_35842_4
crossref_primary_10_1088_1361_6463_abb047
crossref_primary_10_1021_acsnano_1c09521
crossref_primary_10_1021_jz501697b
crossref_primary_10_1021_acs_jpclett_6b01404
crossref_primary_10_1002_ange_202421463
crossref_primary_10_1021_acs_jpclett_0c00004
crossref_primary_10_1038_s41566_018_0220_6
crossref_primary_10_1039_D3CP04242A
crossref_primary_10_1038_s41524_020_00374_8
crossref_primary_10_1103_PhysRevB_101_155102
crossref_primary_10_1039_C9SC03219C
crossref_primary_10_1021_acs_jpcc_9b00140
crossref_primary_10_1016_j_jpcs_2018_02_016
crossref_primary_10_1063_5_0212170
crossref_primary_10_1021_acs_jpclett_1c04033
crossref_primary_10_1002_adma_202005400
crossref_primary_10_1038_s41524_020_00450_z
crossref_primary_10_1103_PhysRevB_104_235132
crossref_primary_10_1021_acs_jpcc_8b11288
crossref_primary_10_1103_PhysRevB_102_081116
crossref_primary_10_1021_acsenergylett_8b00638
crossref_primary_10_1021_acs_jpcc_7b09791
crossref_primary_10_1063_5_0155104
crossref_primary_10_1103_PhysRevB_106_035303
crossref_primary_10_1021_acs_jpclett_9b02491
crossref_primary_10_1073_pnas_1805422115
crossref_primary_10_1039_C9TA01647C
crossref_primary_10_1021_acs_jpclett_3c02182
crossref_primary_10_1103_PhysRevB_105_035129
crossref_primary_10_1002_adma_202402503
crossref_primary_10_1038_natrevmats_2016_99
crossref_primary_10_1021_jz502666j
crossref_primary_10_1063_1_5125230
crossref_primary_10_1021_acs_chemrev_6b00136
crossref_primary_10_1103_PhysRevB_108_045114
crossref_primary_10_1021_acs_chemmater_8b03436
crossref_primary_10_7498_aps_68_20190675
crossref_primary_10_1039_C5EE03435C
crossref_primary_10_1038_s41467_017_02814_4
crossref_primary_10_1063_1_4984615
crossref_primary_10_1126_sciadv_ads8786
crossref_primary_10_1002_aenm_201702369
crossref_primary_10_1103_PhysRevMaterials_3_054407
crossref_primary_10_1002_adom_202100822
crossref_primary_10_1039_C7CP02568H
crossref_primary_10_1016_j_mtphys_2021_100459
crossref_primary_10_1021_acs_jpcc_5b00695
crossref_primary_10_1103_PhysRevApplied_14_064018
crossref_primary_10_1021_acsenergylett_8b01226
crossref_primary_10_1002_qute_202100052
crossref_primary_10_1063_1_4972198
crossref_primary_10_1080_00018732_2019_1590295
crossref_primary_10_1038_nphys4145
crossref_primary_10_1039_D0CP05142J
crossref_primary_10_1103_PhysRevB_102_041203
crossref_primary_10_1103_PhysRevLett_117_126401
crossref_primary_10_1038_s41467_019_11964_6
crossref_primary_10_3390_ma14051238
crossref_primary_10_1021_acs_jpcc_5b07891
crossref_primary_10_1007_s11426_022_1389_6
crossref_primary_10_1038_s41563_019_0364_x
crossref_primary_10_1021_acs_nanolett_5b01854
crossref_primary_10_1039_D3CP04334G
crossref_primary_10_1021_acs_jpclett_9b01985
crossref_primary_10_1103_PhysRevB_99_235302
crossref_primary_10_1007_s10853_020_05298_8
crossref_primary_10_1063_1_4967176
crossref_primary_10_1103_PhysRevB_102_245101
crossref_primary_10_1103_PhysRevB_105_155149
crossref_primary_10_3390_nano14080683
crossref_primary_10_1021_acsenergylett_7b00159
crossref_primary_10_1021_acs_nanolett_7b02248
crossref_primary_10_1021_acs_jpcc_6b06416
crossref_primary_10_1021_acs_jpclett_8b03164
crossref_primary_10_1002_adom_202302238
crossref_primary_10_1038_s41598_017_09442_4
crossref_primary_10_1021_acsami_4c10289
crossref_primary_10_1002_adts_202300092
crossref_primary_10_1103_PhysRevB_93_155432
crossref_primary_10_1103_PhysRevB_96_054447
crossref_primary_10_7498_aps_69_20200646
crossref_primary_10_1103_PhysRevLett_130_106901
crossref_primary_10_1021_acs_chemmater_8b04542
crossref_primary_10_1103_PhysRevMaterials_8_104603
crossref_primary_10_3390_inorganics12070182
crossref_primary_10_1039_D2TC03781E
crossref_primary_10_1039_D1CP05724C
crossref_primary_10_1039_C4TA06418F
crossref_primary_10_1088_1361_648X_aac523
crossref_primary_10_1021_acs_jpclett_6b01794
crossref_primary_10_1021_cm5032046
crossref_primary_10_1088_1361_6463_abcc25
crossref_primary_10_1103_PhysRevB_98_174102
crossref_primary_10_1103_PhysRevLett_134_076801
crossref_primary_10_1021_acs_jpclett_2c03525
crossref_primary_10_1021_jacs_5b01025
crossref_primary_10_1103_PhysRevB_100_115104
crossref_primary_10_1002_adom_202100215
crossref_primary_10_1088_0256_307X_38_8_087702
crossref_primary_10_1002_adma_202204119
crossref_primary_10_1021_acs_cgd_9b01262
crossref_primary_10_1038_s41578_019_0125_0
crossref_primary_10_1021_acs_jpclett_0c02497
crossref_primary_10_1021_jacs_7b09536
crossref_primary_10_1063_5_0020236
crossref_primary_10_1103_PhysRevB_110_085110
crossref_primary_10_1021_acs_jpcc_8b09601
crossref_primary_10_1021_acs_jpclett_4c01371
crossref_primary_10_1021_acs_chemrev_0c00107
crossref_primary_10_1557_jmr_2017_325
crossref_primary_10_1146_annurev_matsci_080819_012808
crossref_primary_10_1021_acs_jpca_5b09884
crossref_primary_10_1021_acsami_9b18562
crossref_primary_10_1021_acs_jpcc_9b04261
crossref_primary_10_1039_C7CP07477H
crossref_primary_10_1103_PhysRevB_95_245141
crossref_primary_10_1002_adma_201600265
crossref_primary_10_1002_adma_202200323
crossref_primary_10_1103_PhysRevApplied_7_044011
crossref_primary_10_1016_j_surfin_2022_101798
crossref_primary_10_1021_acs_jpclett_1c02596
crossref_primary_10_1063_1_4959182
crossref_primary_10_1038_s41563_018_0067_8
crossref_primary_10_1039_C4TA06230B
crossref_primary_10_1039_C8CP00745D
crossref_primary_10_1016_j_joule_2021_07_008
crossref_primary_10_1021_acs_jpclett_5b00502
crossref_primary_10_1039_C4CP04666H
crossref_primary_10_1063_1_4955028
crossref_primary_10_1021_acs_jpcc_7b10359
crossref_primary_10_1002_adma_201803249
crossref_primary_10_1021_acs_jpclett_5b01830
crossref_primary_10_1063_1_5099352
crossref_primary_10_1002_advs_202416782
crossref_primary_10_1038_s41598_017_02032_4
crossref_primary_10_1039_C5TA01376C
crossref_primary_10_1103_PhysRevB_97_134412
crossref_primary_10_1002_aenm_201902830
crossref_primary_10_1016_j_jmat_2016_05_004
crossref_primary_10_1038_s41524_020_00378_4
crossref_primary_10_1016_j_physe_2021_114961
crossref_primary_10_1063_5_0150712
crossref_primary_10_1103_PhysRevMaterials_5_085404
crossref_primary_10_1016_j_jpcs_2021_110117
crossref_primary_10_1103_PhysRevMaterials_6_104603
crossref_primary_10_1063_5_0085947
crossref_primary_10_1016_j_pmatsci_2019_100580
crossref_primary_10_1016_j_matt_2023_12_011
crossref_primary_10_1021_cm5026766
crossref_primary_10_1039_C4MH00174E
crossref_primary_10_1063_1_5051629
crossref_primary_10_1038_s41467_018_06009_3
crossref_primary_10_1021_acs_jpcc_7b06673
crossref_primary_10_1063_5_0107903
crossref_primary_10_1103_PhysRevB_92_220101
crossref_primary_10_1088_1361_6633_ac4be9
crossref_primary_10_1021_acs_jpclett_0c02934
crossref_primary_10_1038_s41467_022_30414_4
crossref_primary_10_1038_s41598_020_76742_7
crossref_primary_10_1021_jacs_2c08827
crossref_primary_10_1103_PhysRevB_102_144106
crossref_primary_10_1039_C7SC01429E
crossref_primary_10_1021_acsphotonics_4c00513
crossref_primary_10_1002_admi_201400445
Cites_doi 10.1103/PhysRevLett.98.186807
10.1107/S0108768110014734
10.1103/PhysRevLett.104.066802
10.3389/fphy.2014.00010
10.1103/PhysRevB.47.558
10.1038/nature12340
10.1039/b007639m
10.1103/PhysRevLett.100.136406
10.1103/PhysRevB.86.121102
10.1103/PhysRevB.84.041202
10.1103/PhysRevB.50.17953
10.1021/cm9505097
10.1002/adma.201203199
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.56.12847
10.1002/adma.201302797
10.1039/c0cs00226g
10.1016/j.cpc.2007.11.016
10.1021/ic401215x
10.1126/science.1243982
10.1103/PhysRevLett.101.266802
10.1126/science.1243167
10.1103/PhysRevLett.107.156803
10.1080/00150190600732694
10.1038/358136a0
10.1088/0022-3719/10/16/019
10.1103/PhysRevLett.77.3419
10.1038/nmat3051
10.1038/nature12509
10.1103/PhysRevB.65.035109
10.1016/S0039-6028(00)00441-6
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 13, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 13, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1405780111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Virology and AIDS Abstracts

CrossRef
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Switchable Rashba bands in ferroelectric halides
EISSN 1091-6490
EndPage 6904
ExternalDocumentID PMC4024856
3316694481
24785294
10_1073_pnas_1405780111
111_19_6900
23772695
US201600143810
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c483t-ea09c0bf9b8156ccbe2ec78ab7d8f5b1f8c8768b5beff39c2e5899dec86e22193
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:33:36 EDT 2025
Fri Jul 11 03:03:17 EDT 2025
Fri Jul 11 12:08:36 EDT 2025
Mon Jun 30 08:07:50 EDT 2025
Mon Jul 21 05:53:22 EDT 2025
Tue Jul 01 01:53:06 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Nov 11 00:30:22 EST 2020
Thu May 29 08:40:53 EDT 2025
Thu Apr 03 09:46:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords density functional theory
effective Hamiltonian
electronic structure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-ea09c0bf9b8156ccbe2ec78ab7d8f5b1f8c8768b5beff39c2e5899dec86e22193
Notes http://dx.doi.org/10.1073/pnas.1405780111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1M.K. and J. Im contributed equally to this work.
Contributed by Jisoon Ihm, April 5, 2014 (sent for review January 29, 2014)
Author contributions: M.K., J. Im, A.J.F., J. Ihm, and H.J. designed research; M.K., J. Im, A.J.F., J. Ihm, and H.J. performed research; M.K., J. Im, and H.J. analyzed data; and M.K., J. Im, J. Ihm, and H.J. wrote the paper.
PMID 24785294
PQID 1529063004
PQPubID 42026
PageCount 5
ParticipantIDs proquest_journals_1529063004
pnas_primary_111_19_6900
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4024856
crossref_primary_10_1073_pnas_1405780111
proquest_miscellaneous_1524817609
crossref_citationtrail_10_1073_pnas_1405780111
jstor_primary_23772695
fao_agris_US201600143810
proquest_miscellaneous_1803087284
pubmed_primary_24785294
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-13
PublicationDateYYYYMMDD 2014-05-13
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Bychokov YA (e_1_3_3_1_2) 1984; 39
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
21685900 - Nat Mater. 2011 Jun 19;10(7):521-6
23070981 - Adv Mater. 2013 Jan 25;25(4):509-13
23842493 - Nature. 2013 Jul 18;499(7458):316-9
20366845 - Phys Rev Lett. 2010 Feb 12;104(6):066802
17501597 - Phys Rev Lett. 2007 May 4;98(18):186807
24136964 - Science. 2013 Oct 18;342(6156):341-4
10062215 - Phys Rev Lett. 1996 Oct 14;77(16):3419-3422
21509354 - Chem Soc Rev. 2011 Jul;40(7):3577-98
9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
22107313 - Phys Rev Lett. 2011 Oct 7;107(15):156803
9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561
23834108 - Inorg Chem. 2013 Aug 5;52(15):9019-38
24136965 - Science. 2013 Oct 18;342(6156):344-7
20631424 - Acta Crystallogr B. 2010 Aug;66(Pt 4):422-9
24025775 - Nature. 2013 Sep 19;501(7467):395-8
18517979 - Phys Rev Lett. 2008 Apr 4;100(13):136406
19113782 - Phys Rev Lett. 2008 Dec 31;101(26):266802
References_xml – ident: e_1_3_3_3_2
  doi: 10.1103/PhysRevLett.98.186807
– ident: e_1_3_3_10_2
  doi: 10.1107/S0108768110014734
– ident: e_1_3_3_5_2
  doi: 10.1103/PhysRevLett.104.066802
– ident: e_1_3_3_11_2
  doi: 10.3389/fphy.2014.00010
– ident: e_1_3_3_25_2
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_3_3_21_2
  doi: 10.1038/nature12340
– volume: 39
  start-page: 78
  year: 1984
  ident: e_1_3_3_1_2
  article-title: Properties of a 2D electron gas with lifted spectral degeneracy
  publication-title: JETP Lett
– ident: e_1_3_3_20_2
  doi: 10.1039/b007639m
– ident: e_1_3_3_28_2
  doi: 10.1103/PhysRevLett.100.136406
– ident: e_1_3_3_12_2
  doi: 10.1103/PhysRevB.86.121102
– ident: e_1_3_3_14_2
  doi: 10.1103/PhysRevB.84.041202
– ident: e_1_3_3_27_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_3_19_2
  doi: 10.1021/cm9505097
– ident: e_1_3_3_7_2
  doi: 10.1002/adma.201203199
– ident: e_1_3_3_26_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_3_30_2
  doi: 10.1103/PhysRevB.56.12847
– ident: e_1_3_3_8_2
  doi: 10.1002/adma.201302797
– ident: e_1_3_3_17_2
  doi: 10.1039/c0cs00226g
– ident: e_1_3_3_32_2
  doi: 10.1016/j.cpc.2007.11.016
– ident: e_1_3_3_9_2
  doi: 10.1021/ic401215x
– ident: e_1_3_3_23_2
  doi: 10.1126/science.1243982
– ident: e_1_3_3_4_2
  doi: 10.1103/PhysRevLett.101.266802
– ident: e_1_3_3_24_2
  doi: 10.1126/science.1243167
– ident: e_1_3_3_13_2
  doi: 10.1103/PhysRevLett.107.156803
– ident: e_1_3_3_16_2
  doi: 10.1080/00150190600732694
– ident: e_1_3_3_15_2
  doi: 10.1038/358136a0
– ident: e_1_3_3_29_2
  doi: 10.1088/0022-3719/10/16/019
– ident: e_1_3_3_2_2
  doi: 10.1103/PhysRevLett.77.3419
– ident: e_1_3_3_6_2
  doi: 10.1038/nmat3051
– ident: e_1_3_3_22_2
  doi: 10.1038/nature12509
– ident: e_1_3_3_31_2
  doi: 10.1103/PhysRevB.65.035109
– ident: e_1_3_3_18_2
  doi: 10.1016/S0039-6028(00)00441-6
– reference: 23070981 - Adv Mater. 2013 Jan 25;25(4):509-13
– reference: 17501597 - Phys Rev Lett. 2007 May 4;98(18):186807
– reference: 24136964 - Science. 2013 Oct 18;342(6156):341-4
– reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
– reference: 24025775 - Nature. 2013 Sep 19;501(7467):395-8
– reference: 10062215 - Phys Rev Lett. 1996 Oct 14;77(16):3419-3422
– reference: 23842493 - Nature. 2013 Jul 18;499(7458):316-9
– reference: 19113782 - Phys Rev Lett. 2008 Dec 31;101(26):266802
– reference: 20366845 - Phys Rev Lett. 2010 Feb 12;104(6):066802
– reference: 22107313 - Phys Rev Lett. 2011 Oct 7;107(15):156803
– reference: 10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561
– reference: 21685900 - Nat Mater. 2011 Jun 19;10(7):521-6
– reference: 20631424 - Acta Crystallogr B. 2010 Aug;66(Pt 4):422-9
– reference: 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
– reference: 21509354 - Chem Soc Rev. 2011 Jul;40(7):3577-98
– reference: 24136965 - Science. 2013 Oct 18;342(6156):344-7
– reference: 18517979 - Phys Rev Lett. 2008 Apr 4;100(13):136406
– reference: 23834108 - Inorg Chem. 2013 Aug 5;52(15):9019-38
SSID ssj0009580
Score 2.568249
Snippet The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for...
The Rashba effect is spin degeneracy lift originated from spin– orbit coupling under inversion symmetry breaking and has been intensively studied for...
Manipulation of electron spins is an important research subject to achieve breakthroughs in current electronics. The Rashba effect is the spin energy level...
The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6900
SubjectTerms Angular momentum
Calcium Compounds - chemistry
Coefficients
Computer Simulation
Crystallization - methods
electric field
Electric fields
Electronic structure
Electronics - methods
Ferroelectric materials
Ferroelectrics
Halides
Iron - chemistry
Materials
Metal halides
Methylamines - chemistry
Models, Chemical
momentum
Nanostructures - chemistry
Orbitals
Organic Chemicals - chemistry
Oxides - chemistry
Perovskite
Perovskites
Physical Sciences
texture
Titanium - chemistry
Title Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites
URI https://www.jstor.org/stable/23772695
http://www.pnas.org/content/111/19/6900.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24785294
https://www.proquest.com/docview/1529063004
https://www.proquest.com/docview/1524817609
https://www.proquest.com/docview/1803087284
https://pubmed.ncbi.nlm.nih.gov/PMC4024856
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYuHBBDBgNDGQkDkNVunw4iXPgUMGmUY1uoq3UW2Q7zloJJShpQeKv59lxPjoVNLhUqeM4Ud4v78P2-z2E3oFNTInwIDqJHGITJhybgqG0oZGGoeBgMfQu32l4uSCTZbDsrZiq7JINH4lfe_NK_keq0AZyVVmy_yDZdlBogGOQL_yChOH3XjKe_VzDS9fJTxCO-5-GOvNCrwdMev-_smrF2ZAzs_s1k2VZ1PVvFMM1eOKpVPzFxY9KzeVWfYf1pjVwVbOdYNrMH467bBSjIqqhPbyZdrWNTa3mL2rHuzGRCoZ1ZvY6L1r0lFKaqdhxuVlty2616vPK9K4KgyAzR-EStbxep5gatQpeiR2SujDoSO5pa3Sx0bwGdHFPtUIY7-zV-aCkVKHinFWg9sH9BJtrRtlh155eJxeLq6tkfr6cH6CHHoQVfjO705I005q9wjxZQwUV-Wd3ht_xYg4yVjTbWRVHLnTdF6_c3Xbb82PmT9BjE4DgcY2mI_RA5k_RUSM_fGp4yN8_Q9cdvPAMf8DumYcBQnhijmtYYQ0rvM7xDqxwDSvcg9VztLg4n3-8tE39DVsQ6m9syZxYODyLuaIUEoJLT4qIMh6lNAu4m1EBtpTygMss82PhyQCi91TCVy49sIT-MTrMi1wOEHbdlHKZhi5l4BPCxUTG1OfgN4mY8Ciw0Kh5n4kw5PSqRsq3RG-SiPxEvdWkE4CFTtsLvte8LH_uOgABJewWrGaymHmKU1GxWlLXsdCxllo7hOcDLMIYnmegR2mHhjDZjROFQQudNKJNjC6AuwWqbIJir7PQ2_Y0aGq1_MZyWWx1H0LdKHTiv_ShmqITfEYLvajR0j0biSjcBs5EOzhqOyim-N0z-XqlGeOJZi4MX97j2V6hR90XfIION-VWvga_e8Pf6I_lN4xezyM
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switchable+S+%3D+1%2F2+and+J+%3D+1%2F2+Rashba+bands+in+ferroelectric+halide+perovskites&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kim%2C+Minsung&rft.au=Im%2C+Jino&rft.au=Freeman%2C+Arthur+J&rft.au=Ihm%2C+Jisoon&rft.date=2014-05-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=19&rft.spage=6900&rft_id=info:doi/10.1073%2Fpnas.1405780111&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F19.cover.gif