Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites
The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lack...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 19; pp. 6900 - 6904 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.05.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that [Formula] and [Formula] Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. |
---|---|
AbstractList | The Rashba effect is spin degeneracy lift originated from spin– orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that S = 1/2 and J = 1/2 Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that S = 1/2 and J = 1/2 Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that S = 1/2 and J = 1/2 Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that [Formula] and [Formula] Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. Manipulation of electron spins is an important research subject to achieve breakthroughs in current electronics. The Rashba effect is the spin energy level splitting due to broken inversion symmetry and spin–orbit coupling, and the controllability of Rashba splitting is crucial to spin manipulation. Here, we report a theoretical investigation of Rashba band splitting in ferroelectric halide perovskite materials. Since the polarization direction in ferroelectric materials can be switched by external electric fields, Rashba splitting can be controlled conveniently in these materials. Interestingly, ferroelctric polarizations give rise to two distinct Rashba bands of contrasting orbital and spin characters. Taking advantage of the unique band characteristics, these materials prove promising candidates for the switchable Rashba effect. The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that and Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. |
Author | Im, Jino Freeman, Arthur J. Ihm, Jisoon Jin, Hosub Kim, Minsung |
Author_xml | – sequence: 1 givenname: Minsung surname: Kim fullname: Kim, Minsung – sequence: 2 givenname: Jino surname: Im fullname: Im, Jino – sequence: 3 givenname: Arthur J. surname: Freeman fullname: Freeman, Arthur J. – sequence: 4 givenname: Jisoon surname: Ihm fullname: Ihm, Jisoon – sequence: 5 givenname: Hosub surname: Jin fullname: Jin, Hosub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24785294$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9v0zAYhi00xLrBmRMQiQuXrJ8dO7YPIKGJn5o0ibKzZTtfVpc07ux0iP-eRO1WmIQ42bKf79FrvyfkqI89EvKcwhkFWc03vc1nlIOQCiilj8iMgqZlzTUckRkAk6XijB-Tk5xXAKCFgifkmHGpBNN8Ri4XP8Pgl9Z1WCyKtwWds8L2TfF1v_9m89LZwo1nuQh90WJKETv0Qwq-WNouNFhsMMXb_CMMmJ-Sx63tMj7br6fk6uOH7-efy4vLT1_O31-UnqtqKNGC9uBa7RQVtfcOGXqprJONaoWjrfJK1soJh21bac9QKK0b9KpGxqiuTsm7nXezdWtsPPZDsp3ZpLC26ZeJNpi_b_qwNNfx1nBgXIl6FLzZC1K82WIezDpkj11ne4zbbKiCCpRkiv8fFaOSyhqmWK8foKu4Tf34ExOloa4AJuHLP8Pfp76rZQTEDvAp5pywNT4MdghxekvoDAUz1W-m-s2h_nFu_mDuTv3viVf7KNPFPU2podrUGmAkXuyIVR5iOmStpGS1FgdDa6Ox1ylkc7VgQGsAyitFofoNoeXNFA |
CitedBy_id | crossref_primary_10_1039_C5CP05982H crossref_primary_10_1002_adma_202301854 crossref_primary_10_1021_acs_jpclett_8b01004 crossref_primary_10_1038_nature25147 crossref_primary_10_1039_D2TA09069D crossref_primary_10_1103_PhysRevB_104_115145 crossref_primary_10_1038_s41467_020_19740_7 crossref_primary_10_1021_acs_jpclett_6b01749 crossref_primary_10_1038_ncomms6900 crossref_primary_10_1021_nl5039314 crossref_primary_10_1021_jp5126365 crossref_primary_10_1088_0957_4484_26_34_342001 crossref_primary_10_1016_j_nanoen_2020_104999 crossref_primary_10_1021_acs_jpcc_9b02140 crossref_primary_10_7498_aps_69_20201433 crossref_primary_10_1021_acs_jpcc_7b05929 crossref_primary_10_1016_j_apsusc_2019_03_184 crossref_primary_10_1021_acs_chemmater_2c03320 crossref_primary_10_1103_PhysRevB_99_134442 crossref_primary_10_1002_adma_202008611 crossref_primary_10_1103_PhysRevB_98_085108 crossref_primary_10_1002_adom_202001470 crossref_primary_10_1039_C7TC05916G crossref_primary_10_1021_acsami_1c04636 crossref_primary_10_1002_adfm_202314427 crossref_primary_10_1021_acs_nanolett_0c03470 crossref_primary_10_1021_acs_jpclett_7b01015 crossref_primary_10_1039_D2NR06919A crossref_primary_10_1038_srep28576 crossref_primary_10_1063_5_0237390 crossref_primary_10_1021_acs_jpclett_7b02902 crossref_primary_10_1021_acs_jpclett_3c00523 crossref_primary_10_1103_PhysRevB_94_195402 crossref_primary_10_1021_acs_inorgchem_2c02900 crossref_primary_10_1039_C7CP07949D crossref_primary_10_1021_jacs_4c00679 crossref_primary_10_1063_5_0170250 crossref_primary_10_1103_PhysRevB_93_245159 crossref_primary_10_1021_acs_jpclett_0c00842 crossref_primary_10_1126_sciadv_aay4213 crossref_primary_10_1039_D4NR03682D crossref_primary_10_1103_PhysRevB_108_085432 crossref_primary_10_1021_acsenergylett_7b00790 crossref_primary_10_1002_adma_201603667 crossref_primary_10_1021_jacs_2c10149 crossref_primary_10_1016_j_solmat_2016_06_025 crossref_primary_10_1038_s41467_023_37721_4 crossref_primary_10_1103_PhysRevB_102_035116 crossref_primary_10_1039_C5CP00599J crossref_primary_10_1021_acsnano_5b04409 crossref_primary_10_1021_acs_jpcc_2c00968 crossref_primary_10_7498_aps_71_20211872 crossref_primary_10_1021_acs_jpcc_3c05604 crossref_primary_10_1103_PhysRevMaterials_1_054201 crossref_primary_10_1140_epjb_e2020_10143_1 crossref_primary_10_1038_s41467_022_28127_9 crossref_primary_10_1002_aelm_202100026 crossref_primary_10_1021_acs_jpclett_5b01738 crossref_primary_10_1021_jacs_1c08514 crossref_primary_10_1038_s41467_019_12805_2 crossref_primary_10_1103_PhysRevApplied_12_024056 crossref_primary_10_1063_1_5137753 crossref_primary_10_1007_s12274_022_4206_9 crossref_primary_10_1039_C8EE03369B crossref_primary_10_1021_acs_jpclett_8b02498 crossref_primary_10_1016_j_ssc_2017_06_008 crossref_primary_10_1063_1_5127459 crossref_primary_10_1002_adfm_202424619 crossref_primary_10_1038_s41578_020_0185_1 crossref_primary_10_1002_adom_201701254 crossref_primary_10_1038_s41467_020_19471_9 crossref_primary_10_1103_PhysRevB_95_075207 crossref_primary_10_1103_PhysRevMaterials_8_054604 crossref_primary_10_1088_1361_648X_ac577d crossref_primary_10_1002_adma_202001069 crossref_primary_10_1063_5_0031821 crossref_primary_10_1063_5_0222322 crossref_primary_10_1038_s41467_019_08625_z crossref_primary_10_1021_acs_jpclett_5b00905 crossref_primary_10_1002_adma_202411913 crossref_primary_10_1021_acsnano_6b05944 crossref_primary_10_1002_anie_202421463 crossref_primary_10_1038_ncomms11621 crossref_primary_10_1002_adfm_201904046 crossref_primary_10_1016_j_nanoen_2017_05_061 crossref_primary_10_1002_adom_201900350 crossref_primary_10_1063_5_0015965 crossref_primary_10_1103_PhysRevB_93_214106 crossref_primary_10_1063_5_0187847 crossref_primary_10_1088_1361_648X_aad986 crossref_primary_10_1002_smtd_202000149 crossref_primary_10_1021_acs_chemmater_7b01781 crossref_primary_10_1038_s41467_023_35842_4 crossref_primary_10_1088_1361_6463_abb047 crossref_primary_10_1021_acsnano_1c09521 crossref_primary_10_1021_jz501697b crossref_primary_10_1021_acs_jpclett_6b01404 crossref_primary_10_1002_ange_202421463 crossref_primary_10_1021_acs_jpclett_0c00004 crossref_primary_10_1038_s41566_018_0220_6 crossref_primary_10_1039_D3CP04242A crossref_primary_10_1038_s41524_020_00374_8 crossref_primary_10_1103_PhysRevB_101_155102 crossref_primary_10_1039_C9SC03219C crossref_primary_10_1021_acs_jpcc_9b00140 crossref_primary_10_1016_j_jpcs_2018_02_016 crossref_primary_10_1063_5_0212170 crossref_primary_10_1021_acs_jpclett_1c04033 crossref_primary_10_1002_adma_202005400 crossref_primary_10_1038_s41524_020_00450_z crossref_primary_10_1103_PhysRevB_104_235132 crossref_primary_10_1021_acs_jpcc_8b11288 crossref_primary_10_1103_PhysRevB_102_081116 crossref_primary_10_1021_acsenergylett_8b00638 crossref_primary_10_1021_acs_jpcc_7b09791 crossref_primary_10_1063_5_0155104 crossref_primary_10_1103_PhysRevB_106_035303 crossref_primary_10_1021_acs_jpclett_9b02491 crossref_primary_10_1073_pnas_1805422115 crossref_primary_10_1039_C9TA01647C crossref_primary_10_1021_acs_jpclett_3c02182 crossref_primary_10_1103_PhysRevB_105_035129 crossref_primary_10_1002_adma_202402503 crossref_primary_10_1038_natrevmats_2016_99 crossref_primary_10_1021_jz502666j crossref_primary_10_1063_1_5125230 crossref_primary_10_1021_acs_chemrev_6b00136 crossref_primary_10_1103_PhysRevB_108_045114 crossref_primary_10_1021_acs_chemmater_8b03436 crossref_primary_10_7498_aps_68_20190675 crossref_primary_10_1039_C5EE03435C crossref_primary_10_1038_s41467_017_02814_4 crossref_primary_10_1063_1_4984615 crossref_primary_10_1126_sciadv_ads8786 crossref_primary_10_1002_aenm_201702369 crossref_primary_10_1103_PhysRevMaterials_3_054407 crossref_primary_10_1002_adom_202100822 crossref_primary_10_1039_C7CP02568H crossref_primary_10_1016_j_mtphys_2021_100459 crossref_primary_10_1021_acs_jpcc_5b00695 crossref_primary_10_1103_PhysRevApplied_14_064018 crossref_primary_10_1021_acsenergylett_8b01226 crossref_primary_10_1002_qute_202100052 crossref_primary_10_1063_1_4972198 crossref_primary_10_1080_00018732_2019_1590295 crossref_primary_10_1038_nphys4145 crossref_primary_10_1039_D0CP05142J crossref_primary_10_1103_PhysRevB_102_041203 crossref_primary_10_1103_PhysRevLett_117_126401 crossref_primary_10_1038_s41467_019_11964_6 crossref_primary_10_3390_ma14051238 crossref_primary_10_1021_acs_jpcc_5b07891 crossref_primary_10_1007_s11426_022_1389_6 crossref_primary_10_1038_s41563_019_0364_x crossref_primary_10_1021_acs_nanolett_5b01854 crossref_primary_10_1039_D3CP04334G crossref_primary_10_1021_acs_jpclett_9b01985 crossref_primary_10_1103_PhysRevB_99_235302 crossref_primary_10_1007_s10853_020_05298_8 crossref_primary_10_1063_1_4967176 crossref_primary_10_1103_PhysRevB_102_245101 crossref_primary_10_1103_PhysRevB_105_155149 crossref_primary_10_3390_nano14080683 crossref_primary_10_1021_acsenergylett_7b00159 crossref_primary_10_1021_acs_nanolett_7b02248 crossref_primary_10_1021_acs_jpcc_6b06416 crossref_primary_10_1021_acs_jpclett_8b03164 crossref_primary_10_1002_adom_202302238 crossref_primary_10_1038_s41598_017_09442_4 crossref_primary_10_1021_acsami_4c10289 crossref_primary_10_1002_adts_202300092 crossref_primary_10_1103_PhysRevB_93_155432 crossref_primary_10_1103_PhysRevB_96_054447 crossref_primary_10_7498_aps_69_20200646 crossref_primary_10_1103_PhysRevLett_130_106901 crossref_primary_10_1021_acs_chemmater_8b04542 crossref_primary_10_1103_PhysRevMaterials_8_104603 crossref_primary_10_3390_inorganics12070182 crossref_primary_10_1039_D2TC03781E crossref_primary_10_1039_D1CP05724C crossref_primary_10_1039_C4TA06418F crossref_primary_10_1088_1361_648X_aac523 crossref_primary_10_1021_acs_jpclett_6b01794 crossref_primary_10_1021_cm5032046 crossref_primary_10_1088_1361_6463_abcc25 crossref_primary_10_1103_PhysRevB_98_174102 crossref_primary_10_1103_PhysRevLett_134_076801 crossref_primary_10_1021_acs_jpclett_2c03525 crossref_primary_10_1021_jacs_5b01025 crossref_primary_10_1103_PhysRevB_100_115104 crossref_primary_10_1002_adom_202100215 crossref_primary_10_1088_0256_307X_38_8_087702 crossref_primary_10_1002_adma_202204119 crossref_primary_10_1021_acs_cgd_9b01262 crossref_primary_10_1038_s41578_019_0125_0 crossref_primary_10_1021_acs_jpclett_0c02497 crossref_primary_10_1021_jacs_7b09536 crossref_primary_10_1063_5_0020236 crossref_primary_10_1103_PhysRevB_110_085110 crossref_primary_10_1021_acs_jpcc_8b09601 crossref_primary_10_1021_acs_jpclett_4c01371 crossref_primary_10_1021_acs_chemrev_0c00107 crossref_primary_10_1557_jmr_2017_325 crossref_primary_10_1146_annurev_matsci_080819_012808 crossref_primary_10_1021_acs_jpca_5b09884 crossref_primary_10_1021_acsami_9b18562 crossref_primary_10_1021_acs_jpcc_9b04261 crossref_primary_10_1039_C7CP07477H crossref_primary_10_1103_PhysRevB_95_245141 crossref_primary_10_1002_adma_201600265 crossref_primary_10_1002_adma_202200323 crossref_primary_10_1103_PhysRevApplied_7_044011 crossref_primary_10_1016_j_surfin_2022_101798 crossref_primary_10_1021_acs_jpclett_1c02596 crossref_primary_10_1063_1_4959182 crossref_primary_10_1038_s41563_018_0067_8 crossref_primary_10_1039_C4TA06230B crossref_primary_10_1039_C8CP00745D crossref_primary_10_1016_j_joule_2021_07_008 crossref_primary_10_1021_acs_jpclett_5b00502 crossref_primary_10_1039_C4CP04666H crossref_primary_10_1063_1_4955028 crossref_primary_10_1021_acs_jpcc_7b10359 crossref_primary_10_1002_adma_201803249 crossref_primary_10_1021_acs_jpclett_5b01830 crossref_primary_10_1063_1_5099352 crossref_primary_10_1002_advs_202416782 crossref_primary_10_1038_s41598_017_02032_4 crossref_primary_10_1039_C5TA01376C crossref_primary_10_1103_PhysRevB_97_134412 crossref_primary_10_1002_aenm_201902830 crossref_primary_10_1016_j_jmat_2016_05_004 crossref_primary_10_1038_s41524_020_00378_4 crossref_primary_10_1016_j_physe_2021_114961 crossref_primary_10_1063_5_0150712 crossref_primary_10_1103_PhysRevMaterials_5_085404 crossref_primary_10_1016_j_jpcs_2021_110117 crossref_primary_10_1103_PhysRevMaterials_6_104603 crossref_primary_10_1063_5_0085947 crossref_primary_10_1016_j_pmatsci_2019_100580 crossref_primary_10_1016_j_matt_2023_12_011 crossref_primary_10_1021_cm5026766 crossref_primary_10_1039_C4MH00174E crossref_primary_10_1063_1_5051629 crossref_primary_10_1038_s41467_018_06009_3 crossref_primary_10_1021_acs_jpcc_7b06673 crossref_primary_10_1063_5_0107903 crossref_primary_10_1103_PhysRevB_92_220101 crossref_primary_10_1088_1361_6633_ac4be9 crossref_primary_10_1021_acs_jpclett_0c02934 crossref_primary_10_1038_s41467_022_30414_4 crossref_primary_10_1038_s41598_020_76742_7 crossref_primary_10_1021_jacs_2c08827 crossref_primary_10_1103_PhysRevB_102_144106 crossref_primary_10_1039_C7SC01429E crossref_primary_10_1021_acsphotonics_4c00513 crossref_primary_10_1002_admi_201400445 |
Cites_doi | 10.1103/PhysRevLett.98.186807 10.1107/S0108768110014734 10.1103/PhysRevLett.104.066802 10.3389/fphy.2014.00010 10.1103/PhysRevB.47.558 10.1038/nature12340 10.1039/b007639m 10.1103/PhysRevLett.100.136406 10.1103/PhysRevB.86.121102 10.1103/PhysRevB.84.041202 10.1103/PhysRevB.50.17953 10.1021/cm9505097 10.1002/adma.201203199 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.56.12847 10.1002/adma.201302797 10.1039/c0cs00226g 10.1016/j.cpc.2007.11.016 10.1021/ic401215x 10.1126/science.1243982 10.1103/PhysRevLett.101.266802 10.1126/science.1243167 10.1103/PhysRevLett.107.156803 10.1080/00150190600732694 10.1038/358136a0 10.1088/0022-3719/10/16/019 10.1103/PhysRevLett.77.3419 10.1038/nmat3051 10.1038/nature12509 10.1103/PhysRevB.65.035109 10.1016/S0039-6028(00)00441-6 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 13, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 13, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1405780111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Switchable Rashba bands in ferroelectric halides |
EISSN | 1091-6490 |
EndPage | 6904 |
ExternalDocumentID | PMC4024856 3316694481 24785294 10_1073_pnas_1405780111 111_19_6900 23772695 US201600143810 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c483t-ea09c0bf9b8156ccbe2ec78ab7d8f5b1f8c8768b5beff39c2e5899dec86e22193 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:33:36 EDT 2025 Fri Jul 11 03:03:17 EDT 2025 Fri Jul 11 12:08:36 EDT 2025 Mon Jun 30 08:07:50 EDT 2025 Mon Jul 21 05:53:22 EDT 2025 Tue Jul 01 01:53:06 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Nov 11 00:30:22 EST 2020 Thu May 29 08:40:53 EDT 2025 Thu Apr 03 09:46:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | density functional theory effective Hamiltonian electronic structure |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c483t-ea09c0bf9b8156ccbe2ec78ab7d8f5b1f8c8768b5beff39c2e5899dec86e22193 |
Notes | http://dx.doi.org/10.1073/pnas.1405780111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 1M.K. and J. Im contributed equally to this work. Contributed by Jisoon Ihm, April 5, 2014 (sent for review January 29, 2014) Author contributions: M.K., J. Im, A.J.F., J. Ihm, and H.J. designed research; M.K., J. Im, A.J.F., J. Ihm, and H.J. performed research; M.K., J. Im, and H.J. analyzed data; and M.K., J. Im, J. Ihm, and H.J. wrote the paper. |
PMID | 24785294 |
PQID | 1529063004 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | proquest_journals_1529063004 pnas_primary_111_19_6900 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4024856 crossref_primary_10_1073_pnas_1405780111 proquest_miscellaneous_1524817609 crossref_citationtrail_10_1073_pnas_1405780111 jstor_primary_23772695 fao_agris_US201600143810 proquest_miscellaneous_1803087284 pubmed_primary_24785294 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-13 |
PublicationDateYYYYMMDD | 2014-05-13 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Bychokov YA (e_1_3_3_1_2) 1984; 39 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 21685900 - Nat Mater. 2011 Jun 19;10(7):521-6 23070981 - Adv Mater. 2013 Jan 25;25(4):509-13 23842493 - Nature. 2013 Jul 18;499(7458):316-9 20366845 - Phys Rev Lett. 2010 Feb 12;104(6):066802 17501597 - Phys Rev Lett. 2007 May 4;98(18):186807 24136964 - Science. 2013 Oct 18;342(6156):341-4 10062215 - Phys Rev Lett. 1996 Oct 14;77(16):3419-3422 21509354 - Chem Soc Rev. 2011 Jul;40(7):3577-98 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 22107313 - Phys Rev Lett. 2011 Oct 7;107(15):156803 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 23834108 - Inorg Chem. 2013 Aug 5;52(15):9019-38 24136965 - Science. 2013 Oct 18;342(6156):344-7 20631424 - Acta Crystallogr B. 2010 Aug;66(Pt 4):422-9 24025775 - Nature. 2013 Sep 19;501(7467):395-8 18517979 - Phys Rev Lett. 2008 Apr 4;100(13):136406 19113782 - Phys Rev Lett. 2008 Dec 31;101(26):266802 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1103/PhysRevLett.98.186807 – ident: e_1_3_3_10_2 doi: 10.1107/S0108768110014734 – ident: e_1_3_3_5_2 doi: 10.1103/PhysRevLett.104.066802 – ident: e_1_3_3_11_2 doi: 10.3389/fphy.2014.00010 – ident: e_1_3_3_25_2 doi: 10.1103/PhysRevB.47.558 – ident: e_1_3_3_21_2 doi: 10.1038/nature12340 – volume: 39 start-page: 78 year: 1984 ident: e_1_3_3_1_2 article-title: Properties of a 2D electron gas with lifted spectral degeneracy publication-title: JETP Lett – ident: e_1_3_3_20_2 doi: 10.1039/b007639m – ident: e_1_3_3_28_2 doi: 10.1103/PhysRevLett.100.136406 – ident: e_1_3_3_12_2 doi: 10.1103/PhysRevB.86.121102 – ident: e_1_3_3_14_2 doi: 10.1103/PhysRevB.84.041202 – ident: e_1_3_3_27_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_3_19_2 doi: 10.1021/cm9505097 – ident: e_1_3_3_7_2 doi: 10.1002/adma.201203199 – ident: e_1_3_3_26_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_3_30_2 doi: 10.1103/PhysRevB.56.12847 – ident: e_1_3_3_8_2 doi: 10.1002/adma.201302797 – ident: e_1_3_3_17_2 doi: 10.1039/c0cs00226g – ident: e_1_3_3_32_2 doi: 10.1016/j.cpc.2007.11.016 – ident: e_1_3_3_9_2 doi: 10.1021/ic401215x – ident: e_1_3_3_23_2 doi: 10.1126/science.1243982 – ident: e_1_3_3_4_2 doi: 10.1103/PhysRevLett.101.266802 – ident: e_1_3_3_24_2 doi: 10.1126/science.1243167 – ident: e_1_3_3_13_2 doi: 10.1103/PhysRevLett.107.156803 – ident: e_1_3_3_16_2 doi: 10.1080/00150190600732694 – ident: e_1_3_3_15_2 doi: 10.1038/358136a0 – ident: e_1_3_3_29_2 doi: 10.1088/0022-3719/10/16/019 – ident: e_1_3_3_2_2 doi: 10.1103/PhysRevLett.77.3419 – ident: e_1_3_3_6_2 doi: 10.1038/nmat3051 – ident: e_1_3_3_22_2 doi: 10.1038/nature12509 – ident: e_1_3_3_31_2 doi: 10.1103/PhysRevB.65.035109 – ident: e_1_3_3_18_2 doi: 10.1016/S0039-6028(00)00441-6 – reference: 23070981 - Adv Mater. 2013 Jan 25;25(4):509-13 – reference: 17501597 - Phys Rev Lett. 2007 May 4;98(18):186807 – reference: 24136964 - Science. 2013 Oct 18;342(6156):341-4 – reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 – reference: 24025775 - Nature. 2013 Sep 19;501(7467):395-8 – reference: 10062215 - Phys Rev Lett. 1996 Oct 14;77(16):3419-3422 – reference: 23842493 - Nature. 2013 Jul 18;499(7458):316-9 – reference: 19113782 - Phys Rev Lett. 2008 Dec 31;101(26):266802 – reference: 20366845 - Phys Rev Lett. 2010 Feb 12;104(6):066802 – reference: 22107313 - Phys Rev Lett. 2011 Oct 7;107(15):156803 – reference: 10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 – reference: 21685900 - Nat Mater. 2011 Jun 19;10(7):521-6 – reference: 20631424 - Acta Crystallogr B. 2010 Aug;66(Pt 4):422-9 – reference: 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 – reference: 21509354 - Chem Soc Rev. 2011 Jul;40(7):3577-98 – reference: 24136965 - Science. 2013 Oct 18;342(6156):344-7 – reference: 18517979 - Phys Rev Lett. 2008 Apr 4;100(13):136406 – reference: 23834108 - Inorg Chem. 2013 Aug 5;52(15):9019-38 |
SSID | ssj0009580 |
Score | 2.568249 |
Snippet | The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for... The Rashba effect is spin degeneracy lift originated from spin– orbit coupling under inversion symmetry breaking and has been intensively studied for... Manipulation of electron spins is an important research subject to achieve breakthroughs in current electronics. The Rashba effect is the spin energy level... The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6900 |
SubjectTerms | Angular momentum Calcium Compounds - chemistry Coefficients Computer Simulation Crystallization - methods electric field Electric fields Electronic structure Electronics - methods Ferroelectric materials Ferroelectrics Halides Iron - chemistry Materials Metal halides Methylamines - chemistry Models, Chemical momentum Nanostructures - chemistry Orbitals Organic Chemicals - chemistry Oxides - chemistry Perovskite Perovskites Physical Sciences texture Titanium - chemistry |
Title | Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites |
URI | https://www.jstor.org/stable/23772695 http://www.pnas.org/content/111/19/6900.abstract https://www.ncbi.nlm.nih.gov/pubmed/24785294 https://www.proquest.com/docview/1529063004 https://www.proquest.com/docview/1524817609 https://www.proquest.com/docview/1803087284 https://pubmed.ncbi.nlm.nih.gov/PMC4024856 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYuHBBDBgNDGQkDkNVunw4iXPgUMGmUY1uoq3UW2Q7zloJJShpQeKv59lxPjoVNLhUqeM4Ud4v78P2-z2E3oFNTInwIDqJHGITJhybgqG0oZGGoeBgMfQu32l4uSCTZbDsrZiq7JINH4lfe_NK_keq0AZyVVmy_yDZdlBogGOQL_yChOH3XjKe_VzDS9fJTxCO-5-GOvNCrwdMev-_smrF2ZAzs_s1k2VZ1PVvFMM1eOKpVPzFxY9KzeVWfYf1pjVwVbOdYNrMH467bBSjIqqhPbyZdrWNTa3mL2rHuzGRCoZ1ZvY6L1r0lFKaqdhxuVlty2616vPK9K4KgyAzR-EStbxep5gatQpeiR2SujDoSO5pa3Sx0bwGdHFPtUIY7-zV-aCkVKHinFWg9sH9BJtrRtlh155eJxeLq6tkfr6cH6CHHoQVfjO705I005q9wjxZQwUV-Wd3ht_xYg4yVjTbWRVHLnTdF6_c3Xbb82PmT9BjE4DgcY2mI_RA5k_RUSM_fGp4yN8_Q9cdvPAMf8DumYcBQnhijmtYYQ0rvM7xDqxwDSvcg9VztLg4n3-8tE39DVsQ6m9syZxYODyLuaIUEoJLT4qIMh6lNAu4m1EBtpTygMss82PhyQCi91TCVy49sIT-MTrMi1wOEHbdlHKZhi5l4BPCxUTG1OfgN4mY8Ciw0Kh5n4kw5PSqRsq3RG-SiPxEvdWkE4CFTtsLvte8LH_uOgABJewWrGaymHmKU1GxWlLXsdCxllo7hOcDLMIYnmegR2mHhjDZjROFQQudNKJNjC6AuwWqbIJir7PQ2_Y0aGq1_MZyWWx1H0LdKHTiv_ShmqITfEYLvajR0j0biSjcBs5EOzhqOyim-N0z-XqlGeOJZi4MX97j2V6hR90XfIION-VWvga_e8Pf6I_lN4xezyM |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switchable+S+%3D+1%2F2+and+J+%3D+1%2F2+Rashba+bands+in+ferroelectric+halide+perovskites&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kim%2C+Minsung&rft.au=Im%2C+Jino&rft.au=Freeman%2C+Arthur+J&rft.au=Ihm%2C+Jisoon&rft.date=2014-05-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=19&rft.spage=6900&rft_id=info:doi/10.1073%2Fpnas.1405780111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F19.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F19.cover.gif |