An Infectious cDNA Clone of SARS-CoV-2

The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA)...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 27; no. 5; pp. 841 - 848.e3
Main Authors Xie, Xuping, Muruato, Antonio, Lokugamage, Kumari G., Narayanan, Krishna, Zhang, Xianwen, Zou, Jing, Liu, Jianying, Schindewolf, Craig, Bopp, Nathen E., Aguilar, Patricia V., Plante, Kenneth S., Weaver, Scott C., Makino, Shinji, LeDuc, James W., Menachery, Vineet D., Shi, Pei-Yong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 106 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures. [Display omitted] •A reverse genetic system has been established for SARS-CoV-2•Recombinant SARS-CoV-2 replicates as efficiently as the original clinical isolate•A stable mNeonGreen reporter SARS-CoV-2 has been developed•The mNeonGreen SARS-CoV-2 can be used to screen antiviral inhibitors Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic. Xie et al. generated an infectious cDNA clone of SARS-CoV-2 and a mNeonGreen reporter virus. Recombinant SARS-CoV-2 and reporter virus replicate as efficiently as the original clinical isolate.
AbstractList The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 10 6 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures. • A reverse genetic system has been established for SARS-CoV-2 • Recombinant SARS-CoV-2 replicates as efficiently as the original clinical isolate • A stable mNeonGreen reporter SARS-CoV-2 has been developed • The mNeonGreen SARS-CoV-2 can be used to screen antiviral inhibitors Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic. Xie et al. generated an infectious cDNA clone of SARS-CoV-2 and a mNeonGreen reporter virus. Recombinant SARS-CoV-2 and reporter virus replicate as efficiently as the original clinical isolate.
The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 10 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures.
The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 106 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures.The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 106 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures.
The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 106 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures. [Display omitted] •A reverse genetic system has been established for SARS-CoV-2•Recombinant SARS-CoV-2 replicates as efficiently as the original clinical isolate•A stable mNeonGreen reporter SARS-CoV-2 has been developed•The mNeonGreen SARS-CoV-2 can be used to screen antiviral inhibitors Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic. Xie et al. generated an infectious cDNA clone of SARS-CoV-2 and a mNeonGreen reporter virus. Recombinant SARS-CoV-2 and reporter virus replicate as efficiently as the original clinical isolate.
Author Bopp, Nathen E.
Liu, Jianying
Zou, Jing
Weaver, Scott C.
Lokugamage, Kumari G.
Narayanan, Krishna
Makino, Shinji
Aguilar, Patricia V.
Menachery, Vineet D.
Xie, Xuping
Plante, Kenneth S.
Schindewolf, Craig
Shi, Pei-Yong
Muruato, Antonio
LeDuc, James W.
Zhang, Xianwen
Author_xml – sequence: 1
  givenname: Xuping
  surname: Xie
  fullname: Xie, Xuping
  email: xuxie@UTMB.edu
  organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 2
  givenname: Antonio
  surname: Muruato
  fullname: Muruato, Antonio
  organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 3
  givenname: Kumari G.
  surname: Lokugamage
  fullname: Lokugamage, Kumari G.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 4
  givenname: Krishna
  surname: Narayanan
  fullname: Narayanan, Krishna
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 5
  givenname: Xianwen
  surname: Zhang
  fullname: Zhang, Xianwen
  organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 6
  givenname: Jing
  surname: Zou
  fullname: Zou, Jing
  organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 7
  givenname: Jianying
  surname: Liu
  fullname: Liu, Jianying
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 8
  givenname: Craig
  surname: Schindewolf
  fullname: Schindewolf, Craig
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 9
  givenname: Nathen E.
  surname: Bopp
  fullname: Bopp, Nathen E.
  organization: Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 10
  givenname: Patricia V.
  surname: Aguilar
  fullname: Aguilar, Patricia V.
  organization: Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 11
  givenname: Kenneth S.
  surname: Plante
  fullname: Plante, Kenneth S.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 12
  givenname: Scott C.
  surname: Weaver
  fullname: Weaver, Scott C.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 13
  givenname: Shinji
  surname: Makino
  fullname: Makino, Shinji
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 14
  givenname: James W.
  surname: LeDuc
  fullname: LeDuc, James W.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 15
  givenname: Vineet D.
  surname: Menachery
  fullname: Menachery, Vineet D.
  email: vimenach@UTMB.edu
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
– sequence: 16
  givenname: Pei-Yong
  surname: Shi
  fullname: Shi, Pei-Yong
  email: peshi@UTMB.edu
  organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32289263$$D View this record in MEDLINE/PubMed
BookMark eNp9UctKxDAUDaL4GP0BF9KVuGnNzastiDCMTxAFX9uQSW81Q6fRpjPg35txVNSFqxu453FzzhZZbX2LhOwCzYCCOpxk9tlPM0YZzajIKBUrZBNKLlJFVbn68YaUAys2yFYIE0qlpDmskw3OWFEyxTfJ_rBNLtsabe_8LCT25HqYjJrok_g6uRve3qUj_5iybbJWmybgzucckIez0_vRRXp1c345Gl6lVhS8Tysua7BFwSRHNuZSGVMxU9UcTAFMCKwrEHmuEEDIQsJYCVsxzm2JmI-54gNyvNR9mY2nWFls-840-qVzU9O9aW-c_r1p3bN-8nOdg-SSlVHg4FOg868zDL2eumCxaUyL8YOa8ZKCUCyaDsjeT69vk69wIoAtAbbzIXRYf0OA6kUDeqIXDehFA5oKHRuIpOIPybrexHQX97rmf-rRkoox4bnDTgfrsLVYuS4WpCvv_qO_Ax-NnkY
CitedBy_id crossref_primary_10_1021_acsptsci_3c00337
crossref_primary_10_3390_v12091006
crossref_primary_10_1186_s12916_022_02252_0
crossref_primary_10_15212_ZOONOSES_2022_0001
crossref_primary_10_2139_ssrn_4157446
crossref_primary_10_3389_fgene_2020_572702
crossref_primary_10_1093_infdis_jiab305
crossref_primary_10_1038_s41579_020_00468_6
crossref_primary_10_1016_j_isci_2022_104528
crossref_primary_10_1038_s41556_024_01388_w
crossref_primary_10_1016_j_cell_2020_05_042
crossref_primary_10_1016_j_celrep_2022_110368
crossref_primary_10_1073_pnas_2012197117
crossref_primary_10_1128_msphere_00726_24
crossref_primary_10_1038_s41541_022_00472_2
crossref_primary_10_1038_s41586_021_03431_4
crossref_primary_10_1073_pnas_2122897119
crossref_primary_10_1093_pnasnexus_pgae500
crossref_primary_10_1080_08830185_2020_1800688
crossref_primary_10_1016_j_isci_2022_105507
crossref_primary_10_1128_JVI_00014_21
crossref_primary_10_1016_j_molcel_2022_04_033
crossref_primary_10_3389_fbioe_2023_1129111
crossref_primary_10_3389_fcimb_2022_1035711
crossref_primary_10_1038_s41565_020_0737_y
crossref_primary_10_1128_spectrum_03385_22
crossref_primary_10_3390_v13040647
crossref_primary_10_1016_j_immuni_2021_02_001
crossref_primary_10_1016_j_chom_2022_02_015
crossref_primary_10_1038_s41541_023_00753_4
crossref_primary_10_1038_s44161_023_00336_5
crossref_primary_10_1016_j_virs_2023_06_007
crossref_primary_10_1111_1751_7915_14027
crossref_primary_10_3390_vaccines12060597
crossref_primary_10_1126_sciimmunol_abp9962
crossref_primary_10_1038_s41421_024_00673_0
crossref_primary_10_1016_j_celrep_2022_111359
crossref_primary_10_1128_mbio_03693_24
crossref_primary_10_1038_s41598_021_88809_0
crossref_primary_10_1038_s42003_022_04030_3
crossref_primary_10_1099_acmi_0_000463_v4
crossref_primary_10_3390_microorganisms9050926
crossref_primary_10_1093_jmcb_mjac021
crossref_primary_10_1371_journal_pone_0274829
crossref_primary_10_1080_22221751_2022_2151383
crossref_primary_10_1038_s41541_022_00471_3
crossref_primary_10_1158_2767_9764_CRC_22_0471
crossref_primary_10_1007_s11427_020_1893_9
crossref_primary_10_1126_science_abc4730
crossref_primary_10_1128_spectrum_02379_22
crossref_primary_10_3390_v13040650
crossref_primary_10_1038_s41467_022_33030_4
crossref_primary_10_1038_s41392_022_01137_1
crossref_primary_10_3934_publichealth_2021011
crossref_primary_10_1016_j_celrep_2022_111892
crossref_primary_10_1038_s44298_024_00037_1
crossref_primary_10_3390_v13091814
crossref_primary_10_1111_cmi_13319
crossref_primary_10_1371_journal_ppat_1009439
crossref_primary_10_21769_BioProtoc_4257
crossref_primary_10_1128_aac_00198_22
crossref_primary_10_3390_ijms241914622
crossref_primary_10_1038_s41586_021_03530_2
crossref_primary_10_1016_j_xcrm_2022_100603
crossref_primary_10_1038_s41467_020_20789_7
crossref_primary_10_1016_j_xcrm_2021_100204
crossref_primary_10_1002_jmv_29076
crossref_primary_10_2147_CPAA_S331660
crossref_primary_10_3389_fmicb_2020_02016
crossref_primary_10_1016_j_csbj_2022_08_044
crossref_primary_10_35825_2587_5728_2021_1_3_217_235
crossref_primary_10_1038_s41598_022_07867_0
crossref_primary_10_1038_s41586_020_2639_4
crossref_primary_10_1038_s41591_021_01294_w
crossref_primary_10_1016_j_crphar_2021_100045
crossref_primary_10_1038_s41591_021_01270_4
crossref_primary_10_1038_s41467_023_36140_9
crossref_primary_10_3390_cells12232694
crossref_primary_10_1007_s12272_023_01458_x
crossref_primary_10_1038_s41541_022_00462_4
crossref_primary_10_1126_scitranslmed_abq4130
crossref_primary_10_2807_1560_7917_ES_2021_26_42_2001718
crossref_primary_10_3390_v13040603
crossref_primary_10_1038_s41586_021_03673_2
crossref_primary_10_3201_eid2705_210023
crossref_primary_10_1038_s41467_022_33284_y
crossref_primary_10_1016_j_celrep_2021_109197
crossref_primary_10_3390_v13050893
crossref_primary_10_1038_s44319_023_00043_z
crossref_primary_10_1128_JVI_02209_20
crossref_primary_10_1371_journal_pone_0278287
crossref_primary_10_3390_life13071447
crossref_primary_10_1073_pnas_2202370119
crossref_primary_10_2139_ssrn_4010891
crossref_primary_10_1016_j_jobb_2022_02_002
crossref_primary_10_3390_v15010096
crossref_primary_10_3389_fimmu_2023_1284148
crossref_primary_10_1038_s41467_021_26096_z
crossref_primary_10_1038_s41594_023_01023_6
crossref_primary_10_3390_vaccines11101546
crossref_primary_10_3390_ijms21124546
crossref_primary_10_1038_s41467_022_29413_2
crossref_primary_10_1128_mBio_02168_20
crossref_primary_10_3389_fimmu_2021_681586
crossref_primary_10_1128_spectrum_02732_22
crossref_primary_10_1371_journal_pbio_3001592
crossref_primary_10_1099_jgv_0_002065
crossref_primary_10_31857_S0555109923040025
crossref_primary_10_3390_v15071429
crossref_primary_10_1371_journal_ppat_1010627
crossref_primary_10_3390_zoonoticdis2030014
crossref_primary_10_1016_j_chembiol_2022_05_009
crossref_primary_10_3390_vaccines11050959
crossref_primary_10_1126_sciimmunol_adi8039
crossref_primary_10_1128_mbio_02828_24
crossref_primary_10_1371_journal_ppat_1009878
crossref_primary_10_3390_ijms221910188
crossref_primary_10_1056_NEJMoa2028436
crossref_primary_10_1371_journal_pbio_3001143
crossref_primary_10_1128_JVI_01715_20
crossref_primary_10_15252_embr_202153820
crossref_primary_10_1038_s41467_020_19055_7
crossref_primary_10_3390_ijms222212134
crossref_primary_10_1177_20417314221122130
crossref_primary_10_4110_in_2021_21_e3
crossref_primary_10_1186_s13027_023_00485_z
crossref_primary_10_1038_s41564_024_01657_2
crossref_primary_10_1042_CS20241215
crossref_primary_10_1016_j_immuni_2021_08_015
crossref_primary_10_3390_vaccines11101606
crossref_primary_10_1016_j_jim_2021_113060
crossref_primary_10_1371_journal_pone_0307655
crossref_primary_10_1038_s41541_021_00352_1
crossref_primary_10_1093_infdis_jiab035
crossref_primary_10_1038_s41586_021_03653_6
crossref_primary_10_1126_sciadv_adj8277
crossref_primary_10_3389_fmicb_2024_1490944
crossref_primary_10_1038_s41467_024_52803_7
crossref_primary_10_1007_s12250_021_00369_9
crossref_primary_10_1016_j_immuni_2020_11_009
crossref_primary_10_1016_j_isci_2022_103818
crossref_primary_10_3390_v15102003
crossref_primary_10_1038_s41586_021_04245_0
crossref_primary_10_1371_journal_pbio_3001158
crossref_primary_10_1186_s40794_022_00176_4
crossref_primary_10_1371_journal_pbio_3001284
crossref_primary_10_1007_s12247_020_09525_2
crossref_primary_10_1128_JCM_00723_21
crossref_primary_10_1038_s41596_021_00491_8
crossref_primary_10_1371_journal_ppat_1009840
crossref_primary_10_3389_fmicb_2021_649314
crossref_primary_10_1080_21505594_2022_2029328
crossref_primary_10_1038_s41586_022_05282_z
crossref_primary_10_1016_j_antiviral_2024_106037
crossref_primary_10_7554_eLife_68479
crossref_primary_10_1128_aac_00222_22
crossref_primary_10_1126_sciimmunol_adg7015
crossref_primary_10_1038_s41564_024_01765_z
crossref_primary_10_1073_pnas_2205690119
crossref_primary_10_1038_s41541_023_00779_8
crossref_primary_10_1016_j_phymed_2023_155176
crossref_primary_10_1073_pnas_2113874119
crossref_primary_10_1016_j_celrep_2020_108528
crossref_primary_10_1254_fpj_21072
crossref_primary_10_1128_mbio_03468_23
crossref_primary_10_1016_j_patcog_2021_107848
crossref_primary_10_1016_j_health_2023_100278
crossref_primary_10_1172_jci_insight_154882
crossref_primary_10_1016_j_celrep_2024_113965
crossref_primary_10_1016_j_jcv_2021_105024
crossref_primary_10_3389_finsc_2022_908702
crossref_primary_10_1371_journal_ppat_1008737
crossref_primary_10_1128_JVI_00687_21
crossref_primary_10_7554_eLife_70968
crossref_primary_10_1038_s41467_022_33395_6
crossref_primary_10_1186_s42483_020_00077_4
crossref_primary_10_3389_fmicb_2022_844447
crossref_primary_10_1016_j_cell_2021_07_007
crossref_primary_10_1016_j_celrep_2021_108916
crossref_primary_10_1186_s13567_024_01373_z
crossref_primary_10_1002_anie_202214595
crossref_primary_10_1126_sciimmunol_abh3634
crossref_primary_10_1038_s41586_022_04702_4
crossref_primary_10_1038_s41586_021_03237_4
crossref_primary_10_1128_mBio_02754_20
crossref_primary_10_3390_v14020172
crossref_primary_10_1007_s13205_021_03076_0
crossref_primary_10_1038_s41467_022_31930_z
crossref_primary_10_1080_22221751_2020_1870414
crossref_primary_10_3389_fimmu_2024_1468871
crossref_primary_10_1007_s00508_020_01763_1
crossref_primary_10_1038_s41586_022_04690_5
crossref_primary_10_1016_j_cell_2020_05_015
crossref_primary_10_1128_mbio_03176_22
crossref_primary_10_3389_fimmu_2022_821730
crossref_primary_10_1126_sciimmunol_abc3582
crossref_primary_10_3390_v13060953
crossref_primary_10_1128_Spectrum_01537_21
crossref_primary_10_1038_s41586_022_04802_1
crossref_primary_10_1099_jgv_0_001458
crossref_primary_10_1002_jmv_27650
crossref_primary_10_1126_science_abl6184
crossref_primary_10_1096_fj_202300077R
crossref_primary_10_3390_v14061211
crossref_primary_10_3390_pathogens10030272
crossref_primary_10_1038_s41564_021_00972_2
crossref_primary_10_1038_s41467_022_30134_9
crossref_primary_10_1016_j_xpro_2022_101617
crossref_primary_10_1111_nyas_14957
crossref_primary_10_2147_IJN_S328090
crossref_primary_10_1016_j_chom_2021_03_008
crossref_primary_10_1038_s41541_024_00999_6
crossref_primary_10_1016_j_virol_2023_05_013
crossref_primary_10_1038_s41588_022_01110_2
crossref_primary_10_1016_j_antiviral_2022_105486
crossref_primary_10_1002_jmv_70171
crossref_primary_10_1038_s41467_024_54762_5
crossref_primary_10_1038_s41541_021_00405_5
crossref_primary_10_1021_acschembio_1c00893
crossref_primary_10_1128_JVI_01357_21
crossref_primary_10_3390_vaccines12030236
crossref_primary_10_1093_infdis_jiae385
crossref_primary_10_1016_j_antiviral_2022_105484
crossref_primary_10_1126_sciadv_adf4975
crossref_primary_10_1371_journal_pbio_3001091
crossref_primary_10_1038_s41467_022_30681_1
crossref_primary_10_1038_s41591_022_02162_x
crossref_primary_10_1016_j_medj_2021_04_016
crossref_primary_10_1016_j_diagmicrobio_2020_115248
crossref_primary_10_1371_journal_pone_0253578
crossref_primary_10_1128_jvi_00582_22
crossref_primary_10_1371_journal_pbio_3002097
crossref_primary_10_1016_j_celrep_2022_110829
crossref_primary_10_1128_mBio_01935_20
crossref_primary_10_3390_v14071369
crossref_primary_10_1038_s41541_020_00246_8
crossref_primary_10_3390_v15122364
crossref_primary_10_1016_j_jacbts_2021_01_002
crossref_primary_10_1002_cpmc_126
crossref_primary_10_1002_jev2_12110
crossref_primary_10_1016_j_stemcr_2021_02_008
crossref_primary_10_1016_j_xpro_2022_101716
crossref_primary_10_1186_s12967_020_02535_1
crossref_primary_10_1016_j_chom_2021_11_005
crossref_primary_10_1016_j_tvjl_2024_106122
crossref_primary_10_1182_bloodadvances_2022009430
crossref_primary_10_1016_j_csbj_2021_04_061
crossref_primary_10_1038_s41467_020_19231_9
crossref_primary_10_1021_acs_jcim_1c01058
crossref_primary_10_7554_eLife_89035
crossref_primary_10_3390_v15091855
crossref_primary_10_3390_vaccines10060944
crossref_primary_10_1016_j_celrep_2022_110954
crossref_primary_10_1016_j_virs_2023_10_001
crossref_primary_10_7554_eLife_89035_3
crossref_primary_10_1007_s10895_023_03289_x
crossref_primary_10_3389_fmicb_2022_883597
crossref_primary_10_1016_j_chom_2023_06_002
crossref_primary_10_1038_s41586_021_03275_y
crossref_primary_10_1371_journal_pone_0241535
crossref_primary_10_2147_IJN_S296383
crossref_primary_10_1038_s41598_022_24682_9
crossref_primary_10_1088_1752_7163_ac3f24
crossref_primary_10_1016_j_ajic_2022_02_016
crossref_primary_10_1038_s42255_021_00479_4
crossref_primary_10_1038_s41598_021_82055_0
crossref_primary_10_1038_s41467_021_23779_5
crossref_primary_10_1093_pnasnexus_pgac198
crossref_primary_10_3390_v16050708
crossref_primary_10_4049_jimmunol_2001420
crossref_primary_10_1101_gad_348320_121
crossref_primary_10_1016_j_apsb_2022_02_019
crossref_primary_10_1016_j_cell_2020_10_028
crossref_primary_10_1111_ina_13115
crossref_primary_10_1080_19420862_2021_1958663
crossref_primary_10_1073_pnas_2111593118
crossref_primary_10_4110_in_2021_21_e39
crossref_primary_10_1073_pnas_2208525120
crossref_primary_10_3389_fcimb_2023_1268227
crossref_primary_10_1371_journal_ppat_1011065
crossref_primary_10_1016_j_immuni_2021_05_006
crossref_primary_10_1128_Spectrum_00313_21
crossref_primary_10_1136_gutjnl_2024_332784
crossref_primary_10_1038_s41586_022_05514_2
crossref_primary_10_1038_s41598_022_13670_8
crossref_primary_10_1002_rmv_2170
crossref_primary_10_3390_biom13020207
crossref_primary_10_1080_22221751_2022_2161422
crossref_primary_10_1038_s41467_023_39738_1
crossref_primary_10_1038_s41467_021_23942_y
crossref_primary_10_1038_s41467_022_30580_5
crossref_primary_10_1134_S0026893322010022
crossref_primary_10_1002_jmv_28673
crossref_primary_10_1111_trf_16101
crossref_primary_10_1542_peds_2020_018242
crossref_primary_10_1038_s41598_021_95197_y
crossref_primary_10_1038_s41587_022_01475_z
crossref_primary_10_1038_s41588_023_01307_z
crossref_primary_10_1038_s41467_021_27611_y
crossref_primary_10_1128_jvi_01909_23
crossref_primary_10_1038_s41586_020_2814_7
crossref_primary_10_1016_j_virs_2022_06_008
crossref_primary_10_1128_mbio_03238_21
crossref_primary_10_1126_sciimmunol_abi9007
crossref_primary_10_1126_sciimmunol_abo0226
crossref_primary_10_1016_j_celrep_2022_110905
crossref_primary_10_1016_j_chembiol_2023_06_028
crossref_primary_10_1073_pnas_2025866118
crossref_primary_10_1038_s41598_022_18906_1
crossref_primary_10_1126_science_abn3781
crossref_primary_10_1016_j_addr_2020_12_011
crossref_primary_10_1371_journal_ppat_1011286
crossref_primary_10_1038_s41467_021_26803_w
crossref_primary_10_1128_mbio_03377_21
crossref_primary_10_1128_spectrum_01837_22
crossref_primary_10_1247_csf_21047
crossref_primary_10_1111_febs_16947
crossref_primary_10_1016_j_celrep_2020_108234
crossref_primary_10_1016_j_jvacx_2024_100559
crossref_primary_10_1016_j_molcel_2020_12_041
crossref_primary_10_1038_s41598_022_10987_2
crossref_primary_10_1038_s41573_023_00692_8
crossref_primary_10_1371_journal_pbio_3000849
crossref_primary_10_1128_jvi_02216_21
crossref_primary_10_1080_22221751_2022_2099305
crossref_primary_10_1007_s10753_022_01656_7
crossref_primary_10_1016_j_celrep_2021_109014
crossref_primary_10_1007_s12250_021_00385_9
crossref_primary_10_1038_s41467_020_17892_0
crossref_primary_10_1016_j_xcrm_2022_100529
crossref_primary_10_1111_tbed_14740
crossref_primary_10_1038_s41467_021_27316_2
crossref_primary_10_1371_journal_pbio_3001805
crossref_primary_10_1007_s10456_021_09823_4
crossref_primary_10_1016_j_celrep_2021_109364
crossref_primary_10_1128_jvi_00659_23
crossref_primary_10_1158_2643_3230_BCD_22_0173
crossref_primary_10_1128_jvi_01532_22
crossref_primary_10_1038_s41467_022_31929_6
crossref_primary_10_1021_acs_jmedchem_3c00810
crossref_primary_10_1073_pnas_2209042119
crossref_primary_10_3390_v13122437
crossref_primary_10_1126_science_abn5648
crossref_primary_10_2174_1872210516666220819104853
crossref_primary_10_1371_journal_pone_0248348
crossref_primary_10_1128_JVI_01751_20
crossref_primary_10_1038_s41541_022_00509_6
crossref_primary_10_1128_JVI_01126_21
crossref_primary_10_3390_pathogens12060843
crossref_primary_10_1016_j_jacbts_2022_09_001
crossref_primary_10_1080_22221751_2023_2209208
crossref_primary_10_2174_0929867329666220627121416
crossref_primary_10_3390_v15061281
crossref_primary_10_1371_journal_ppat_1009292
crossref_primary_10_1371_journal_ppat_1011128
crossref_primary_10_3389_fmicb_2022_883642
crossref_primary_10_3389_fphar_2024_1383359
crossref_primary_10_1056_NEJMoa2027906
crossref_primary_10_1126_science_abe6230
crossref_primary_10_1128_mbio_01996_22
crossref_primary_10_1038_s41467_022_28544_w
crossref_primary_10_1093_nar_gkaf010
crossref_primary_10_3390_v13071246
crossref_primary_10_1016_j_cell_2021_02_044
crossref_primary_10_1016_j_micres_2022_126993
crossref_primary_10_1021_acs_jproteome_3c00506
crossref_primary_10_1016_j_xcrm_2021_100354
crossref_primary_10_1002_cpim_116
crossref_primary_10_1038_s41586_020_2895_3
crossref_primary_10_1016_j_virol_2024_110285
crossref_primary_10_3389_fimmu_2023_1112505
crossref_primary_10_1016_j_celrep_2022_110434
crossref_primary_10_1021_acs_nanolett_1c02868
crossref_primary_10_1038_s41594_020_00547_5
crossref_primary_10_1016_j_xcrm_2022_100893
crossref_primary_10_3390_pharmaceutics15020451
crossref_primary_10_1371_journal_ppat_1010265
crossref_primary_10_1128_mBio_00819_21
crossref_primary_10_1165_rcmb_2022_0373OC
crossref_primary_10_1038_s41586_021_03738_2
crossref_primary_10_1371_journal_ppat_1011231
crossref_primary_10_1371_journal_ppat_1011351
crossref_primary_10_3390_v16050785
crossref_primary_10_1016_j_celrep_2021_109452
crossref_primary_10_1016_j_isci_2023_107967
crossref_primary_10_1038_s41541_021_00313_8
crossref_primary_10_1073_pnas_2414583121
crossref_primary_10_1080_22221751_2023_2271089
crossref_primary_10_1128_mSphere_01145_20
crossref_primary_10_3390_v14061253
crossref_primary_10_1016_j_virs_2024_03_009
crossref_primary_10_1038_s41467_022_34571_4
crossref_primary_10_3389_fmolb_2021_678701
crossref_primary_10_3390_v12121357
crossref_primary_10_1016_S2213_2600_21_00158_2
crossref_primary_10_1128_mBio_02749_21
crossref_primary_10_1002_jmv_27738
crossref_primary_10_3390_v12121473
crossref_primary_10_1128_jvi_00753_22
crossref_primary_10_1016_j_jmb_2020_166748
crossref_primary_10_1021_acsanm_2c00181
crossref_primary_10_1371_journal_ppat_1009383
crossref_primary_10_3390_v14030531
crossref_primary_10_1007_s00417_022_05776_6
crossref_primary_10_1016_j_celrep_2021_109353
crossref_primary_10_1038_s41586_021_03693_y
crossref_primary_10_1073_pnas_2101161118
crossref_primary_10_3390_microorganisms8111704
crossref_primary_10_1126_science_adn5658
crossref_primary_10_1089_jir_2020_0214
crossref_primary_10_2139_ssrn_4005583
crossref_primary_10_1128_mbio_00815_22
crossref_primary_10_1128_mbio_02287_23
crossref_primary_10_1002_ange_202214595
crossref_primary_10_1051_irm_2020001
crossref_primary_10_1038_s41467_024_51046_w
crossref_primary_10_1038_s41467_023_37787_0
crossref_primary_10_3390_v13030529
crossref_primary_10_3390_ijms22126558
crossref_primary_10_1016_j_chom_2021_02_020
crossref_primary_10_1172_JCI167955
crossref_primary_10_3390_v13061139
crossref_primary_10_1134_S0003683823040026
crossref_primary_10_1016_j_omtn_2024_102304
crossref_primary_10_1038_s41467_023_44175_1
crossref_primary_10_1126_scitranslmed_abi4547
crossref_primary_10_1016_j_antiviral_2020_104974
crossref_primary_10_1128_JVI_00985_20
crossref_primary_10_3390_v14122682
crossref_primary_10_1016_j_celrep_2022_111729
crossref_primary_10_1038_s41586_021_03791_x
crossref_primary_10_1002_biot_202000354
crossref_primary_10_2139_ssrn_3948202
crossref_primary_10_1016_j_bsheal_2025_01_003
crossref_primary_10_1128_jvi_01671_24
Cites_doi 10.1128/JVI.76.3.1422-1434.2002
10.1128/JVI.79.24.15511-15524.2005
10.1038/nm.3985
10.3390/v11010074
10.1016/j.antiviral.2020.104742
10.1073/pnas.1311542110
10.1016/j.chom.2016.05.004
10.1016/j.virusres.2014.05.026
10.1016/S0140-6736(20)30183-5
10.1056/NEJMoa2001017
10.1128/JVI.02472-07
10.1073/pnas.1517719113
10.1038/nmeth.2413
10.1016/S1473-3099(13)70204-4
10.1128/JVI.76.21.11065-11078.2002
10.1016/j.coviro.2012.04.004
10.1001/jama.2020.2648
10.1073/pnas.1735582100
10.3201/eid2606.200516
10.1038/nrmicro.2016.81
10.1038/s41586-020-2012-7
10.1056/NEJMoa2001191
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020 Elsevier Inc. 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020 Elsevier Inc. 2020 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2020.04.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 848.e3
ExternalDocumentID PMC7153529
32289263
10_1016_j_chom_2020_04_004
S1931312820302316
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: UC7 AI094660
– fundername: NIAID NIH HHS
  grantid: R01 AI114657
– fundername: NIA NIH HHS
  grantid: R00 AG049092
– fundername: NIAID NIH HHS
  grantid: R41 AI136126
– fundername: NIAID NIH HHS
  grantid: R24 AI120942
– fundername: NIAID NIH HHS
  grantid: U19 AI100625
– fundername: NIAID NIH HHS
  grantid: R01 AI127744
– fundername: NCATS NIH HHS
  grantid: TL1 TR001440
– fundername: NIAID NIH HHS
  grantid: R01 AI146081
– fundername: NCATS NIH HHS
  grantid: UL1 TR001439
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
RIG
ZBA
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c483t-d35f1c88253e2b356aad2adf31a81244efd14776e1145851b64cd233c9ee7b363
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 17:45:59 EDT 2025
Mon Jul 21 10:10:12 EDT 2025
Wed Feb 19 02:11:48 EST 2025
Tue Jul 01 02:44:22 EDT 2025
Thu Apr 24 23:04:59 EDT 2025
Fri Feb 23 02:47:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
coronavirus
SARS-CoV-2
vaccine
SARS-CoV
antiviral
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-d35f1c88253e2b356aad2adf31a81244efd14776e1145851b64cd233c9ee7b363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312820302316
PMID 32289263
PQID 2390146223
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7153529
proquest_miscellaneous_2390146223
pubmed_primary_32289263
crossref_primary_10_1016_j_chom_2020_04_004
crossref_citationtrail_10_1016_j_chom_2020_04_004
elsevier_sciencedirect_doi_10_1016_j_chom_2020_04_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-13
PublicationDateYYYYMMDD 2020-05-13
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Thao, Labroussaa, Ebert, V’kovski, Stalder, Portmann, Kelly, Steiner, Holwerda, Kratzel (bib19) 2020
Almazán, Sola, Zuñiga, Marquez-Jurado, Morales, Becares, Enjuanes (bib1) 2014; 189
Su, Anderson, Young, Zhu, Linster, Kalimuddin, Low, Yan, Jayakumar, Sun (bib18) 2020
Coutard, Valle, de Lamballerie, Canard, Seidah, Decroly (bib3) 2020; 176
Shan, Xie, Muruato, Rossi, Roundy, Azar, Yang, Tesh, Bourne, Barrett (bib15) 2016; 19
Scobey, Yount, Sims, Donaldson, Agnihothram, Menachery, Graham, Swanstrom, Bove, Kim (bib14) 2013; 110
Narayanan, Huang, Lokugamage, Kamitani, Ikegami, Tseng, Makino (bib12) 2008; 82
de Wit, van Doremalen, Falzarano, Munster (bib5) 2016; 14
Harcourt, Tamin, Lu, Kamili, Sakthivel, Murray, Queen, Tao, Paden, Zhang (bib6) 2020
Curtis, Yount, Baric (bib4) 2002; 76
Menachery, Yount, Sims, Debbink, Agnihothram, Gralinski, Graham, Scobey, Plante, Royal (bib11) 2016; 113
Shaner, Lambert, Chammas, Ni, Cranfill, Baird, Sell, Allen, Day, Israelsson (bib16) 2013; 10
Schindewolf, Menachery (bib13) 2019; 11
Wu, McGoogan (bib21) 2020
Yount, Denison, Weiss, Baric (bib22) 2002; 76
Holshue, DeBolt, Lindquist, Lofy, Wiesman, Bruce, Spitters, Ericson, Wilkerson, Tural (bib7) 2020; 382
Totura, Baric (bib20) 2012; 2
Yount, Curtis, Fritz, Hensley, Jahrling, Prentice, Denison, Geisbert, Baric (bib23) 2003; 100
Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib25) 2020; 382
Assiri, Al-Tawfiq, Al-Rabeeah, Al-Rabiah, Al-Hajjar, Al-Barrak, Flemban, Al-Nassir, Balkhy, Al-Hakeem (bib2) 2013; 13
Sims, Baric, Yount, Burkett, Collins, Pickles (bib17) 2005; 79
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib24) 2020; 579
Menachery, Yount, Debbink, Agnihothram, Gralinski, Plante, Graham, Scobey, Ge, Donaldson (bib10) 2015; 21
Lokugamage, Hage, Schindewolf, Rajsbaum, Menachery (bib9) 2020
Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bib8) 2020; 395
Menachery (10.1016/j.chom.2020.04.004_bib10) 2015; 21
Lokugamage (10.1016/j.chom.2020.04.004_bib9) 2020
Scobey (10.1016/j.chom.2020.04.004_bib14) 2013; 110
Su (10.1016/j.chom.2020.04.004_bib18) 2020
Yount (10.1016/j.chom.2020.04.004_bib23) 2003; 100
Totura (10.1016/j.chom.2020.04.004_bib20) 2012; 2
Almazán (10.1016/j.chom.2020.04.004_bib1) 2014; 189
Harcourt (10.1016/j.chom.2020.04.004_bib6) 2020
Yount (10.1016/j.chom.2020.04.004_bib22) 2002; 76
de Wit (10.1016/j.chom.2020.04.004_bib5) 2016; 14
Shan (10.1016/j.chom.2020.04.004_bib15) 2016; 19
Huang (10.1016/j.chom.2020.04.004_bib8) 2020; 395
Wu (10.1016/j.chom.2020.04.004_bib21) 2020
Zhu (10.1016/j.chom.2020.04.004_bib25) 2020; 382
Coutard (10.1016/j.chom.2020.04.004_bib3) 2020; 176
Curtis (10.1016/j.chom.2020.04.004_bib4) 2002; 76
Zhou (10.1016/j.chom.2020.04.004_bib24) 2020; 579
Narayanan (10.1016/j.chom.2020.04.004_bib12) 2008; 82
Schindewolf (10.1016/j.chom.2020.04.004_bib13) 2019; 11
Assiri (10.1016/j.chom.2020.04.004_bib2) 2013; 13
Menachery (10.1016/j.chom.2020.04.004_bib11) 2016; 113
Shaner (10.1016/j.chom.2020.04.004_bib16) 2013; 10
Holshue (10.1016/j.chom.2020.04.004_bib7) 2020; 382
Thao (10.1016/j.chom.2020.04.004_bib19) 2020
Sims (10.1016/j.chom.2020.04.004_bib17) 2005; 79
References_xml – year: 2020
  ident: bib6
  article-title: Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with 2019 Novel Coronavirus Disease, United States
  publication-title: Emerg. Infect. Dis.
– volume: 19
  start-page: 891
  year: 2016
  end-page: 900
  ident: bib15
  article-title: An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors
  publication-title: Cell Host Microbe
– volume: 100
  start-page: 12995
  year: 2003
  end-page: 13000
  ident: bib23
  article-title: Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 382
  start-page: 929
  year: 2020
  end-page: 936
  ident: bib7
  article-title: First Case of 2019 Novel Coronavirus in the United States
  publication-title: N. Engl. J. Med.
– year: 2020
  ident: bib19
  article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform
  publication-title: bioRxiv
– volume: 176
  start-page: 104742
  year: 2020
  ident: bib3
  article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade
  publication-title: Antiviral Res.
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: bib8
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– year: 2020
  ident: bib18
  article-title: Discovery of a 382-nt deletion during the early evolution of SARS-CoV-2
  publication-title: bioRxiv
– volume: 76
  start-page: 1422
  year: 2002
  end-page: 1434
  ident: bib4
  article-title: Heterologous gene expression from transmissible gastroenteritis virus replicon particles
  publication-title: J. Virol.
– volume: 79
  start-page: 15511
  year: 2005
  end-page: 15524
  ident: bib17
  article-title: Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs
  publication-title: J. Virol.
– volume: 113
  start-page: 3048
  year: 2016
  end-page: 3053
  ident: bib11
  article-title: SARS-like WIV1-CoV poised for human emergence
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 752
  year: 2013
  end-page: 761
  ident: bib2
  article-title: Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study
  publication-title: Lancet Infect. Dis.
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bib25
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
– volume: 110
  start-page: 16157
  year: 2013
  end-page: 16162
  ident: bib14
  article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 189
  start-page: 262
  year: 2014
  end-page: 270
  ident: bib1
  article-title: Coronavirus reverse genetic systems: infectious clones and replicons
  publication-title: Virus Res.
– volume: 82
  start-page: 4471
  year: 2008
  end-page: 4479
  ident: bib12
  article-title: Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells
  publication-title: J. Virol.
– volume: 14
  start-page: 523
  year: 2016
  end-page: 534
  ident: bib5
  article-title: SARS and MERS: recent insights into emerging coronaviruses
  publication-title: Nat. Rev. Microbiol.
– volume: 11
  start-page: E74
  year: 2019
  ident: bib13
  article-title: Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism
  publication-title: Viruses
– volume: 2
  start-page: 264
  year: 2012
  end-page: 275
  ident: bib20
  article-title: SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon
  publication-title: Curr. Opin. Virol.
– year: 2020
  ident: bib21
  article-title: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention
  publication-title: JAMA
– volume: 21
  start-page: 1508
  year: 2015
  end-page: 1513
  ident: bib10
  article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence
  publication-title: Nat. Med.
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib24
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 76
  start-page: 11065
  year: 2002
  end-page: 11078
  ident: bib22
  article-title: Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59
  publication-title: J. Virol.
– volume: 10
  start-page: 407
  year: 2013
  end-page: 409
  ident: bib16
  article-title: A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum
  publication-title: Nat. Methods
– year: 2020
  ident: bib9
  article-title: SARS-CoV-2 sensitive to type I interferon pretreatment
  publication-title: bioRxiv
– volume: 76
  start-page: 1422
  year: 2002
  ident: 10.1016/j.chom.2020.04.004_bib4
  article-title: Heterologous gene expression from transmissible gastroenteritis virus replicon particles
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.3.1422-1434.2002
– volume: 79
  start-page: 15511
  year: 2005
  ident: 10.1016/j.chom.2020.04.004_bib17
  article-title: Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.24.15511-15524.2005
– volume: 21
  start-page: 1508
  year: 2015
  ident: 10.1016/j.chom.2020.04.004_bib10
  article-title: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence
  publication-title: Nat. Med.
  doi: 10.1038/nm.3985
– year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib19
  article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform
  publication-title: bioRxiv
– volume: 11
  start-page: E74
  year: 2019
  ident: 10.1016/j.chom.2020.04.004_bib13
  article-title: Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism
  publication-title: Viruses
  doi: 10.3390/v11010074
– volume: 176
  start-page: 104742
  year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib3
  article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2020.104742
– volume: 110
  start-page: 16157
  year: 2013
  ident: 10.1016/j.chom.2020.04.004_bib14
  article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311542110
– volume: 19
  start-page: 891
  year: 2016
  ident: 10.1016/j.chom.2020.04.004_bib15
  article-title: An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.05.004
– volume: 189
  start-page: 262
  year: 2014
  ident: 10.1016/j.chom.2020.04.004_bib1
  article-title: Coronavirus reverse genetic systems: infectious clones and replicons
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.05.026
– volume: 395
  start-page: 497
  year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib8
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib18
  article-title: Discovery of a 382-nt deletion during the early evolution of SARS-CoV-2
  publication-title: bioRxiv
– volume: 382
  start-page: 727
  year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib25
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 82
  start-page: 4471
  year: 2008
  ident: 10.1016/j.chom.2020.04.004_bib12
  article-title: Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.02472-07
– year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib9
  article-title: SARS-CoV-2 sensitive to type I interferon pretreatment
  publication-title: bioRxiv
– volume: 113
  start-page: 3048
  year: 2016
  ident: 10.1016/j.chom.2020.04.004_bib11
  article-title: SARS-like WIV1-CoV poised for human emergence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1517719113
– volume: 10
  start-page: 407
  year: 2013
  ident: 10.1016/j.chom.2020.04.004_bib16
  article-title: A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2413
– volume: 13
  start-page: 752
  year: 2013
  ident: 10.1016/j.chom.2020.04.004_bib2
  article-title: Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(13)70204-4
– volume: 76
  start-page: 11065
  year: 2002
  ident: 10.1016/j.chom.2020.04.004_bib22
  article-title: Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.21.11065-11078.2002
– volume: 2
  start-page: 264
  year: 2012
  ident: 10.1016/j.chom.2020.04.004_bib20
  article-title: SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2012.04.004
– year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib21
  article-title: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention
  publication-title: JAMA
  doi: 10.1001/jama.2020.2648
– volume: 100
  start-page: 12995
  year: 2003
  ident: 10.1016/j.chom.2020.04.004_bib23
  article-title: Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1735582100
– year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib6
  article-title: Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with 2019 Novel Coronavirus Disease, United States
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2606.200516
– volume: 14
  start-page: 523
  year: 2016
  ident: 10.1016/j.chom.2020.04.004_bib5
  article-title: SARS and MERS: recent insights into emerging coronaviruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.81
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib24
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 382
  start-page: 929
  year: 2020
  ident: 10.1016/j.chom.2020.04.004_bib7
  article-title: First Case of 2019 Novel Coronavirus in the United States
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001191
SSID ssj0055071
Score 2.6972337
Snippet The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 841
SubjectTerms Animals
antiviral
Antiviral Agents - therapeutic use
Betacoronavirus - genetics
Betacoronavirus - pathogenicity
Chlorocebus aethiops
Clone Cells
coronavirus
Coronavirus Infections - drug therapy
Coronavirus Infections - virology
COVID-19
DNA, Complementary - genetics
Genes, Reporter - genetics
Genome, Viral - genetics
Interferons - therapeutic use
Organisms, Genetically Modified - genetics
Organisms, Genetically Modified - pathogenicity
Pandemics
Pneumonia, Viral - drug therapy
Pneumonia, Viral - virology
RNA, Viral - genetics
SARS-CoV
SARS-CoV-2
vaccine
Vero Cells - virology
Virus Replication - physiology
Title An Infectious cDNA Clone of SARS-CoV-2
URI https://dx.doi.org/10.1016/j.chom.2020.04.004
https://www.ncbi.nlm.nih.gov/pubmed/32289263
https://www.proquest.com/docview/2390146223
https://pubmed.ncbi.nlm.nih.gov/PMC7153529
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KQfAivq0vIogXWdp9ZJMca7VUwR6sld6WbLLBSkmLtgf_vTPJpliVHjwmmSWbb5KZ2ezMN4RcMiMM5xmjkYh9KhUz1AgRUWYV-jtwOgwLnB_7qjeUDyN_VCOdqhYG0yqd7S9temGt3ZmmQ7M5G4-bAwg9mADzylvY-IYh7baQYVHEN7qprDHSdbFyZ5lRlHaFM2WOF_YjgTUibxV0p65Z2x_O6Xfw-TOH8ptT6m6TLRdNeu1ywjukZvNdslH2l_zcI1ft3Lt32VaLDy-57be9zmSaW2-aeYP204B2pi-U75Nh9-6506OuMQJN4AHnNBV-xhKIjX1huRG-iuOUx2kmWFz4a5ulTAaBsrDYwW0_o2SSciGSyNrACCUOSD2Hmx0Rz09DLsFph7BOkmkMEgVjfhCbBGJHxRqEVYjoxLGGY_OKia7Sw940oqgRRd2SGlBskOvlmFnJmbFW2q-A1iua12DU1467qLSi4ZPAfY44t4Cm5vgfRyoIfBrksNTSch5gv8KIK7gSrOhvKYB026tX8vFrQbsdMIQmOv7nfE_IJh5h5gETp6Q-f1_YMwho5ua8eGO_AASe7nA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUFUuFfQBKY-6UttLtUr24XV84BACKCmQQwNVbovXXotUyEElCPG7-IPM2OuI0IoDElfvrr36ZnfmG-_sDMBXbqUVIucslknIlOaWWSljxp0me4dGh9MF5-OB7p2qn6NwtAB39V0YCqv0ur_S6aW29k-aHs3m5XjcHCL14BLVq2hR4RuufWTlobu9Qb_taqe_h0L-JsTB_km3x3xpAZaqtpyyTIY5T5FdhtIJK0OdJJlIslzypLR4Ls-4iiLt0F2ggzOrVZoJKdPYuchKLfG9r2AJ2UdE2qA_2q3VP-UH49VRNmc0PX9TpwoqowIo6JSKVplf1VeH-481_JftPg7afGAFD1bgraevQadCaBUWXPEOXlcFLW_fw_dOEfR9eNf1VZDuDTpB92JSuGCSB8POryHrTn4z8QFOXwSuj7BY4MfWIQiztlDIEtromKkswR5liv4osSmSVc0bwGtETOrTlFO1jAtTx6P9MYSiIRRNSxlEsQE_ZmMuqyQdT_YOa6DN3FIzaEWeHPellorBPUgHK0nhEE0j6MeR0si0GrBWSWk2D1SY7VhobInm5DfrQPm951uK8XmZ5zviBE386Znz_QxveifHR-aoPzjcgGVqobAHLjdhcfr32m0hm5ra7XL1BnD20tvlHmJ3Kwk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Infectious+cDNA+Clone+of+SARS-CoV-2&rft.jtitle=Cell+host+%26+microbe&rft.au=Xie%2C+Xuping&rft.au=Muruato%2C+Antonio&rft.au=Lokugamage%2C+Kumari+G.&rft.au=Narayanan%2C+Krishna&rft.date=2020-05-13&rft.pub=Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=27&rft.issue=5&rft.spage=841&rft.epage=848.e3&rft_id=info:doi/10.1016%2Fj.chom.2020.04.004&rft.externalDocID=S1931312820302316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon