A review on phase change material application in building
In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building. Accordingly, it is essential to review previous work to know about phase change material application in building better. This article presents a revie...
Saved in:
Published in | Advances in mechanical engineering Vol. 9; no. 6; p. 168781401770082 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.06.2017
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building. Accordingly, it is essential to review previous work to know about phase change material application in building better. This article presents a review on phase change material application situations in building, and several aspects are discussed: phase change material major applications in building, phase change material application areas, phase change material application types, phase change material thermal–physical properties, and phase change material application effects. The results of this research show that phase change material application areas are mainly concentrated into four parts of north latitude from 25° to 60° and south latitude from 25° to 40°. No matter in which region, the use of paraffin is the broadest (the maximum use frequency is up to 87.5%). For organic phase change material, the melting temperature and the heat of fusion vary from 19°C to 29°C and from 120 kJ/kg to 280 kJ/kg, respectively. The best phase change material application effect found is a reduction of 4.2°C for air temperature in room. This study has important and directive significance for the practical application of phase change material in building. |
---|---|
AbstractList | In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building. Accordingly, it is essential to review previous work to know about phase change material application in building better. This article presents a review on phase change material application situations in building, and several aspects are discussed: phase change material major applications in building, phase change material application areas, phase change material application types, phase change material thermal–physical properties, and phase change material application effects. The results of this research show that phase change material application areas are mainly concentrated into four parts of north latitude from 25° to 60° and south latitude from 25° to 40°. No matter in which region, the use of paraffin is the broadest (the maximum use frequency is up to 87.5%). For organic phase change material, the melting temperature and the heat of fusion vary from 19°C to 29°C and from 120 kJ/kg to 280 kJ/kg, respectively. The best phase change material application effect found is a reduction of 4.2°C for air temperature in room. This study has important and directive significance for the practical application of phase change material in building. |
Author | Xie, Jingchao Liu, Jiaping Wang, Jianping Chen, Shuqin Cui, Yaping |
Author_xml | – sequence: 1 givenname: Yaping surname: Cui fullname: Cui, Yaping – sequence: 2 givenname: Jingchao surname: Xie fullname: Xie, Jingchao email: xiejc@bjut.edu.cn – sequence: 3 givenname: Jiaping surname: Liu fullname: Liu, Jiaping – sequence: 4 givenname: Jianping surname: Wang fullname: Wang, Jianping – sequence: 5 givenname: Shuqin surname: Chen fullname: Chen, Shuqin |
BookMark | eNp9kN1LwzAUxYNMcM69-1jwuZo0bT4ex_ALBr7oc7hN0y6ja2rSKf73ZquKDPQpl8M5J797z9Gkc51B6JLga0I4vyFMcEFyHGeMRSZO0HQvpXtt8jPT7AzNQ7AlLjDDmEk5RXKRePNmzXviuqRfQzCJXkPXmGQLg_EW2gT6vrUaBhsdtkvKnW0r2zUX6LSGNpj51ztDL3e3z8uHdPV0_7hcrFKdCzqkmmpgGaGsqBjDVV2RyJQXQlDMS1oXFZRgGCs51YUEbiiImmpd1yyvdJkxOkOPY2_lYKN6b7fgP5QDqw6C840CP1jdGqWlFJJLijVhOS0yaQzHBcgqMvD4fey6Grt67153Jgxq43a-i_iKyCwXRBYHFxtd2rsQvKmVtsNh_8GDbRXBan91dXz1GMRHwW_cfyLpGAnQmF80f_k_ATbWj-Y |
CitedBy_id | crossref_primary_10_1016_j_enbuild_2021_111612 crossref_primary_10_3390_nanomanufacturing3030023 crossref_primary_10_1016_j_conbuildmat_2023_130974 crossref_primary_10_1016_j_renene_2019_05_124 crossref_primary_10_1016_j_solmat_2023_112406 crossref_primary_10_1177_1687814017750314 crossref_primary_10_1016_j_seta_2021_101349 crossref_primary_10_30939_ijastech__800856 crossref_primary_10_3390_en15030975 crossref_primary_10_3390_buildings14010040 crossref_primary_10_3390_ma15072497 crossref_primary_10_3390_su152014861 crossref_primary_10_1002_er_4920 crossref_primary_10_1016_j_est_2023_107005 crossref_primary_10_1002_er_5178 crossref_primary_10_1016_j_est_2022_105107 crossref_primary_10_1016_j_enbenv_2020_11_001 crossref_primary_10_1016_j_smmf_2024_100044 crossref_primary_10_1016_j_colsurfa_2022_129967 crossref_primary_10_1016_j_est_2024_111478 crossref_primary_10_1016_j_jmrt_2022_10_113 crossref_primary_10_1016_j_conbuildmat_2023_131657 crossref_primary_10_3390_en14165195 crossref_primary_10_1049_mnl_2017_0868 crossref_primary_10_1007_s10973_025_14119_6 crossref_primary_10_1016_j_enconman_2022_115823 crossref_primary_10_1016_j_buildenv_2023_110224 crossref_primary_10_1016_j_polymer_2022_125381 crossref_primary_10_12688_f1000research_160274_1 crossref_primary_10_3390_su13052871 crossref_primary_10_1016_j_rser_2023_113805 crossref_primary_10_1002_er_6537 crossref_primary_10_3390_app11041490 crossref_primary_10_1016_j_est_2022_104547 crossref_primary_10_1016_j_enbuild_2022_112153 crossref_primary_10_1016_j_rser_2024_114983 crossref_primary_10_1016_j_enbuild_2022_112568 crossref_primary_10_1088_2631_8695_adb661 crossref_primary_10_1016_j_est_2022_104074 crossref_primary_10_1177_09544070221100965 crossref_primary_10_1016_j_rser_2023_113730 crossref_primary_10_1016_j_seta_2023_103158 crossref_primary_10_1007_s13198_024_02279_x crossref_primary_10_1021_acs_inorgchem_3c04050 crossref_primary_10_3390_constrmater4040037 crossref_primary_10_1093_ijlct_ctab104 crossref_primary_10_1016_j_conbuildmat_2019_06_156 crossref_primary_10_1016_j_est_2023_107545 crossref_primary_10_1002_app_56937 crossref_primary_10_1021_acssuschemeng_4c09386 crossref_primary_10_1016_j_rser_2019_04_072 crossref_primary_10_1016_j_enbuild_2022_111920 crossref_primary_10_3390_buildings12101762 crossref_primary_10_1155_2022_2720956 crossref_primary_10_1016_j_enbuild_2017_09_010 crossref_primary_10_3390_buildings14061582 crossref_primary_10_3390_en17164155 crossref_primary_10_1016_j_est_2024_111258 crossref_primary_10_1016_j_est_2024_113796 crossref_primary_10_1007_s10765_023_03327_7 crossref_primary_10_1016_j_solmat_2024_112870 crossref_primary_10_1016_j_wasman_2019_12_051 crossref_primary_10_1177_1478077118778599 crossref_primary_10_1016_j_est_2023_108987 crossref_primary_10_3390_ma15010335 crossref_primary_10_1002_app_52625 crossref_primary_10_1016_j_applthermaleng_2020_116509 crossref_primary_10_3390_en16145391 crossref_primary_10_1016_j_jobe_2023_107166 crossref_primary_10_21923_jesd_852705 crossref_primary_10_1016_j_egyr_2022_04_025 crossref_primary_10_1016_j_conbuildmat_2019_117149 crossref_primary_10_1093_ce_zkac003 crossref_primary_10_1177_17442591241255966 crossref_primary_10_3390_nano11071639 crossref_primary_10_1016_j_mssp_2024_109206 crossref_primary_10_1021_acssuschemeng_4c00638 crossref_primary_10_1016_j_enbuild_2024_113959 crossref_primary_10_1016_j_est_2024_110852 crossref_primary_10_1016_j_est_2023_110173 crossref_primary_10_1016_j_jobe_2022_104961 crossref_primary_10_1016_j_pes_2024_100023 crossref_primary_10_1016_j_est_2022_104974 crossref_primary_10_3390_fib11110094 crossref_primary_10_3390_buildings14040904 crossref_primary_10_1088_2053_1591_ac118a crossref_primary_10_1016_j_applthermaleng_2022_118785 crossref_primary_10_1177_16878132231224996 crossref_primary_10_1007_s10973_022_11340_5 crossref_primary_10_1007_s13369_024_09519_z crossref_primary_10_1016_j_mtcomm_2024_111422 crossref_primary_10_1016_j_renene_2020_09_086 crossref_primary_10_3390_gels9040317 crossref_primary_10_1177_00405175241230918 crossref_primary_10_3390_ma11112230 crossref_primary_10_1007_s00396_022_05009_6 crossref_primary_10_1088_2040_8986_ad4723 crossref_primary_10_1016_j_applthermaleng_2024_122881 crossref_primary_10_1016_j_seta_2021_101318 crossref_primary_10_1515_ntrev_2022_0554 crossref_primary_10_3390_buildings13112699 crossref_primary_10_1016_j_conbuildmat_2024_135568 crossref_primary_10_1002_est2_245 crossref_primary_10_1177_0967391120910654 crossref_primary_10_1016_j_est_2023_107156 crossref_primary_10_1016_j_mtnano_2022_100234 crossref_primary_10_1007_s42452_019_0891_8 crossref_primary_10_1016_j_cej_2025_161287 crossref_primary_10_3390_s23104935 crossref_primary_10_1016_j_nanoen_2023_109186 crossref_primary_10_1016_j_rser_2022_112560 crossref_primary_10_1080_01457632_2024_2400867 crossref_primary_10_1016_j_mtener_2021_100905 crossref_primary_10_1016_j_est_2024_110911 crossref_primary_10_1061_AJRUA6_RUENG_1132 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121083 crossref_primary_10_3390_su14063171 crossref_primary_10_1016_j_molliq_2021_115508 crossref_primary_10_1007_s41024_022_00229_3 crossref_primary_10_1016_j_conbuildmat_2020_118553 crossref_primary_10_1016_j_est_2022_105405 crossref_primary_10_1016_j_tsep_2024_102900 crossref_primary_10_1088_1742_6596_2047_1_012018 crossref_primary_10_1016_j_jobe_2023_106604 crossref_primary_10_1088_1742_6596_2503_1_012008 crossref_primary_10_1002_slct_202101162 crossref_primary_10_1051_e3sconf_202123605007 crossref_primary_10_1016_j_enbuild_2022_111840 crossref_primary_10_3390_ma17071538 crossref_primary_10_1016_j_enbuild_2019_109527 crossref_primary_10_1016_j_conbuildmat_2023_130621 crossref_primary_10_1016_j_ijft_2023_100431 crossref_primary_10_3390_ma12081260 crossref_primary_10_3390_nano12193270 crossref_primary_10_1016_j_enbuild_2021_111824 crossref_primary_10_1016_j_applthermaleng_2024_124168 crossref_primary_10_3390_en16093896 crossref_primary_10_1016_j_carbpol_2023_120734 crossref_primary_10_1016_j_tsep_2024_102732 crossref_primary_10_1021_acsaem_0c02341 crossref_primary_10_1080_09613218_2024_2347907 crossref_primary_10_21303_2461_4262_2023_002798 crossref_primary_10_29121_shodhkosh_v5_i1_2024_2177 crossref_primary_10_1016_j_matpr_2023_06_445 crossref_primary_10_1016_j_est_2023_107457 crossref_primary_10_1016_j_jobe_2021_103923 crossref_primary_10_1246_cl_210819 crossref_primary_10_48175_IJARSCT_7023 crossref_primary_10_1016_j_est_2022_104205 |
Cites_doi | 10.1016/j.solener.2013.11.021 10.1016/j.enconman.2014.04.007 10.1016/j.buildenv.2012.09.021 10.1016/j.enbuild.2013.06.023 10.1016/j.enbuild.2016.05.058 10.1016/j.apenergy.2012.12.055 10.1016/j.proeng.2015.06.167 10.1016/j.enconman.2015.05.014 10.1016/j.matlet.2014.04.002 10.1016/j.enbuild.2014.04.027 10.1016/j.enbuild.2010.02.018 10.1016/j.solmat.2013.09.035 10.1016/j.solener.2011.09.026 10.1016/j.rser.2013.01.024 10.1016/j.solmat.2014.11.001 10.1016/j.buildenv.2014.07.012 10.1016/j.enbuild.2014.07.049 10.1016/j.matlet.2014.01.051 10.1016/j.enbuild.2013.08.006 10.1016/j.enconman.2007.01.014 10.1016/j.enconman.2004.11.003 10.1016/j.rser.2010.11.018 10.1016/j.egypro.2015.11.365 10.1002/er.1352 10.1016/j.renene.2014.11.078 10.1016/0038-092X(78)90141-X 10.1016/j.applthermaleng.2015.11.107 10.1016/j.apenergy.2008.10.020 10.1016/j.enbuild.2016.01.042 10.1016/j.foar.2012.10.002 10.1016/j.enbuild.2015.02.023 10.1016/j.enbuild.2012.02.010 10.1016/j.applthermaleng.2011.03.040 10.1016/j.buildenv.2016.01.023 10.1016/j.enbuild.2015.01.044 10.1016/j.enbuild.2005.08.007 10.1016/j.enconman.2009.09.003 10.1016/j.renene.2014.02.025 10.1016/j.solener.2004.04.013 10.1016/j.energy.2013.06.066 10.1016/j.ijthermalsci.2009.01.010 10.1016/j.rser.2010.08.019 10.1016/j.apenergy.2009.01.004 10.1016/j.buildenv.2005.02.005 10.1016/j.solener.2007.01.014 10.1016/j.enbuild.2007.01.022 10.1016/j.enbuild.2014.06.044 10.1016/j.conbuildmat.2013.06.068 10.1016/j.enbuild.2011.06.015 10.1016/j.applthermaleng.2016.06.160 10.1080/00908319308909014 10.1016/j.enbuild.2010.01.012 10.1016/j.renene.2014.11.001 10.1016/j.apenergy.2016.05.032 10.1016/j.rser.2005.10.002 10.1016/j.enbuild.2006.03.030 10.1016/j.enbuild.2015.07.019 10.1016/0040-6031(94)85054-2 10.1016/j.buildenv.2004.04.005 10.1016/j.buildenv.2008.12.002 10.1016/j.solmat.2012.06.012 10.1016/j.buildenv.2012.02.019 10.1016/j.scitotenv.2012.11.012 10.1016/j.rser.2016.03.007 10.1016/j.enbuild.2015.04.028 10.1016/j.energy.2015.10.131 10.1016/j.apenergy.2015.11.016 10.1016/j.egypro.2012.11.044 10.1016/j.enconman.2009.06.025 10.1016/j.applthermaleng.2011.10.033 10.1016/j.applthermaleng.2011.04.001 10.1016/j.enbuild.2014.10.020 10.1016/j.enbuild.2013.11.072 10.1016/j.proeng.2015.09.027 10.1016/S0960-1481(99)00024-5 10.1016/j.enbuild.2013.12.001 10.1016/j.egypro.2015.02.118 10.1016/j.solmat.2008.11.057 10.1016/j.renene.2010.11.008 10.1016/j.enbuild.2012.07.007 10.1016/j.rser.2010.10.006 10.1016/j.solener.2004.08.017 10.1016/0038-092X(83)90186-X 10.1016/j.enconman.2015.01.068 10.1016/j.enbuild.2009.10.022 10.1016/j.enbuild.2014.03.005 10.1016/j.enbuild.2010.05.012 10.1016/j.rser.2013.12.042 10.1016/j.buildenv.2010.02.002 10.1016/j.renene.2008.02.024 10.1016/j.enconman.2014.09.003 10.1016/j.enbuild.2011.09.028 10.1016/j.enconman.2003.09.015 10.1016/j.energy.2014.06.079 10.1016/j.solener.2012.05.020 10.1016/j.egypro.2014.02.144 10.1016/j.applthermaleng.2007.11.004 10.1016/j.apenergy.2016.05.001 10.1016/j.enbuild.2014.02.018 10.1016/j.solener.2014.09.003 10.1016/j.enbuild.2004.01.029 10.1016/j.egypro.2012.11.124 10.1016/j.enbuild.2004.01.004 10.1016/j.enbuild.2012.12.013 10.1016/j.rser.2012.10.034 10.1016/j.apenergy.2016.01.115 10.1016/S1359-4311(02)00192-8 10.1016/j.rser.2007.10.005 10.1016/j.cej.2013.07.008 10.1016/j.rser.2016.03.036 10.1016/j.enconman.2009.08.019 10.1016/j.enbuild.2010.08.019 10.1016/0927-0248(94)00168-R 10.1016/j.applthermaleng.2004.03.017 10.1016/j.solmat.2008.07.002 10.1016/j.enconman.2016.02.078 10.1016/j.applthermaleng.2005.11.022 10.1016/S0040-6031(98)00368-2 10.1016/j.energy.2013.11.088 10.1016/j.proeng.2011.11.161 10.1016/j.enbuild.2012.04.022 10.1016/j.solmat.2013.09.037 10.1016/j.enbuild.2004.06.017 10.1016/0038-092X(91)90084-A 10.1016/j.enconman.2012.03.007 10.1016/j.rser.2010.07.004 10.1016/j.apenergy.2013.01.046 10.1016/j.enbuild.2013.08.029 10.1016/j.buildenv.2012.10.004 10.1016/j.enconman.2011.04.004 10.1016/j.enbuild.2014.04.028 10.1016/j.apenergy.2014.09.003 10.1016/j.buildenv.2012.12.007 10.1016/j.renene.2012.10.027 10.1016/j.egypro.2015.11.272 10.1016/j.energy.2015.10.053 10.1016/j.egypro.2013.07.089 10.1016/0196-8904(85)90064-0 10.1016/j.applthermaleng.2014.02.069 10.1007/s10973-015-5173-0 10.1016/S0378-7788(02)00141-X 10.1016/j.enbuild.2011.10.010 10.1016/j.enbuild.2012.12.042 10.1016/j.enbuild.2006.11.012 10.1016/j.solener.2014.09.015 10.1016/j.enbuild.2015.02.024 10.1016/j.solener.2012.05.012 10.1016/j.enbuild.2013.03.048 10.1016/j.egypro.2015.11.846 10.1016/j.egypro.2012.11.051 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 |
Copyright_xml | – notice: The Author(s) 2017 |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1177/1687814017700828 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_c99897930c1643529ee705a9d3ca7d66 10_1177_1687814017700828 10.1177_1687814017700828 |
GrantInformation_xml | – fundername: Ningbo Science and Technology Bureau foundation grantid: 2016C10035 – fundername: National Natural Science Foundation of China (General Program) grantid: 51378025 – fundername: National Natural Science Foundation of China (Major Program) grantid: 51590912 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c483t-c3ca621365d660dfd11404588307b3f5dabae66b73c59a7e3a8f3ccff64dcb263 |
IEDL.DBID | DOA |
ISSN | 1687-8132 1687-8140 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Fri Jul 25 12:23:39 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 01 05:28:41 EDT 2025 Tue Jun 17 22:28:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Phase change material directive significance building application situations |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-c3ca621365d660dfd11404588307b3f5dabae66b73c59a7e3a8f3ccff64dcb263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/c99897930c1643529ee705a9d3ca7d66 |
PQID | 1924819566 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c99897930c1643529ee705a9d3ca7d66 proquest_journals_1924819566 crossref_citationtrail_10_1177_1687814017700828 crossref_primary_10_1177_1687814017700828 sage_journals_10_1177_1687814017700828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2017 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Iten, Liu, Shukla 2016; 61 He, Zhao, Yue 2015; 76 Xia, Yuan, Zhao 2016; 175 Goia 2012; 1 Kong, Lu, Huang 2013; 62 Alawadhi, Alqallaf 2011; 52 Feldman, Banu, Hawes 1995; 36 Goia, Zinzi, Carnielo 2012; 30 Lin, Zhang, Xu 2004; 39 Halawa, Bruno, Saman 2005; 46 Zhu, Ma, Wang 2009; 50 Sayyar, Weerasiri, Soroushian 2014; 75 Ghoneim, Kllein, Duffie 1991; 47 Memon 2014; 31 Shukla, Fallahi, Kosny 2012; 30 Tang, Qiu, Zhang 2012; 105 Mosaffa, Farshi, Ferreira 2014; 68 De Grassi, Carbonari, Palomba 2006; 41 Fiorito 2012; 30 Yuan, Yuan, Zhang 2014; 125 Mandilaras, Stamatiadou, Katsourinis 2013; 61 Quanying, Chen, Lin 2008; 92 Farid, Khudhair, Razack 2004; 45 Bastani, Haghighat, Manzano 2015; 78 Saman, Bruno, Halawa 2005; 78 Sage-Lauck, Sailor 2014; 79 Chwieduk 2013; 59 Kong, Lu, Li 2014; 81 Kara, Kurnuç 2012; 86 Ling, Chen, Guan 2014; 110 Mathieu-Potvin, Gosselin 2009; 48 Cui, Xie, Liu 2015; 121 Jin, Medina, Zhang 2014; 73 Li, Zheng, Liu 2015; 100 Kheradmand, Azenha, de Aguiar 2016; 94 Tyagi, Pandey, Buddhi 2016; 117 Evola, Marletta, Sicurella 2013; 59 Pomianowski, Heiselberg, Jensen 2012; 53 Jurinak, Adbel Khalik 1979; 24 Kuznik, David, Johannes 2011; 15 Sarı 2016; 117 Jia, Lee 2015; 93 Kuznik, Virgone, Johannes 2010; 42 Mills, Farid, Selman 2006; 26 Abhat 1983; 30 Evers, Medina, Fang 2010; 45 Lee, Medina, Sun 2015; 86 Sharma, Tyagi, Chen 2009; 13 Gowreesunker, Tassou 2013; 59 Zhang, Yuan, Wang 2013; 231 Yuan, Li, Zhang 2016; 124 Dubovsky, Ziskind, Letan 2014; 87 Cabeza, Castellón, Nogués 2007; 39 Cabeza, Castell, Barreneche 2011; 15 Wang, Zhao 2015; 94 Carbonari, De Grassi, Di Perna 2006; 38 Silva, Vicente, Soares 2012; 49 Kuznik, Virgone 2009; 86 Jeong, Jeon, Seo 2012; 64 Liu, Awbi 2009; 44 Chaiyat 2015; 94 Nghana, Tariku 2016; 99 Barzin, Chen, Young 2016; 163 Meshgin, Xi 2013; 48 Lin, Zhang, Xu 2005; 37 Zalewski, Joulin, Lassue 2012; 86 Rudd 1993; 99 Alam, Jamil, Sanjayan 2014; 78 Ahmed, Meade, Medina 2010; 51 Pomianowski, Heiselberg, Zhang 2013; 67 Sari, Karaipekli, Kaygusuz 2008; 32 Goia, Bianco, Cascone 2014; 48 Waqas, Kumar 2011; 43 Heim, Clarke 2004; 36 Wang, Yu, Li 2016; 126 He, Wang, Wu 2014; 67 Zhang, Chen, Wu 2011; 43 Lee, Medina, Raith 2015; 137 Kara, Kurnuç 2012; 35 Morrision, Abdel Khalik 1978; 20 Lai, Chen, Lin 2010; 42 Sar, Karaipekli 2009; 93 Guarino, Dermardiros, Chen 2015; 70 Zhang, Yuan, Yuan 2014; 82 Yu, Jeong, Chung 2014; 120 Cheng, Pomianowski, Wang 2013; 112 Tyagi, Kaushik, Tyagi 2011; 15 Principi, Fioretti 2012; 51 Biswas, Abhari 2014; 88 Waqas, Ud Din 2013; 18 Karaipekli, Sarı, Biçer 2016; 107 Raj, Velraj 2010; 14 Castell, Solé, Medrano 2008; 28 Aranda-Usón, Ferreira, López-Sabirón 2013; 444 Shilei, Guohui, Neng 2007; 39 Kuznik, Virgone, Roux 2008; 40 Tabares-Velasco, Christensen, Bianchi 2012; 54 Zastawna-Rumin, Nowak 2015; 108 Vicente, Silva 2014; 67 Shi, Memon, Tang 2014; 71 Liu, Yuan, Zhang 2014; 120 Zhang, Yuan, Yuan 2014; 110 Soares, Costa, Gaspar 2013; 59 Mazzeo, Oliveti, Arcuri 2015; 82 Chung, Jeong, Kim 2015; 137 Guarino, Longo, Cellura 2015; 78 Tyagi, Buddhi 2007; 11 Wang, Zhang, Wang 2009; 50 Yanbing, Yi, Yinping 2003; 35 Diaconu 2011; 43 Chandra, Kumar, Kaushik 1985; 25 Konuklu, Ostry, Paksoy 2015; 106 Rodriguez-Ubinas, Arranz, Sánchez 2013; 65 Pomianowski, Heiselberg, Jensen 2013; 59 Hadjieva, Stoykov, Filipova 2000; 19 Diaconu, Cruceru 2010; 42 Soares, Gaspar, Santos 2014; 70 Koschenz, Lehmann 2004; 36 Yahay, Ahmad 2011; 20 Hoseini Rahdar, Emamzadeh, Ataei 2016; 96 Babich, Benrashid, Mounts 1994; 243 Barreneche, Navarro, Fernández 2013; 109 Weinlader, Beck, Fricke 2005; 78 De Gracia, Barreneche, Farid 2011; 43 Sharma, Shukla 2015; 99 Gu, Liu, Li 2004; 24 Paris, Falardeau, Villeneuve 1993; 15 Konuklu, Unal, Paksoy 2014; 120 Kośny, Biswas, Miller 2012; 86 Zhang, Yu, Yu 2011; 31 Yang, Yuan, Zhang 2014; 99 Mi, Liu, Cui 2016; 175 Akeiber, Nejat, Majid 2016; 60 David, Kuznik, Roux 2011; 31 Lin, Zhang, Di 2007; 48 Wang, Long, Qin 2013; 67 Borreguero, Garrido, Valverde 2014; 76 Kahwaji, Johnson, Kheirabadi 2016; 168 Zalba, Mar, Cabeza 2003; 23 Kuznik, Virgone, Johannes 2011; 36 Dutil, Rousse, Lassue 2014; 61 Jin, Zhang, Xu 2014; 81 Zhou, Zhang, Wang 2007; 81 Al-Saadi, Zhai 2015; 92 Karaipekli, Sar 2008; 33 Banu, Feldman, Hawes 1998; 317 Mandilaras, Kontogeorgos, Founti 2015; 76 Al-Saadi, Zhai 2013; 21 Castell, Martorell, Medrano 2010; 42 Wang, Yang, Fang 2009; 86 Hichem, Noureddine, Nadia 2013; 36 Kalnæs, Jelle 2015; 94 bibr97-1687814017700828 bibr138-1687814017700828 bibr46-1687814017700828 bibr89-1687814017700828 bibr38-1687814017700828 bibr62-1687814017700828 bibr7-1687814017700828 bibr103-1687814017700828 bibr146-1687814017700828 bibr70-1687814017700828 bibr64-1687814017700828 bibr148-1687814017700828 bibr121-1687814017700828 bibr21-1687814017700828 bibr105-1687814017700828 Kodo T (bibr42-1687814017700828) bibr95-1687814017700828 bibr13-1687814017700828 bibr56-1687814017700828 bibr99-1687814017700828 bibr113-1687814017700828 bibr156-1687814017700828 bibr144-1687814017700828 bibr131-1687814017700828 bibr52-1687814017700828 bibr136-1687814017700828 bibr90-1687814017700828 bibr18-1687814017700828 bibr31-1687814017700828 bibr123-1687814017700828 bibr5-1687814017700828 bibr15-1687814017700828 bibr72-1687814017700828 bibr80-1687814017700828 bibr23-1687814017700828 bibr93-1687814017700828 bibr36-1687814017700828 bibr107-1687814017700828 bibr141-1687814017700828 bibr115-1687814017700828 bibr54-1687814017700828 bibr28-1687814017700828 bibr154-1687814017700828 bibr41-1687814017700828 bibr128-1687814017700828 bibr59-1687814017700828 bibr33-1687814017700828 bibr76-1687814017700828 bibr92-1687814017700828 bibr108-1687814017700828 bibr68-1687814017700828 bibr25-1687814017700828 bibr116-1687814017700828 bibr4-1687814017700828 Jurinak JJ (bibr44-1687814017700828) 1979; 24 bibr151-1687814017700828 bibr135-1687814017700828 bibr17-1687814017700828 bibr26-1687814017700828 bibr152-1687814017700828 bibr143-1687814017700828 bibr22-1687814017700828 Shapiro MM (bibr32-1687814017700828) bibr101-1687814017700828 bibr119-1687814017700828 bibr73-1687814017700828 bibr48-1687814017700828 bibr87-1687814017700828 bibr1-1687814017700828 bibr81-1687814017700828 bibr127-1687814017700828 bibr14-1687814017700828 bibr140-1687814017700828 bibr53-1687814017700828 bibr132-1687814017700828 bibr124-1687814017700828 bibr79-1687814017700828 bibr37-1687814017700828 bibr50-1687814017700828 bibr45-1687814017700828 bibr11-1687814017700828 bibr84-1687814017700828 bibr104-1687814017700828 bibr120-1687814017700828 bibr20-1687814017700828 bibr63-1687814017700828 bibr12-1687814017700828 bibr98-1687814017700828 bibr129-1687814017700828 bibr155-1687814017700828 bibr55-1687814017700828 bibr112-1687814017700828 bibr29-1687814017700828 bibr39-1687814017700828 bibr47-1687814017700828 bibr61-1687814017700828 Rudd AF (bibr34-1687814017700828) 1993; 99 bibr122-1687814017700828 bibr147-1687814017700828 bibr30-1687814017700828 bibr130-1687814017700828 bibr139-1687814017700828 bibr8-1687814017700828 bibr65-1687814017700828 bibr78-1687814017700828 bibr149-1687814017700828 bibr110-1687814017700828 bibr51-1687814017700828 bibr157-1687814017700828 bibr57-1687814017700828 bibr10-1687814017700828 bibr96-1687814017700828 bibr49-1687814017700828 bibr75-1687814017700828 bibr67-1687814017700828 bibr88-1687814017700828 bibr102-1687814017700828 bibr125-1687814017700828 bibr150-1687814017700828 bibr3-1687814017700828 bibr117-1687814017700828 bibr133-1687814017700828 bibr83-1687814017700828 bibr16-1687814017700828 bibr40-1687814017700828 bibr85-1687814017700828 bibr142-1687814017700828 bibr91-1687814017700828 bibr118-1687814017700828 bibr100-1687814017700828 bibr77-1687814017700828 bibr134-1687814017700828 bibr43-1687814017700828 bibr82-1687814017700828 bibr109-1687814017700828 bibr69-1687814017700828 bibr86-1687814017700828 bibr126-1687814017700828 bibr106-1687814017700828 bibr27-1687814017700828 bibr60-1687814017700828 bibr19-1687814017700828 bibr35-1687814017700828 bibr94-1687814017700828 bibr153-1687814017700828 bibr74-1687814017700828 bibr114-1687814017700828 bibr9-1687814017700828 bibr137-1687814017700828 bibr66-1687814017700828 bibr145-1687814017700828 bibr24-1687814017700828 bibr6-1687814017700828 bibr71-1687814017700828 bibr111-1687814017700828 bibr58-1687814017700828 |
References_xml | – volume: 15 start-page: 379 year: 2011 end-page: 391 article-title: A review on phase change materials integrated in building walls publication-title: Renew Sust Energ Rev – volume: 59 start-page: 82 year: 2013 end-page: 103 article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency publication-title: Energ Buildings – volume: 71 start-page: 80 year: 2014 end-page: 87 article-title: Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels publication-title: Energ Buildings – volume: 33 start-page: 2599 year: 2008 end-page: 2605 article-title: Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage publication-title: Renew Energ – volume: 78 start-page: 177 year: 2005 end-page: 186 article-title: PCM-facade-panel for daylighting and room heating publication-title: Sol Energy – volume: 86 start-page: 86 year: 2015 end-page: 92 article-title: On the use of plug-and-play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: evaluation of a thin phase change material (PCM) layer publication-title: Energ Buildings – volume: 92 start-page: 374 year: 2015 end-page: 388 article-title: Systematic evaluation of mathematical methods and numerical schemes for modeling PCM-enhanced building enclosure publication-title: Energ Buildings – volume: 76 start-page: 45 year: 2015 end-page: 52 article-title: A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation publication-title: Renew Energ – volume: 44 start-page: 1788 year: 2009 end-page: 1793 article-title: Performance of phase change material boards under natural convection publication-title: Build Environ – volume: 52 start-page: 2958 year: 2011 end-page: 2964 article-title: Building roof with conical holes containing PCM to reduce the cooling load: numerical study publication-title: Energ Convers Manage – volume: 49 start-page: 235 year: 2012 end-page: 245 article-title: Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution publication-title: Energ Buildings – volume: 42 start-page: 1004 year: 2010 end-page: 1009 article-title: Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM publication-title: Energ Buildings – volume: 81 start-page: 404 year: 2014 end-page: 415 article-title: Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application publication-title: Energ Buildings – volume: 28 start-page: 1676 year: 2008 end-page: 1686 article-title: Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins publication-title: Appl Therm Eng – volume: 78 start-page: 341 year: 2005 end-page: 349 article-title: Thermal performance of PCM thermal storage unit for a roof integrated solar heating system publication-title: Sol Energy – volume: 39 start-page: 1088 year: 2007 end-page: 1091 article-title: Experimental study and evaluation of latent heat storage in phase change materials wallboards publication-title: Energ Buildings – volume: 59 start-page: 301 year: 2013 end-page: 313 article-title: Dynamics of external wall structures with a PCM (phase change materials) in high latitude countries publication-title: Energy – volume: 67 start-page: 56 year: 2013 end-page: 69 article-title: Review of thermal energy storage technologies based on PCM application in buildings publication-title: Energ Buildings – volume: 36 start-page: 766 year: 2013 end-page: 775 article-title: Experimental and numerical study of a usual brick filled with PCM to improve the thermal inertia of buildings publication-title: Energy Proced – volume: 15 start-page: 1675 year: 2011 end-page: 1695 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew Sust Energ Rev – volume: 88 start-page: 1020 year: 2014 end-page: 1031 article-title: Low-cost phase change material as an energy storage medium in building envelopes: experimental and numerical analyses publication-title: Energ Convers Manage – volume: 48 start-page: 1272 year: 2014 end-page: 1281 article-title: Experimental analysis of an advanced dynamic glazing prototype integrating PCM and thermotropic layers publication-title: Energy Proced – volume: 36 start-page: 795 year: 2004 end-page: 805 article-title: Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r publication-title: Energ Buildings – volume: 106 start-page: 134 year: 2015 end-page: 155 article-title: Review on using microencapsulated phase change materials (PCM) in building applications publication-title: Energ Buildings – volume: 21 start-page: 659 year: 2013 end-page: 673 article-title: Modeling phase change materials embedded in building enclosure: a review publication-title: Renew Sust Energ Rev – volume: 50 start-page: 2802 year: 2009 end-page: 2809 article-title: Preparation of macro-capsules containing shape-stabilized phase change materials and description of permeation kinetics of its wall publication-title: Energ Convers Manage – volume: 231 start-page: 214 year: 2013 end-page: 219 article-title: Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage publication-title: Chem Eng J – volume: 82 start-page: 472 year: 2015 end-page: 479 article-title: Multiple Bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls publication-title: Energy Proced – volume: 444 start-page: 16 year: 2013 end-page: 25 article-title: Phase change material applications in buildings: an environmental assessment for some Spanish climate severities publication-title: Sci Total Environ – volume: 48 start-page: 1707 year: 2009 end-page: 1717 article-title: Thermal shielding of multilayer walls with phase change materials under different transient boundary conditions publication-title: Int J Therm Sci – volume: 94 start-page: 150 year: 2015 end-page: 176 article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities publication-title: Energ Buildings – volume: 62 start-page: 597 year: 2013 end-page: 604 article-title: Experimental research on the use of phase change materials in perforated brick rooms for cooling storage publication-title: Energ Buildings – volume: 105 start-page: 242 year: 2012 end-page: 248 article-title: Thermal conductivity enhancement of PEG/SiO composite PCM by in situ Cu doping publication-title: Sol Energ Mat Sol C – volume: 61 start-page: 93 year: 2013 end-page: 103 article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls publication-title: Build Environ – volume: 24 start-page: 503 year: 1979 end-page: 522 article-title: On the performance of air-based solar heating systems utilizing phase change energy storage publication-title: Sol Energy – volume: 99 start-page: 221 year: 2016 end-page: 238 article-title: Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate publication-title: Build Environ – volume: 43 start-page: 2621 year: 2011 end-page: 2630 article-title: Thermal performance of latent heat storage for free cooling of buildings in a dry and hot climate: an experimental study publication-title: Energ Buildings – volume: 39 start-page: 1427 year: 2004 end-page: 1434 article-title: Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates publication-title: Build Environ – volume: 76 start-page: 631 year: 2014 end-page: 639 article-title: Development of smart gypsum composites by incorporating thermoregulating microcapsules publication-title: Energ Buildings – volume: 67 start-page: 223 year: 2014 end-page: 233 article-title: New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor publication-title: Energy – volume: 126 start-page: 408 year: 2016 end-page: 414 article-title: Research on temperature dependent effective thermal conductivity of composite-phase change materials (PCMs) wall based on steady-state method in a thermal chamber publication-title: Energ Buildings – volume: 120 start-page: 43 year: 2014 end-page: 46 article-title: A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage publication-title: Mater Lett – volume: 43 start-page: 101 year: 2011 end-page: 107 article-title: Thermal energy savings in buildings with PCM-enhanced envelope: influence of occupancy pattern and ventilation publication-title: Energ Buildings – volume: 51 start-page: 131 year: 2012 end-page: 142 article-title: Thermal analysis of the application of PCM and low emissivity coating in hollow bricks publication-title: Energ Buildings – volume: 61 start-page: 175 year: 2016 end-page: 186 article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings publication-title: Renew Sust Energ Rev – volume: 75 start-page: 249 year: 2014 end-page: 255 article-title: Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions publication-title: Energ Buildings – volume: 86 start-page: 2432 year: 2012 end-page: 2442 article-title: Performance of coupled novel triple glass and phase change material wall in the heating season: an experimental study publication-title: Sol Energy – volume: 121 start-page: 763 year: 2015 end-page: 770 article-title: Review of phase change materials integrated in building walls for energy saving publication-title: Procedia Eng – volume: 93 start-page: 571 year: 2009 end-page: 576 article-title: Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage publication-title: Sol Energ Mat Sol C – volume: 110 start-page: 64 year: 2014 end-page: 70 article-title: Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage publication-title: Sol Energy – volume: 124 start-page: 881 year: 2016 end-page: 888 article-title: Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application publication-title: J Therm Anal Calorim – volume: 64 start-page: 516 year: 2012 end-page: 521 article-title: Performance evaluation of the microencapsulated PCM for wood-based flooring application publication-title: Energ Convers Manage – volume: 79 start-page: 32 year: 2014 end-page: 40 article-title: Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building publication-title: Energ Buildings – volume: 47 start-page: 237 year: 1991 end-page: 242 article-title: Analysis of collector—storage building walls using phase change materials publication-title: Sol Energy – volume: 26 start-page: 1652 year: 2006 end-page: 1661 article-title: Thermal conductivity enhancement of phase change materials using a graphite matrix publication-title: Appl Therm Eng – volume: 15 start-page: 85 year: 1993 end-page: 93 article-title: Thermal storage by latent-heat—a viable option for energy-conservation in buildings publication-title: Energ Source – volume: 94 start-page: 250 year: 2016 end-page: 261 article-title: Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings publication-title: Energy – volume: 31 start-page: 3736 year: 2011 end-page: 3740 article-title: Experimental research on condensing heat recovery using phase change material publication-title: Appl Therm Eng – volume: 68 start-page: 452 year: 2014 end-page: 458 article-title: Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications publication-title: Renew Energ – volume: 18 start-page: 607 year: 2013 end-page: 625 article-title: Phase change material (PCM) storage for free cooling of buildings—a review publication-title: Renew Sust Energ Rev – volume: 42 start-page: 1759 year: 2010 end-page: 1772 article-title: Novel concept of composite phase change material wall system for year-round thermal energy savings publication-title: Energ Buildings – volume: 59 start-page: 287 year: 2013 end-page: 300 article-title: Full-scale investigation of the dynamic heat storage of concrete decks with PCM and enhanced heat transfer surface area publication-title: Energ Buildings – volume: 108 start-page: 428 year: 2015 end-page: 435 article-title: Experimental thermal performance analysis of building components containing phase change material (PCM) publication-title: Procedia Eng – volume: 30 start-page: 313 year: 1983 end-page: 332 article-title: Low temperature latent heat thermal energy storage: heat storage materials publication-title: Sol Energy – volume: 86 start-page: 208 year: 2012 end-page: 219 article-title: Experimental study of small-scale solar wall integrating phase change material publication-title: Sol Energy – volume: 175 start-page: 259 year: 2016 end-page: 268 article-title: Cold storage condensation heat recovery system with a novel composite phase change material publication-title: Appl Energ – volume: 78 start-page: 2280 year: 2015 end-page: 2285 article-title: Investigating the effect of control strategy on the shift of energy consumption in a building integrated with PCM wallboard publication-title: Energy Proced – volume: 45 start-page: 1762 year: 2010 end-page: 1768 article-title: Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator publication-title: Build Environ – volume: 99 start-page: 196 year: 2015 end-page: 203 article-title: Thermal cycle test of binary mixtures of some fatty acids as phase change materials for building applications publication-title: Energ Buildings – volume: 99 start-page: 259 year: 2014 end-page: 266 article-title: Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage publication-title: Sol Energy – volume: 35 start-page: 243 year: 2012 end-page: 246 article-title: Performance of coupled novel triple glass unit and PCM wall publication-title: Appl Therm Eng – volume: 41 start-page: 448 year: 2006 end-page: 485 article-title: A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls publication-title: Build Environ – volume: 30 start-page: 370 year: 2012 end-page: 379 article-title: Performance characterization of PCM impregnated gypsum board for building applications publication-title: Energy Proced – volume: 120 start-page: 536 year: 2014 end-page: 542 article-title: Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage publication-title: Sol Energ Mat Sol C – volume: 137 start-page: 699 year: 2015 end-page: 706 article-title: Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management publication-title: Appl Energ – volume: 120 start-page: 549 year: 2014 end-page: 554 article-title: Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity publication-title: Sol Energ Mat Sol C – volume: 61 start-page: 132 year: 2014 end-page: 135 article-title: Modeling phase change materials behavior in building applications: comments on material characterization and model validation publication-title: Renew Energ – volume: 109 start-page: 428 year: 2013 end-page: 432 article-title: Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale publication-title: Appl Energ – volume: 96 start-page: 391 year: 2016 end-page: 399 article-title: A comparative study on PCM and ice thermal energy storage tank for air-conditioning systems in office buildings publication-title: Appl Therm Eng – volume: 48 start-page: 2016 year: 2007 end-page: 2024 article-title: Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage publication-title: Energ Convers Manage – volume: 24 start-page: 2511 year: 2004 end-page: 2526 article-title: Thermal energy recovery of air conditioning system—heat recovery system calculation and phase change materials development publication-title: Appl Therm Eng – volume: 39 start-page: 113 year: 2007 end-page: 119 article-title: Use of microencapsulated PCM in concrete walls for energy savings publication-title: Energ Buildings – volume: 31 start-page: 870 year: 2014 end-page: 906 article-title: Phase change materials integrated in building walls: a state of the art review publication-title: Renew Sust Energ Rev – volume: 23 start-page: 251 year: 2003 end-page: 283 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl Therm Eng – volume: 42 start-page: 534 year: 2010 end-page: 540 article-title: Experimental study of using PCM in brick constructive solutions for passive cooling publication-title: Energ Buildings – volume: 125 start-page: 154 year: 2014 end-page: 157 article-title: Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage publication-title: Mater Lett – volume: 54 start-page: 186 year: 2012 end-page: 196 article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies publication-title: Build Environ – volume: 86 start-page: 1196 year: 2009 end-page: 1200 article-title: Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride publication-title: Appl Energ – volume: 67 start-page: 210 year: 2013 end-page: 216 article-title: Ultrathin envelope thermal performance improvement of prefab house by integrating with phase change material publication-title: Energ Buildings – volume: 37 start-page: 215 year: 2005 end-page: 220 article-title: Experimental study of under-floor electric heating system with shape-stabilized PCM plates publication-title: Energ Buildings – volume: 30 start-page: 428 year: 2012 end-page: 437 article-title: Characterization of the optical properties of a PCM glazing system publication-title: Energy Proced – volume: 59 start-page: 612 year: 2013 end-page: 625 article-title: Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces publication-title: Build Environ – volume: 50 start-page: 3169 year: 2009 end-page: 3181 article-title: Dynamic characteristics and energy performance of buildings using phase change materials: a review publication-title: Energ Convers Manage – volume: 11 start-page: 1146 year: 2007 end-page: 1166 article-title: PCM thermal storage in buildings: a state of art publication-title: Renew Sust Energ Rev – volume: 87 start-page: 1324 year: 2014 end-page: 1331 article-title: Effect of windows on temperature moderation by a phase-change material (PCM) in a structure in winter publication-title: Energ Convers Manage – volume: 107 start-page: 55 year: 2016 end-page: 62 article-title: Thermal regulating performance of gypsum/(C18–C24) composite phase change material (CPCM) for building energy storage applications publication-title: Appl Therm Eng – volume: 45 start-page: 1597 year: 2004 end-page: 1615 article-title: A review on phase change energy storage: materials and applications publication-title: Energ Convers Manage – volume: 70 start-page: 219 year: 2015 end-page: 228 article-title: PCM thermal energy storage in buildings: experimental study and applications publication-title: Energy Proced – volume: 46 start-page: 2592 year: 2005 end-page: 2604 article-title: Numerical analysis of a PCM thermal storage system with varying wall temperature publication-title: Energ Convers Manage – volume: 76 start-page: 790 year: 2015 end-page: 804 article-title: A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components publication-title: Renew Energ – volume: 36 start-page: 147 year: 1995 end-page: 157 article-title: Development and application of organic-phase change mixtures in thermal storage gypsum wallboard publication-title: Sol Energ Mat Sol C – volume: 14 start-page: 2819 year: 2010 end-page: 2829 article-title: Review on free cooling of buildings using phase change materials publication-title: Renew Sust Energ Rev – volume: 13 start-page: 318 year: 2009 end-page: 345 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renew Sust Energ Rev – volume: 20 start-page: 238 year: 2011 end-page: 248 article-title: Numerical investigation of indoor air temperature with the application of PCM gypsum board as ceiling panels in buildings publication-title: Procedia Eng – volume: 78 start-page: 1708 year: 2015 end-page: 1713 article-title: Phase change materials applications to optimize cooling performance of buildings in the Mediterranean area: a parametric analysis publication-title: Energy Proced – volume: 99 start-page: 339 year: 1993 end-page: 346 article-title: Phase change material wallboard for distributed storage in buildings: ASHRAE transactions publication-title: Geshwiler M – volume: 53 start-page: 96 year: 2012 end-page: 107 article-title: Dynamic heat storage and cooling capacity of a concrete deck with PCM and thermally activated building system publication-title: Energ Buildings – volume: 117 start-page: 132 year: 2016 end-page: 141 article-title: Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials publication-title: Energ Convers Manage – volume: 168 start-page: 457 year: 2016 end-page: 464 article-title: Stable, low-cost phase change material for building applications: the eutectic mixture of decanoic acid and tetradecanoic acid publication-title: Appl Energ – volume: 43 start-page: 3704 year: 2011 end-page: 3709 article-title: New equipment for testing steady and transient thermal performance of multilayered building envelopes with PCM publication-title: Energ Buildings – volume: 81 start-page: 334 year: 2014 end-page: 339 article-title: Effects of PCM state on its phase change performance and the thermal performance of building walls publication-title: Build Environ – volume: 42 start-page: 1259 year: 2010 end-page: 1266 article-title: Heat transfer and thermal storage behaviour of gypsum boards incorporating micro-encapsulated PCM publication-title: Energ Buildings – volume: 93 start-page: 1394 year: 2015 end-page: 1403 article-title: Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner publication-title: Energy – volume: 43 start-page: 3514 year: 2011 end-page: 3520 article-title: Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures publication-title: Energ Buildings – volume: 92 start-page: 1526 year: 2008 end-page: 1532 article-title: Experimental study on the thermal storage performance and preparation of paraffin mixtures used in the phase change wall publication-title: Sol Energ Mat Sol C – volume: 117 start-page: 44 year: 2016 end-page: 52 article-title: Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings publication-title: Energ Buildings – volume: 40 start-page: 148 year: 2008 end-page: 156 article-title: Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation publication-title: Energ Buildings – volume: 100 start-page: 147 year: 2015 end-page: 156 article-title: Numerical analysis on thermal performance of roof contained PCM of a single residential building publication-title: Energ Convers Manage – volume: 51 start-page: 383 year: 2010 end-page: 392 article-title: Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials publication-title: Energ Convers Manage – volume: 30 start-page: 1110 year: 2012 end-page: 1119 article-title: Trombe walls for lightweight buildings in temperate and hot climates. Exploring the use of phase-change materials for performances improvement publication-title: Energy Proced – volume: 31 start-page: 3117 year: 2011 end-page: 3124 article-title: Numerical study of the influence of the convective heat transfer on the dynamical behaviour of a phase change material wall publication-title: Appl Therm Eng – volume: 20 start-page: 57 year: 1978 end-page: 67 article-title: Effect of phase change energy storage on the performance of air-based and liquid-based solar heating system publication-title: Sol Energy – volume: 94 start-page: 150 year: 2015 end-page: 158 article-title: Energy and economic analysis of a building air-conditioner with a phase change material (PCM) publication-title: Energ Convers Manage – volume: 110 start-page: 276 year: 2014 end-page: 285 article-title: Active heat storage characteristics of active–passive triple wall with phase change material publication-title: Sol Energy – volume: 94 start-page: 33 year: 2015 end-page: 42 article-title: Parametric investigations of using a PCM curtain for energy efficient buildings publication-title: Energ Buildings – volume: 82 start-page: 505 year: 2014 end-page: 511 article-title: Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: preparation and thermal properties publication-title: Energ Buildings – volume: 1 start-page: 341 year: 2012 end-page: 347 article-title: Thermo-physical behaviour and energy performance assessment of PCM glazing system configurations: a numerical analysis publication-title: Front Architec Res – volume: 112 start-page: 988 year: 2013 end-page: 998 article-title: A new method to determine thermophysical properties of PCM-concrete brick publication-title: Appl Energ – volume: 32 start-page: 154 year: 2008 end-page: 160 article-title: Capric acid and stearic acid mixture impregnated with gypsum wallboard for low-temperature latent heat thermal energy storage publication-title: Int J Energy Res – volume: 38 start-page: 472 year: 2006 end-page: 483 article-title: Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls publication-title: Energ Buildings – volume: 48 start-page: 371 year: 2013 end-page: 378 article-title: Multi-scale composite models for the effective thermal conductivity of PCM-concrete publication-title: Constr Build Mater – volume: 65 start-page: 464 year: 2013 end-page: 476 article-title: Influence of the use of PCM drywall and the fenestration in building retrofitting publication-title: Energ Buildings – volume: 19 start-page: 111 year: 2000 end-page: 115 article-title: Composite salt-hydrate concrete system for building energy storage publication-title: Renew Energ – volume: 78 start-page: 192 year: 2014 end-page: 201 article-title: Energy saving potential of phase change materials in major Australian cities publication-title: Energ Buildings – volume: 36 start-page: 567 year: 2004 end-page: 578 article-title: Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings publication-title: Energ Buildings – volume: 15 start-page: 1373 year: 2011 end-page: 1391 article-title: Development of phase change materials based microencapsulated technology for buildings: a review publication-title: Renew Sust Energ Rev – volume: 317 start-page: 39 year: 1998 end-page: 45 article-title: Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and large scale thermal testing publication-title: Thermochim Acta – volume: 137 start-page: 107 year: 2015 end-page: 112 article-title: Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings publication-title: Sol Energ Mat Sol C – volume: 35 start-page: 417 year: 2003 end-page: 425 article-title: Modeling and experimental study on an innovative passive cooling system—NVP system publication-title: Energ Buildings – volume: 59 start-page: 517 year: 2013 end-page: 527 article-title: A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings publication-title: Build Environ – volume: 81 start-page: 1351 year: 2007 end-page: 1360 article-title: An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating publication-title: Sol Energy – volume: 25 start-page: 15 year: 1985 end-page: 20 article-title: Thermal performance of a non-A/C building with PCCM thermal storage wall publication-title: Energ Convers Manage – volume: 36 start-page: 1458 year: 2011 end-page: 1462 article-title: In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard publication-title: Renew Energ – volume: 70 start-page: 411 year: 2014 end-page: 421 article-title: Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates publication-title: Energ Buildings – volume: 243 start-page: 193 year: 1994 end-page: 200 article-title: DSC studies of new energy-storage materials. Part 3. Thermal and flammability studies publication-title: Thermochim Acta – volume: 163 start-page: 9 year: 2016 end-page: 18 article-title: Application of weather forecast in conjunction with price-based method for PCM solar passive buildings—an experimental study publication-title: Appl Energ – volume: 86 start-page: 2038 year: 2009 end-page: 2046 article-title: Experimental assessment of a phase change material for wall building use publication-title: Appl Energ – volume: 60 start-page: 1470 year: 2016 end-page: 1497 article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes publication-title: Renew Sust Energ Rev – volume: 175 start-page: 324 year: 2016 end-page: 336 article-title: Energy and economic analysis of building integrated with PCM in different cities of China publication-title: Appl Energ – volume: 67 start-page: 24 year: 2014 end-page: 34 article-title: Brick masonry walls with PCM macrocapsules: an experimental approach publication-title: Appl Therm Eng – volume: 73 start-page: 780 year: 2014 end-page: 786 article-title: On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction publication-title: Energy – volume: 86 start-page: 2504 year: 2012 end-page: 2514 article-title: Field thermal performance of naturally ventilated solar roof with PCM heat sink publication-title: Sol Energy – ident: bibr68-1687814017700828 doi: 10.1016/j.solener.2013.11.021 – ident: bibr118-1687814017700828 doi: 10.1016/j.enconman.2014.04.007 – ident: bibr107-1687814017700828 doi: 10.1016/j.buildenv.2012.09.021 – ident: bibr108-1687814017700828 doi: 10.1016/j.enbuild.2013.06.023 – ident: bibr149-1687814017700828 doi: 10.1016/j.enbuild.2016.05.058 – ident: bibr54-1687814017700828 doi: 10.1016/j.apenergy.2012.12.055 – ident: bibr139-1687814017700828 doi: 10.1016/j.proeng.2015.06.167 – ident: bibr141-1687814017700828 doi: 10.1016/j.enconman.2015.05.014 – ident: bibr69-1687814017700828 doi: 10.1016/j.matlet.2014.04.002 – ident: bibr119-1687814017700828 doi: 10.1016/j.enbuild.2014.04.027 – ident: bibr80-1687814017700828 doi: 10.1016/j.enbuild.2010.02.018 – ident: bibr60-1687814017700828 doi: 10.1016/j.solmat.2013.09.035 – ident: bibr10-1687814017700828 doi: 10.1016/j.solener.2011.09.026 – ident: bibr23-1687814017700828 doi: 10.1016/j.rser.2013.01.024 – ident: bibr145-1687814017700828 doi: 10.1016/j.solmat.2014.11.001 – ident: bibr74-1687814017700828 doi: 10.1016/j.buildenv.2014.07.012 – ident: bibr5-1687814017700828 doi: 10.1016/j.enbuild.2014.07.049 – ident: bibr66-1687814017700828 doi: 10.1016/j.matlet.2014.01.051 – ident: bibr22-1687814017700828 doi: 10.1016/j.enbuild.2013.08.006 – ident: bibr38-1687814017700828 doi: 10.1016/j.enconman.2007.01.014 – ident: bibr46-1687814017700828 doi: 10.1016/j.enconman.2004.11.003 – volume: 99 start-page: 339 year: 1993 ident: bibr34-1687814017700828 publication-title: Geshwiler M – ident: bibr18-1687814017700828 doi: 10.1016/j.rser.2010.11.018 – ident: bibr138-1687814017700828 doi: 10.1016/j.egypro.2015.11.365 – ident: bibr64-1687814017700828 doi: 10.1002/er.1352 – ident: bibr131-1687814017700828 doi: 10.1016/j.renene.2014.11.078 – ident: bibr43-1687814017700828 doi: 10.1016/0038-092X(78)90141-X – ident: bibr130-1687814017700828 doi: 10.1016/j.applthermaleng.2015.11.107 – ident: bibr9-1687814017700828 doi: 10.1016/j.apenergy.2008.10.020 – ident: bibr148-1687814017700828 doi: 10.1016/j.enbuild.2016.01.042 – ident: bibr48-1687814017700828 doi: 10.1016/j.foar.2012.10.002 – ident: bibr152-1687814017700828 doi: 10.1016/j.enbuild.2015.02.023 – ident: bibr85-1687814017700828 doi: 10.1016/j.enbuild.2012.02.010 – ident: bibr16-1687814017700828 doi: 10.1016/j.applthermaleng.2011.03.040 – ident: bibr144-1687814017700828 doi: 10.1016/j.buildenv.2016.01.023 – ident: bibr146-1687814017700828 doi: 10.1016/j.enbuild.2015.01.044 – ident: bibr76-1687814017700828 doi: 10.1016/j.enbuild.2005.08.007 – ident: bibr81-1687814017700828 doi: 10.1016/j.enconman.2009.09.003 – ident: bibr128-1687814017700828 doi: 10.1016/j.renene.2014.02.025 – ident: bibr78-1687814017700828 doi: 10.1016/j.solener.2004.04.013 – ident: bibr109-1687814017700828 doi: 10.1016/j.energy.2013.06.066 – ident: bibr95-1687814017700828 doi: 10.1016/j.ijthermalsci.2009.01.010 – ident: bibr19-1687814017700828 doi: 10.1016/j.rser.2010.08.019 – ident: bibr79-1687814017700828 doi: 10.1016/j.apenergy.2009.01.004 – ident: bibr89-1687814017700828 doi: 10.1016/j.buildenv.2005.02.005 – ident: bibr90-1687814017700828 doi: 10.1016/j.solener.2007.01.014 – ident: bibr91-1687814017700828 doi: 10.1016/j.enbuild.2007.01.022 – ident: bibr61-1687814017700828 doi: 10.1016/j.enbuild.2014.06.044 – ident: bibr112-1687814017700828 doi: 10.1016/j.conbuildmat.2013.06.068 – ident: bibr98-1687814017700828 doi: 10.1016/j.enbuild.2011.06.015 – ident: bibr157-1687814017700828 doi: 10.1016/j.applthermaleng.2016.06.160 – ident: bibr33-1687814017700828 doi: 10.1080/00908319308909014 – ident: bibr125-1687814017700828 doi: 10.1016/j.enbuild.2010.01.012 – ident: bibr151-1687814017700828 doi: 10.1016/j.renene.2014.11.001 – ident: bibr136-1687814017700828 doi: 10.1016/j.apenergy.2016.05.032 – ident: bibr25-1687814017700828 doi: 10.1016/j.rser.2005.10.002 – ident: bibr88-1687814017700828 doi: 10.1016/j.enbuild.2006.03.030 – ident: bibr154-1687814017700828 doi: 10.1016/j.enbuild.2015.07.019 – ident: bibr35-1687814017700828 doi: 10.1016/0040-6031(94)85054-2 – ident: bibr36-1687814017700828 doi: 10.1016/j.buildenv.2004.04.005 – ident: bibr129-1687814017700828 doi: 10.1016/j.buildenv.2008.12.002 – ident: bibr105-1687814017700828 doi: 10.1016/j.solmat.2012.06.012 – start-page: 48 volume-title: Proceedings of the 12th passive solar conference ident: bibr32-1687814017700828 – ident: bibr106-1687814017700828 doi: 10.1016/j.buildenv.2012.02.019 – ident: bibr113-1687814017700828 doi: 10.1016/j.scitotenv.2012.11.012 – ident: bibr133-1687814017700828 doi: 10.1016/j.rser.2016.03.007 – ident: bibr156-1687814017700828 doi: 10.1016/j.enbuild.2015.04.028 – ident: bibr137-1687814017700828 doi: 10.1016/j.energy.2015.10.131 – ident: bibr134-1687814017700828 doi: 10.1016/j.apenergy.2015.11.016 – ident: bibr101-1687814017700828 doi: 10.1016/j.egypro.2012.11.044 – ident: bibr94-1687814017700828 doi: 10.1016/j.enconman.2009.06.025 – ident: bibr104-1687814017700828 doi: 10.1016/j.applthermaleng.2011.10.033 – ident: bibr97-1687814017700828 doi: 10.1016/j.applthermaleng.2011.04.001 – ident: bibr150-1687814017700828 doi: 10.1016/j.enbuild.2014.10.020 – ident: bibr126-1687814017700828 doi: 10.1016/j.enbuild.2013.11.072 – ident: bibr50-1687814017700828 doi: 10.1016/j.proeng.2015.09.027 – ident: bibr77-1687814017700828 doi: 10.1016/S0960-1481(99)00024-5 – ident: bibr84-1687814017700828 doi: 10.1016/j.enbuild.2013.12.001 – ident: bibr143-1687814017700828 doi: 10.1016/j.egypro.2015.02.118 – ident: bibr7-1687814017700828 doi: 10.1016/j.solmat.2008.11.057 – ident: bibr82-1687814017700828 doi: 10.1016/j.renene.2010.11.008 – ident: bibr99-1687814017700828 doi: 10.1016/j.enbuild.2012.07.007 – ident: bibr20-1687814017700828 doi: 10.1016/j.rser.2010.10.006 – ident: bibr45-1687814017700828 doi: 10.1016/j.solener.2004.08.017 – ident: bibr52-1687814017700828 doi: 10.1016/0038-092X(83)90186-X – ident: bibr135-1687814017700828 doi: 10.1016/j.enconman.2015.01.068 – ident: bibr55-1687814017700828 doi: 10.1016/j.enbuild.2009.10.022 – ident: bibr117-1687814017700828 doi: 10.1016/j.enbuild.2014.03.005 – ident: bibr51-1687814017700828 doi: 10.1016/j.enbuild.2010.05.012 – ident: bibr24-1687814017700828 doi: 10.1016/j.rser.2013.12.042 – ident: bibr70-1687814017700828 doi: 10.1016/j.buildenv.2010.02.002 – ident: bibr3-1687814017700828 doi: 10.1016/j.renene.2008.02.024 – ident: bibr123-1687814017700828 doi: 10.1016/j.enconman.2014.09.003 – ident: bibr71-1687814017700828 doi: 10.1016/j.enbuild.2011.09.028 – ident: bibr26-1687814017700828 doi: 10.1016/j.enconman.2003.09.015 – ident: bibr57-1687814017700828 doi: 10.1016/j.energy.2014.06.079 – ident: bibr100-1687814017700828 doi: 10.1016/j.solener.2012.05.020 – ident: bibr49-1687814017700828 doi: 10.1016/j.egypro.2014.02.144 – ident: bibr93-1687814017700828 doi: 10.1016/j.applthermaleng.2007.11.004 – ident: bibr13-1687814017700828 doi: 10.1016/j.apenergy.2016.05.001 – ident: bibr59-1687814017700828 doi: 10.1016/j.enbuild.2014.02.018 – ident: bibr4-1687814017700828 doi: 10.1016/j.solener.2014.09.003 – ident: bibr39-1687814017700828 doi: 10.1016/j.enbuild.2004.01.029 – ident: bibr12-1687814017700828 doi: 10.1016/j.egypro.2012.11.124 – ident: bibr86-1687814017700828 doi: 10.1016/j.enbuild.2004.01.004 – ident: bibr111-1687814017700828 doi: 10.1016/j.enbuild.2012.12.013 – ident: bibr21-1687814017700828 doi: 10.1016/j.rser.2012.10.034 – ident: bibr155-1687814017700828 doi: 10.1016/j.apenergy.2016.01.115 – ident: bibr27-1687814017700828 doi: 10.1016/S1359-4311(02)00192-8 – ident: bibr28-1687814017700828 doi: 10.1016/j.rser.2007.10.005 – ident: bibr6-1687814017700828 doi: 10.1016/j.cej.2013.07.008 – ident: bibr132-1687814017700828 doi: 10.1016/j.rser.2016.03.036 – ident: bibr53-1687814017700828 doi: 10.1016/j.enconman.2009.08.019 – ident: bibr87-1687814017700828 doi: 10.1016/j.enbuild.2010.08.019 – ident: bibr62-1687814017700828 doi: 10.1016/0927-0248(94)00168-R – ident: bibr15-1687814017700828 doi: 10.1016/j.applthermaleng.2004.03.017 – ident: bibr92-1687814017700828 doi: 10.1016/j.solmat.2008.07.002 – ident: bibr147-1687814017700828 doi: 10.1016/j.enconman.2016.02.078 – ident: bibr8-1687814017700828 doi: 10.1016/j.applthermaleng.2005.11.022 – ident: bibr63-1687814017700828 doi: 10.1016/S0040-6031(98)00368-2 – ident: bibr122-1687814017700828 doi: 10.1016/j.energy.2013.11.088 – ident: bibr40-1687814017700828 doi: 10.1016/j.proeng.2011.11.161 – ident: bibr75-1687814017700828 doi: 10.1016/j.enbuild.2012.04.022 – ident: bibr115-1687814017700828 doi: 10.1016/j.solmat.2013.09.037 – ident: bibr37-1687814017700828 doi: 10.1016/j.enbuild.2004.06.017 – ident: bibr30-1687814017700828 doi: 10.1016/0038-092X(91)90084-A – ident: bibr103-1687814017700828 doi: 10.1016/j.enconman.2012.03.007 – ident: bibr17-1687814017700828 doi: 10.1016/j.rser.2010.07.004 – ident: bibr124-1687814017700828 doi: 10.1016/j.apenergy.2013.01.046 – ident: bibr114-1687814017700828 doi: 10.1016/j.enbuild.2013.08.029 – ident: bibr110-1687814017700828 doi: 10.1016/j.buildenv.2012.10.004 – ident: bibr127-1687814017700828 doi: 10.1016/j.enconman.2007.01.014 – ident: bibr1-1687814017700828 – ident: bibr41-1687814017700828 doi: 10.1016/j.enconman.2011.04.004 – ident: bibr120-1687814017700828 doi: 10.1016/j.enbuild.2014.04.028 – ident: bibr73-1687814017700828 doi: 10.1016/j.apenergy.2014.09.003 – ident: bibr83-1687814017700828 doi: 10.1016/j.buildenv.2012.12.007 – ident: bibr121-1687814017700828 doi: 10.1016/j.renene.2012.10.027 – ident: bibr153-1687814017700828 doi: 10.1016/j.egypro.2015.11.272 – ident: bibr14-1687814017700828 doi: 10.1016/j.energy.2015.10.053 – ident: bibr72-1687814017700828 doi: 10.1016/j.egypro.2013.07.089 – ident: bibr31-1687814017700828 doi: 10.1016/0196-8904(85)90064-0 – ident: bibr56-1687814017700828 doi: 10.1016/j.applthermaleng.2014.02.069 – ident: bibr67-1687814017700828 doi: 10.1007/s10973-015-5173-0 – ident: bibr47-1687814017700828 doi: 10.1016/S0378-7788(02)00141-X – ident: bibr96-1687814017700828 doi: 10.1016/j.enbuild.2011.10.010 – ident: bibr29-1687814017700828 doi: 10.1016/j.enbuild.2012.12.042 – ident: bibr65-1687814017700828 doi: 10.1016/j.enbuild.2006.11.012 – ident: bibr116-1687814017700828 doi: 10.1016/j.solener.2014.09.015 – ident: bibr142-1687814017700828 doi: 10.1016/j.enbuild.2015.02.024 – ident: bibr11-1687814017700828 doi: 10.1016/j.solener.2012.05.012 – ident: bibr58-1687814017700828 doi: 10.1016/j.enbuild.2013.03.048 – ident: bibr140-1687814017700828 doi: 10.1016/j.egypro.2015.11.846 – volume-title: IEA ECESIA, 3rd workshop ident: bibr42-1687814017700828 – volume: 24 start-page: 503 year: 1979 ident: bibr44-1687814017700828 publication-title: Sol Energy – ident: bibr102-1687814017700828 doi: 10.1016/j.egypro.2012.11.051 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.487466 |
SecondaryResourceType | review_article |
Snippet | In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building.... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 168781401770082 |
SubjectTerms | Air temperature Buildings Construction materials Cooling Energy consumption Heat conductivity Heat of fusion Heat storage Latent heat Latitude Melting Phase change materials Physical properties Studies Thermal energy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfmJ1Sg4ieChrlzRtT7LJxhAcIg52K03SqCDt3Ob_73tZtlXB3fqRfvDyvl_ye4TcMMZABarEF0XKfK618HPwk32FSY8oZCa17YCeRmI45o-TaOISbnO3rHKlE62i1pXCHHkbAwWs-QhxP_3ysWsUVlddC41d0gQVnEDw1ez1R88vK47qsDgOawB2nMe4V3PNgYiuFwjnkFvdzeALtqlXKED6EojVNrXNNl5DhCg4ttBvv2yZhfz_5afWloZZazU4JAfOzaTdJV8ckZ2iPCb7NfDBE5J26XLfCq1KOn0Ha0aXu4ApOLGWL2mtuk0_SipdC-1TMh70Xx-Gvmuk4CuesIWvmMpFBxe0aSECbXSIoDpRkoCAS2Yincu8EELGTEVpHhcsTwxTyhjBtZIdwc5Io6zK4pxQqaPICMUNN5JrFssQrGyuTCCSNIBTj7RXJMmUQxnHZhefWeiAxf8S0SN36yemS4SNLWN7SOX1OMTGtheq2VvmRC1TEEGmoHYCBaEg-JdpUcRBlKcaqBADATzSWs1R5gR2nm3YyyO3OG-1W__8zMX291ySvQ66ADZj0yKNxey7uAIHZiGvHZf-AMV34ZI priority: 102 providerName: ProQuest – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgucABlZaKhS3yoULi4G4Sv5IT2lasEFJ7QKByi2I7BqRuFtHdA_-eGcfZhiIQtyR2JGs8T4_nG0K-cs5BBdqcqbrgTDinWAV-MrN46CFT7ovQDujnL3V2Jc6v5fUaabpamEjBv9_wWhWsKChrlG48jR7HJOM4VXmAaoLngMF2slzMyva0u2uqgV8wPb2cYWbb4n3IR9ZVt62TjUwrCYK8MZle_F5JQMa1TnuAd0JorO1ccSyi8SUqOvBB13OIL0ITMFwSyyG2-5cLfbHMZ7YvtAh45tf2rpIF6zb9QLajW0onLR_tkLW6-Ui2emCFn0gxoW2dC5039P4WrB9tq4YpOL2Bj2kvG07vGmpiy-1dcjU9vfxxxmLjBWZFzhfMclupDC_AOaUS512KIDwyz0EhGO6lq0xVK2U0t7KodM2r3HNrvVfCWZMp_pkMmnlT7xFqnJReWeGFN8JxbVKwypX1icqLBF6HZNyRpLQRlRybY_wp0whE_j8Rh-R49cd9i8jxxtzvSOXVPMTSDh_mDzdlFM3SQsRZgJpKLISO4I8Wda0TWRUOqKCBAEMy6vao7NizxLgVU5A4fIT71ht6ZTH77514QDYzdB7CWc-IDBYPy_oLuD4Lcxj59QlQy_NY priority: 102 providerName: SAGE Publications |
Title | A review on phase change material application in building |
URI | https://journals.sagepub.com/doi/full/10.1177/1687814017700828 https://www.proquest.com/docview/1924819566 https://doaj.org/article/c99897930c1643529ee705a9d3ca7d66 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86L3oQP3E6Rw4ieChrlyZNjps4h-CQseFuJZ8oSDd0_v--pN3oBPXiqW2Swst7Sd4vX7-H0BUhBIZAzSNmBYlSY1gkASdH2i960IQ4EcIBPY7YcJo-zOisFurLnwkr6YFLxXU0zAcENKJYA7AHtCCszWIqhSFaZoYFsm3webXJVBiDCeB-UduX7CSMB3YneA-0bRt-KND1b2DM2rGu4GkGB2i_goi4V4p2iLZscYT2asSBx0j0cHnnBM8LvHgBT4TLG7wYAGhoU7i2M41fC6yq8NcnaDq4m9wOoyoIQqRTTpaRhnqyrj-MBpWNjTOJJ8ShnEPnVMRRI5W0jKmMaCpkZonkjmjtHEuNVl1GTlGjmBf2DGFlKHVMpy51KjUkUwl4SKldzLiI4bOJOiuV5LpiCPeBKt7ypCIF_67EJrpZ_7Eo2TF-Kdv3Wl6X87zWIQGsnVfWzv-ydhO1VjbKq872kfs5pN8O9NnX3m61rB-EOf8PYS7Qbtc7-bAm00KN5funvQSIslRttM0H92200xuMnyfw7N-Nnsbt0Ea_AKzR31I |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHQOIQbZJxnPiAUHksW_o4tVJvIX4BEsou7SLEn-I3MuMk2xSJ3npLHMdKxvO0Pd8APEdEUoG2SpTXmEjnVNKQn5xYXvQoMgw6lgM6OFTzY_nppDjZgD9DLgwfqxx0YlTUbmF5jXzKgQLv-Sj1Zvkj4apRvLs6lNDo2GLP__5FIdvZ6933NL8v8nz24ejdPOmrCiRWVrhKLNpG5Xy6yymVuuAyRpgpqoq43WAoXGMar5Qp0Ra6KT02VUBrQ1DSWZMrpHGvwXWJqFmiqtnHgX9zLMtsBJcnZcmZoWt-Zyy_VPXuf7QUSP8TS4hlimS9osjwfCd1ym2MR0XXEWjuguWMBQYueMWjg2jRNs7uwO3eqRU7HRfehQ3f3oNbI6jD-6B3RJclIxatWH4l2ym6nGNBLnOUAjHaSxffWmH6gt0P4PhKCPwQNttF67dAGFcUQVkZZDDSYWkysumNDamqdEq3E5gOJKltj2nOpTW-11kPY_4vESfwav3GssPzuKTvW6byuh8jcceGxemXuhfs2lK8qknJpZYCT_JmtfdlWjTaERVKIsAEtoc5qnv1cFafM_MEXvK8jR7952MeXT7OM7gxPzrYr_d3D_cew82cnY-4VrQNm6vTn_4JuU4r8zTyq4DPVy0gfwGBqB39 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPEUSwv4AEgcok1ix04OCLW0q5bCqkJU6i3EL1oJZZd2EeKv8euYcZxtikRvvSWOYyXjedqebwBecs5RBZoyka7iibBWJg36yYmhRY8i474K5YA-zeT-sfhwUpyswZ8-F4aOVfY6MShqOze0Rj6hQIH2fKSc-Hgs4mh3-m7xI6EKUrTT2pfT6Fjk0P3-heHbxduDXZzrV3k-3fvyfj-JFQYSI0q-TAw3jczppJeVMrXeZoQ2U5Qlcr7mvrCNbpyUWnFTVI1yvCk9N8Z7KazRueQ47i1YVxgVpSNY39mbHX3uuTnnSmUD8DwhFOWJrrifkP1SGYOBYDc4_l0oKJZJlPwS48TLfdUJtRE6FV4H2LkrdjSUG7jiIw-OpQVLOb0HG9HFZdsdT96HNdc-gLsD4MOHUG2zLmeGzVu2OEVLyroMZIYOdJAJNthZZ2ct07F89yM4vhESP4ZRO2_dE2DaFoWXRnjhtbBc6QwtfGN8KssqxdsxTHqS1CYinFOhje91FkHN_yXiGN6s3lh06B7X9N0hKq_6ES53aJiff6ujmNcGo9cKVV5qMAxF37ZyTqVFU1mkgkICjGGrn6M6KouL-pK1x_Ca5m3w6D8f8_T6cV7AbRSO-uPB7HAT7uTkiYSFoy0YLc9_umfoRy3188iwDL7etIz8BUTwI48 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+phase+change+material+application+in+building&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Yaping+Cui&rft.au=Jingchao+Xie&rft.au=Jiaping+Liu&rft.au=Jianping+Wang&rft.date=2017-06-01&rft.pub=SAGE+Publishing&rft.eissn=1687-8140&rft.volume=9&rft_id=info:doi/10.1177%2F1687814017700828&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c99897930c1643529ee705a9d3ca7d66 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |