A review on phase change material application in building

In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building. Accordingly, it is essential to review previous work to know about phase change material application in building better. This article presents a revie...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mechanical engineering Vol. 9; no. 6; p. 168781401770082
Main Authors Cui, Yaping, Xie, Jingchao, Liu, Jiaping, Wang, Jianping, Chen, Shuqin
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.06.2017
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building. Accordingly, it is essential to review previous work to know about phase change material application in building better. This article presents a review on phase change material application situations in building, and several aspects are discussed: phase change material major applications in building, phase change material application areas, phase change material application types, phase change material thermal–physical properties, and phase change material application effects. The results of this research show that phase change material application areas are mainly concentrated into four parts of north latitude from 25° to 60° and south latitude from 25° to 40°. No matter in which region, the use of paraffin is the broadest (the maximum use frequency is up to 87.5%). For organic phase change material, the melting temperature and the heat of fusion vary from 19°C to 29°C and from 120 kJ/kg to 280 kJ/kg, respectively. The best phase change material application effect found is a reduction of 4.2°C for air temperature in room. This study has important and directive significance for the practical application of phase change material in building.
AbstractList In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building. Accordingly, it is essential to review previous work to know about phase change material application in building better. This article presents a review on phase change material application situations in building, and several aspects are discussed: phase change material major applications in building, phase change material application areas, phase change material application types, phase change material thermal–physical properties, and phase change material application effects. The results of this research show that phase change material application areas are mainly concentrated into four parts of north latitude from 25° to 60° and south latitude from 25° to 40°. No matter in which region, the use of paraffin is the broadest (the maximum use frequency is up to 87.5%). For organic phase change material, the melting temperature and the heat of fusion vary from 19°C to 29°C and from 120 kJ/kg to 280 kJ/kg, respectively. The best phase change material application effect found is a reduction of 4.2°C for air temperature in room. This study has important and directive significance for the practical application of phase change material in building.
Author Xie, Jingchao
Liu, Jiaping
Wang, Jianping
Chen, Shuqin
Cui, Yaping
Author_xml – sequence: 1
  givenname: Yaping
  surname: Cui
  fullname: Cui, Yaping
– sequence: 2
  givenname: Jingchao
  surname: Xie
  fullname: Xie, Jingchao
  email: xiejc@bjut.edu.cn
– sequence: 3
  givenname: Jiaping
  surname: Liu
  fullname: Liu, Jiaping
– sequence: 4
  givenname: Jianping
  surname: Wang
  fullname: Wang, Jianping
– sequence: 5
  givenname: Shuqin
  surname: Chen
  fullname: Chen, Shuqin
BookMark eNp9kN1LwzAUxYNMcM69-1jwuZo0bT4ex_ALBr7oc7hN0y6ja2rSKf73ZquKDPQpl8M5J797z9Gkc51B6JLga0I4vyFMcEFyHGeMRSZO0HQvpXtt8jPT7AzNQ7AlLjDDmEk5RXKRePNmzXviuqRfQzCJXkPXmGQLg_EW2gT6vrUaBhsdtkvKnW0r2zUX6LSGNpj51ztDL3e3z8uHdPV0_7hcrFKdCzqkmmpgGaGsqBjDVV2RyJQXQlDMS1oXFZRgGCs51YUEbiiImmpd1yyvdJkxOkOPY2_lYKN6b7fgP5QDqw6C840CP1jdGqWlFJJLijVhOS0yaQzHBcgqMvD4fey6Grt67153Jgxq43a-i_iKyCwXRBYHFxtd2rsQvKmVtsNh_8GDbRXBan91dXz1GMRHwW_cfyLpGAnQmF80f_k_ATbWj-Y
CitedBy_id crossref_primary_10_1016_j_enbuild_2021_111612
crossref_primary_10_3390_nanomanufacturing3030023
crossref_primary_10_1016_j_conbuildmat_2023_130974
crossref_primary_10_1016_j_renene_2019_05_124
crossref_primary_10_1016_j_solmat_2023_112406
crossref_primary_10_1177_1687814017750314
crossref_primary_10_1016_j_seta_2021_101349
crossref_primary_10_30939_ijastech__800856
crossref_primary_10_3390_en15030975
crossref_primary_10_3390_buildings14010040
crossref_primary_10_3390_ma15072497
crossref_primary_10_3390_su152014861
crossref_primary_10_1002_er_4920
crossref_primary_10_1016_j_est_2023_107005
crossref_primary_10_1002_er_5178
crossref_primary_10_1016_j_est_2022_105107
crossref_primary_10_1016_j_enbenv_2020_11_001
crossref_primary_10_1016_j_smmf_2024_100044
crossref_primary_10_1016_j_colsurfa_2022_129967
crossref_primary_10_1016_j_est_2024_111478
crossref_primary_10_1016_j_jmrt_2022_10_113
crossref_primary_10_1016_j_conbuildmat_2023_131657
crossref_primary_10_3390_en14165195
crossref_primary_10_1049_mnl_2017_0868
crossref_primary_10_1007_s10973_025_14119_6
crossref_primary_10_1016_j_enconman_2022_115823
crossref_primary_10_1016_j_buildenv_2023_110224
crossref_primary_10_1016_j_polymer_2022_125381
crossref_primary_10_12688_f1000research_160274_1
crossref_primary_10_3390_su13052871
crossref_primary_10_1016_j_rser_2023_113805
crossref_primary_10_1002_er_6537
crossref_primary_10_3390_app11041490
crossref_primary_10_1016_j_est_2022_104547
crossref_primary_10_1016_j_enbuild_2022_112153
crossref_primary_10_1016_j_rser_2024_114983
crossref_primary_10_1016_j_enbuild_2022_112568
crossref_primary_10_1088_2631_8695_adb661
crossref_primary_10_1016_j_est_2022_104074
crossref_primary_10_1177_09544070221100965
crossref_primary_10_1016_j_rser_2023_113730
crossref_primary_10_1016_j_seta_2023_103158
crossref_primary_10_1007_s13198_024_02279_x
crossref_primary_10_1021_acs_inorgchem_3c04050
crossref_primary_10_3390_constrmater4040037
crossref_primary_10_1093_ijlct_ctab104
crossref_primary_10_1016_j_conbuildmat_2019_06_156
crossref_primary_10_1016_j_est_2023_107545
crossref_primary_10_1002_app_56937
crossref_primary_10_1021_acssuschemeng_4c09386
crossref_primary_10_1016_j_rser_2019_04_072
crossref_primary_10_1016_j_enbuild_2022_111920
crossref_primary_10_3390_buildings12101762
crossref_primary_10_1155_2022_2720956
crossref_primary_10_1016_j_enbuild_2017_09_010
crossref_primary_10_3390_buildings14061582
crossref_primary_10_3390_en17164155
crossref_primary_10_1016_j_est_2024_111258
crossref_primary_10_1016_j_est_2024_113796
crossref_primary_10_1007_s10765_023_03327_7
crossref_primary_10_1016_j_solmat_2024_112870
crossref_primary_10_1016_j_wasman_2019_12_051
crossref_primary_10_1177_1478077118778599
crossref_primary_10_1016_j_est_2023_108987
crossref_primary_10_3390_ma15010335
crossref_primary_10_1002_app_52625
crossref_primary_10_1016_j_applthermaleng_2020_116509
crossref_primary_10_3390_en16145391
crossref_primary_10_1016_j_jobe_2023_107166
crossref_primary_10_21923_jesd_852705
crossref_primary_10_1016_j_egyr_2022_04_025
crossref_primary_10_1016_j_conbuildmat_2019_117149
crossref_primary_10_1093_ce_zkac003
crossref_primary_10_1177_17442591241255966
crossref_primary_10_3390_nano11071639
crossref_primary_10_1016_j_mssp_2024_109206
crossref_primary_10_1021_acssuschemeng_4c00638
crossref_primary_10_1016_j_enbuild_2024_113959
crossref_primary_10_1016_j_est_2024_110852
crossref_primary_10_1016_j_est_2023_110173
crossref_primary_10_1016_j_jobe_2022_104961
crossref_primary_10_1016_j_pes_2024_100023
crossref_primary_10_1016_j_est_2022_104974
crossref_primary_10_3390_fib11110094
crossref_primary_10_3390_buildings14040904
crossref_primary_10_1088_2053_1591_ac118a
crossref_primary_10_1016_j_applthermaleng_2022_118785
crossref_primary_10_1177_16878132231224996
crossref_primary_10_1007_s10973_022_11340_5
crossref_primary_10_1007_s13369_024_09519_z
crossref_primary_10_1016_j_mtcomm_2024_111422
crossref_primary_10_1016_j_renene_2020_09_086
crossref_primary_10_3390_gels9040317
crossref_primary_10_1177_00405175241230918
crossref_primary_10_3390_ma11112230
crossref_primary_10_1007_s00396_022_05009_6
crossref_primary_10_1088_2040_8986_ad4723
crossref_primary_10_1016_j_applthermaleng_2024_122881
crossref_primary_10_1016_j_seta_2021_101318
crossref_primary_10_1515_ntrev_2022_0554
crossref_primary_10_3390_buildings13112699
crossref_primary_10_1016_j_conbuildmat_2024_135568
crossref_primary_10_1002_est2_245
crossref_primary_10_1177_0967391120910654
crossref_primary_10_1016_j_est_2023_107156
crossref_primary_10_1016_j_mtnano_2022_100234
crossref_primary_10_1007_s42452_019_0891_8
crossref_primary_10_1016_j_cej_2025_161287
crossref_primary_10_3390_s23104935
crossref_primary_10_1016_j_nanoen_2023_109186
crossref_primary_10_1016_j_rser_2022_112560
crossref_primary_10_1080_01457632_2024_2400867
crossref_primary_10_1016_j_mtener_2021_100905
crossref_primary_10_1016_j_est_2024_110911
crossref_primary_10_1061_AJRUA6_RUENG_1132
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121083
crossref_primary_10_3390_su14063171
crossref_primary_10_1016_j_molliq_2021_115508
crossref_primary_10_1007_s41024_022_00229_3
crossref_primary_10_1016_j_conbuildmat_2020_118553
crossref_primary_10_1016_j_est_2022_105405
crossref_primary_10_1016_j_tsep_2024_102900
crossref_primary_10_1088_1742_6596_2047_1_012018
crossref_primary_10_1016_j_jobe_2023_106604
crossref_primary_10_1088_1742_6596_2503_1_012008
crossref_primary_10_1002_slct_202101162
crossref_primary_10_1051_e3sconf_202123605007
crossref_primary_10_1016_j_enbuild_2022_111840
crossref_primary_10_3390_ma17071538
crossref_primary_10_1016_j_enbuild_2019_109527
crossref_primary_10_1016_j_conbuildmat_2023_130621
crossref_primary_10_1016_j_ijft_2023_100431
crossref_primary_10_3390_ma12081260
crossref_primary_10_3390_nano12193270
crossref_primary_10_1016_j_enbuild_2021_111824
crossref_primary_10_1016_j_applthermaleng_2024_124168
crossref_primary_10_3390_en16093896
crossref_primary_10_1016_j_carbpol_2023_120734
crossref_primary_10_1016_j_tsep_2024_102732
crossref_primary_10_1021_acsaem_0c02341
crossref_primary_10_1080_09613218_2024_2347907
crossref_primary_10_21303_2461_4262_2023_002798
crossref_primary_10_29121_shodhkosh_v5_i1_2024_2177
crossref_primary_10_1016_j_matpr_2023_06_445
crossref_primary_10_1016_j_est_2023_107457
crossref_primary_10_1016_j_jobe_2021_103923
crossref_primary_10_1246_cl_210819
crossref_primary_10_48175_IJARSCT_7023
crossref_primary_10_1016_j_est_2022_104205
Cites_doi 10.1016/j.solener.2013.11.021
10.1016/j.enconman.2014.04.007
10.1016/j.buildenv.2012.09.021
10.1016/j.enbuild.2013.06.023
10.1016/j.enbuild.2016.05.058
10.1016/j.apenergy.2012.12.055
10.1016/j.proeng.2015.06.167
10.1016/j.enconman.2015.05.014
10.1016/j.matlet.2014.04.002
10.1016/j.enbuild.2014.04.027
10.1016/j.enbuild.2010.02.018
10.1016/j.solmat.2013.09.035
10.1016/j.solener.2011.09.026
10.1016/j.rser.2013.01.024
10.1016/j.solmat.2014.11.001
10.1016/j.buildenv.2014.07.012
10.1016/j.enbuild.2014.07.049
10.1016/j.matlet.2014.01.051
10.1016/j.enbuild.2013.08.006
10.1016/j.enconman.2007.01.014
10.1016/j.enconman.2004.11.003
10.1016/j.rser.2010.11.018
10.1016/j.egypro.2015.11.365
10.1002/er.1352
10.1016/j.renene.2014.11.078
10.1016/0038-092X(78)90141-X
10.1016/j.applthermaleng.2015.11.107
10.1016/j.apenergy.2008.10.020
10.1016/j.enbuild.2016.01.042
10.1016/j.foar.2012.10.002
10.1016/j.enbuild.2015.02.023
10.1016/j.enbuild.2012.02.010
10.1016/j.applthermaleng.2011.03.040
10.1016/j.buildenv.2016.01.023
10.1016/j.enbuild.2015.01.044
10.1016/j.enbuild.2005.08.007
10.1016/j.enconman.2009.09.003
10.1016/j.renene.2014.02.025
10.1016/j.solener.2004.04.013
10.1016/j.energy.2013.06.066
10.1016/j.ijthermalsci.2009.01.010
10.1016/j.rser.2010.08.019
10.1016/j.apenergy.2009.01.004
10.1016/j.buildenv.2005.02.005
10.1016/j.solener.2007.01.014
10.1016/j.enbuild.2007.01.022
10.1016/j.enbuild.2014.06.044
10.1016/j.conbuildmat.2013.06.068
10.1016/j.enbuild.2011.06.015
10.1016/j.applthermaleng.2016.06.160
10.1080/00908319308909014
10.1016/j.enbuild.2010.01.012
10.1016/j.renene.2014.11.001
10.1016/j.apenergy.2016.05.032
10.1016/j.rser.2005.10.002
10.1016/j.enbuild.2006.03.030
10.1016/j.enbuild.2015.07.019
10.1016/0040-6031(94)85054-2
10.1016/j.buildenv.2004.04.005
10.1016/j.buildenv.2008.12.002
10.1016/j.solmat.2012.06.012
10.1016/j.buildenv.2012.02.019
10.1016/j.scitotenv.2012.11.012
10.1016/j.rser.2016.03.007
10.1016/j.enbuild.2015.04.028
10.1016/j.energy.2015.10.131
10.1016/j.apenergy.2015.11.016
10.1016/j.egypro.2012.11.044
10.1016/j.enconman.2009.06.025
10.1016/j.applthermaleng.2011.10.033
10.1016/j.applthermaleng.2011.04.001
10.1016/j.enbuild.2014.10.020
10.1016/j.enbuild.2013.11.072
10.1016/j.proeng.2015.09.027
10.1016/S0960-1481(99)00024-5
10.1016/j.enbuild.2013.12.001
10.1016/j.egypro.2015.02.118
10.1016/j.solmat.2008.11.057
10.1016/j.renene.2010.11.008
10.1016/j.enbuild.2012.07.007
10.1016/j.rser.2010.10.006
10.1016/j.solener.2004.08.017
10.1016/0038-092X(83)90186-X
10.1016/j.enconman.2015.01.068
10.1016/j.enbuild.2009.10.022
10.1016/j.enbuild.2014.03.005
10.1016/j.enbuild.2010.05.012
10.1016/j.rser.2013.12.042
10.1016/j.buildenv.2010.02.002
10.1016/j.renene.2008.02.024
10.1016/j.enconman.2014.09.003
10.1016/j.enbuild.2011.09.028
10.1016/j.enconman.2003.09.015
10.1016/j.energy.2014.06.079
10.1016/j.solener.2012.05.020
10.1016/j.egypro.2014.02.144
10.1016/j.applthermaleng.2007.11.004
10.1016/j.apenergy.2016.05.001
10.1016/j.enbuild.2014.02.018
10.1016/j.solener.2014.09.003
10.1016/j.enbuild.2004.01.029
10.1016/j.egypro.2012.11.124
10.1016/j.enbuild.2004.01.004
10.1016/j.enbuild.2012.12.013
10.1016/j.rser.2012.10.034
10.1016/j.apenergy.2016.01.115
10.1016/S1359-4311(02)00192-8
10.1016/j.rser.2007.10.005
10.1016/j.cej.2013.07.008
10.1016/j.rser.2016.03.036
10.1016/j.enconman.2009.08.019
10.1016/j.enbuild.2010.08.019
10.1016/0927-0248(94)00168-R
10.1016/j.applthermaleng.2004.03.017
10.1016/j.solmat.2008.07.002
10.1016/j.enconman.2016.02.078
10.1016/j.applthermaleng.2005.11.022
10.1016/S0040-6031(98)00368-2
10.1016/j.energy.2013.11.088
10.1016/j.proeng.2011.11.161
10.1016/j.enbuild.2012.04.022
10.1016/j.solmat.2013.09.037
10.1016/j.enbuild.2004.06.017
10.1016/0038-092X(91)90084-A
10.1016/j.enconman.2012.03.007
10.1016/j.rser.2010.07.004
10.1016/j.apenergy.2013.01.046
10.1016/j.enbuild.2013.08.029
10.1016/j.buildenv.2012.10.004
10.1016/j.enconman.2011.04.004
10.1016/j.enbuild.2014.04.028
10.1016/j.apenergy.2014.09.003
10.1016/j.buildenv.2012.12.007
10.1016/j.renene.2012.10.027
10.1016/j.egypro.2015.11.272
10.1016/j.energy.2015.10.053
10.1016/j.egypro.2013.07.089
10.1016/0196-8904(85)90064-0
10.1016/j.applthermaleng.2014.02.069
10.1007/s10973-015-5173-0
10.1016/S0378-7788(02)00141-X
10.1016/j.enbuild.2011.10.010
10.1016/j.enbuild.2012.12.042
10.1016/j.enbuild.2006.11.012
10.1016/j.solener.2014.09.015
10.1016/j.enbuild.2015.02.024
10.1016/j.solener.2012.05.012
10.1016/j.enbuild.2013.03.048
10.1016/j.egypro.2015.11.846
10.1016/j.egypro.2012.11.051
ContentType Journal Article
Copyright The Author(s) 2017
Copyright_xml – notice: The Author(s) 2017
DBID AFRWT
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1177/1687814017700828
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-8140
ExternalDocumentID oai_doaj_org_article_c99897930c1643529ee705a9d3ca7d66
10_1177_1687814017700828
10.1177_1687814017700828
GrantInformation_xml – fundername: Ningbo Science and Technology Bureau foundation
  grantid: 2016C10035
– fundername: National Natural Science Foundation of China (General Program)
  grantid: 51378025
– fundername: National Natural Science Foundation of China (Major Program)
  grantid: 51590912
GroupedDBID .DC
0R~
188
23M
2UF
2WC
4.4
54M
5GY
5VS
8FE
8FG
8R4
8R5
AAJPV
AASGM
ABAWP
ABJCF
ABQXT
ACGFS
ACIWK
ACROE
ADBBV
ADOGD
AEDFJ
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BGLVJ
C1A
CAHYU
CCPQU
CNMHZ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
J8X
K.F
KQ8
L6V
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
Q2X
RHU
ROL
SAUOL
SCDPB
SCNPE
SFC
TR2
UGNYK
AAYXX
ACHEB
CITATION
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c483t-c3ca621365d660dfd11404588307b3f5dabae66b73c59a7e3a8f3ccff64dcb263
IEDL.DBID DOA
ISSN 1687-8132
1687-8140
IngestDate Wed Aug 27 01:29:19 EDT 2025
Fri Jul 25 12:23:39 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 05:28:41 EDT 2025
Tue Jun 17 22:28:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Phase change material
directive significance
building
application situations
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-c3ca621365d660dfd11404588307b3f5dabae66b73c59a7e3a8f3ccff64dcb263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/c99897930c1643529ee705a9d3ca7d66
PQID 1924819566
PQPubID 237349
ParticipantIDs doaj_primary_oai_doaj_org_article_c99897930c1643529ee705a9d3ca7d66
proquest_journals_1924819566
crossref_citationtrail_10_1177_1687814017700828
crossref_primary_10_1177_1687814017700828
sage_journals_10_1177_1687814017700828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: New York
PublicationTitle Advances in mechanical engineering
PublicationYear 2017
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Iten, Liu, Shukla 2016; 61
He, Zhao, Yue 2015; 76
Xia, Yuan, Zhao 2016; 175
Goia 2012; 1
Kong, Lu, Huang 2013; 62
Alawadhi, Alqallaf 2011; 52
Feldman, Banu, Hawes 1995; 36
Goia, Zinzi, Carnielo 2012; 30
Lin, Zhang, Xu 2004; 39
Halawa, Bruno, Saman 2005; 46
Zhu, Ma, Wang 2009; 50
Sayyar, Weerasiri, Soroushian 2014; 75
Ghoneim, Kllein, Duffie 1991; 47
Memon 2014; 31
Shukla, Fallahi, Kosny 2012; 30
Tang, Qiu, Zhang 2012; 105
Mosaffa, Farshi, Ferreira 2014; 68
De Grassi, Carbonari, Palomba 2006; 41
Fiorito 2012; 30
Yuan, Yuan, Zhang 2014; 125
Mandilaras, Stamatiadou, Katsourinis 2013; 61
Quanying, Chen, Lin 2008; 92
Farid, Khudhair, Razack 2004; 45
Bastani, Haghighat, Manzano 2015; 78
Saman, Bruno, Halawa 2005; 78
Sage-Lauck, Sailor 2014; 79
Chwieduk 2013; 59
Kong, Lu, Li 2014; 81
Kara, Kurnuç 2012; 86
Ling, Chen, Guan 2014; 110
Mathieu-Potvin, Gosselin 2009; 48
Cui, Xie, Liu 2015; 121
Jin, Medina, Zhang 2014; 73
Li, Zheng, Liu 2015; 100
Kheradmand, Azenha, de Aguiar 2016; 94
Tyagi, Pandey, Buddhi 2016; 117
Evola, Marletta, Sicurella 2013; 59
Pomianowski, Heiselberg, Jensen 2012; 53
Jurinak, Adbel Khalik 1979; 24
Kuznik, David, Johannes 2011; 15
Sarı 2016; 117
Jia, Lee 2015; 93
Kuznik, Virgone, Johannes 2010; 42
Mills, Farid, Selman 2006; 26
Abhat 1983; 30
Evers, Medina, Fang 2010; 45
Lee, Medina, Sun 2015; 86
Sharma, Tyagi, Chen 2009; 13
Gowreesunker, Tassou 2013; 59
Zhang, Yuan, Wang 2013; 231
Yuan, Li, Zhang 2016; 124
Dubovsky, Ziskind, Letan 2014; 87
Cabeza, Castellón, Nogués 2007; 39
Cabeza, Castell, Barreneche 2011; 15
Wang, Zhao 2015; 94
Carbonari, De Grassi, Di Perna 2006; 38
Silva, Vicente, Soares 2012; 49
Kuznik, Virgone 2009; 86
Jeong, Jeon, Seo 2012; 64
Liu, Awbi 2009; 44
Chaiyat 2015; 94
Nghana, Tariku 2016; 99
Barzin, Chen, Young 2016; 163
Meshgin, Xi 2013; 48
Lin, Zhang, Xu 2005; 37
Zalewski, Joulin, Lassue 2012; 86
Rudd 1993; 99
Alam, Jamil, Sanjayan 2014; 78
Ahmed, Meade, Medina 2010; 51
Pomianowski, Heiselberg, Zhang 2013; 67
Sari, Karaipekli, Kaygusuz 2008; 32
Goia, Bianco, Cascone 2014; 48
Waqas, Kumar 2011; 43
Heim, Clarke 2004; 36
Wang, Yu, Li 2016; 126
He, Wang, Wu 2014; 67
Zhang, Chen, Wu 2011; 43
Lee, Medina, Raith 2015; 137
Kara, Kurnuç 2012; 35
Morrision, Abdel Khalik 1978; 20
Lai, Chen, Lin 2010; 42
Sar, Karaipekli 2009; 93
Guarino, Dermardiros, Chen 2015; 70
Zhang, Yuan, Yuan 2014; 82
Yu, Jeong, Chung 2014; 120
Cheng, Pomianowski, Wang 2013; 112
Tyagi, Kaushik, Tyagi 2011; 15
Principi, Fioretti 2012; 51
Biswas, Abhari 2014; 88
Waqas, Ud Din 2013; 18
Karaipekli, Sarı, Biçer 2016; 107
Raj, Velraj 2010; 14
Castell, Solé, Medrano 2008; 28
Aranda-Usón, Ferreira, López-Sabirón 2013; 444
Shilei, Guohui, Neng 2007; 39
Kuznik, Virgone, Roux 2008; 40
Tabares-Velasco, Christensen, Bianchi 2012; 54
Zastawna-Rumin, Nowak 2015; 108
Vicente, Silva 2014; 67
Shi, Memon, Tang 2014; 71
Liu, Yuan, Zhang 2014; 120
Zhang, Yuan, Yuan 2014; 110
Soares, Costa, Gaspar 2013; 59
Mazzeo, Oliveti, Arcuri 2015; 82
Chung, Jeong, Kim 2015; 137
Guarino, Longo, Cellura 2015; 78
Tyagi, Buddhi 2007; 11
Wang, Zhang, Wang 2009; 50
Yanbing, Yi, Yinping 2003; 35
Diaconu 2011; 43
Chandra, Kumar, Kaushik 1985; 25
Konuklu, Ostry, Paksoy 2015; 106
Rodriguez-Ubinas, Arranz, Sánchez 2013; 65
Pomianowski, Heiselberg, Jensen 2013; 59
Hadjieva, Stoykov, Filipova 2000; 19
Diaconu, Cruceru 2010; 42
Soares, Gaspar, Santos 2014; 70
Koschenz, Lehmann 2004; 36
Yahay, Ahmad 2011; 20
Hoseini Rahdar, Emamzadeh, Ataei 2016; 96
Babich, Benrashid, Mounts 1994; 243
Barreneche, Navarro, Fernández 2013; 109
Weinlader, Beck, Fricke 2005; 78
De Gracia, Barreneche, Farid 2011; 43
Sharma, Shukla 2015; 99
Gu, Liu, Li 2004; 24
Paris, Falardeau, Villeneuve 1993; 15
Konuklu, Unal, Paksoy 2014; 120
Kośny, Biswas, Miller 2012; 86
Zhang, Yu, Yu 2011; 31
Yang, Yuan, Zhang 2014; 99
Mi, Liu, Cui 2016; 175
Akeiber, Nejat, Majid 2016; 60
David, Kuznik, Roux 2011; 31
Lin, Zhang, Di 2007; 48
Wang, Long, Qin 2013; 67
Borreguero, Garrido, Valverde 2014; 76
Kahwaji, Johnson, Kheirabadi 2016; 168
Zalba, Mar, Cabeza 2003; 23
Kuznik, Virgone, Johannes 2011; 36
Dutil, Rousse, Lassue 2014; 61
Jin, Zhang, Xu 2014; 81
Zhou, Zhang, Wang 2007; 81
Al-Saadi, Zhai 2015; 92
Karaipekli, Sar 2008; 33
Banu, Feldman, Hawes 1998; 317
Mandilaras, Kontogeorgos, Founti 2015; 76
Al-Saadi, Zhai 2013; 21
Castell, Martorell, Medrano 2010; 42
Wang, Yang, Fang 2009; 86
Hichem, Noureddine, Nadia 2013; 36
Kalnæs, Jelle 2015; 94
bibr97-1687814017700828
bibr138-1687814017700828
bibr46-1687814017700828
bibr89-1687814017700828
bibr38-1687814017700828
bibr62-1687814017700828
bibr7-1687814017700828
bibr103-1687814017700828
bibr146-1687814017700828
bibr70-1687814017700828
bibr64-1687814017700828
bibr148-1687814017700828
bibr121-1687814017700828
bibr21-1687814017700828
bibr105-1687814017700828
Kodo T (bibr42-1687814017700828)
bibr95-1687814017700828
bibr13-1687814017700828
bibr56-1687814017700828
bibr99-1687814017700828
bibr113-1687814017700828
bibr156-1687814017700828
bibr144-1687814017700828
bibr131-1687814017700828
bibr52-1687814017700828
bibr136-1687814017700828
bibr90-1687814017700828
bibr18-1687814017700828
bibr31-1687814017700828
bibr123-1687814017700828
bibr5-1687814017700828
bibr15-1687814017700828
bibr72-1687814017700828
bibr80-1687814017700828
bibr23-1687814017700828
bibr93-1687814017700828
bibr36-1687814017700828
bibr107-1687814017700828
bibr141-1687814017700828
bibr115-1687814017700828
bibr54-1687814017700828
bibr28-1687814017700828
bibr154-1687814017700828
bibr41-1687814017700828
bibr128-1687814017700828
bibr59-1687814017700828
bibr33-1687814017700828
bibr76-1687814017700828
bibr92-1687814017700828
bibr108-1687814017700828
bibr68-1687814017700828
bibr25-1687814017700828
bibr116-1687814017700828
bibr4-1687814017700828
Jurinak JJ (bibr44-1687814017700828) 1979; 24
bibr151-1687814017700828
bibr135-1687814017700828
bibr17-1687814017700828
bibr26-1687814017700828
bibr152-1687814017700828
bibr143-1687814017700828
bibr22-1687814017700828
Shapiro MM (bibr32-1687814017700828)
bibr101-1687814017700828
bibr119-1687814017700828
bibr73-1687814017700828
bibr48-1687814017700828
bibr87-1687814017700828
bibr1-1687814017700828
bibr81-1687814017700828
bibr127-1687814017700828
bibr14-1687814017700828
bibr140-1687814017700828
bibr53-1687814017700828
bibr132-1687814017700828
bibr124-1687814017700828
bibr79-1687814017700828
bibr37-1687814017700828
bibr50-1687814017700828
bibr45-1687814017700828
bibr11-1687814017700828
bibr84-1687814017700828
bibr104-1687814017700828
bibr120-1687814017700828
bibr20-1687814017700828
bibr63-1687814017700828
bibr12-1687814017700828
bibr98-1687814017700828
bibr129-1687814017700828
bibr155-1687814017700828
bibr55-1687814017700828
bibr112-1687814017700828
bibr29-1687814017700828
bibr39-1687814017700828
bibr47-1687814017700828
bibr61-1687814017700828
Rudd AF (bibr34-1687814017700828) 1993; 99
bibr122-1687814017700828
bibr147-1687814017700828
bibr30-1687814017700828
bibr130-1687814017700828
bibr139-1687814017700828
bibr8-1687814017700828
bibr65-1687814017700828
bibr78-1687814017700828
bibr149-1687814017700828
bibr110-1687814017700828
bibr51-1687814017700828
bibr157-1687814017700828
bibr57-1687814017700828
bibr10-1687814017700828
bibr96-1687814017700828
bibr49-1687814017700828
bibr75-1687814017700828
bibr67-1687814017700828
bibr88-1687814017700828
bibr102-1687814017700828
bibr125-1687814017700828
bibr150-1687814017700828
bibr3-1687814017700828
bibr117-1687814017700828
bibr133-1687814017700828
bibr83-1687814017700828
bibr16-1687814017700828
bibr40-1687814017700828
bibr85-1687814017700828
bibr142-1687814017700828
bibr91-1687814017700828
bibr118-1687814017700828
bibr100-1687814017700828
bibr77-1687814017700828
bibr134-1687814017700828
bibr43-1687814017700828
bibr82-1687814017700828
bibr109-1687814017700828
bibr69-1687814017700828
bibr86-1687814017700828
bibr126-1687814017700828
bibr106-1687814017700828
bibr27-1687814017700828
bibr60-1687814017700828
bibr19-1687814017700828
bibr35-1687814017700828
bibr94-1687814017700828
bibr153-1687814017700828
bibr74-1687814017700828
bibr114-1687814017700828
bibr9-1687814017700828
bibr137-1687814017700828
bibr66-1687814017700828
bibr145-1687814017700828
bibr24-1687814017700828
bibr6-1687814017700828
bibr71-1687814017700828
bibr111-1687814017700828
bibr58-1687814017700828
References_xml – volume: 15
  start-page: 379
  year: 2011
  end-page: 391
  article-title: A review on phase change materials integrated in building walls
  publication-title: Renew Sust Energ Rev
– volume: 59
  start-page: 82
  year: 2013
  end-page: 103
  article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency
  publication-title: Energ Buildings
– volume: 71
  start-page: 80
  year: 2014
  end-page: 87
  article-title: Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels
  publication-title: Energ Buildings
– volume: 33
  start-page: 2599
  year: 2008
  end-page: 2605
  article-title: Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage
  publication-title: Renew Energ
– volume: 78
  start-page: 177
  year: 2005
  end-page: 186
  article-title: PCM-facade-panel for daylighting and room heating
  publication-title: Sol Energy
– volume: 86
  start-page: 86
  year: 2015
  end-page: 92
  article-title: On the use of plug-and-play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: evaluation of a thin phase change material (PCM) layer
  publication-title: Energ Buildings
– volume: 92
  start-page: 374
  year: 2015
  end-page: 388
  article-title: Systematic evaluation of mathematical methods and numerical schemes for modeling PCM-enhanced building enclosure
  publication-title: Energ Buildings
– volume: 76
  start-page: 45
  year: 2015
  end-page: 52
  article-title: A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation
  publication-title: Renew Energ
– volume: 44
  start-page: 1788
  year: 2009
  end-page: 1793
  article-title: Performance of phase change material boards under natural convection
  publication-title: Build Environ
– volume: 52
  start-page: 2958
  year: 2011
  end-page: 2964
  article-title: Building roof with conical holes containing PCM to reduce the cooling load: numerical study
  publication-title: Energ Convers Manage
– volume: 49
  start-page: 235
  year: 2012
  end-page: 245
  article-title: Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution
  publication-title: Energ Buildings
– volume: 42
  start-page: 1004
  year: 2010
  end-page: 1009
  article-title: Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM
  publication-title: Energ Buildings
– volume: 81
  start-page: 404
  year: 2014
  end-page: 415
  article-title: Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application
  publication-title: Energ Buildings
– volume: 28
  start-page: 1676
  year: 2008
  end-page: 1686
  article-title: Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins
  publication-title: Appl Therm Eng
– volume: 78
  start-page: 341
  year: 2005
  end-page: 349
  article-title: Thermal performance of PCM thermal storage unit for a roof integrated solar heating system
  publication-title: Sol Energy
– volume: 39
  start-page: 1088
  year: 2007
  end-page: 1091
  article-title: Experimental study and evaluation of latent heat storage in phase change materials wallboards
  publication-title: Energ Buildings
– volume: 59
  start-page: 301
  year: 2013
  end-page: 313
  article-title: Dynamics of external wall structures with a PCM (phase change materials) in high latitude countries
  publication-title: Energy
– volume: 67
  start-page: 56
  year: 2013
  end-page: 69
  article-title: Review of thermal energy storage technologies based on PCM application in buildings
  publication-title: Energ Buildings
– volume: 36
  start-page: 766
  year: 2013
  end-page: 775
  article-title: Experimental and numerical study of a usual brick filled with PCM to improve the thermal inertia of buildings
  publication-title: Energy Proced
– volume: 15
  start-page: 1675
  year: 2011
  end-page: 1695
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew Sust Energ Rev
– volume: 88
  start-page: 1020
  year: 2014
  end-page: 1031
  article-title: Low-cost phase change material as an energy storage medium in building envelopes: experimental and numerical analyses
  publication-title: Energ Convers Manage
– volume: 48
  start-page: 1272
  year: 2014
  end-page: 1281
  article-title: Experimental analysis of an advanced dynamic glazing prototype integrating PCM and thermotropic layers
  publication-title: Energy Proced
– volume: 36
  start-page: 795
  year: 2004
  end-page: 805
  article-title: Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r
  publication-title: Energ Buildings
– volume: 106
  start-page: 134
  year: 2015
  end-page: 155
  article-title: Review on using microencapsulated phase change materials (PCM) in building applications
  publication-title: Energ Buildings
– volume: 21
  start-page: 659
  year: 2013
  end-page: 673
  article-title: Modeling phase change materials embedded in building enclosure: a review
  publication-title: Renew Sust Energ Rev
– volume: 50
  start-page: 2802
  year: 2009
  end-page: 2809
  article-title: Preparation of macro-capsules containing shape-stabilized phase change materials and description of permeation kinetics of its wall
  publication-title: Energ Convers Manage
– volume: 231
  start-page: 214
  year: 2013
  end-page: 219
  article-title: Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage
  publication-title: Chem Eng J
– volume: 82
  start-page: 472
  year: 2015
  end-page: 479
  article-title: Multiple Bi-phase interfaces in a PCM layer subject to periodic boundary conditions characteristic of building external walls
  publication-title: Energy Proced
– volume: 444
  start-page: 16
  year: 2013
  end-page: 25
  article-title: Phase change material applications in buildings: an environmental assessment for some Spanish climate severities
  publication-title: Sci Total Environ
– volume: 48
  start-page: 1707
  year: 2009
  end-page: 1717
  article-title: Thermal shielding of multilayer walls with phase change materials under different transient boundary conditions
  publication-title: Int J Therm Sci
– volume: 94
  start-page: 150
  year: 2015
  end-page: 176
  article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities
  publication-title: Energ Buildings
– volume: 62
  start-page: 597
  year: 2013
  end-page: 604
  article-title: Experimental research on the use of phase change materials in perforated brick rooms for cooling storage
  publication-title: Energ Buildings
– volume: 105
  start-page: 242
  year: 2012
  end-page: 248
  article-title: Thermal conductivity enhancement of PEG/SiO composite PCM by in situ Cu doping
  publication-title: Sol Energ Mat Sol C
– volume: 61
  start-page: 93
  year: 2013
  end-page: 103
  article-title: Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls
  publication-title: Build Environ
– volume: 24
  start-page: 503
  year: 1979
  end-page: 522
  article-title: On the performance of air-based solar heating systems utilizing phase change energy storage
  publication-title: Sol Energy
– volume: 99
  start-page: 221
  year: 2016
  end-page: 238
  article-title: Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate
  publication-title: Build Environ
– volume: 43
  start-page: 2621
  year: 2011
  end-page: 2630
  article-title: Thermal performance of latent heat storage for free cooling of buildings in a dry and hot climate: an experimental study
  publication-title: Energ Buildings
– volume: 39
  start-page: 1427
  year: 2004
  end-page: 1434
  article-title: Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates
  publication-title: Build Environ
– volume: 76
  start-page: 631
  year: 2014
  end-page: 639
  article-title: Development of smart gypsum composites by incorporating thermoregulating microcapsules
  publication-title: Energ Buildings
– volume: 67
  start-page: 223
  year: 2014
  end-page: 233
  article-title: New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor
  publication-title: Energy
– volume: 126
  start-page: 408
  year: 2016
  end-page: 414
  article-title: Research on temperature dependent effective thermal conductivity of composite-phase change materials (PCMs) wall based on steady-state method in a thermal chamber
  publication-title: Energ Buildings
– volume: 120
  start-page: 43
  year: 2014
  end-page: 46
  article-title: A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage
  publication-title: Mater Lett
– volume: 43
  start-page: 101
  year: 2011
  end-page: 107
  article-title: Thermal energy savings in buildings with PCM-enhanced envelope: influence of occupancy pattern and ventilation
  publication-title: Energ Buildings
– volume: 51
  start-page: 131
  year: 2012
  end-page: 142
  article-title: Thermal analysis of the application of PCM and low emissivity coating in hollow bricks
  publication-title: Energ Buildings
– volume: 61
  start-page: 175
  year: 2016
  end-page: 186
  article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings
  publication-title: Renew Sust Energ Rev
– volume: 75
  start-page: 249
  year: 2014
  end-page: 255
  article-title: Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions
  publication-title: Energ Buildings
– volume: 86
  start-page: 2432
  year: 2012
  end-page: 2442
  article-title: Performance of coupled novel triple glass and phase change material wall in the heating season: an experimental study
  publication-title: Sol Energy
– volume: 121
  start-page: 763
  year: 2015
  end-page: 770
  article-title: Review of phase change materials integrated in building walls for energy saving
  publication-title: Procedia Eng
– volume: 93
  start-page: 571
  year: 2009
  end-page: 576
  article-title: Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage
  publication-title: Sol Energ Mat Sol C
– volume: 110
  start-page: 64
  year: 2014
  end-page: 70
  article-title: Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage
  publication-title: Sol Energy
– volume: 124
  start-page: 881
  year: 2016
  end-page: 888
  article-title: Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application
  publication-title: J Therm Anal Calorim
– volume: 64
  start-page: 516
  year: 2012
  end-page: 521
  article-title: Performance evaluation of the microencapsulated PCM for wood-based flooring application
  publication-title: Energ Convers Manage
– volume: 79
  start-page: 32
  year: 2014
  end-page: 40
  article-title: Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building
  publication-title: Energ Buildings
– volume: 47
  start-page: 237
  year: 1991
  end-page: 242
  article-title: Analysis of collector—storage building walls using phase change materials
  publication-title: Sol Energy
– volume: 26
  start-page: 1652
  year: 2006
  end-page: 1661
  article-title: Thermal conductivity enhancement of phase change materials using a graphite matrix
  publication-title: Appl Therm Eng
– volume: 15
  start-page: 85
  year: 1993
  end-page: 93
  article-title: Thermal storage by latent-heat—a viable option for energy-conservation in buildings
  publication-title: Energ Source
– volume: 94
  start-page: 250
  year: 2016
  end-page: 261
  article-title: Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings
  publication-title: Energy
– volume: 31
  start-page: 3736
  year: 2011
  end-page: 3740
  article-title: Experimental research on condensing heat recovery using phase change material
  publication-title: Appl Therm Eng
– volume: 68
  start-page: 452
  year: 2014
  end-page: 458
  article-title: Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications
  publication-title: Renew Energ
– volume: 18
  start-page: 607
  year: 2013
  end-page: 625
  article-title: Phase change material (PCM) storage for free cooling of buildings—a review
  publication-title: Renew Sust Energ Rev
– volume: 42
  start-page: 1759
  year: 2010
  end-page: 1772
  article-title: Novel concept of composite phase change material wall system for year-round thermal energy savings
  publication-title: Energ Buildings
– volume: 59
  start-page: 287
  year: 2013
  end-page: 300
  article-title: Full-scale investigation of the dynamic heat storage of concrete decks with PCM and enhanced heat transfer surface area
  publication-title: Energ Buildings
– volume: 108
  start-page: 428
  year: 2015
  end-page: 435
  article-title: Experimental thermal performance analysis of building components containing phase change material (PCM)
  publication-title: Procedia Eng
– volume: 30
  start-page: 313
  year: 1983
  end-page: 332
  article-title: Low temperature latent heat thermal energy storage: heat storage materials
  publication-title: Sol Energy
– volume: 86
  start-page: 208
  year: 2012
  end-page: 219
  article-title: Experimental study of small-scale solar wall integrating phase change material
  publication-title: Sol Energy
– volume: 175
  start-page: 259
  year: 2016
  end-page: 268
  article-title: Cold storage condensation heat recovery system with a novel composite phase change material
  publication-title: Appl Energ
– volume: 78
  start-page: 2280
  year: 2015
  end-page: 2285
  article-title: Investigating the effect of control strategy on the shift of energy consumption in a building integrated with PCM wallboard
  publication-title: Energy Proced
– volume: 45
  start-page: 1762
  year: 2010
  end-page: 1768
  article-title: Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator
  publication-title: Build Environ
– volume: 99
  start-page: 196
  year: 2015
  end-page: 203
  article-title: Thermal cycle test of binary mixtures of some fatty acids as phase change materials for building applications
  publication-title: Energ Buildings
– volume: 99
  start-page: 259
  year: 2014
  end-page: 266
  article-title: Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage
  publication-title: Sol Energy
– volume: 35
  start-page: 243
  year: 2012
  end-page: 246
  article-title: Performance of coupled novel triple glass unit and PCM wall
  publication-title: Appl Therm Eng
– volume: 41
  start-page: 448
  year: 2006
  end-page: 485
  article-title: A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls
  publication-title: Build Environ
– volume: 30
  start-page: 370
  year: 2012
  end-page: 379
  article-title: Performance characterization of PCM impregnated gypsum board for building applications
  publication-title: Energy Proced
– volume: 120
  start-page: 536
  year: 2014
  end-page: 542
  article-title: Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage
  publication-title: Sol Energ Mat Sol C
– volume: 137
  start-page: 699
  year: 2015
  end-page: 706
  article-title: Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management
  publication-title: Appl Energ
– volume: 120
  start-page: 549
  year: 2014
  end-page: 554
  article-title: Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity
  publication-title: Sol Energ Mat Sol C
– volume: 61
  start-page: 132
  year: 2014
  end-page: 135
  article-title: Modeling phase change materials behavior in building applications: comments on material characterization and model validation
  publication-title: Renew Energ
– volume: 109
  start-page: 428
  year: 2013
  end-page: 432
  article-title: Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale
  publication-title: Appl Energ
– volume: 96
  start-page: 391
  year: 2016
  end-page: 399
  article-title: A comparative study on PCM and ice thermal energy storage tank for air-conditioning systems in office buildings
  publication-title: Appl Therm Eng
– volume: 48
  start-page: 2016
  year: 2007
  end-page: 2024
  article-title: Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage
  publication-title: Energ Convers Manage
– volume: 24
  start-page: 2511
  year: 2004
  end-page: 2526
  article-title: Thermal energy recovery of air conditioning system—heat recovery system calculation and phase change materials development
  publication-title: Appl Therm Eng
– volume: 39
  start-page: 113
  year: 2007
  end-page: 119
  article-title: Use of microencapsulated PCM in concrete walls for energy savings
  publication-title: Energ Buildings
– volume: 31
  start-page: 870
  year: 2014
  end-page: 906
  article-title: Phase change materials integrated in building walls: a state of the art review
  publication-title: Renew Sust Energ Rev
– volume: 23
  start-page: 251
  year: 2003
  end-page: 283
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl Therm Eng
– volume: 42
  start-page: 534
  year: 2010
  end-page: 540
  article-title: Experimental study of using PCM in brick constructive solutions for passive cooling
  publication-title: Energ Buildings
– volume: 125
  start-page: 154
  year: 2014
  end-page: 157
  article-title: Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage
  publication-title: Mater Lett
– volume: 54
  start-page: 186
  year: 2012
  end-page: 196
  article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies
  publication-title: Build Environ
– volume: 86
  start-page: 1196
  year: 2009
  end-page: 1200
  article-title: Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride
  publication-title: Appl Energ
– volume: 67
  start-page: 210
  year: 2013
  end-page: 216
  article-title: Ultrathin envelope thermal performance improvement of prefab house by integrating with phase change material
  publication-title: Energ Buildings
– volume: 37
  start-page: 215
  year: 2005
  end-page: 220
  article-title: Experimental study of under-floor electric heating system with shape-stabilized PCM plates
  publication-title: Energ Buildings
– volume: 30
  start-page: 428
  year: 2012
  end-page: 437
  article-title: Characterization of the optical properties of a PCM glazing system
  publication-title: Energy Proced
– volume: 59
  start-page: 612
  year: 2013
  end-page: 625
  article-title: Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces
  publication-title: Build Environ
– volume: 50
  start-page: 3169
  year: 2009
  end-page: 3181
  article-title: Dynamic characteristics and energy performance of buildings using phase change materials: a review
  publication-title: Energ Convers Manage
– volume: 11
  start-page: 1146
  year: 2007
  end-page: 1166
  article-title: PCM thermal storage in buildings: a state of art
  publication-title: Renew Sust Energ Rev
– volume: 87
  start-page: 1324
  year: 2014
  end-page: 1331
  article-title: Effect of windows on temperature moderation by a phase-change material (PCM) in a structure in winter
  publication-title: Energ Convers Manage
– volume: 107
  start-page: 55
  year: 2016
  end-page: 62
  article-title: Thermal regulating performance of gypsum/(C18–C24) composite phase change material (CPCM) for building energy storage applications
  publication-title: Appl Therm Eng
– volume: 45
  start-page: 1597
  year: 2004
  end-page: 1615
  article-title: A review on phase change energy storage: materials and applications
  publication-title: Energ Convers Manage
– volume: 70
  start-page: 219
  year: 2015
  end-page: 228
  article-title: PCM thermal energy storage in buildings: experimental study and applications
  publication-title: Energy Proced
– volume: 46
  start-page: 2592
  year: 2005
  end-page: 2604
  article-title: Numerical analysis of a PCM thermal storage system with varying wall temperature
  publication-title: Energ Convers Manage
– volume: 76
  start-page: 790
  year: 2015
  end-page: 804
  article-title: A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components
  publication-title: Renew Energ
– volume: 36
  start-page: 147
  year: 1995
  end-page: 157
  article-title: Development and application of organic-phase change mixtures in thermal storage gypsum wallboard
  publication-title: Sol Energ Mat Sol C
– volume: 14
  start-page: 2819
  year: 2010
  end-page: 2829
  article-title: Review on free cooling of buildings using phase change materials
  publication-title: Renew Sust Energ Rev
– volume: 13
  start-page: 318
  year: 2009
  end-page: 345
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renew Sust Energ Rev
– volume: 20
  start-page: 238
  year: 2011
  end-page: 248
  article-title: Numerical investigation of indoor air temperature with the application of PCM gypsum board as ceiling panels in buildings
  publication-title: Procedia Eng
– volume: 78
  start-page: 1708
  year: 2015
  end-page: 1713
  article-title: Phase change materials applications to optimize cooling performance of buildings in the Mediterranean area: a parametric analysis
  publication-title: Energy Proced
– volume: 99
  start-page: 339
  year: 1993
  end-page: 346
  article-title: Phase change material wallboard for distributed storage in buildings: ASHRAE transactions
  publication-title: Geshwiler M
– volume: 53
  start-page: 96
  year: 2012
  end-page: 107
  article-title: Dynamic heat storage and cooling capacity of a concrete deck with PCM and thermally activated building system
  publication-title: Energ Buildings
– volume: 117
  start-page: 132
  year: 2016
  end-page: 141
  article-title: Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials
  publication-title: Energ Convers Manage
– volume: 168
  start-page: 457
  year: 2016
  end-page: 464
  article-title: Stable, low-cost phase change material for building applications: the eutectic mixture of decanoic acid and tetradecanoic acid
  publication-title: Appl Energ
– volume: 43
  start-page: 3704
  year: 2011
  end-page: 3709
  article-title: New equipment for testing steady and transient thermal performance of multilayered building envelopes with PCM
  publication-title: Energ Buildings
– volume: 81
  start-page: 334
  year: 2014
  end-page: 339
  article-title: Effects of PCM state on its phase change performance and the thermal performance of building walls
  publication-title: Build Environ
– volume: 42
  start-page: 1259
  year: 2010
  end-page: 1266
  article-title: Heat transfer and thermal storage behaviour of gypsum boards incorporating micro-encapsulated PCM
  publication-title: Energ Buildings
– volume: 93
  start-page: 1394
  year: 2015
  end-page: 1403
  article-title: Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner
  publication-title: Energy
– volume: 43
  start-page: 3514
  year: 2011
  end-page: 3520
  article-title: Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures
  publication-title: Energ Buildings
– volume: 92
  start-page: 1526
  year: 2008
  end-page: 1532
  article-title: Experimental study on the thermal storage performance and preparation of paraffin mixtures used in the phase change wall
  publication-title: Sol Energ Mat Sol C
– volume: 117
  start-page: 44
  year: 2016
  end-page: 52
  article-title: Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings
  publication-title: Energ Buildings
– volume: 40
  start-page: 148
  year: 2008
  end-page: 156
  article-title: Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation
  publication-title: Energ Buildings
– volume: 100
  start-page: 147
  year: 2015
  end-page: 156
  article-title: Numerical analysis on thermal performance of roof contained PCM of a single residential building
  publication-title: Energ Convers Manage
– volume: 51
  start-page: 383
  year: 2010
  end-page: 392
  article-title: Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials
  publication-title: Energ Convers Manage
– volume: 30
  start-page: 1110
  year: 2012
  end-page: 1119
  article-title: Trombe walls for lightweight buildings in temperate and hot climates. Exploring the use of phase-change materials for performances improvement
  publication-title: Energy Proced
– volume: 31
  start-page: 3117
  year: 2011
  end-page: 3124
  article-title: Numerical study of the influence of the convective heat transfer on the dynamical behaviour of a phase change material wall
  publication-title: Appl Therm Eng
– volume: 20
  start-page: 57
  year: 1978
  end-page: 67
  article-title: Effect of phase change energy storage on the performance of air-based and liquid-based solar heating system
  publication-title: Sol Energy
– volume: 94
  start-page: 150
  year: 2015
  end-page: 158
  article-title: Energy and economic analysis of a building air-conditioner with a phase change material (PCM)
  publication-title: Energ Convers Manage
– volume: 110
  start-page: 276
  year: 2014
  end-page: 285
  article-title: Active heat storage characteristics of active–passive triple wall with phase change material
  publication-title: Sol Energy
– volume: 94
  start-page: 33
  year: 2015
  end-page: 42
  article-title: Parametric investigations of using a PCM curtain for energy efficient buildings
  publication-title: Energ Buildings
– volume: 82
  start-page: 505
  year: 2014
  end-page: 511
  article-title: Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: preparation and thermal properties
  publication-title: Energ Buildings
– volume: 1
  start-page: 341
  year: 2012
  end-page: 347
  article-title: Thermo-physical behaviour and energy performance assessment of PCM glazing system configurations: a numerical analysis
  publication-title: Front Architec Res
– volume: 112
  start-page: 988
  year: 2013
  end-page: 998
  article-title: A new method to determine thermophysical properties of PCM-concrete brick
  publication-title: Appl Energ
– volume: 32
  start-page: 154
  year: 2008
  end-page: 160
  article-title: Capric acid and stearic acid mixture impregnated with gypsum wallboard for low-temperature latent heat thermal energy storage
  publication-title: Int J Energy Res
– volume: 38
  start-page: 472
  year: 2006
  end-page: 483
  article-title: Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls
  publication-title: Energ Buildings
– volume: 48
  start-page: 371
  year: 2013
  end-page: 378
  article-title: Multi-scale composite models for the effective thermal conductivity of PCM-concrete
  publication-title: Constr Build Mater
– volume: 65
  start-page: 464
  year: 2013
  end-page: 476
  article-title: Influence of the use of PCM drywall and the fenestration in building retrofitting
  publication-title: Energ Buildings
– volume: 19
  start-page: 111
  year: 2000
  end-page: 115
  article-title: Composite salt-hydrate concrete system for building energy storage
  publication-title: Renew Energ
– volume: 78
  start-page: 192
  year: 2014
  end-page: 201
  article-title: Energy saving potential of phase change materials in major Australian cities
  publication-title: Energ Buildings
– volume: 36
  start-page: 567
  year: 2004
  end-page: 578
  article-title: Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings
  publication-title: Energ Buildings
– volume: 15
  start-page: 1373
  year: 2011
  end-page: 1391
  article-title: Development of phase change materials based microencapsulated technology for buildings: a review
  publication-title: Renew Sust Energ Rev
– volume: 317
  start-page: 39
  year: 1998
  end-page: 45
  article-title: Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and large scale thermal testing
  publication-title: Thermochim Acta
– volume: 137
  start-page: 107
  year: 2015
  end-page: 112
  article-title: Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings
  publication-title: Sol Energ Mat Sol C
– volume: 35
  start-page: 417
  year: 2003
  end-page: 425
  article-title: Modeling and experimental study on an innovative passive cooling system—NVP system
  publication-title: Energ Buildings
– volume: 59
  start-page: 517
  year: 2013
  end-page: 527
  article-title: A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings
  publication-title: Build Environ
– volume: 81
  start-page: 1351
  year: 2007
  end-page: 1360
  article-title: An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating
  publication-title: Sol Energy
– volume: 25
  start-page: 15
  year: 1985
  end-page: 20
  article-title: Thermal performance of a non-A/C building with PCCM thermal storage wall
  publication-title: Energ Convers Manage
– volume: 36
  start-page: 1458
  year: 2011
  end-page: 1462
  article-title: In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard
  publication-title: Renew Energ
– volume: 70
  start-page: 411
  year: 2014
  end-page: 421
  article-title: Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates
  publication-title: Energ Buildings
– volume: 243
  start-page: 193
  year: 1994
  end-page: 200
  article-title: DSC studies of new energy-storage materials. Part 3. Thermal and flammability studies
  publication-title: Thermochim Acta
– volume: 163
  start-page: 9
  year: 2016
  end-page: 18
  article-title: Application of weather forecast in conjunction with price-based method for PCM solar passive buildings—an experimental study
  publication-title: Appl Energ
– volume: 86
  start-page: 2038
  year: 2009
  end-page: 2046
  article-title: Experimental assessment of a phase change material for wall building use
  publication-title: Appl Energ
– volume: 60
  start-page: 1470
  year: 2016
  end-page: 1497
  article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes
  publication-title: Renew Sust Energ Rev
– volume: 175
  start-page: 324
  year: 2016
  end-page: 336
  article-title: Energy and economic analysis of building integrated with PCM in different cities of China
  publication-title: Appl Energ
– volume: 67
  start-page: 24
  year: 2014
  end-page: 34
  article-title: Brick masonry walls with PCM macrocapsules: an experimental approach
  publication-title: Appl Therm Eng
– volume: 73
  start-page: 780
  year: 2014
  end-page: 786
  article-title: On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction
  publication-title: Energy
– volume: 86
  start-page: 2504
  year: 2012
  end-page: 2514
  article-title: Field thermal performance of naturally ventilated solar roof with PCM heat sink
  publication-title: Sol Energy
– ident: bibr68-1687814017700828
  doi: 10.1016/j.solener.2013.11.021
– ident: bibr118-1687814017700828
  doi: 10.1016/j.enconman.2014.04.007
– ident: bibr107-1687814017700828
  doi: 10.1016/j.buildenv.2012.09.021
– ident: bibr108-1687814017700828
  doi: 10.1016/j.enbuild.2013.06.023
– ident: bibr149-1687814017700828
  doi: 10.1016/j.enbuild.2016.05.058
– ident: bibr54-1687814017700828
  doi: 10.1016/j.apenergy.2012.12.055
– ident: bibr139-1687814017700828
  doi: 10.1016/j.proeng.2015.06.167
– ident: bibr141-1687814017700828
  doi: 10.1016/j.enconman.2015.05.014
– ident: bibr69-1687814017700828
  doi: 10.1016/j.matlet.2014.04.002
– ident: bibr119-1687814017700828
  doi: 10.1016/j.enbuild.2014.04.027
– ident: bibr80-1687814017700828
  doi: 10.1016/j.enbuild.2010.02.018
– ident: bibr60-1687814017700828
  doi: 10.1016/j.solmat.2013.09.035
– ident: bibr10-1687814017700828
  doi: 10.1016/j.solener.2011.09.026
– ident: bibr23-1687814017700828
  doi: 10.1016/j.rser.2013.01.024
– ident: bibr145-1687814017700828
  doi: 10.1016/j.solmat.2014.11.001
– ident: bibr74-1687814017700828
  doi: 10.1016/j.buildenv.2014.07.012
– ident: bibr5-1687814017700828
  doi: 10.1016/j.enbuild.2014.07.049
– ident: bibr66-1687814017700828
  doi: 10.1016/j.matlet.2014.01.051
– ident: bibr22-1687814017700828
  doi: 10.1016/j.enbuild.2013.08.006
– ident: bibr38-1687814017700828
  doi: 10.1016/j.enconman.2007.01.014
– ident: bibr46-1687814017700828
  doi: 10.1016/j.enconman.2004.11.003
– volume: 99
  start-page: 339
  year: 1993
  ident: bibr34-1687814017700828
  publication-title: Geshwiler M
– ident: bibr18-1687814017700828
  doi: 10.1016/j.rser.2010.11.018
– ident: bibr138-1687814017700828
  doi: 10.1016/j.egypro.2015.11.365
– ident: bibr64-1687814017700828
  doi: 10.1002/er.1352
– ident: bibr131-1687814017700828
  doi: 10.1016/j.renene.2014.11.078
– ident: bibr43-1687814017700828
  doi: 10.1016/0038-092X(78)90141-X
– ident: bibr130-1687814017700828
  doi: 10.1016/j.applthermaleng.2015.11.107
– ident: bibr9-1687814017700828
  doi: 10.1016/j.apenergy.2008.10.020
– ident: bibr148-1687814017700828
  doi: 10.1016/j.enbuild.2016.01.042
– ident: bibr48-1687814017700828
  doi: 10.1016/j.foar.2012.10.002
– ident: bibr152-1687814017700828
  doi: 10.1016/j.enbuild.2015.02.023
– ident: bibr85-1687814017700828
  doi: 10.1016/j.enbuild.2012.02.010
– ident: bibr16-1687814017700828
  doi: 10.1016/j.applthermaleng.2011.03.040
– ident: bibr144-1687814017700828
  doi: 10.1016/j.buildenv.2016.01.023
– ident: bibr146-1687814017700828
  doi: 10.1016/j.enbuild.2015.01.044
– ident: bibr76-1687814017700828
  doi: 10.1016/j.enbuild.2005.08.007
– ident: bibr81-1687814017700828
  doi: 10.1016/j.enconman.2009.09.003
– ident: bibr128-1687814017700828
  doi: 10.1016/j.renene.2014.02.025
– ident: bibr78-1687814017700828
  doi: 10.1016/j.solener.2004.04.013
– ident: bibr109-1687814017700828
  doi: 10.1016/j.energy.2013.06.066
– ident: bibr95-1687814017700828
  doi: 10.1016/j.ijthermalsci.2009.01.010
– ident: bibr19-1687814017700828
  doi: 10.1016/j.rser.2010.08.019
– ident: bibr79-1687814017700828
  doi: 10.1016/j.apenergy.2009.01.004
– ident: bibr89-1687814017700828
  doi: 10.1016/j.buildenv.2005.02.005
– ident: bibr90-1687814017700828
  doi: 10.1016/j.solener.2007.01.014
– ident: bibr91-1687814017700828
  doi: 10.1016/j.enbuild.2007.01.022
– ident: bibr61-1687814017700828
  doi: 10.1016/j.enbuild.2014.06.044
– ident: bibr112-1687814017700828
  doi: 10.1016/j.conbuildmat.2013.06.068
– ident: bibr98-1687814017700828
  doi: 10.1016/j.enbuild.2011.06.015
– ident: bibr157-1687814017700828
  doi: 10.1016/j.applthermaleng.2016.06.160
– ident: bibr33-1687814017700828
  doi: 10.1080/00908319308909014
– ident: bibr125-1687814017700828
  doi: 10.1016/j.enbuild.2010.01.012
– ident: bibr151-1687814017700828
  doi: 10.1016/j.renene.2014.11.001
– ident: bibr136-1687814017700828
  doi: 10.1016/j.apenergy.2016.05.032
– ident: bibr25-1687814017700828
  doi: 10.1016/j.rser.2005.10.002
– ident: bibr88-1687814017700828
  doi: 10.1016/j.enbuild.2006.03.030
– ident: bibr154-1687814017700828
  doi: 10.1016/j.enbuild.2015.07.019
– ident: bibr35-1687814017700828
  doi: 10.1016/0040-6031(94)85054-2
– ident: bibr36-1687814017700828
  doi: 10.1016/j.buildenv.2004.04.005
– ident: bibr129-1687814017700828
  doi: 10.1016/j.buildenv.2008.12.002
– ident: bibr105-1687814017700828
  doi: 10.1016/j.solmat.2012.06.012
– start-page: 48
  volume-title: Proceedings of the 12th passive solar conference
  ident: bibr32-1687814017700828
– ident: bibr106-1687814017700828
  doi: 10.1016/j.buildenv.2012.02.019
– ident: bibr113-1687814017700828
  doi: 10.1016/j.scitotenv.2012.11.012
– ident: bibr133-1687814017700828
  doi: 10.1016/j.rser.2016.03.007
– ident: bibr156-1687814017700828
  doi: 10.1016/j.enbuild.2015.04.028
– ident: bibr137-1687814017700828
  doi: 10.1016/j.energy.2015.10.131
– ident: bibr134-1687814017700828
  doi: 10.1016/j.apenergy.2015.11.016
– ident: bibr101-1687814017700828
  doi: 10.1016/j.egypro.2012.11.044
– ident: bibr94-1687814017700828
  doi: 10.1016/j.enconman.2009.06.025
– ident: bibr104-1687814017700828
  doi: 10.1016/j.applthermaleng.2011.10.033
– ident: bibr97-1687814017700828
  doi: 10.1016/j.applthermaleng.2011.04.001
– ident: bibr150-1687814017700828
  doi: 10.1016/j.enbuild.2014.10.020
– ident: bibr126-1687814017700828
  doi: 10.1016/j.enbuild.2013.11.072
– ident: bibr50-1687814017700828
  doi: 10.1016/j.proeng.2015.09.027
– ident: bibr77-1687814017700828
  doi: 10.1016/S0960-1481(99)00024-5
– ident: bibr84-1687814017700828
  doi: 10.1016/j.enbuild.2013.12.001
– ident: bibr143-1687814017700828
  doi: 10.1016/j.egypro.2015.02.118
– ident: bibr7-1687814017700828
  doi: 10.1016/j.solmat.2008.11.057
– ident: bibr82-1687814017700828
  doi: 10.1016/j.renene.2010.11.008
– ident: bibr99-1687814017700828
  doi: 10.1016/j.enbuild.2012.07.007
– ident: bibr20-1687814017700828
  doi: 10.1016/j.rser.2010.10.006
– ident: bibr45-1687814017700828
  doi: 10.1016/j.solener.2004.08.017
– ident: bibr52-1687814017700828
  doi: 10.1016/0038-092X(83)90186-X
– ident: bibr135-1687814017700828
  doi: 10.1016/j.enconman.2015.01.068
– ident: bibr55-1687814017700828
  doi: 10.1016/j.enbuild.2009.10.022
– ident: bibr117-1687814017700828
  doi: 10.1016/j.enbuild.2014.03.005
– ident: bibr51-1687814017700828
  doi: 10.1016/j.enbuild.2010.05.012
– ident: bibr24-1687814017700828
  doi: 10.1016/j.rser.2013.12.042
– ident: bibr70-1687814017700828
  doi: 10.1016/j.buildenv.2010.02.002
– ident: bibr3-1687814017700828
  doi: 10.1016/j.renene.2008.02.024
– ident: bibr123-1687814017700828
  doi: 10.1016/j.enconman.2014.09.003
– ident: bibr71-1687814017700828
  doi: 10.1016/j.enbuild.2011.09.028
– ident: bibr26-1687814017700828
  doi: 10.1016/j.enconman.2003.09.015
– ident: bibr57-1687814017700828
  doi: 10.1016/j.energy.2014.06.079
– ident: bibr100-1687814017700828
  doi: 10.1016/j.solener.2012.05.020
– ident: bibr49-1687814017700828
  doi: 10.1016/j.egypro.2014.02.144
– ident: bibr93-1687814017700828
  doi: 10.1016/j.applthermaleng.2007.11.004
– ident: bibr13-1687814017700828
  doi: 10.1016/j.apenergy.2016.05.001
– ident: bibr59-1687814017700828
  doi: 10.1016/j.enbuild.2014.02.018
– ident: bibr4-1687814017700828
  doi: 10.1016/j.solener.2014.09.003
– ident: bibr39-1687814017700828
  doi: 10.1016/j.enbuild.2004.01.029
– ident: bibr12-1687814017700828
  doi: 10.1016/j.egypro.2012.11.124
– ident: bibr86-1687814017700828
  doi: 10.1016/j.enbuild.2004.01.004
– ident: bibr111-1687814017700828
  doi: 10.1016/j.enbuild.2012.12.013
– ident: bibr21-1687814017700828
  doi: 10.1016/j.rser.2012.10.034
– ident: bibr155-1687814017700828
  doi: 10.1016/j.apenergy.2016.01.115
– ident: bibr27-1687814017700828
  doi: 10.1016/S1359-4311(02)00192-8
– ident: bibr28-1687814017700828
  doi: 10.1016/j.rser.2007.10.005
– ident: bibr6-1687814017700828
  doi: 10.1016/j.cej.2013.07.008
– ident: bibr132-1687814017700828
  doi: 10.1016/j.rser.2016.03.036
– ident: bibr53-1687814017700828
  doi: 10.1016/j.enconman.2009.08.019
– ident: bibr87-1687814017700828
  doi: 10.1016/j.enbuild.2010.08.019
– ident: bibr62-1687814017700828
  doi: 10.1016/0927-0248(94)00168-R
– ident: bibr15-1687814017700828
  doi: 10.1016/j.applthermaleng.2004.03.017
– ident: bibr92-1687814017700828
  doi: 10.1016/j.solmat.2008.07.002
– ident: bibr147-1687814017700828
  doi: 10.1016/j.enconman.2016.02.078
– ident: bibr8-1687814017700828
  doi: 10.1016/j.applthermaleng.2005.11.022
– ident: bibr63-1687814017700828
  doi: 10.1016/S0040-6031(98)00368-2
– ident: bibr122-1687814017700828
  doi: 10.1016/j.energy.2013.11.088
– ident: bibr40-1687814017700828
  doi: 10.1016/j.proeng.2011.11.161
– ident: bibr75-1687814017700828
  doi: 10.1016/j.enbuild.2012.04.022
– ident: bibr115-1687814017700828
  doi: 10.1016/j.solmat.2013.09.037
– ident: bibr37-1687814017700828
  doi: 10.1016/j.enbuild.2004.06.017
– ident: bibr30-1687814017700828
  doi: 10.1016/0038-092X(91)90084-A
– ident: bibr103-1687814017700828
  doi: 10.1016/j.enconman.2012.03.007
– ident: bibr17-1687814017700828
  doi: 10.1016/j.rser.2010.07.004
– ident: bibr124-1687814017700828
  doi: 10.1016/j.apenergy.2013.01.046
– ident: bibr114-1687814017700828
  doi: 10.1016/j.enbuild.2013.08.029
– ident: bibr110-1687814017700828
  doi: 10.1016/j.buildenv.2012.10.004
– ident: bibr127-1687814017700828
  doi: 10.1016/j.enconman.2007.01.014
– ident: bibr1-1687814017700828
– ident: bibr41-1687814017700828
  doi: 10.1016/j.enconman.2011.04.004
– ident: bibr120-1687814017700828
  doi: 10.1016/j.enbuild.2014.04.028
– ident: bibr73-1687814017700828
  doi: 10.1016/j.apenergy.2014.09.003
– ident: bibr83-1687814017700828
  doi: 10.1016/j.buildenv.2012.12.007
– ident: bibr121-1687814017700828
  doi: 10.1016/j.renene.2012.10.027
– ident: bibr153-1687814017700828
  doi: 10.1016/j.egypro.2015.11.272
– ident: bibr14-1687814017700828
  doi: 10.1016/j.energy.2015.10.053
– ident: bibr72-1687814017700828
  doi: 10.1016/j.egypro.2013.07.089
– ident: bibr31-1687814017700828
  doi: 10.1016/0196-8904(85)90064-0
– ident: bibr56-1687814017700828
  doi: 10.1016/j.applthermaleng.2014.02.069
– ident: bibr67-1687814017700828
  doi: 10.1007/s10973-015-5173-0
– ident: bibr47-1687814017700828
  doi: 10.1016/S0378-7788(02)00141-X
– ident: bibr96-1687814017700828
  doi: 10.1016/j.enbuild.2011.10.010
– ident: bibr29-1687814017700828
  doi: 10.1016/j.enbuild.2012.12.042
– ident: bibr65-1687814017700828
  doi: 10.1016/j.enbuild.2006.11.012
– ident: bibr116-1687814017700828
  doi: 10.1016/j.solener.2014.09.015
– ident: bibr142-1687814017700828
  doi: 10.1016/j.enbuild.2015.02.024
– ident: bibr11-1687814017700828
  doi: 10.1016/j.solener.2012.05.012
– ident: bibr58-1687814017700828
  doi: 10.1016/j.enbuild.2013.03.048
– ident: bibr140-1687814017700828
  doi: 10.1016/j.egypro.2015.11.846
– volume-title: IEA ECESIA, 3rd workshop
  ident: bibr42-1687814017700828
– volume: 24
  start-page: 503
  year: 1979
  ident: bibr44-1687814017700828
  publication-title: Sol Energy
– ident: bibr102-1687814017700828
  doi: 10.1016/j.egypro.2012.11.051
SSID ssib050600699
ssj0000395696
ssib044728254
ssib023771143
Score 2.487466
SecondaryResourceType review_article
Snippet In the past several decades, many literatures have emerged on the topic of phase change material and latent heat storage techniques used in building....
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168781401770082
SubjectTerms Air temperature
Buildings
Construction materials
Cooling
Energy consumption
Heat conductivity
Heat of fusion
Heat storage
Latent heat
Latitude
Melting
Phase change materials
Physical properties
Studies
Thermal energy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfmJ1Sg4ieChrlzRtT7LJxhAcIg52K03SqCDt3Ob_73tZtlXB3fqRfvDyvl_ye4TcMMZABarEF0XKfK618HPwk32FSY8oZCa17YCeRmI45o-TaOISbnO3rHKlE62i1pXCHHkbAwWs-QhxP_3ysWsUVlddC41d0gQVnEDw1ez1R88vK47qsDgOawB2nMe4V3PNgYiuFwjnkFvdzeALtqlXKED6EojVNrXNNl5DhCg4ttBvv2yZhfz_5afWloZZazU4JAfOzaTdJV8ckZ2iPCb7NfDBE5J26XLfCq1KOn0Ha0aXu4ApOLGWL2mtuk0_SipdC-1TMh70Xx-Gvmuk4CuesIWvmMpFBxe0aSECbXSIoDpRkoCAS2Yincu8EELGTEVpHhcsTwxTyhjBtZIdwc5Io6zK4pxQqaPICMUNN5JrFssQrGyuTCCSNIBTj7RXJMmUQxnHZhefWeiAxf8S0SN36yemS4SNLWN7SOX1OMTGtheq2VvmRC1TEEGmoHYCBaEg-JdpUcRBlKcaqBADATzSWs1R5gR2nm3YyyO3OG-1W__8zMX291ySvQ66ADZj0yKNxey7uAIHZiGvHZf-AMV34ZI
  priority: 102
  providerName: ProQuest
– databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgucABlZaKhS3yoULi4G4Sv5IT2lasEFJ7QKByi2I7BqRuFtHdA_-eGcfZhiIQtyR2JGs8T4_nG0K-cs5BBdqcqbrgTDinWAV-MrN46CFT7ovQDujnL3V2Jc6v5fUaabpamEjBv9_wWhWsKChrlG48jR7HJOM4VXmAaoLngMF2slzMyva0u2uqgV8wPb2cYWbb4n3IR9ZVt62TjUwrCYK8MZle_F5JQMa1TnuAd0JorO1ccSyi8SUqOvBB13OIL0ITMFwSyyG2-5cLfbHMZ7YvtAh45tf2rpIF6zb9QLajW0onLR_tkLW6-Ui2emCFn0gxoW2dC5039P4WrB9tq4YpOL2Bj2kvG07vGmpiy-1dcjU9vfxxxmLjBWZFzhfMclupDC_AOaUS512KIDwyz0EhGO6lq0xVK2U0t7KodM2r3HNrvVfCWZMp_pkMmnlT7xFqnJReWeGFN8JxbVKwypX1icqLBF6HZNyRpLQRlRybY_wp0whE_j8Rh-R49cd9i8jxxtzvSOXVPMTSDh_mDzdlFM3SQsRZgJpKLISO4I8Wda0TWRUOqKCBAEMy6vao7NizxLgVU5A4fIT71ht6ZTH77514QDYzdB7CWc-IDBYPy_oLuD4Lcxj59QlQy_NY
  priority: 102
  providerName: SAGE Publications
Title A review on phase change material application in building
URI https://journals.sagepub.com/doi/full/10.1177/1687814017700828
https://www.proquest.com/docview/1924819566
https://doaj.org/article/c99897930c1643529ee705a9d3ca7d66
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86L3oQP3E6Rw4ieChrlyZNjps4h-CQseFuJZ8oSDd0_v--pN3oBPXiqW2Swst7Sd4vX7-H0BUhBIZAzSNmBYlSY1gkASdH2i960IQ4EcIBPY7YcJo-zOisFurLnwkr6YFLxXU0zAcENKJYA7AHtCCszWIqhSFaZoYFsm3webXJVBiDCeB-UduX7CSMB3YneA-0bRt-KND1b2DM2rGu4GkGB2i_goi4V4p2iLZscYT2asSBx0j0cHnnBM8LvHgBT4TLG7wYAGhoU7i2M41fC6yq8NcnaDq4m9wOoyoIQqRTTpaRhnqyrj-MBpWNjTOJJ8ShnEPnVMRRI5W0jKmMaCpkZonkjmjtHEuNVl1GTlGjmBf2DGFlKHVMpy51KjUkUwl4SKldzLiI4bOJOiuV5LpiCPeBKt7ypCIF_67EJrpZ_7Eo2TF-Kdv3Wl6X87zWIQGsnVfWzv-ydhO1VjbKq872kfs5pN8O9NnX3m61rB-EOf8PYS7Qbtc7-bAm00KN5funvQSIslRttM0H92200xuMnyfw7N-Nnsbt0Ea_AKzR31I
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHQOIQbZJxnPiAUHksW_o4tVJvIX4BEsou7SLEn-I3MuMk2xSJ3npLHMdKxvO0Pd8APEdEUoG2SpTXmEjnVNKQn5xYXvQoMgw6lgM6OFTzY_nppDjZgD9DLgwfqxx0YlTUbmF5jXzKgQLv-Sj1Zvkj4apRvLs6lNDo2GLP__5FIdvZ6933NL8v8nz24ejdPOmrCiRWVrhKLNpG5Xy6yymVuuAyRpgpqoq43WAoXGMar5Qp0Ra6KT02VUBrQ1DSWZMrpHGvwXWJqFmiqtnHgX9zLMtsBJcnZcmZoWt-Zyy_VPXuf7QUSP8TS4hlimS9osjwfCd1ym2MR0XXEWjuguWMBQYueMWjg2jRNs7uwO3eqRU7HRfehQ3f3oNbI6jD-6B3RJclIxatWH4l2ym6nGNBLnOUAjHaSxffWmH6gt0P4PhKCPwQNttF67dAGFcUQVkZZDDSYWkysumNDamqdEq3E5gOJKltj2nOpTW-11kPY_4vESfwav3GssPzuKTvW6byuh8jcceGxemXuhfs2lK8qknJpZYCT_JmtfdlWjTaERVKIsAEtoc5qnv1cFafM_MEXvK8jR7952MeXT7OM7gxPzrYr_d3D_cew82cnY-4VrQNm6vTn_4JuU4r8zTyq4DPVy0gfwGBqB39
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPEUSwv4AEgcok1ix04OCLW0q5bCqkJU6i3EL1oJZZd2EeKv8euYcZxtikRvvSWOYyXjedqebwBecs5RBZoyka7iibBWJg36yYmhRY8i474K5YA-zeT-sfhwUpyswZ8-F4aOVfY6MShqOze0Rj6hQIH2fKSc-Hgs4mh3-m7xI6EKUrTT2pfT6Fjk0P3-heHbxduDXZzrV3k-3fvyfj-JFQYSI0q-TAw3jczppJeVMrXeZoQ2U5Qlcr7mvrCNbpyUWnFTVI1yvCk9N8Z7KazRueQ47i1YVxgVpSNY39mbHX3uuTnnSmUD8DwhFOWJrrifkP1SGYOBYDc4_l0oKJZJlPwS48TLfdUJtRE6FV4H2LkrdjSUG7jiIw-OpQVLOb0HG9HFZdsdT96HNdc-gLsD4MOHUG2zLmeGzVu2OEVLyroMZIYOdJAJNthZZ2ct07F89yM4vhESP4ZRO2_dE2DaFoWXRnjhtbBc6QwtfGN8KssqxdsxTHqS1CYinFOhje91FkHN_yXiGN6s3lh06B7X9N0hKq_6ES53aJiff6ujmNcGo9cKVV5qMAxF37ZyTqVFU1mkgkICjGGrn6M6KouL-pK1x_Ca5m3w6D8f8_T6cV7AbRSO-uPB7HAT7uTkiYSFoy0YLc9_umfoRy3188iwDL7etIz8BUTwI48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+phase+change+material+application+in+building&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Yaping+Cui&rft.au=Jingchao+Xie&rft.au=Jiaping+Liu&rft.au=Jianping+Wang&rft.date=2017-06-01&rft.pub=SAGE+Publishing&rft.eissn=1687-8140&rft.volume=9&rft_id=info:doi/10.1177%2F1687814017700828&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c99897930c1643529ee705a9d3ca7d66
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon