Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery
Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural l...
Saved in:
Published in | Polymers Vol. 15; no. 10; p. 2317 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.05.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-4360 2073-4360 |
DOI | 10.3390/polym15102317 |
Cover
Loading…
Abstract | Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field. |
---|---|
AbstractList | Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field. Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field. |
Audience | Academic |
Author | Fu, Chao-Ping Feng, Xiao-Chen Zhang, Li-Ming Li, Chang-Yong Fang, Ying Yu, Hong-Wei Cai, Xing-Yu Chen, Si-Lin |
AuthorAffiliation | 3 State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China 2 College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China 4 School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China 1 Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China |
AuthorAffiliation_xml | – name: 4 School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China – name: 1 Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China – name: 3 State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China – name: 2 College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China |
Author_xml | – sequence: 1 givenname: Chao-Ping orcidid: 0000-0002-4757-6889 surname: Fu fullname: Fu, Chao-Ping – sequence: 2 givenname: Xing-Yu surname: Cai fullname: Cai, Xing-Yu – sequence: 3 givenname: Si-Lin surname: Chen fullname: Chen, Si-Lin – sequence: 4 givenname: Hong-Wei surname: Yu fullname: Yu, Hong-Wei – sequence: 5 givenname: Ying surname: Fang fullname: Fang, Ying – sequence: 6 givenname: Xiao-Chen surname: Feng fullname: Feng, Xiao-Chen – sequence: 7 givenname: Li-Ming surname: Zhang fullname: Zhang, Li-Ming – sequence: 8 givenname: Chang-Yong orcidid: 0000-0002-1004-917X surname: Li fullname: Li, Chang-Yong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37242892$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9vFSEQx4mpsbX26NVs4sXLVn4tLKfm2Wpr0uhFz4RlhycNC0_YbfL-e3lpa_uawoEJfOY7-TLzFh3EFAGh9wSfMqbw500K24l0BFNG5Ct0RLFkLWcCHzyJD9FJKTe4Lt4JQeQbdMgk5bRX9AidXW1NWHKK3jYr68f2iykwNj9MTNbk7CGXxqXcrOLsrYkWcnORl3VzAcHfQt6-Q6-dCQVO7s9j9Pvb11_nV-31z8vv56vr1vKeza0BANf1FgRmfCTEgjOcY9NLIiSoztBuGBSmA-5EPwzWQWeYFFQ57saBKHaMzu50N8swwWghztkEvcl-Mnmrk_F6_yX6P3qdbnX9G8qZIlXh071CTn8XKLOefLEQgomQlqJpTzGmmHW7Yh-foTdpybH6qxRRXCoqxCO1NgG0jy7VwnYnqleyw0pxTmWlTl-g6h5h8ra20_l6v5fw4anT_xYfelYBdgfYnErJ4LT1s5l92hn3oTrWu-HQe8NRs9pnWQ_CL_P_ALHuui4 |
CitedBy_id | crossref_primary_10_1007_s00259_024_06894_5 crossref_primary_10_1016_j_eurpolymj_2025_113795 crossref_primary_10_1016_j_heliyon_2024_e24833 crossref_primary_10_1016_j_colcom_2025_100833 crossref_primary_10_3390_pharmaceutics15092216 crossref_primary_10_1016_j_glmedi_2024_100163 crossref_primary_10_3390_polym15183837 crossref_primary_10_1002_ardp_202400903 crossref_primary_10_1016_j_ijbiomac_2025_141752 crossref_primary_10_1007_s12668_024_01702_8 crossref_primary_10_1016_j_ijbiomac_2025_142486 crossref_primary_10_3390_pharmaceutics15061751 crossref_primary_10_1016_j_inoche_2024_113869 crossref_primary_10_1002_slct_202402035 crossref_primary_10_1002_marc_202500013 crossref_primary_10_1039_D4RA03911D crossref_primary_10_1007_s00210_024_03582_x crossref_primary_10_1016_j_jddst_2024_106183 crossref_primary_10_3390_cells14020061 crossref_primary_10_1002_bip_23632 crossref_primary_10_3390_cimb46090621 crossref_primary_10_1016_j_ijbiomac_2024_132275 crossref_primary_10_1080_00914037_2024_2360956 crossref_primary_10_1080_09205063_2024_2416293 crossref_primary_10_1016_j_ijbiomac_2024_137129 crossref_primary_10_1002_EXP_20230092 crossref_primary_10_1063_5_0259252 crossref_primary_10_1016_j_ijbiomac_2023_126581 crossref_primary_10_3390_molecules29030739 crossref_primary_10_3390_ijms242115812 crossref_primary_10_1016_j_ijbiomac_2024_132545 crossref_primary_10_3390_cancers16061195 crossref_primary_10_1016_j_mtbio_2024_101057 crossref_primary_10_3390_polym16030405 crossref_primary_10_1021_acsanm_4c04925 crossref_primary_10_1134_S1070363224110306 crossref_primary_10_1016_j_heliyon_2024_e41246 crossref_primary_10_3390_pharmaceutics16101276 crossref_primary_10_1016_j_nxnano_2023_100018 crossref_primary_10_1002_adma_202407793 crossref_primary_10_1016_j_carbpol_2024_123183 crossref_primary_10_1016_j_ijbiomac_2024_133744 crossref_primary_10_1016_j_ijbiomac_2024_132454 crossref_primary_10_1007_s12010_024_04895_6 crossref_primary_10_1016_j_biopha_2024_116713 crossref_primary_10_1186_s12951_024_03082_3 crossref_primary_10_1080_03639045_2024_2422497 crossref_primary_10_1016_j_biochi_2023_12_008 crossref_primary_10_1007_s00203_024_03910_y crossref_primary_10_1016_j_bioadv_2023_213733 crossref_primary_10_3390_mi14091786 |
Cites_doi | 10.1186/s12938-022-01012-8 10.1016/j.colsurfb.2019.03.007 10.1002/adfm.201908381 10.1016/j.jddst.2018.10.018 10.1016/j.jconrel.2010.04.006 10.1039/c3py00402c 10.1016/j.carbpol.2018.05.090 10.3390/polym11050867 10.1002/ardp.201300177 10.1002/jcp.25283 10.1016/j.colsurfb.2019.01.044 10.1021/acs.molpharmaceut.9b00094 10.1021/bc300248t 10.1016/j.biomaterials.2014.10.031 10.1080/17425247.2019.1645115 10.2147/IJN.S260163 10.1016/j.ijpharm.2010.03.058 10.1016/j.ijbiomac.2019.06.060 10.1016/j.reactfunctpolym.2020.104608 10.1016/j.carbpol.2018.11.005 10.1039/C2NR32145A 10.1111/febs.14847 10.1016/j.carbpol.2019.01.018 10.1016/j.jconrel.2012.03.020 10.1016/j.biomaterials.2013.04.030 10.1021/acs.bioconjchem.8b00311 10.1016/j.carbpol.2018.09.015 10.1002/mabi.201300383 10.1016/j.colsurfb.2014.10.025 10.1021/bc9900338 10.1016/j.colsurfb.2018.02.005 10.1002/jbm.b.34411 10.1016/j.addr.2015.12.012 10.1016/j.carbon.2020.05.022 10.1039/C9BM01605H 10.1002/advs.202101454 10.1021/nn100589y 10.1080/10717544.2020.1822460 10.2147/IJN.S249205 10.1002/adtp.202100022 10.1016/j.urolonc.2005.08.020 10.1016/j.carbpol.2023.120547 10.1016/j.biomaterials.2016.01.049 10.1002/adhm.201701439 10.1016/j.nano.2017.10.010 10.1039/C9NJ02608H 10.1002/mabi.200900363 10.1166/jbn.2018.2480 10.1016/j.carbpol.2020.116527 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J 10.1016/j.jconrel.2013.01.008 10.1021/bm101207k 10.1016/j.jconrel.2021.01.033 10.3109/10611869609046255 10.1039/C8RA05125A 10.1016/j.ijpharm.2010.09.029 10.1002/adma.201907035 10.3389/fphar.2015.00219 10.1016/j.mtchem.2022.101083 10.1016/j.jcis.2018.01.072 10.1016/j.jconrel.2015.04.021 10.1021/acsami.8b09342 10.1021/acsami.8b12393 10.1016/j.carbpol.2020.116119 10.1016/j.msec.2021.112475 10.3390/polym12051132 10.1021/acsami.0c12043 10.1111/febs.14777 10.1002/adma.201003963 10.1016/j.biomaterials.2014.01.011 10.1016/j.mtbio.2022.100349 10.7150/thno.69424 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/polym15102317 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC10224391 A750994427 37242892 10_3390_polym15102317 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: General Natural Science Foundation of Fujian Province grantid: No. 2022J01297 – fundername: National Natural Science Foundation of China grantid: 81971734 – fundername: National Key R&D Program of China grantid: No. 2019YFE0113600 – fundername: National Natural Science Foundation of China grantid: 32071323 – fundername: National Natural Science Foundation of China grantid: 32071323; 81971734 – fundername: General Natural Science Foundation of Fujian Province grantid: 2022J01297 – fundername: National Key R&D Program of China grantid: 2019YFE0113600 |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c483t-aeeef58ce6034d11cefa440a87167e95a25bb902b0568bbcfe5a37629f4fdb193 |
IEDL.DBID | 8FG |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:37:43 EDT 2025 Fri Jul 11 09:19:33 EDT 2025 Sun Jul 13 04:27:32 EDT 2025 Thu Jul 03 03:20:42 EDT 2025 Tue Jul 01 05:45:22 EDT 2025 Wed Feb 19 02:23:13 EST 2025 Tue Jul 01 03:21:24 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | anticancer drug carriers drug delivery prodrugs hyaluronic acid |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-aeeef58ce6034d11cefa440a87167e95a25bb902b0568bbcfe5a37629f4fdb193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4757-6889 0000-0002-1004-917X |
OpenAccessLink | https://www.proquest.com/docview/2819479266?pq-origsite=%requestingapplication% |
PMID | 37242892 |
PQID | 2819479266 |
PQPubID | 2032345 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10224391 proquest_miscellaneous_2820020359 proquest_journals_2819479266 gale_infotracmisc_A750994427 gale_infotracacademiconefile_A750994427 pubmed_primary_37242892 crossref_citationtrail_10_3390_polym15102317 crossref_primary_10_3390_polym15102317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-16 |
PublicationDateYYYYMMDD | 2023-05-16 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Polymers |
PublicationTitleAlternate | Polymers (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wang (ref_59) 2018; 48 Hua (ref_64) 2015; 6 Li (ref_30) 2014; 35 Cerroni (ref_70) 2011; 12 ref_53 Yang (ref_22) 2013; 4 Khalighi (ref_62) 2022; 16 Ferguson (ref_26) 2010; 402 Zheng (ref_31) 2018; 164 Qian (ref_61) 2018; 10 Xu (ref_68) 2013; 166 Lu (ref_55) 2019; 43 Sun (ref_44) 2019; 206 Zhang (ref_24) 2022; 12 Luo (ref_17) 1999; 10 Cai (ref_11) 2010; 146 Agrawal (ref_8) 2018; 14 Oommen (ref_12) 2014; 14 Yang (ref_52) 2020; 15 Hou (ref_33) 2023; 305 Truong (ref_69) 2018; 8 Bai (ref_74) 2020; 30 Passi (ref_4) 2019; 286 Zhang (ref_38) 2015; 37 Chen (ref_34) 2015; 210 Sakurai (ref_3) 2019; 16 Ricci (ref_40) 2018; 516 Xu (ref_21) 2014; 347 Cao (ref_57) 2019; 16 Burdick (ref_67) 2011; 23 Kankala (ref_39) 2020; 32 Her (ref_28) 2017; 109 Quagliariello (ref_66) 2021; 131 Pang (ref_27) 2014; 123 Tian (ref_50) 2019; 136 Alemzadeh (ref_2) 2020; 108 Li (ref_46) 2020; 237 Cao (ref_29) 2018; 7 Akima (ref_10) 1996; 4 Ringsdorf (ref_9) 1975; 51 Gao (ref_58) 2019; 178 ref_36 Jeong (ref_56) 2019; 209 Ji (ref_7) 2020; 8 Tao (ref_51) 2020; 15 Zhang (ref_18) 2021; 8 Bartheldyova (ref_63) 2018; 29 Chai (ref_49) 2020; 245 Lee (ref_37) 2020; 168 Yin (ref_13) 2018; 10 Jiang (ref_45) 2018; 197 Lei (ref_5) 2021; 331 Rosato (ref_16) 2006; 24 Li (ref_48) 2020; 152 Du (ref_47) 2018; 202 Tavianatou (ref_1) 2019; 286 Xiao (ref_19) 2020; 27 Yu (ref_41) 2013; 5 Barenholz (ref_60) 2012; 160 Lee (ref_6) 2022; 26 Zhong (ref_42) 2016; 84 Zhang (ref_54) 2019; 177 Liu (ref_20) 2022; 21 Hayes (ref_23) 1977; 39 Zhang (ref_73) 2013; 34 Kim (ref_32) 2010; 4 Quagliariello (ref_65) 2016; 231 Datir (ref_35) 2012; 23 Yao (ref_43) 2020; 15 Zhang (ref_15) 2018; 14 Xie (ref_25) 2010; 392 Burns (ref_71) 2020; 12 Zhang (ref_14) 2021; 4 Sundararaghavan (ref_72) 2010; 10 |
References_xml | – volume: 21 start-page: 53 year: 2022 ident: ref_20 article-title: Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes publication-title: BioMed. Eng. OnLine doi: 10.1186/s12938-022-01012-8 – volume: 178 start-page: 412 year: 2019 ident: ref_58 article-title: Zwitterionic pH-responsive hyaluronic acid polymer micelles for delivery of doxorubicin publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2019.03.007 – volume: 30 start-page: 1908381 year: 2020 ident: ref_74 article-title: Bioinspired Mineral-Organic Bone Adhesives for Stable Fracture Fixation and Accelerated Bone Regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908381 – volume: 48 start-page: 414 year: 2018 ident: ref_59 article-title: Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2018.10.018 – volume: 146 start-page: 212 year: 2010 ident: ref_11 article-title: Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.04.006 – volume: 15 start-page: 2885 year: 2020 ident: ref_51 article-title: Synthesis of HA-SS-MP: A Prodrug with High Specificity for Cancer Cells publication-title: Nat. Prod. Commun. – volume: 4 start-page: 4621 year: 2013 ident: ref_22 article-title: A hyaluronic acid-camptothecin nanoprodrug with cytosolic mode of activation for targeting cancer publication-title: Polym. Chem. doi: 10.1039/c3py00402c – volume: 197 start-page: 194 year: 2018 ident: ref_45 article-title: Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for targeting delivery of norcantharidin to hepatic carcinoma publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.05.090 – ident: ref_36 doi: 10.3390/polym11050867 – volume: 347 start-page: 240 year: 2014 ident: ref_21 article-title: Synthesis and optimization of a bifunctional hyaluronan-based camptothecin prodrug publication-title: Arch. Pharm. doi: 10.1002/ardp.201300177 – volume: 231 start-page: 1784 year: 2016 ident: ref_65 article-title: New Treatment of Medullary and Papillary Human Thyroid Cancer: Biological Effects of Hyaluronic Acid Hydrogel Loaded with Quercetin Alone or in Combination to an Inhibitor of Aurora Kinase publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25283 – volume: 177 start-page: 11 year: 2019 ident: ref_54 article-title: Tumor-targeting micelles based on folic acid and alpha-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2019.01.044 – volume: 16 start-page: 2502 year: 2019 ident: ref_57 article-title: Multifunctionalized Micelles Facilitate Intracellular Doxorubicin Delivery for Reversing Multidrug Resistance of Breast Cancer publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b00094 – volume: 23 start-page: 2201 year: 2012 ident: ref_35 article-title: Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin publication-title: Bioconjugate Chem. doi: 10.1021/bc300248t – volume: 37 start-page: 353 year: 2015 ident: ref_38 article-title: Transferrin-mediated fullerenes nanoparticles as Fe(2+)-dependent drug vehicles for synergistic anti-tumor efficacy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.031 – volume: 16 start-page: 915 year: 2019 ident: ref_3 article-title: Hyaluronan-modified nanoparticles for tumor-targeting publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2019.1645115 – volume: 15 start-page: 7013 year: 2020 ident: ref_43 article-title: A Novel Therapeutic siRNA Nanoparticle Designed for Dual-Targeting CD44 and Gli1 of Gastric Cancer Stem Cells publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S260163 – volume: 392 start-page: 156 year: 2010 ident: ref_25 article-title: Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.03.058 – volume: 136 start-page: 143 year: 2019 ident: ref_50 article-title: Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.06.060 – volume: 152 start-page: 104608 year: 2020 ident: ref_48 article-title: Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2020.104608 – volume: 206 start-page: 309 year: 2019 ident: ref_44 article-title: A photo-controlled hyaluronan-based drug delivery nanosystem for cancer therapy publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.11.005 – volume: 5 start-page: 178 year: 2013 ident: ref_41 article-title: Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells publication-title: Nanoscale doi: 10.1039/C2NR32145A – volume: 286 start-page: 2937 year: 2019 ident: ref_4 article-title: Dissecting the role of hyaluronan synthases in the tumor microenvironment publication-title: FEBS J. doi: 10.1111/febs.14847 – volume: 209 start-page: 161 year: 2019 ident: ref_56 article-title: Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.01.018 – volume: 160 start-page: 117 year: 2012 ident: ref_60 article-title: Doxil(R)–the first FDA-approved nano-drug: Lessons learned publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.03.020 – volume: 34 start-page: 6495 year: 2013 ident: ref_73 article-title: Gene transfection efficacy and biocompatibility of polycation/DNA complexes coated with enzyme degradable PEGylated hyaluronic acid publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.04.030 – volume: 29 start-page: 2343 year: 2018 ident: ref_63 article-title: Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44 publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.8b00311 – volume: 202 start-page: 513 year: 2018 ident: ref_47 article-title: Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.09.015 – volume: 14 start-page: 327 year: 2014 ident: ref_12 article-title: Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: An alternative to prodrug approach publication-title: Macromol. Biosci. doi: 10.1002/mabi.201300383 – volume: 123 start-page: 778 year: 2014 ident: ref_27 article-title: Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation publication-title: Colloids Surf. B. Biointerfaces doi: 10.1016/j.colsurfb.2014.10.025 – volume: 10 start-page: 755 year: 1999 ident: ref_17 article-title: Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate publication-title: Bioconjugate Chem. doi: 10.1021/bc9900338 – volume: 164 start-page: 424 year: 2018 ident: ref_31 article-title: Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy publication-title: Colloids Surface B doi: 10.1016/j.colsurfb.2018.02.005 – volume: 108 start-page: 555 year: 2020 ident: ref_2 article-title: Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1beta, TGF-beta1, and bFGF in burn wound model in rat publication-title: J. Biomed. Mater. Res. B. Appl. Biomater. doi: 10.1002/jbm.b.34411 – volume: 109 start-page: 84 year: 2017 ident: ref_28 article-title: Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.12.012 – volume: 168 start-page: 264 year: 2020 ident: ref_37 article-title: Induction of osteogenic differentiation in a rat calvarial bone defect model using an In situ forming graphene oxide incorporated glycol chitosan/oxidized hyaluronic acid injectable hydrogel publication-title: Carbon doi: 10.1016/j.carbon.2020.05.022 – volume: 8 start-page: 462 year: 2020 ident: ref_7 article-title: Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrysta ls for targeted breast cancer treatment with prolonged biodistribution publication-title: Biomater. Sci. doi: 10.1039/C9BM01605H – volume: 8 start-page: e2101454 year: 2021 ident: ref_18 article-title: Nanoparticulation of Prodrug into Medicines for Cancer Therapy publication-title: Adv. Sci. doi: 10.1002/advs.202101454 – volume: 4 start-page: 3005 year: 2010 ident: ref_32 article-title: Bioimaging for targeted delivery of hyaluronic Acid derivatives to the livers in cirrhotic mice using quantum dots publication-title: ACS Nano doi: 10.1021/nn100589y – volume: 27 start-page: 1491 year: 2020 ident: ref_19 article-title: Combinational dual drug delivery system to enhance the care and treatment of gastric cancer patients publication-title: Drug Deliv. doi: 10.1080/10717544.2020.1822460 – volume: 15 start-page: 2885 year: 2020 ident: ref_52 article-title: Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S249205 – volume: 4 start-page: 2100022 year: 2021 ident: ref_14 article-title: Targeting Signaling Pathways of Hyaluronic Acid and Integrin Receptors by Synergistic Combination Nanocomposites Inhibits Systemic Metastases and Primary Triple Negative Breast Cancer publication-title: Adv. Ther. doi: 10.1002/adtp.202100022 – volume: 24 start-page: 207 year: 2006 ident: ref_16 article-title: HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer publication-title: Urol. Oncol. doi: 10.1016/j.urolonc.2005.08.020 – volume: 305 start-page: 120547 year: 2023 ident: ref_33 article-title: Enzyme/GSH/pH-responsive hyaluronic acid grafted porous silica nanocarriers bearing Ag2S QDs for fluorescence imaging and combined therapy publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2023.120547 – volume: 84 start-page: 250 year: 2016 ident: ref_42 article-title: Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.049 – volume: 7 start-page: 1701439 year: 2018 ident: ref_29 article-title: Photothermally Controlled MHC Class I Restricted CD8+ T-Cell Responses Elicited by Hyaluronic Acid Decorated Gold Nanoparticles as a Vaccine for Cancer Immunotherapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201701439 – volume: 14 start-page: 327 year: 2018 ident: ref_8 article-title: CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster th e efficacy against triple-negative breast cancer publication-title: Nanomed-nanotechnology doi: 10.1016/j.nano.2017.10.010 – volume: 43 start-page: 12275 year: 2019 ident: ref_55 article-title: A dual responsive hyaluronic acid graft poly(ionic liquid) block copolymer micelle for an efficient CD44-targeted antitumor drug delivery publication-title: New J. Chem. doi: 10.1039/C9NJ02608H – volume: 10 start-page: 265 year: 2010 ident: ref_72 article-title: Electrospun fibrous scaffolds with multiscale and photopatterned porosity publication-title: Macromol. Biosci. doi: 10.1002/mabi.200900363 – volume: 14 start-page: 379 year: 2018 ident: ref_15 article-title: The Superior Anticancer Effect of Self-Assembled Paclitaxel Nanofibers is Mediated through Co-Operation between Enhanced Apoptosis and Autophagic Cell Death publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2018.2480 – volume: 245 start-page: 116527 year: 2020 ident: ref_49 article-title: Doxorubicin delivered by redox-responsive Hyaluronic Acid-Ibuprofen prodrug micelles for treatment of metastatic breast cancer publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116527 – volume: 39 start-page: 1372 year: 1977 ident: ref_23 article-title: High dose cis-platinum diammine dichloride: Amelioration of renal toxicity by mannitol diuresis publication-title: Cancer doi: 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J – volume: 166 start-page: 203 year: 2013 ident: ref_68 article-title: Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-alpha2a for liver cancer therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.01.008 – volume: 12 start-page: 593 year: 2011 ident: ref_70 article-title: Polymer shelled microparticles for a targeted doxorubicin delivery in cancer therapy publication-title: Biomacromolecules doi: 10.1021/bm101207k – volume: 331 start-page: 416 year: 2021 ident: ref_5 article-title: Hyaluronic acid and albumin based nanoparticles for drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.01.033 – volume: 4 start-page: 1 year: 1996 ident: ref_10 article-title: Evaluation of antitumor activities of hyaluronate binding antitumor drugs: Synthesis, characterization and antitumor activity publication-title: J. Drug Target. doi: 10.3109/10611869609046255 – volume: 8 start-page: 31934 year: 2018 ident: ref_69 article-title: Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery publication-title: RSC Adv. doi: 10.1039/C8RA05125A – volume: 402 start-page: 95 year: 2010 ident: ref_26 article-title: Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.09.029 – volume: 32 start-page: 1907035 year: 2020 ident: ref_39 article-title: Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201907035 – volume: 51 start-page: 135 year: 1975 ident: ref_9 article-title: Structure and properties of pharmacologically active polymers publication-title: J. Polym. Sci. – volume: 6 start-page: 219 year: 2015 ident: ref_64 article-title: Lipid-based nano-delivery systems for skin delivery of drugs and bioactives publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00219 – volume: 26 start-page: 101083 year: 2022 ident: ref_6 article-title: Targeted drug delivery nanocarriers based on hyaluronic acid-decorated dendrimer encapsulating gold nanoparticles for ovarian cancer therapy publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.101083 – volume: 516 start-page: 484 year: 2018 ident: ref_40 article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: Influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties publication-title: J. Colloids Interface Sci. doi: 10.1016/j.jcis.2018.01.072 – volume: 210 start-page: 230 year: 2015 ident: ref_34 article-title: Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.04.021 – volume: 10 start-page: 35693 year: 2018 ident: ref_13 article-title: Free Adriamycin-Loaded pH/Reduction Dual-Responsive Hyaluronic Acid–Adriamycin Prodrug Micelles for Efficient Cancer Therapy publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b09342 – volume: 10 start-page: 32006 year: 2018 ident: ref_61 article-title: Hyaluronan Reduces Cationic Liposome-Induced Toxicity and Enhances the Antitumor Effect of Targeted Gene Delivery in Mice publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b12393 – volume: 237 start-page: 116119 year: 2020 ident: ref_46 article-title: Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116119 – volume: 131 start-page: 112475 year: 2021 ident: ref_66 article-title: Double-responsive hyaluronic acid-based prodrugs for efficient tumour targeting publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2021.112475 – ident: ref_53 doi: 10.3390/polym12051132 – volume: 12 start-page: 52298 year: 2020 ident: ref_71 article-title: Microbubbles Cloaked with Hydrogels as Activatable Ultrasound Contrast Agents publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.0c12043 – volume: 286 start-page: 2883 year: 2019 ident: ref_1 article-title: Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer publication-title: FEBS J. doi: 10.1111/febs.14777 – volume: 23 start-page: H41 year: 2011 ident: ref_67 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mater. doi: 10.1002/adma.201003963 – volume: 35 start-page: 3666 year: 2014 ident: ref_30 article-title: Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.011 – volume: 16 start-page: 100349 year: 2022 ident: ref_62 article-title: Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer publication-title: Mater. Today Bio doi: 10.1016/j.mtbio.2022.100349 – volume: 12 start-page: 2115 year: 2022 ident: ref_24 article-title: Platinum-based drugs for cancer therapy and anti-tumor strategies publication-title: Theranostics doi: 10.7150/thno.69424 |
SSID | ssj0000456617 |
Score | 2.5406961 |
SecondaryResourceType | review_article |
Snippet | Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility,... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2317 |
SubjectTerms | Aqueous solutions Biocompatibility Breast cancer Cancer therapies Carbon nanotubes Chemotherapy Cytotoxicity Design optimization Drug carriers Drug delivery systems Drugs Gene therapy Health aspects Hyaluronic acid Hydrogels Hydroxyl groups Laboratory animals Ligands Metastasis Micelles Molecular structure Nanocrystals Nanomaterials Nanoparticles Nanotubes Ovarian cancer Quantum dots Review Silica Silicon dioxide Toxicity Tumors Vehicles |
Title | Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37242892 https://www.proquest.com/docview/2819479266 https://www.proquest.com/docview/2820020359 https://pubmed.ncbi.nlm.nih.gov/PMC10224391 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90PuiL-G11SgXRF8vWNl2bpzE_5hAUEQd7K0ma6GB2cx8P---967pqBYW-jNxKuCT3-yW5_g7g3ETScB0yJ0IscBh9o8sDL3I0op1CRixCTRvFx6dGp8seekEvP3Cb5GmVy5iYBepkqOiMvEYXPizkiCfN0adDVaPodjUvobEKay620AyP2vfFGQvRFUTohbSmj7v72mg4mH8gyJHqWViCot8B-QcilbMlf8BPews2c95otxYDvQ0rOt2B9ZtlubZdaHbmYjDLlG7tluonzjXiU2Jj9ES0GlNduomNBNVupXR6jUM9tm_Hszf7Vg8oNWO-B9323etNx8mrIziKRf7UEVprgw7VjbrPEtdV2gjG6oJ2QKHmgfACKXndk0hxIimV0YHAaOJxw0wikbftQyUdpvoQbGGChkq4HygTMsmVZBwfneACN8awugVXS0fFKpcOpwoWgxi3EOTXuORXCy4K89FCM-Mvw0vyekxrCd-nRP5JAPaKVKniFtEZzpiHltWSJfpWlZuX4xbna3ASf88YC86KZvon5ZWlejgjGy-7iw24BQeLYS667IdIXyLuWRCVJkBhQMrc5Za0_54pdGc6fT53j_7v1zFsUPV6SkZwG1WoTMczfYIcZypPs4l8CmvXd0_PL_jrvud-AUZy_2Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4heqCXqoU-QmnrSn1cGpE4ziY-VGhh2S7lcQKJW2o7NiBts9t9qNo_xW9kJq-SSu0NaW-erKzxzHxje_wNwAeXaidtIvwUscAX9EZXxjz1LaKdwYxYJZY2iqdnvdGF-H4ZX67BbfMWhsoqm5hYBup8YuiMfJcufEQiEU_2pr986hpFt6tNC43KLI7t6jdu2eZfjwa4vh85Hx6eH4z8uquAb0QaLXxlrXU4EdsLIpGHobFOCREo2jkkVsaKx1rLgGtMDVKtjbOxQi_k0gmX65DIlzDkPxJRJKmEMB1-a890KD3CjKCi8sTxYHc6Ga9-IqgSy1rSgb6_AeAeAnarM-_B3fApPKnzVNavDOsZrNliEzYOmvZwW7A3WqnxsmTWZX1zk_v7iIc5w2iN6DijPnhzhgkx6xd0Wo6mNWOD2fKKDeyYSkFWz-HiQfT2AtaLSWFfAVMu7plcRrFxidDSaCHxZ3MMKM45EXjwpVFUZmqqcuqYMc5wy0J6zTp69eBTKz6tODr-JfiZtJ6R7-L_GVU_QcBZEQtW1qf0SQrBUXKnI4m6Nd3hZt2y2ufn2R8L9eB9O0xfUh1bYSdLkuHl3W8sPXhZLXM75SjBdCmV3IO0YwCtADGBd0eKm-uSEbzkBYxkuP3_eb2DjdH56Ul2cnR2_Boec1QKFUKEvR1YX8yW9g3mVwv9tjRqBj8e2ovuAEEnOxo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuiDeBAkbicSHaxHE29gFVS5dlS6HiQKXeUtuxodKSXfYhtH-NX8dMXjRIcKu0N09W1nhmvrE9_gbguZfGK5eJUCIWhILe6KqUy9Ah2lnMiHXmaKP46Xg4PREfTtPTHfjVvoWhsso2JlaBuphbOiMf0IWPyBTiycA3ZRGfx5P9xY-QOkjRTWvbTqM2kSO3_Ynbt9WbwzGu9QvOJ---HEzDpsNAaIVM1qF2znmclBtGiSji2DqvhYg07SIyp1LNU2NUxA2mCdIY612q0SO58sIXJiYiJgz_V7JERtQ9QU7ed-c7lCphdlDTeiaJigaL-Wz7HQGWGNeyHgz-DQYX0LBfqXkB-iY34UaTs7JRbWS3YMeVt-HaQdsq7g7sT7d6tqlYdtnInhfhW8TGgmHkRqRcUk-8FcPkmI1KOjlHM1uy8XLzlY3djMpCtnfh5FL0dg92y3npHgDTPh3aQiWp9Zkwyhqh8OcKDC7eexEF8LpVVG4b2nLqnjHLcftCes17eg3gZSe-qPk6_iX4irSekx_j_1ndPEfAWREjVj6iVEoJwVFyryeJurX94Xbd8sb_V_kfaw3gWTdMX1JNW-nmG5Lh1T1wqgK4Xy9zN-Ukw9RJKh6A7BlAJ0Cs4P2R8vxbxQ5ecQQmKn74_3k9havoP_nHw-OjR3Cdo06oJiIe7sHuerlxjzHVWpsnlU0zOLtsJ_oNh48_Rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyaluronic+Acid-Based+Nanocarriers+for+Anticancer+Drug+Delivery&rft.jtitle=Polymers&rft.au=Fu%2C+Chao-Ping&rft.au=Cai%2C+Xing-Yu&rft.au=Chen%2C+Si-Lin&rft.au=Yu%2C+Hong-Wei&rft.date=2023-05-16&rft.pub=MDPI+AG&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=15&rft.issue=10&rft_id=info:doi/10.3390%2Fpolym15102317&rft.externalDocID=A750994427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |