Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery

Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural l...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 15; no. 10; p. 2317
Main Authors Fu, Chao-Ping, Cai, Xing-Yu, Chen, Si-Lin, Yu, Hong-Wei, Fang, Ying, Feng, Xiao-Chen, Zhang, Li-Ming, Li, Chang-Yong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.05.2023
MDPI
Subjects
Online AccessGet full text
ISSN2073-4360
2073-4360
DOI10.3390/polym15102317

Cover

Loading…
Abstract Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.
AbstractList Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.
Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.
Audience Academic
Author Fu, Chao-Ping
Feng, Xiao-Chen
Zhang, Li-Ming
Li, Chang-Yong
Fang, Ying
Yu, Hong-Wei
Cai, Xing-Yu
Chen, Si-Lin
AuthorAffiliation 3 State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
2 College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
4 School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
1 Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
AuthorAffiliation_xml – name: 4 School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
– name: 1 Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
– name: 3 State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
– name: 2 College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
Author_xml – sequence: 1
  givenname: Chao-Ping
  orcidid: 0000-0002-4757-6889
  surname: Fu
  fullname: Fu, Chao-Ping
– sequence: 2
  givenname: Xing-Yu
  surname: Cai
  fullname: Cai, Xing-Yu
– sequence: 3
  givenname: Si-Lin
  surname: Chen
  fullname: Chen, Si-Lin
– sequence: 4
  givenname: Hong-Wei
  surname: Yu
  fullname: Yu, Hong-Wei
– sequence: 5
  givenname: Ying
  surname: Fang
  fullname: Fang, Ying
– sequence: 6
  givenname: Xiao-Chen
  surname: Feng
  fullname: Feng, Xiao-Chen
– sequence: 7
  givenname: Li-Ming
  surname: Zhang
  fullname: Zhang, Li-Ming
– sequence: 8
  givenname: Chang-Yong
  orcidid: 0000-0002-1004-917X
  surname: Li
  fullname: Li, Chang-Yong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37242892$$D View this record in MEDLINE/PubMed
BookMark eNptks9vFSEQx4mpsbX26NVs4sXLVn4tLKfm2Wpr0uhFz4RlhycNC0_YbfL-e3lpa_uawoEJfOY7-TLzFh3EFAGh9wSfMqbw500K24l0BFNG5Ct0RLFkLWcCHzyJD9FJKTe4Lt4JQeQbdMgk5bRX9AidXW1NWHKK3jYr68f2iykwNj9MTNbk7CGXxqXcrOLsrYkWcnORl3VzAcHfQt6-Q6-dCQVO7s9j9Pvb11_nV-31z8vv56vr1vKeza0BANf1FgRmfCTEgjOcY9NLIiSoztBuGBSmA-5EPwzWQWeYFFQ57saBKHaMzu50N8swwWghztkEvcl-Mnmrk_F6_yX6P3qdbnX9G8qZIlXh071CTn8XKLOefLEQgomQlqJpTzGmmHW7Yh-foTdpybH6qxRRXCoqxCO1NgG0jy7VwnYnqleyw0pxTmWlTl-g6h5h8ra20_l6v5fw4anT_xYfelYBdgfYnErJ4LT1s5l92hn3oTrWu-HQe8NRs9pnWQ_CL_P_ALHuui4
CitedBy_id crossref_primary_10_1007_s00259_024_06894_5
crossref_primary_10_1016_j_eurpolymj_2025_113795
crossref_primary_10_1016_j_heliyon_2024_e24833
crossref_primary_10_1016_j_colcom_2025_100833
crossref_primary_10_3390_pharmaceutics15092216
crossref_primary_10_1016_j_glmedi_2024_100163
crossref_primary_10_3390_polym15183837
crossref_primary_10_1002_ardp_202400903
crossref_primary_10_1016_j_ijbiomac_2025_141752
crossref_primary_10_1007_s12668_024_01702_8
crossref_primary_10_1016_j_ijbiomac_2025_142486
crossref_primary_10_3390_pharmaceutics15061751
crossref_primary_10_1016_j_inoche_2024_113869
crossref_primary_10_1002_slct_202402035
crossref_primary_10_1002_marc_202500013
crossref_primary_10_1039_D4RA03911D
crossref_primary_10_1007_s00210_024_03582_x
crossref_primary_10_1016_j_jddst_2024_106183
crossref_primary_10_3390_cells14020061
crossref_primary_10_1002_bip_23632
crossref_primary_10_3390_cimb46090621
crossref_primary_10_1016_j_ijbiomac_2024_132275
crossref_primary_10_1080_00914037_2024_2360956
crossref_primary_10_1080_09205063_2024_2416293
crossref_primary_10_1016_j_ijbiomac_2024_137129
crossref_primary_10_1002_EXP_20230092
crossref_primary_10_1063_5_0259252
crossref_primary_10_1016_j_ijbiomac_2023_126581
crossref_primary_10_3390_molecules29030739
crossref_primary_10_3390_ijms242115812
crossref_primary_10_1016_j_ijbiomac_2024_132545
crossref_primary_10_3390_cancers16061195
crossref_primary_10_1016_j_mtbio_2024_101057
crossref_primary_10_3390_polym16030405
crossref_primary_10_1021_acsanm_4c04925
crossref_primary_10_1134_S1070363224110306
crossref_primary_10_1016_j_heliyon_2024_e41246
crossref_primary_10_3390_pharmaceutics16101276
crossref_primary_10_1016_j_nxnano_2023_100018
crossref_primary_10_1002_adma_202407793
crossref_primary_10_1016_j_carbpol_2024_123183
crossref_primary_10_1016_j_ijbiomac_2024_133744
crossref_primary_10_1016_j_ijbiomac_2024_132454
crossref_primary_10_1007_s12010_024_04895_6
crossref_primary_10_1016_j_biopha_2024_116713
crossref_primary_10_1186_s12951_024_03082_3
crossref_primary_10_1080_03639045_2024_2422497
crossref_primary_10_1016_j_biochi_2023_12_008
crossref_primary_10_1007_s00203_024_03910_y
crossref_primary_10_1016_j_bioadv_2023_213733
crossref_primary_10_3390_mi14091786
Cites_doi 10.1186/s12938-022-01012-8
10.1016/j.colsurfb.2019.03.007
10.1002/adfm.201908381
10.1016/j.jddst.2018.10.018
10.1016/j.jconrel.2010.04.006
10.1039/c3py00402c
10.1016/j.carbpol.2018.05.090
10.3390/polym11050867
10.1002/ardp.201300177
10.1002/jcp.25283
10.1016/j.colsurfb.2019.01.044
10.1021/acs.molpharmaceut.9b00094
10.1021/bc300248t
10.1016/j.biomaterials.2014.10.031
10.1080/17425247.2019.1645115
10.2147/IJN.S260163
10.1016/j.ijpharm.2010.03.058
10.1016/j.ijbiomac.2019.06.060
10.1016/j.reactfunctpolym.2020.104608
10.1016/j.carbpol.2018.11.005
10.1039/C2NR32145A
10.1111/febs.14847
10.1016/j.carbpol.2019.01.018
10.1016/j.jconrel.2012.03.020
10.1016/j.biomaterials.2013.04.030
10.1021/acs.bioconjchem.8b00311
10.1016/j.carbpol.2018.09.015
10.1002/mabi.201300383
10.1016/j.colsurfb.2014.10.025
10.1021/bc9900338
10.1016/j.colsurfb.2018.02.005
10.1002/jbm.b.34411
10.1016/j.addr.2015.12.012
10.1016/j.carbon.2020.05.022
10.1039/C9BM01605H
10.1002/advs.202101454
10.1021/nn100589y
10.1080/10717544.2020.1822460
10.2147/IJN.S249205
10.1002/adtp.202100022
10.1016/j.urolonc.2005.08.020
10.1016/j.carbpol.2023.120547
10.1016/j.biomaterials.2016.01.049
10.1002/adhm.201701439
10.1016/j.nano.2017.10.010
10.1039/C9NJ02608H
10.1002/mabi.200900363
10.1166/jbn.2018.2480
10.1016/j.carbpol.2020.116527
10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J
10.1016/j.jconrel.2013.01.008
10.1021/bm101207k
10.1016/j.jconrel.2021.01.033
10.3109/10611869609046255
10.1039/C8RA05125A
10.1016/j.ijpharm.2010.09.029
10.1002/adma.201907035
10.3389/fphar.2015.00219
10.1016/j.mtchem.2022.101083
10.1016/j.jcis.2018.01.072
10.1016/j.jconrel.2015.04.021
10.1021/acsami.8b09342
10.1021/acsami.8b12393
10.1016/j.carbpol.2020.116119
10.1016/j.msec.2021.112475
10.3390/polym12051132
10.1021/acsami.0c12043
10.1111/febs.14777
10.1002/adma.201003963
10.1016/j.biomaterials.2014.01.011
10.1016/j.mtbio.2022.100349
10.7150/thno.69424
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym15102317
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC10224391
A750994427
37242892
10_3390_polym15102317
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: General Natural Science Foundation of Fujian Province
  grantid: No. 2022J01297
– fundername: National Natural Science Foundation of China
  grantid: 81971734
– fundername: National Key R&D Program of China
  grantid: No. 2019YFE0113600
– fundername: National Natural Science Foundation of China
  grantid: 32071323
– fundername: National Natural Science Foundation of China
  grantid: 32071323; 81971734
– fundername: General Natural Science Foundation of Fujian Province
  grantid: 2022J01297
– fundername: National Key R&D Program of China
  grantid: 2019YFE0113600
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c483t-aeeef58ce6034d11cefa440a87167e95a25bb902b0568bbcfe5a37629f4fdb193
IEDL.DBID 8FG
ISSN 2073-4360
IngestDate Thu Aug 21 18:37:43 EDT 2025
Fri Jul 11 09:19:33 EDT 2025
Sun Jul 13 04:27:32 EDT 2025
Thu Jul 03 03:20:42 EDT 2025
Tue Jul 01 05:45:22 EDT 2025
Wed Feb 19 02:23:13 EST 2025
Tue Jul 01 03:21:24 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords anticancer drug carriers
drug delivery
prodrugs
hyaluronic acid
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-aeeef58ce6034d11cefa440a87167e95a25bb902b0568bbcfe5a37629f4fdb193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4757-6889
0000-0002-1004-917X
OpenAccessLink https://www.proquest.com/docview/2819479266?pq-origsite=%requestingapplication%
PMID 37242892
PQID 2819479266
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10224391
proquest_miscellaneous_2820020359
proquest_journals_2819479266
gale_infotracmisc_A750994427
gale_infotracacademiconefile_A750994427
pubmed_primary_37242892
crossref_citationtrail_10_3390_polym15102317
crossref_primary_10_3390_polym15102317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-16
PublicationDateYYYYMMDD 2023-05-16
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-16
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_59) 2018; 48
Hua (ref_64) 2015; 6
Li (ref_30) 2014; 35
Cerroni (ref_70) 2011; 12
ref_53
Yang (ref_22) 2013; 4
Khalighi (ref_62) 2022; 16
Ferguson (ref_26) 2010; 402
Zheng (ref_31) 2018; 164
Qian (ref_61) 2018; 10
Xu (ref_68) 2013; 166
Lu (ref_55) 2019; 43
Sun (ref_44) 2019; 206
Zhang (ref_24) 2022; 12
Luo (ref_17) 1999; 10
Cai (ref_11) 2010; 146
Agrawal (ref_8) 2018; 14
Oommen (ref_12) 2014; 14
Yang (ref_52) 2020; 15
Hou (ref_33) 2023; 305
Truong (ref_69) 2018; 8
Bai (ref_74) 2020; 30
Passi (ref_4) 2019; 286
Zhang (ref_38) 2015; 37
Chen (ref_34) 2015; 210
Sakurai (ref_3) 2019; 16
Ricci (ref_40) 2018; 516
Xu (ref_21) 2014; 347
Cao (ref_57) 2019; 16
Burdick (ref_67) 2011; 23
Kankala (ref_39) 2020; 32
Her (ref_28) 2017; 109
Quagliariello (ref_66) 2021; 131
Pang (ref_27) 2014; 123
Tian (ref_50) 2019; 136
Alemzadeh (ref_2) 2020; 108
Li (ref_46) 2020; 237
Cao (ref_29) 2018; 7
Akima (ref_10) 1996; 4
Ringsdorf (ref_9) 1975; 51
Gao (ref_58) 2019; 178
ref_36
Jeong (ref_56) 2019; 209
Ji (ref_7) 2020; 8
Tao (ref_51) 2020; 15
Zhang (ref_18) 2021; 8
Bartheldyova (ref_63) 2018; 29
Chai (ref_49) 2020; 245
Lee (ref_37) 2020; 168
Yin (ref_13) 2018; 10
Jiang (ref_45) 2018; 197
Lei (ref_5) 2021; 331
Rosato (ref_16) 2006; 24
Li (ref_48) 2020; 152
Du (ref_47) 2018; 202
Tavianatou (ref_1) 2019; 286
Xiao (ref_19) 2020; 27
Yu (ref_41) 2013; 5
Barenholz (ref_60) 2012; 160
Lee (ref_6) 2022; 26
Zhong (ref_42) 2016; 84
Zhang (ref_54) 2019; 177
Liu (ref_20) 2022; 21
Hayes (ref_23) 1977; 39
Zhang (ref_73) 2013; 34
Kim (ref_32) 2010; 4
Quagliariello (ref_65) 2016; 231
Datir (ref_35) 2012; 23
Yao (ref_43) 2020; 15
Zhang (ref_15) 2018; 14
Xie (ref_25) 2010; 392
Burns (ref_71) 2020; 12
Zhang (ref_14) 2021; 4
Sundararaghavan (ref_72) 2010; 10
References_xml – volume: 21
  start-page: 53
  year: 2022
  ident: ref_20
  article-title: Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/s12938-022-01012-8
– volume: 178
  start-page: 412
  year: 2019
  ident: ref_58
  article-title: Zwitterionic pH-responsive hyaluronic acid polymer micelles for delivery of doxorubicin
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.03.007
– volume: 30
  start-page: 1908381
  year: 2020
  ident: ref_74
  article-title: Bioinspired Mineral-Organic Bone Adhesives for Stable Fracture Fixation and Accelerated Bone Regeneration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908381
– volume: 48
  start-page: 414
  year: 2018
  ident: ref_59
  article-title: Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2018.10.018
– volume: 146
  start-page: 212
  year: 2010
  ident: ref_11
  article-title: Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2010.04.006
– volume: 15
  start-page: 2885
  year: 2020
  ident: ref_51
  article-title: Synthesis of HA-SS-MP: A Prodrug with High Specificity for Cancer Cells
  publication-title: Nat. Prod. Commun.
– volume: 4
  start-page: 4621
  year: 2013
  ident: ref_22
  article-title: A hyaluronic acid-camptothecin nanoprodrug with cytosolic mode of activation for targeting cancer
  publication-title: Polym. Chem.
  doi: 10.1039/c3py00402c
– volume: 197
  start-page: 194
  year: 2018
  ident: ref_45
  article-title: Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for targeting delivery of norcantharidin to hepatic carcinoma
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.05.090
– ident: ref_36
  doi: 10.3390/polym11050867
– volume: 347
  start-page: 240
  year: 2014
  ident: ref_21
  article-title: Synthesis and optimization of a bifunctional hyaluronan-based camptothecin prodrug
  publication-title: Arch. Pharm.
  doi: 10.1002/ardp.201300177
– volume: 231
  start-page: 1784
  year: 2016
  ident: ref_65
  article-title: New Treatment of Medullary and Papillary Human Thyroid Cancer: Biological Effects of Hyaluronic Acid Hydrogel Loaded with Quercetin Alone or in Combination to an Inhibitor of Aurora Kinase
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25283
– volume: 177
  start-page: 11
  year: 2019
  ident: ref_54
  article-title: Tumor-targeting micelles based on folic acid and alpha-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.01.044
– volume: 16
  start-page: 2502
  year: 2019
  ident: ref_57
  article-title: Multifunctionalized Micelles Facilitate Intracellular Doxorubicin Delivery for Reversing Multidrug Resistance of Breast Cancer
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b00094
– volume: 23
  start-page: 2201
  year: 2012
  ident: ref_35
  article-title: Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc300248t
– volume: 37
  start-page: 353
  year: 2015
  ident: ref_38
  article-title: Transferrin-mediated fullerenes nanoparticles as Fe(2+)-dependent drug vehicles for synergistic anti-tumor efficacy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.031
– volume: 16
  start-page: 915
  year: 2019
  ident: ref_3
  article-title: Hyaluronan-modified nanoparticles for tumor-targeting
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2019.1645115
– volume: 15
  start-page: 7013
  year: 2020
  ident: ref_43
  article-title: A Novel Therapeutic siRNA Nanoparticle Designed for Dual-Targeting CD44 and Gli1 of Gastric Cancer Stem Cells
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S260163
– volume: 392
  start-page: 156
  year: 2010
  ident: ref_25
  article-title: Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2010.03.058
– volume: 136
  start-page: 143
  year: 2019
  ident: ref_50
  article-title: Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.06.060
– volume: 152
  start-page: 104608
  year: 2020
  ident: ref_48
  article-title: Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2020.104608
– volume: 206
  start-page: 309
  year: 2019
  ident: ref_44
  article-title: A photo-controlled hyaluronan-based drug delivery nanosystem for cancer therapy
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.11.005
– volume: 5
  start-page: 178
  year: 2013
  ident: ref_41
  article-title: Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells
  publication-title: Nanoscale
  doi: 10.1039/C2NR32145A
– volume: 286
  start-page: 2937
  year: 2019
  ident: ref_4
  article-title: Dissecting the role of hyaluronan synthases in the tumor microenvironment
  publication-title: FEBS J.
  doi: 10.1111/febs.14847
– volume: 209
  start-page: 161
  year: 2019
  ident: ref_56
  article-title: Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.01.018
– volume: 160
  start-page: 117
  year: 2012
  ident: ref_60
  article-title: Doxil(R)–the first FDA-approved nano-drug: Lessons learned
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.03.020
– volume: 34
  start-page: 6495
  year: 2013
  ident: ref_73
  article-title: Gene transfection efficacy and biocompatibility of polycation/DNA complexes coated with enzyme degradable PEGylated hyaluronic acid
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.04.030
– volume: 29
  start-page: 2343
  year: 2018
  ident: ref_63
  article-title: Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.8b00311
– volume: 202
  start-page: 513
  year: 2018
  ident: ref_47
  article-title: Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.09.015
– volume: 14
  start-page: 327
  year: 2014
  ident: ref_12
  article-title: Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: An alternative to prodrug approach
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201300383
– volume: 123
  start-page: 778
  year: 2014
  ident: ref_27
  article-title: Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation
  publication-title: Colloids Surf. B. Biointerfaces
  doi: 10.1016/j.colsurfb.2014.10.025
– volume: 10
  start-page: 755
  year: 1999
  ident: ref_17
  article-title: Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc9900338
– volume: 164
  start-page: 424
  year: 2018
  ident: ref_31
  article-title: Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy
  publication-title: Colloids Surface B
  doi: 10.1016/j.colsurfb.2018.02.005
– volume: 108
  start-page: 555
  year: 2020
  ident: ref_2
  article-title: Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1beta, TGF-beta1, and bFGF in burn wound model in rat
  publication-title: J. Biomed. Mater. Res. B. Appl. Biomater.
  doi: 10.1002/jbm.b.34411
– volume: 109
  start-page: 84
  year: 2017
  ident: ref_28
  article-title: Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.12.012
– volume: 168
  start-page: 264
  year: 2020
  ident: ref_37
  article-title: Induction of osteogenic differentiation in a rat calvarial bone defect model using an In situ forming graphene oxide incorporated glycol chitosan/oxidized hyaluronic acid injectable hydrogel
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.022
– volume: 8
  start-page: 462
  year: 2020
  ident: ref_7
  article-title: Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrysta ls for targeted breast cancer treatment with prolonged biodistribution
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01605H
– volume: 8
  start-page: e2101454
  year: 2021
  ident: ref_18
  article-title: Nanoparticulation of Prodrug into Medicines for Cancer Therapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101454
– volume: 4
  start-page: 3005
  year: 2010
  ident: ref_32
  article-title: Bioimaging for targeted delivery of hyaluronic Acid derivatives to the livers in cirrhotic mice using quantum dots
  publication-title: ACS Nano
  doi: 10.1021/nn100589y
– volume: 27
  start-page: 1491
  year: 2020
  ident: ref_19
  article-title: Combinational dual drug delivery system to enhance the care and treatment of gastric cancer patients
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2020.1822460
– volume: 15
  start-page: 2885
  year: 2020
  ident: ref_52
  article-title: Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S249205
– volume: 4
  start-page: 2100022
  year: 2021
  ident: ref_14
  article-title: Targeting Signaling Pathways of Hyaluronic Acid and Integrin Receptors by Synergistic Combination Nanocomposites Inhibits Systemic Metastases and Primary Triple Negative Breast Cancer
  publication-title: Adv. Ther.
  doi: 10.1002/adtp.202100022
– volume: 24
  start-page: 207
  year: 2006
  ident: ref_16
  article-title: HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer
  publication-title: Urol. Oncol.
  doi: 10.1016/j.urolonc.2005.08.020
– volume: 305
  start-page: 120547
  year: 2023
  ident: ref_33
  article-title: Enzyme/GSH/pH-responsive hyaluronic acid grafted porous silica nanocarriers bearing Ag2S QDs for fluorescence imaging and combined therapy
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2023.120547
– volume: 84
  start-page: 250
  year: 2016
  ident: ref_42
  article-title: Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.049
– volume: 7
  start-page: 1701439
  year: 2018
  ident: ref_29
  article-title: Photothermally Controlled MHC Class I Restricted CD8+ T-Cell Responses Elicited by Hyaluronic Acid Decorated Gold Nanoparticles as a Vaccine for Cancer Immunotherapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201701439
– volume: 14
  start-page: 327
  year: 2018
  ident: ref_8
  article-title: CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster th e efficacy against triple-negative breast cancer
  publication-title: Nanomed-nanotechnology
  doi: 10.1016/j.nano.2017.10.010
– volume: 43
  start-page: 12275
  year: 2019
  ident: ref_55
  article-title: A dual responsive hyaluronic acid graft poly(ionic liquid) block copolymer micelle for an efficient CD44-targeted antitumor drug delivery
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ02608H
– volume: 10
  start-page: 265
  year: 2010
  ident: ref_72
  article-title: Electrospun fibrous scaffolds with multiscale and photopatterned porosity
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200900363
– volume: 14
  start-page: 379
  year: 2018
  ident: ref_15
  article-title: The Superior Anticancer Effect of Self-Assembled Paclitaxel Nanofibers is Mediated through Co-Operation between Enhanced Apoptosis and Autophagic Cell Death
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2018.2480
– volume: 245
  start-page: 116527
  year: 2020
  ident: ref_49
  article-title: Doxorubicin delivered by redox-responsive Hyaluronic Acid-Ibuprofen prodrug micelles for treatment of metastatic breast cancer
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116527
– volume: 39
  start-page: 1372
  year: 1977
  ident: ref_23
  article-title: High dose cis-platinum diammine dichloride: Amelioration of renal toxicity by mannitol diuresis
  publication-title: Cancer
  doi: 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J
– volume: 166
  start-page: 203
  year: 2013
  ident: ref_68
  article-title: Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-alpha2a for liver cancer therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.01.008
– volume: 12
  start-page: 593
  year: 2011
  ident: ref_70
  article-title: Polymer shelled microparticles for a targeted doxorubicin delivery in cancer therapy
  publication-title: Biomacromolecules
  doi: 10.1021/bm101207k
– volume: 331
  start-page: 416
  year: 2021
  ident: ref_5
  article-title: Hyaluronic acid and albumin based nanoparticles for drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.01.033
– volume: 4
  start-page: 1
  year: 1996
  ident: ref_10
  article-title: Evaluation of antitumor activities of hyaluronate binding antitumor drugs: Synthesis, characterization and antitumor activity
  publication-title: J. Drug Target.
  doi: 10.3109/10611869609046255
– volume: 8
  start-page: 31934
  year: 2018
  ident: ref_69
  article-title: Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery
  publication-title: RSC Adv.
  doi: 10.1039/C8RA05125A
– volume: 402
  start-page: 95
  year: 2010
  ident: ref_26
  article-title: Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2010.09.029
– volume: 32
  start-page: 1907035
  year: 2020
  ident: ref_39
  article-title: Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907035
– volume: 51
  start-page: 135
  year: 1975
  ident: ref_9
  article-title: Structure and properties of pharmacologically active polymers
  publication-title: J. Polym. Sci.
– volume: 6
  start-page: 219
  year: 2015
  ident: ref_64
  article-title: Lipid-based nano-delivery systems for skin delivery of drugs and bioactives
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2015.00219
– volume: 26
  start-page: 101083
  year: 2022
  ident: ref_6
  article-title: Targeted drug delivery nanocarriers based on hyaluronic acid-decorated dendrimer encapsulating gold nanoparticles for ovarian cancer therapy
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2022.101083
– volume: 516
  start-page: 484
  year: 2018
  ident: ref_40
  article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: Influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties
  publication-title: J. Colloids Interface Sci.
  doi: 10.1016/j.jcis.2018.01.072
– volume: 210
  start-page: 230
  year: 2015
  ident: ref_34
  article-title: Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.04.021
– volume: 10
  start-page: 35693
  year: 2018
  ident: ref_13
  article-title: Free Adriamycin-Loaded pH/Reduction Dual-Responsive Hyaluronic Acid–Adriamycin Prodrug Micelles for Efficient Cancer Therapy
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b09342
– volume: 10
  start-page: 32006
  year: 2018
  ident: ref_61
  article-title: Hyaluronan Reduces Cationic Liposome-Induced Toxicity and Enhances the Antitumor Effect of Targeted Gene Delivery in Mice
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b12393
– volume: 237
  start-page: 116119
  year: 2020
  ident: ref_46
  article-title: Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116119
– volume: 131
  start-page: 112475
  year: 2021
  ident: ref_66
  article-title: Double-responsive hyaluronic acid-based prodrugs for efficient tumour targeting
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2021.112475
– ident: ref_53
  doi: 10.3390/polym12051132
– volume: 12
  start-page: 52298
  year: 2020
  ident: ref_71
  article-title: Microbubbles Cloaked with Hydrogels as Activatable Ultrasound Contrast Agents
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.0c12043
– volume: 286
  start-page: 2883
  year: 2019
  ident: ref_1
  article-title: Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer
  publication-title: FEBS J.
  doi: 10.1111/febs.14777
– volume: 23
  start-page: H41
  year: 2011
  ident: ref_67
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003963
– volume: 35
  start-page: 3666
  year: 2014
  ident: ref_30
  article-title: Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.011
– volume: 16
  start-page: 100349
  year: 2022
  ident: ref_62
  article-title: Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer
  publication-title: Mater. Today Bio
  doi: 10.1016/j.mtbio.2022.100349
– volume: 12
  start-page: 2115
  year: 2022
  ident: ref_24
  article-title: Platinum-based drugs for cancer therapy and anti-tumor strategies
  publication-title: Theranostics
  doi: 10.7150/thno.69424
SSID ssj0000456617
Score 2.5406961
SecondaryResourceType review_article
Snippet Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2317
SubjectTerms Aqueous solutions
Biocompatibility
Breast cancer
Cancer therapies
Carbon nanotubes
Chemotherapy
Cytotoxicity
Design optimization
Drug carriers
Drug delivery systems
Drugs
Gene therapy
Health aspects
Hyaluronic acid
Hydrogels
Hydroxyl groups
Laboratory animals
Ligands
Metastasis
Micelles
Molecular structure
Nanocrystals
Nanomaterials
Nanoparticles
Nanotubes
Ovarian cancer
Quantum dots
Review
Silica
Silicon dioxide
Toxicity
Tumors
Vehicles
Title Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery
URI https://www.ncbi.nlm.nih.gov/pubmed/37242892
https://www.proquest.com/docview/2819479266
https://www.proquest.com/docview/2820020359
https://pubmed.ncbi.nlm.nih.gov/PMC10224391
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90PuiL-G11SgXRF8vWNl2bpzE_5hAUEQd7K0ma6GB2cx8P---967pqBYW-jNxKuCT3-yW5_g7g3ETScB0yJ0IscBh9o8sDL3I0op1CRixCTRvFx6dGp8seekEvP3Cb5GmVy5iYBepkqOiMvEYXPizkiCfN0adDVaPodjUvobEKay620AyP2vfFGQvRFUTohbSmj7v72mg4mH8gyJHqWViCot8B-QcilbMlf8BPews2c95otxYDvQ0rOt2B9ZtlubZdaHbmYjDLlG7tluonzjXiU2Jj9ES0GlNduomNBNVupXR6jUM9tm_Hszf7Vg8oNWO-B9323etNx8mrIziKRf7UEVprgw7VjbrPEtdV2gjG6oJ2QKHmgfACKXndk0hxIimV0YHAaOJxw0wikbftQyUdpvoQbGGChkq4HygTMsmVZBwfneACN8awugVXS0fFKpcOpwoWgxi3EOTXuORXCy4K89FCM-Mvw0vyekxrCd-nRP5JAPaKVKniFtEZzpiHltWSJfpWlZuX4xbna3ASf88YC86KZvon5ZWlejgjGy-7iw24BQeLYS667IdIXyLuWRCVJkBhQMrc5Za0_54pdGc6fT53j_7v1zFsUPV6SkZwG1WoTMczfYIcZypPs4l8CmvXd0_PL_jrvud-AUZy_2Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4heqCXqoU-QmnrSn1cGpE4ziY-VGhh2S7lcQKJW2o7NiBts9t9qNo_xW9kJq-SSu0NaW-erKzxzHxje_wNwAeXaidtIvwUscAX9EZXxjz1LaKdwYxYJZY2iqdnvdGF-H4ZX67BbfMWhsoqm5hYBup8YuiMfJcufEQiEU_2pr986hpFt6tNC43KLI7t6jdu2eZfjwa4vh85Hx6eH4z8uquAb0QaLXxlrXU4EdsLIpGHobFOCREo2jkkVsaKx1rLgGtMDVKtjbOxQi_k0gmX65DIlzDkPxJRJKmEMB1-a890KD3CjKCi8sTxYHc6Ga9-IqgSy1rSgb6_AeAeAnarM-_B3fApPKnzVNavDOsZrNliEzYOmvZwW7A3WqnxsmTWZX1zk_v7iIc5w2iN6DijPnhzhgkx6xd0Wo6mNWOD2fKKDeyYSkFWz-HiQfT2AtaLSWFfAVMu7plcRrFxidDSaCHxZ3MMKM45EXjwpVFUZmqqcuqYMc5wy0J6zTp69eBTKz6tODr-JfiZtJ6R7-L_GVU_QcBZEQtW1qf0SQrBUXKnI4m6Nd3hZt2y2ufn2R8L9eB9O0xfUh1bYSdLkuHl3W8sPXhZLXM75SjBdCmV3IO0YwCtADGBd0eKm-uSEbzkBYxkuP3_eb2DjdH56Ul2cnR2_Boec1QKFUKEvR1YX8yW9g3mVwv9tjRqBj8e2ovuAEEnOxo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuiDeBAkbicSHaxHE29gFVS5dlS6HiQKXeUtuxodKSXfYhtH-NX8dMXjRIcKu0N09W1nhmvrE9_gbguZfGK5eJUCIWhILe6KqUy9Ah2lnMiHXmaKP46Xg4PREfTtPTHfjVvoWhsso2JlaBuphbOiMf0IWPyBTiycA3ZRGfx5P9xY-QOkjRTWvbTqM2kSO3_Ynbt9WbwzGu9QvOJ---HEzDpsNAaIVM1qF2znmclBtGiSji2DqvhYg07SIyp1LNU2NUxA2mCdIY612q0SO58sIXJiYiJgz_V7JERtQ9QU7ed-c7lCphdlDTeiaJigaL-Wz7HQGWGNeyHgz-DQYX0LBfqXkB-iY34UaTs7JRbWS3YMeVt-HaQdsq7g7sT7d6tqlYdtnInhfhW8TGgmHkRqRcUk-8FcPkmI1KOjlHM1uy8XLzlY3djMpCtnfh5FL0dg92y3npHgDTPh3aQiWp9Zkwyhqh8OcKDC7eexEF8LpVVG4b2nLqnjHLcftCes17eg3gZSe-qPk6_iX4irSekx_j_1ndPEfAWREjVj6iVEoJwVFyryeJurX94Xbd8sb_V_kfaw3gWTdMX1JNW-nmG5Lh1T1wqgK4Xy9zN-Ukw9RJKh6A7BlAJ0Cs4P2R8vxbxQ5ecQQmKn74_3k9havoP_nHw-OjR3Cdo06oJiIe7sHuerlxjzHVWpsnlU0zOLtsJ_oNh48_Rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyaluronic+Acid-Based+Nanocarriers+for+Anticancer+Drug+Delivery&rft.jtitle=Polymers&rft.au=Fu%2C+Chao-Ping&rft.au=Cai%2C+Xing-Yu&rft.au=Chen%2C+Si-Lin&rft.au=Yu%2C+Hong-Wei&rft.date=2023-05-16&rft.pub=MDPI+AG&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=15&rft.issue=10&rft_id=info:doi/10.3390%2Fpolym15102317&rft.externalDocID=A750994427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon