EZH2 Promotes Expansion of Breast Tumor Initiating Cells through Activation of RAF1-β-Catenin Signaling

It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been li...

Full description

Saved in:
Bibliographic Details
Published inCancer cell Vol. 19; no. 1; pp. 86 - 100
Main Authors Chang, Chun-Ju, Yang, Jer-Yen, Xia, Weiya, Chen, Chun-Te, Xie, Xiaoming, Chao, Chi-Hong, Woodward, Wendy A., Hsu, Jung-Mao, Hortobagyi, Gabriel N., Hung, Mien-Chie
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs. ► Increased EZH2 expression in BTICs enhances BTIC survival and proliferation ► EZH2-amplified RAF1-β-catenin signaling promotes BTIC expansion ► Hypoxic microenvironment promotes BTICs through upregulating EZH2 expression ► AZD6244 suppresses BTICs by inhibiting activated RAF1-ERK-β-catenin signaling
AbstractList It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs. ► Increased EZH2 expression in BTICs enhances BTIC survival and proliferation ► EZH2-amplified RAF1-β-catenin signaling promotes BTIC expansion ► Hypoxic microenvironment promotes BTICs through upregulating EZH2 expression ► AZD6244 suppresses BTICs by inhibiting activated RAF1-ERK-β-catenin signaling
It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs.
It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs.It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs.
It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK- beta -catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs. a-[ordm Increased EZH2 expression in BTICs enhances BTIC survival and proliferation a-[ordm EZH2-amplified RAF1- beta -catenin signaling promotes BTIC expansion a-[ordm Hypoxic microenvironment promotes BTICs through upregulating EZH2 expression a-[ordm AZD6244 suppresses BTICs by inhibiting activated RAF1-ERK- beta -catenin signaling
It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical mechanism linking increased EZH2 expression to BTIC (breast tumor initiating cell) regulation and cancer progression remains unclear. Here, we identify a mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion. We further reveal that AZD6244, a clinical trial drug that inhibits RAF1-ERK signaling, could prevent breast cancer progression by eliminating BTICs.
Author Hsu, Jung-Mao
Woodward, Wendy A.
Hung, Mien-Chie
Xia, Weiya
Xie, Xiaoming
Chen, Chun-Te
Chang, Chun-Ju
Chao, Chi-Hong
Hortobagyi, Gabriel N.
Yang, Jer-Yen
AuthorAffiliation 3 Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
1 Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
6 Asia University, Taichung 413, Taiwan
2 Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
5 The Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung 404, Taiwan
AuthorAffiliation_xml – name: 3 Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– name: 1 Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– name: 6 Asia University, Taichung 413, Taiwan
– name: 2 Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– name: 5 The Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung 404, Taiwan
Author_xml – sequence: 1
  givenname: Chun-Ju
  surname: Chang
  fullname: Chang, Chun-Ju
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 2
  givenname: Jer-Yen
  surname: Yang
  fullname: Yang, Jer-Yen
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 3
  givenname: Weiya
  surname: Xia
  fullname: Xia, Weiya
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 4
  givenname: Chun-Te
  surname: Chen
  fullname: Chen, Chun-Te
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 5
  givenname: Xiaoming
  surname: Xie
  fullname: Xie, Xiaoming
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 6
  givenname: Chi-Hong
  surname: Chao
  fullname: Chao, Chi-Hong
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 7
  givenname: Wendy A.
  surname: Woodward
  fullname: Woodward, Wendy A.
  organization: Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 8
  givenname: Jung-Mao
  surname: Hsu
  fullname: Hsu, Jung-Mao
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 9
  givenname: Gabriel N.
  surname: Hortobagyi
  fullname: Hortobagyi, Gabriel N.
  organization: Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 10
  givenname: Mien-Chie
  surname: Hung
  fullname: Hung, Mien-Chie
  email: mhung@mdanderson.org
  organization: Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21215703$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNvAA7BB3sFmgj0ee2whIYUopZUqgaBs2FiOc5M4mrGD7YngtXiQPlOdpkXAIiv_ne_43nvO0YkPHhB6ScmYEirebsbWxnFN7s9jwvgTdEZlKysmpDgpe854JSiRp-g8pQ0pDG3VM3Ra05rylrAztJ59v6zx5xj6kCHh2c-t8ckFj8MSf4hgUsY3Qx8ivvIuO5OdX-EpdF3CeR3DsFrjic1uVx4OzJfJBa1uf1dTk8E7j7-6lTddoZ6jp0vTJXjxsI7Qt4vZzfSyuv708Wo6ua5sI1mulGkbJeu5qqEFJaFhqrHScgqly8VSzSW3dd1YJrhkzAIzolFcWCaFamhpaYTeH3y3w7yHhQWfo-n0NrrexF86GKf_ffFurVdhpxlpKKeiGLx-MIjhxwAp694lW1o2HsKQtGyEKoMsv4_Qm6NK2vIyZ1KzvfTV31X9KecxiCJoDwIbQ0oRltq6fD_VUqTrNCV6H7ne6BK53ke-vyqRF5L-Rz6aH2PeHRgoSewcRJ2sA29h4SLYrBfBHaHvAPxXwzU
CitedBy_id crossref_primary_10_1158_1541_7786_MCR_13_0546
crossref_primary_10_1016_j_ajpath_2021_01_013
crossref_primary_10_1186_s12935_024_03362_w
crossref_primary_10_1016_j_molcel_2011_08_011
crossref_primary_10_18632_oncotarget_12928
crossref_primary_10_3892_ol_2017_7647
crossref_primary_10_1038_s41418_023_01254_6
crossref_primary_10_1016_j_ajpath_2013_07_020
crossref_primary_10_1016_j_molcel_2017_04_006
crossref_primary_10_1158_0008_5472_CAN_12_2397
crossref_primary_10_3389_fonc_2021_637298
crossref_primary_10_1007_s12015_011_9344_5
crossref_primary_10_1016_j_gene_2024_148175
crossref_primary_10_1007_s10549_016_3853_5
crossref_primary_10_1038_nm_4036
crossref_primary_10_1016_j_ajpath_2013_04_033
crossref_primary_10_1371_journal_pone_0061716
crossref_primary_10_1016_j_molcel_2013_08_028
crossref_primary_10_1371_journal_pone_0165005
crossref_primary_10_1080_10715762_2017_1383605
crossref_primary_10_1038_onc_2014_28
crossref_primary_10_1016_j_ymthe_2025_02_032
crossref_primary_10_1038_s41388_017_0096_9
crossref_primary_10_1007_s12032_025_02648_x
crossref_primary_10_1016_j_isci_2020_101141
crossref_primary_10_1007_s11010_014_2028_0
crossref_primary_10_3389_fped_2018_00328
crossref_primary_10_1016_j_ejmech_2020_112229
crossref_primary_10_1038_s41698_024_00776_7
crossref_primary_10_1007_s10555_012_9387_3
crossref_primary_10_1016_j_bmc_2020_115379
crossref_primary_10_1016_j_cell_2021_03_011
crossref_primary_10_2147_OTT_S239730
crossref_primary_10_1016_j_neo_2014_09_011
crossref_primary_10_3390_cells10102768
crossref_primary_10_18632_oncotarget_7089
crossref_primary_10_1007_s12032_013_0653_1
crossref_primary_10_1038_nrc3064
crossref_primary_10_1038_s41598_017_00122_x
crossref_primary_10_1016_j_bbrc_2013_06_114
crossref_primary_10_1016_j_exer_2023_109389
crossref_primary_10_1186_s12918_018_0608_4
crossref_primary_10_4103_egjp_egjp_11_24
crossref_primary_10_1016_j_molcel_2012_09_004
crossref_primary_10_1007_s13238_013_2093_2
crossref_primary_10_1016_S1470_2045_11_70191_7
crossref_primary_10_18632_oncotarget_15543
crossref_primary_10_3389_fphar_2016_00040
crossref_primary_10_1172_JCI95089
crossref_primary_10_1016_j_jbc_2022_102630
crossref_primary_10_1186_bcr3237
crossref_primary_10_1158_0008_5472_CAN_15_1941
crossref_primary_10_1038_oncsis_2014_17
crossref_primary_10_1038_s41379_020_0515_2
crossref_primary_10_1016_j_trsl_2014_04_001
crossref_primary_10_1016_j_celrep_2015_03_002
crossref_primary_10_18632_oncotarget_8741
crossref_primary_10_3389_fphar_2022_946811
crossref_primary_10_1158_0008_5472_CAN_11_1698
crossref_primary_10_1158_1535_7163_MCT_12_0037
crossref_primary_10_3892_or_2013_2228
crossref_primary_10_1158_0008_5472_CAN_14_1188
crossref_primary_10_1007_s13238_015_0199_4
crossref_primary_10_18632_oncotarget_13478
crossref_primary_10_18632_oncotarget_1789
crossref_primary_10_1007_s11306_020_01666_2
crossref_primary_10_1586_14737159_2016_1156534
crossref_primary_10_1016_j_ccell_2016_09_010
crossref_primary_10_1021_acs_jmedchem_3c00504
crossref_primary_10_1158_0008_5472_CAN_20_0360
crossref_primary_10_3390_biomedicines10112925
crossref_primary_10_3390_ijms140611981
crossref_primary_10_1016_j_yexcr_2022_113160
crossref_primary_10_1038_cdd_2016_95
crossref_primary_10_2217_epi_11_9
crossref_primary_10_1186_bcr2925
crossref_primary_10_1038_onc_2015_48
crossref_primary_10_1002_stem_2519
crossref_primary_10_5301_ijbm_5000293
crossref_primary_10_1186_bcr3219
crossref_primary_10_3390_cancers14194761
crossref_primary_10_1158_0008_5472_CAN_11_2182
crossref_primary_10_1517_13543784_2012_660249
crossref_primary_10_1073_pnas_1602079113
crossref_primary_10_1097_PAT_0b013e3283534bcb
crossref_primary_10_1111_1759_7714_14268
crossref_primary_10_15252_embr_201540244
crossref_primary_10_1080_13543776_2017_1316976
crossref_primary_10_1016_j_job_2016_01_001
crossref_primary_10_1186_1479_5876_10_216
crossref_primary_10_1039_C9NJ04713A
crossref_primary_10_3389_fonc_2023_1144184
crossref_primary_10_1186_s13046_018_0970_5
crossref_primary_10_1089_ars_2017_7478
crossref_primary_10_1158_0008_5472_CAN_18_1069
crossref_primary_10_3892_ijo_2013_2062
crossref_primary_10_1128_MCB_00426_13
crossref_primary_10_3390_jcm8030288
crossref_primary_10_1016_j_celrep_2014_12_028
crossref_primary_10_3390_cancers12123716
crossref_primary_10_3892_mmr_2015_4294
crossref_primary_10_1007_s13770_018_0118_x
crossref_primary_10_1074_jbc_M114_574517
crossref_primary_10_3389_fonc_2018_00475
crossref_primary_10_1007_s10142_025_01563_8
crossref_primary_10_1371_journal_pone_0039292
crossref_primary_10_1371_journal_pone_0096995
crossref_primary_10_18632_oncotarget_16765
crossref_primary_10_1002_ijc_31766
crossref_primary_10_18632_oncotarget_9508
crossref_primary_10_1016_j_gene_2014_01_006
crossref_primary_10_1371_journal_pone_0028405
crossref_primary_10_18632_aging_202859
crossref_primary_10_18632_oncotarget_2435
crossref_primary_10_5812_ijcm_5430
crossref_primary_10_1016_j_critrevonc_2011_10_007
crossref_primary_10_1021_acs_jmedchem_0c02234
crossref_primary_10_3390_ijms23158758
crossref_primary_10_1007_s11899_018_0466_6
crossref_primary_10_1158_0008_5472_CAN_11_2876
crossref_primary_10_1016_j_celrep_2012_12_020
crossref_primary_10_1016_j_dnarep_2015_04_030
crossref_primary_10_1186_s13578_020_00505_0
crossref_primary_10_1186_s12885_017_3453_8
crossref_primary_10_1158_1078_0432_CCR_13_1916
crossref_primary_10_1158_0008_5472_CAN_20_0458
crossref_primary_10_1038_onc_2012_390
crossref_primary_10_18632_oncotarget_5819
crossref_primary_10_18632_oncotarget_14252
crossref_primary_10_1016_j_pharmthera_2019_107406
crossref_primary_10_1080_15592294_2019_1633867
crossref_primary_10_1016_j_bbadis_2017_08_027
crossref_primary_10_1172_JCI138577
crossref_primary_10_1002_bies_201800058
crossref_primary_10_1186_s13287_022_02904_1
crossref_primary_10_1177_1535370215573463
crossref_primary_10_1182_blood_2012_08_450494
crossref_primary_10_1016_j_canlet_2020_05_025
crossref_primary_10_1042_BJ20150913
crossref_primary_10_1186_1756_9966_32_70
crossref_primary_10_3390_jcm8070912
crossref_primary_10_1038_s41413_023_00260_1
crossref_primary_10_1038_s41419_024_06899_w
crossref_primary_10_1111_febs_16940
crossref_primary_10_5966_sctm_2012_0036
crossref_primary_10_1111_jnc_14152
crossref_primary_10_3892_or_2021_8201
crossref_primary_10_6000_1929_2279_2012_01_02_2
crossref_primary_10_1016_j_biocel_2019_01_016
crossref_primary_10_1002_stem_2406
crossref_primary_10_1242_jcs_107375
crossref_primary_10_1002_stem_2400
crossref_primary_10_3389_fcell_2020_561804
crossref_primary_10_1177_1533033819879905
crossref_primary_10_1186_s13046_017_0670_6
crossref_primary_10_1007_s00018_015_2023_y
crossref_primary_10_1172_JCI94292
crossref_primary_10_3390_cancers11081128
crossref_primary_10_1016_j_semcdb_2021_01_002
crossref_primary_10_15252_embj_201694058
crossref_primary_10_18632_oncotarget_13625
crossref_primary_10_3389_fimmu_2021_741302
crossref_primary_10_1016_j_celrep_2016_06_002
crossref_primary_10_3389_fmolb_2020_00079
crossref_primary_10_18632_oncotarget_2208
crossref_primary_10_1155_2016_9012369
crossref_primary_10_1158_0008_5472_CAN_20_2612
crossref_primary_10_1002_advs_202308045
crossref_primary_10_1016_j_ebiom_2022_104056
crossref_primary_10_3390_biomedicines11010189
crossref_primary_10_3892_or_2014_3305
crossref_primary_10_3892_or_2015_4003
crossref_primary_10_4236_abcr_2018_72010
crossref_primary_10_3389_fendo_2021_742215
crossref_primary_10_4161_epi_24532
crossref_primary_10_1038_s41388_018_0407_9
crossref_primary_10_1038_onc_2011_160
crossref_primary_10_1038_s41416_020_01032_y
crossref_primary_10_1038_s41556_020_0575_z
crossref_primary_10_1186_2041_9414_4_5
crossref_primary_10_1038_s41423_023_00980_8
crossref_primary_10_1016_j_molonc_2012_10_006
crossref_primary_10_1021_acs_jproteome_6b00950
crossref_primary_10_1016_j_currproblcancer_2024_101118
crossref_primary_10_1159_000528601
crossref_primary_10_3390_biomedicines12030691
crossref_primary_10_1016_S1470_2045_16_30123_1
crossref_primary_10_1038_s41598_017_06920_7
crossref_primary_10_1038_s41598_021_84708_6
crossref_primary_10_1007_s10549_011_1591_2
crossref_primary_10_1016_j_lfs_2019_05_076
crossref_primary_10_1101_gr_125872_111
crossref_primary_10_1038_nm_3336
crossref_primary_10_18632_oncotarget_20610
crossref_primary_10_1016_j_molonc_2015_04_013
crossref_primary_10_3390_ijms23179574
crossref_primary_10_1038_s41467_023_37883_1
crossref_primary_10_1038_s41556_020_0525_9
crossref_primary_10_1002_hep_24762
crossref_primary_10_1182_blood_2019000381
crossref_primary_10_1158_1078_0432_CCR_17_1533
crossref_primary_10_1007_s00018_013_1293_5
crossref_primary_10_1016_j_bbrc_2022_10_041
crossref_primary_10_1177_1933719116638186
crossref_primary_10_3390_biomedicines6020066
crossref_primary_10_1186_s13046_014_0058_9
crossref_primary_10_1080_15384101_2016_1215699
crossref_primary_10_1097_CCO_0000000000000390
crossref_primary_10_1038_nrc_2016_83
crossref_primary_10_1038_onc_2016_453
crossref_primary_10_18632_oncotarget_5738
crossref_primary_10_1016_j_canlet_2012_04_020
crossref_primary_10_1038_onc_2014_172
crossref_primary_10_1016_j_mito_2012_06_004
crossref_primary_10_1007_s10565_019_09471_x
crossref_primary_10_5966_sctm_2014_0020
crossref_primary_10_1158_1078_0432_CCR_14_2680
crossref_primary_10_3892_ol_2019_10769
crossref_primary_10_1007_s00018_019_03299_8
crossref_primary_10_1038_onc_2012_628
crossref_primary_10_1016_j_ctarc_2017_06_003
crossref_primary_10_1016_j_trsl_2021_06_006
crossref_primary_10_1016_j_celrep_2018_03_078
crossref_primary_10_1158_0008_5472_CAN_11_3123
crossref_primary_10_1016_j_biopha_2016_09_056
crossref_primary_10_1016_j_canlet_2014_11_003
crossref_primary_10_18632_oncotarget_16467
crossref_primary_10_1158_0008_5472_CAN_19_2060
crossref_primary_10_1038_s41418_020_00615_9
crossref_primary_10_1038_onc_2017_311
crossref_primary_10_3892_ol_2017_7171
crossref_primary_10_1158_1078_0432_CCR_15_1348
crossref_primary_10_1158_1535_7163_MCT_17_0437
crossref_primary_10_1002_jcp_28540
crossref_primary_10_1186_s13018_017_0599_7
crossref_primary_10_1038_s41589_019_0421_4
crossref_primary_10_1134_S1022795421030042
crossref_primary_10_1038_s41401_022_00873_y
crossref_primary_10_1093_mutage_gez019
crossref_primary_10_1073_pnas_1308953111
crossref_primary_10_1093_lifemeta_loae017
crossref_primary_10_1007_s12094_012_0897_9
crossref_primary_10_1016_j_mce_2013_05_002
crossref_primary_10_1038_bjc_2011_551
crossref_primary_10_18632_oncotarget_11008
crossref_primary_10_1038_onc_2017_309
crossref_primary_10_1016_j_semcancer_2018_08_003
crossref_primary_10_1016_j_taap_2018_01_022
crossref_primary_10_3390_ijms19041115
crossref_primary_10_1002_mc_21871
crossref_primary_10_1038_ncb3410
crossref_primary_10_1007_s10495_022_01747_8
crossref_primary_10_1186_s13046_018_0720_8
crossref_primary_10_1007_s13402_022_00663_y
crossref_primary_10_1158_1078_0432_CCR_13_2491
crossref_primary_10_3390_cancers12102792
crossref_primary_10_1186_s13046_019_1106_2
crossref_primary_10_3892_or_2013_2922
crossref_primary_10_1038_s41419_019_1437_0
crossref_primary_10_1186_bcr2871
crossref_primary_10_1016_j_celrep_2017_11_096
crossref_primary_10_1016_j_semcancer_2022_10_002
crossref_primary_10_1177_1099800413483545
crossref_primary_10_1158_1535_7163_MCT_18_0666
crossref_primary_10_1016_j_molonc_2012_06_002
crossref_primary_10_1186_s12943_023_01903_x
crossref_primary_10_1593_tlo_13175
crossref_primary_10_3390_cancers13040816
crossref_primary_10_1002_1878_0261_12800
crossref_primary_10_1016_j_cell_2016_07_007
crossref_primary_10_1158_0008_5472_CAN_20_2147
crossref_primary_10_1186_s10020_024_00857_0
crossref_primary_10_18632_oncotarget_19782
crossref_primary_10_1016_j_trecan_2017_04_004
crossref_primary_10_1007_s10555_020_09905_7
crossref_primary_10_4161_19336918_2014_972740
crossref_primary_10_1186_s12943_020_01173_x
crossref_primary_10_2217_epi_16_6
crossref_primary_10_18632_oncotarget_6198
crossref_primary_10_3390_cancers16061118
crossref_primary_10_18632_oncotarget_8135
crossref_primary_10_3390_ijms161126000
crossref_primary_10_1080_14728222_2019_1627329
crossref_primary_10_1016_j_isci_2022_104827
crossref_primary_10_1016_j_tranon_2020_100987
crossref_primary_10_1016_j_prp_2018_11_016
crossref_primary_10_2217_pgs_13_225
crossref_primary_10_1016_j_omton_2024_200905
crossref_primary_10_2217_epi_2016_0025
crossref_primary_10_1002_jcp_26576
crossref_primary_10_1016_j_semradonc_2015_05_009
crossref_primary_10_1186_2045_3701_3_41
crossref_primary_10_3389_fonc_2021_759577
crossref_primary_10_1055_s_0044_1786810
crossref_primary_10_1186_s12885_017_3154_3
crossref_primary_10_1186_s13148_017_0390_y
crossref_primary_10_1016_j_bbagrm_2022_194840
crossref_primary_10_1038_s41388_020_01484_9
crossref_primary_10_1172_jci_insight_97493
crossref_primary_10_7554_eLife_79432
crossref_primary_10_1038_s41568_023_00660_9
crossref_primary_10_1002_jcb_29183
crossref_primary_10_1002_jcb_27680
crossref_primary_10_1016_j_prp_2019_152597
crossref_primary_10_1016_j_canlet_2016_05_015
crossref_primary_10_1186_gb_2013_14_12_r144
crossref_primary_10_4161_cc_25065
crossref_primary_10_18632_oncotarget_1503
crossref_primary_10_1016_j_it_2020_08_010
crossref_primary_10_1158_1535_7163_MCT_13_0056
crossref_primary_10_4143_crt_2014_46_3_209
crossref_primary_10_3390_epigenomes9010005
crossref_primary_10_3892_or_2014_3322
Cites_doi 10.1038/nature07733
10.1016/j.cell.2009.08.020
10.1016/0092-8674(86)90328-4
10.1016/j.stem.2008.10.008
10.1016/S0301-472X(03)00081-X
10.1128/MCB.24.19.8504-8518.2004
10.1158/0008-5472.CAN-06-4807
10.1038/sj.onc.1210001
10.1593/neo.05472
10.1158/0008-5472.CAN-05-0626
10.1073/pnas.1933744100
10.1038/nrg2268
10.1038/nrc1991
10.1038/nature01075
10.1046/j.1365-2141.2002.03637.x
10.1186/bcr1990
10.1242/jcs.03348
10.1016/j.molcel.2005.06.009
10.1038/35102167
10.1016/j.cell.2009.12.007
10.1073/pnas.0711613105
10.1084/jem.20020851
10.1101/gad.1061803
10.1038/nature05236
10.1016/j.cell.2009.11.007
10.1038/nrc2344
10.1002/1097-0142(19900815)66:4<733::AID-CNCR2820660422>3.0.CO;2-C
10.1038/nature01593
10.1038/35056049
10.1158/0008-5472.CAN-05-0592
10.1016/j.ccr.2009.03.018
10.1101/gad.415507
10.1007/s10555-007-9061-3
10.1016/j.cell.2008.01.036
10.1016/j.ccr.2006.10.009
10.1038/nrm2351
10.1038/35077219
10.1073/pnas.2136825100
10.1016/j.gde.2004.02.001
10.1038/sj.onc.1207947
10.1016/j.cell.2008.12.043
10.1016/j.ejca.2008.09.038
10.1073/pnas.0530291100
10.1038/sj.emboj.7600393
10.1038/nrc2499
10.1016/j.jhep.2009.10.008
10.1158/0008-5472.CAN-07-6353
10.1038/nature06933
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
2010 Elsevier Inc. All rights reserved. 2010
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: 2010 Elsevier Inc. All rights reserved. 2010
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
H94
7X8
5PM
DOI 10.1016/j.ccr.2010.10.035
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-3686
EndPage 100
ExternalDocumentID PMC3041516
21215703
10_1016_j_ccr_2010_10_035
S153561081000437X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA116199
– fundername: NCI NIH HHS
  grantid: CA16672
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P50 CA116199
– fundername: NCRR NIH HHS
  grantid: KL2 RR024149
– fundername: NCI NIH HHS
  grantid: R01 CA109311
– fundername: NCI NIH HHS
  grantid: L30 CA123630
– fundername: NCI NIH HHS
  grantid: R01 CA138239
– fundername: NCI NIH HHS
  grantid: P01 CA099031
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
OZT
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UDS
UHS
WQ6
ZA5
AAFWJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7TO
H94
7X8
5PM
ID FETCH-LOGICAL-c483t-9a74982b92e7e98e4394c8c51e010df9b85c224c365833ce3a64956c386941703
IEDL.DBID IXB
ISSN 1535-6108
1878-3686
IngestDate Thu Aug 21 14:11:59 EDT 2025
Fri Jul 11 08:08:20 EDT 2025
Fri Jul 11 02:09:59 EDT 2025
Mon Jul 21 06:06:56 EDT 2025
Tue Jul 01 01:26:14 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Fri Feb 23 02:27:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-9a74982b92e7e98e4394c8c51e010df9b85c224c365833ce3a64956c386941703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
J.-Y. Yang and W. Xia contributed equally to this work.
Present address: Department of Developmental Biology, Stanford University, Stanford, CA 94305
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S153561081000437X
PMID 21215703
PQID 1751210233
PQPubID 23462
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041516
proquest_miscellaneous_846901683
proquest_miscellaneous_1751210233
pubmed_primary_21215703
crossref_citationtrail_10_1016_j_ccr_2010_10_035
crossref_primary_10_1016_j_ccr_2010_10_035
elsevier_sciencedirect_doi_10_1016_j_ccr_2010_10_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-18
PublicationDateYYYYMMDD 2011-01-18
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer cell
PublicationTitleAlternate Cancer Cell
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lessard, Sauvageau (bib28) 2003; 31
Zhang, Behbod, Atkinson, Landis, Kittrell, Edwards, Medina, Tsimelzon, Hilsenbeck, Green (bib50) 2008; 68
Konopleva, Zhao, Hu, Jiang, Snell, Weidner, Jackson, Zhang, Champlin, Estey (bib27) 2002; 118
Li, Welm, Podsypanina, Huang, Chamorro, Zhang, Rowlands, Egeblad, Cowin, Werb (bib29) 2003; 100
Reya, Morrison, Clarke, Weissman (bib36) 2001; 414
Ding, Xia, Liu, Yang, Lee, Xia, Bartholomeusz, Li, Pan, Li (bib16) 2005; 19
Visvader, Lindeman (bib47) 2008; 8
Thiery, Acloque, Huang, Nieto (bib43) 2009; 139
Bristow, Hill (bib10) 2008; 8
Varambally, Dhanasekaran, Zhou, Barrette, Kumar-Sinha, Sanda, Ghosh, Pienta, Sewalt, Otte (bib46) 2002; 419
Dodson, Bourke, Jeffers, Vagnarelli, Sonoda, Takeda, Earnshaw, Merdes, Morrison (bib17) 2004; 23
Tzatsos, Bardeesy (bib44) 2008; 3
Huynh, Ngo, Koong, Poon, Choo, Toh, Thng, Chow, Ong, Chung (bib24) 2010; 52
Bindra, Schaffer, Meng, Woo, Maseide, Roth, Lizardi, Hedley, Bristow, Glazer (bib6) 2004; 24
Al-Hajj, Wicha, Benito-Hernandez, Morrison, Clarke (bib3) 2003; 100
Rassool, Gaymes, Omidvar, Brady, Beurlet, Pla, Reboul, Lea, Chomienne, Thomas (bib35) 2007; 67
Bindra, Glazer (bib5) 2007; 26
Diehn, Cho, Lobo, Kalisky, Dorie, Kulp, Qian, Lam, Ailles, Wong (bib14) 2009; 458
van Gent, Hoeijmakers, Kanaar (bib45) 2001; 2
Kleer, Cao, Varambally, Shen, Ota, Tomlins, Ghosh, Sewalt, Otte, Hayes (bib26) 2003; 100
Ponti, Costa, Zaffaroni, Pratesi, Petrangolini, Coradini, Pilotti, Pierotti, Daidone (bib34) 2005; 65
Reya, Duncan, Ailles, Domen, Scherer, Willert, Hintz, Nusse, Weissman (bib37) 2003; 423
Li, Bao, Wu, Wang, Eyler, Sathornsumetee, Shi, Cao, Lathia, McLendon (bib30) 2009; 15
Zeidler, Varambally, Cao, Chinnaiyan, Ferguson, Merajver, Kleer (bib49) 2005; 7
Patrawala, Calhoun, Schneider-Broussard, Zhou, Claypool, Tang (bib32) 2005; 65
Rossi, Jamieson, Weissman (bib38) 2008; 132
Bracken, Kleine-Kohlbrecher, Dietrich, Pasini, Gargiulo, Beekman, Theilgaard-Monch, Minucci, Porse, Marine (bib8) 2007; 21
Dontu, Abdallah, Foley, Jackson, Clarke, Kawamura, Wicha (bib18) 2003; 17
Bindra, Crosby, Glazer (bib7) 2007; 26
Sing, Pannell, Karaiskakis, Sturgeon, Djabali, Ellis, Lipshitz, Cordes (bib40) 2009; 138
Pece, Tosoni, Confalonieri, Mazzarol, Vecchi, Ronzoni, Bernard, Viale, Pelicci, Di Fiore (bib33) 2010; 140
Aguilera, Gomez-Gonzalez (bib1) 2008; 9
Branzei, Foiani (bib9) 2008; 9
Sparmann, van Lohuizen (bib41) 2006; 6
Kerkhoff, Fedorov, Siefken, Walter, Papadopoulos, Rapp (bib25) 2000; 11
Wicha (bib48) 2008; 10
Chin, DeVries, Fridlyand, Spellman, Roydasgupta, Kuo, Lapuk, Neve, Qian, Ryder (bib13) 2006; 10
Ford, Fried (bib20) 1986; 45
Hu, Polyak (bib23) 2008; 44
Bao, Wu, McLendon, Hao, Shi, Hjelmeland, Dewhirst, Bigner, Rich (bib4) 2006; 444
Ezhkova, Pasolli, Parker, Stokes, Su, Hannon, Tarakhovsky, Fuchs (bib19) 2009; 136
Difilippantonio, Petersen, Chen, Johnson, Jasin, Kanaar, Ried, Nussenzweig (bib15) 2002; 196
Guo, Lasky, Chang, Mosessian, Lewis, Xiao, Yeh, Chen, Iruela-Arispe, Varella-Garcia, Wu (bib21) 2008; 453
Chen, Woodward, Behbod, Peddibhotla, Alfaro, Buchholz, Rosen (bib12) 2007; 120
Liu, Ginestier, Charafe-Jauffret, Foco, Kleer, Merajver, Dontu, Wicha (bib31) 2008; 105
Cao, Zhang (bib11) 2004; 14
Taipale, Beachy (bib42) 2001; 411
Hajj, Akoum, Bradley, Paquin, Ayoub (bib22) 1990; 66
Sinclair, Adem, Naderi, Soderberg, Johnson, Wu, Wadum, Couch, Sellers, Schaid (bib39) 2002; 62
Al-Hajj, Clarke (bib2) 2004; 23
Taipale (10.1016/j.ccr.2010.10.035_bib42) 2001; 411
Hajj (10.1016/j.ccr.2010.10.035_bib22) 1990; 66
Kerkhoff (10.1016/j.ccr.2010.10.035_bib25) 2000; 11
Reya (10.1016/j.ccr.2010.10.035_bib37) 2003; 423
Cao (10.1016/j.ccr.2010.10.035_bib11) 2004; 14
Tzatsos (10.1016/j.ccr.2010.10.035_bib44) 2008; 3
Chin (10.1016/j.ccr.2010.10.035_bib13) 2006; 10
Bristow (10.1016/j.ccr.2010.10.035_bib10) 2008; 8
Huynh (10.1016/j.ccr.2010.10.035_bib24) 2010; 52
Thiery (10.1016/j.ccr.2010.10.035_bib43) 2009; 139
Lessard (10.1016/j.ccr.2010.10.035_bib28) 2003; 31
Li (10.1016/j.ccr.2010.10.035_bib30) 2009; 15
Bindra (10.1016/j.ccr.2010.10.035_bib5) 2007; 26
Bindra (10.1016/j.ccr.2010.10.035_bib6) 2004; 24
Kleer (10.1016/j.ccr.2010.10.035_bib26) 2003; 100
Reya (10.1016/j.ccr.2010.10.035_bib36) 2001; 414
Bao (10.1016/j.ccr.2010.10.035_bib4) 2006; 444
Visvader (10.1016/j.ccr.2010.10.035_bib47) 2008; 8
Bracken (10.1016/j.ccr.2010.10.035_bib8) 2007; 21
Konopleva (10.1016/j.ccr.2010.10.035_bib27) 2002; 118
Difilippantonio (10.1016/j.ccr.2010.10.035_bib15) 2002; 196
Sparmann (10.1016/j.ccr.2010.10.035_bib41) 2006; 6
Dontu (10.1016/j.ccr.2010.10.035_bib18) 2003; 17
Pece (10.1016/j.ccr.2010.10.035_bib33) 2010; 140
van Gent (10.1016/j.ccr.2010.10.035_bib45) 2001; 2
Dodson (10.1016/j.ccr.2010.10.035_bib17) 2004; 23
Zeidler (10.1016/j.ccr.2010.10.035_bib49) 2005; 7
Al-Hajj (10.1016/j.ccr.2010.10.035_bib3) 2003; 100
Ponti (10.1016/j.ccr.2010.10.035_bib34) 2005; 65
Ding (10.1016/j.ccr.2010.10.035_bib16) 2005; 19
Al-Hajj (10.1016/j.ccr.2010.10.035_bib2) 2004; 23
Rassool (10.1016/j.ccr.2010.10.035_bib35) 2007; 67
Wicha (10.1016/j.ccr.2010.10.035_bib48) 2008; 10
Guo (10.1016/j.ccr.2010.10.035_bib21) 2008; 453
Ford (10.1016/j.ccr.2010.10.035_bib20) 1986; 45
Bindra (10.1016/j.ccr.2010.10.035_bib7) 2007; 26
Branzei (10.1016/j.ccr.2010.10.035_bib9) 2008; 9
Sing (10.1016/j.ccr.2010.10.035_bib40) 2009; 138
Sinclair (10.1016/j.ccr.2010.10.035_bib39) 2002; 62
Aguilera (10.1016/j.ccr.2010.10.035_bib1) 2008; 9
Li (10.1016/j.ccr.2010.10.035_bib29) 2003; 100
Liu (10.1016/j.ccr.2010.10.035_bib31) 2008; 105
Diehn (10.1016/j.ccr.2010.10.035_bib14) 2009; 458
Chen (10.1016/j.ccr.2010.10.035_bib12) 2007; 120
Zhang (10.1016/j.ccr.2010.10.035_bib50) 2008; 68
Hu (10.1016/j.ccr.2010.10.035_bib23) 2008; 44
Varambally (10.1016/j.ccr.2010.10.035_bib46) 2002; 419
Ezhkova (10.1016/j.ccr.2010.10.035_bib19) 2009; 136
Patrawala (10.1016/j.ccr.2010.10.035_bib32) 2005; 65
Rossi (10.1016/j.ccr.2010.10.035_bib38) 2008; 132
References_xml – volume: 411
  start-page: 349
  year: 2001
  end-page: 354
  ident: bib42
  article-title: The Hedgehog and Wnt signalling pathways in cancer
  publication-title: Nature
– volume: 9
  start-page: 204
  year: 2008
  end-page: 217
  ident: bib1
  article-title: Genome instability: a mechanistic view of its causes and consequences
  publication-title: Nat. Rev. Genet.
– volume: 139
  start-page: 871
  year: 2009
  end-page: 890
  ident: bib43
  article-title: Epithelial-mesenchymal transitions in development and disease
  publication-title: Cell
– volume: 414
  start-page: 105
  year: 2001
  end-page: 111
  ident: bib36
  article-title: Stem cells, cancer, and cancer stem cells
  publication-title: Nature
– volume: 26
  start-page: 249
  year: 2007
  end-page: 260
  ident: bib7
  article-title: Regulation of DNA repair in hypoxic cancer cells
  publication-title: Cancer Metastasis Rev.
– volume: 44
  start-page: 2760
  year: 2008
  end-page: 2765
  ident: bib23
  article-title: Molecular characterisation of the tumour microenvironment in breast cancer
  publication-title: Eur. J. Cancer
– volume: 66
  start-page: 733
  year: 1990
  end-page: 739
  ident: bib22
  article-title: DNA alterations at proto-oncogene loci and their clinical significance in operable non-small cell lung cancer
  publication-title: Cancer
– volume: 11
  start-page: 185
  year: 2000
  end-page: 190
  ident: bib25
  article-title: Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein
  publication-title: Cell Growth Differ.
– volume: 8
  start-page: 755
  year: 2008
  end-page: 768
  ident: bib47
  article-title: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions
  publication-title: Nat. Rev. Cancer
– volume: 3
  start-page: 469
  year: 2008
  end-page: 470
  ident: bib44
  article-title: Ink4a/Arf regulation by let-7b and Hmga2: a genetic pathway governing stem cell aging
  publication-title: Cell Stem Cell
– volume: 100
  start-page: 15853
  year: 2003
  end-page: 15858
  ident: bib29
  article-title: Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 567
  year: 2003
  end-page: 585
  ident: bib28
  article-title: Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis
  publication-title: Exp. Hematol.
– volume: 2
  start-page: 196
  year: 2001
  end-page: 206
  ident: bib45
  article-title: Chromosomal stability and the DNA double-stranded break connection
  publication-title: Nat. Rev. Genet.
– volume: 68
  start-page: 4674
  year: 2008
  end-page: 4682
  ident: bib50
  article-title: Identification of tumor-initiating cells in a p53-null mouse model of breast cancer
  publication-title: Cancer Res.
– volume: 458
  start-page: 780
  year: 2009
  end-page: 783
  ident: bib14
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
– volume: 65
  start-page: 6207
  year: 2005
  end-page: 6219
  ident: bib32
  article-title: Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic
  publication-title: Cancer Res.
– volume: 100
  start-page: 3983
  year: 2003
  end-page: 3988
  ident: bib3
  article-title: Prospective identification of tumorigenic breast cancer cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 2048
  year: 2007
  end-page: 2057
  ident: bib5
  article-title: Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia
  publication-title: Oncogene
– volume: 45
  start-page: 425
  year: 1986
  end-page: 430
  ident: bib20
  article-title: Large inverted duplications are associated with gene amplification
  publication-title: Cell
– volume: 6
  start-page: 846
  year: 2006
  end-page: 856
  ident: bib41
  article-title: Polycomb silencers control cell fate, development and cancer
  publication-title: Nat. Rev. Cancer
– volume: 10
  start-page: 105
  year: 2008
  ident: bib48
  article-title: Cancer stem cell heterogeneity in hereditary breast cancer
  publication-title: Breast Cancer Res.
– volume: 7
  start-page: 1011
  year: 2005
  end-page: 1019
  ident: bib49
  article-title: The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells
  publication-title: Neoplasia
– volume: 140
  start-page: 62
  year: 2010
  end-page: 73
  ident: bib33
  article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content
  publication-title: Cell
– volume: 120
  start-page: 468
  year: 2007
  end-page: 477
  ident: bib12
  article-title: Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line
  publication-title: J. Cell Sci.
– volume: 15
  start-page: 501
  year: 2009
  end-page: 513
  ident: bib30
  article-title: Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells
  publication-title: Cancer Cell
– volume: 24
  start-page: 8504
  year: 2004
  end-page: 8518
  ident: bib6
  article-title: Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells
  publication-title: Mol. Cell. Biol.
– volume: 118
  start-page: 521
  year: 2002
  end-page: 534
  ident: bib27
  article-title: The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells
  publication-title: Br. J. Haematol.
– volume: 444
  start-page: 756
  year: 2006
  end-page: 760
  ident: bib4
  article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response
  publication-title: Nature
– volume: 52
  start-page: 79
  year: 2010
  end-page: 87
  ident: bib24
  article-title: AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC)
  publication-title: J. Hepatol.
– volume: 136
  start-page: 1122
  year: 2009
  end-page: 1135
  ident: bib19
  article-title: Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells
  publication-title: Cell
– volume: 10
  start-page: 529
  year: 2006
  end-page: 541
  ident: bib13
  article-title: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies
  publication-title: Cancer Cell
– volume: 23
  start-page: 3864
  year: 2004
  end-page: 3873
  ident: bib17
  article-title: Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM
  publication-title: EMBO J.
– volume: 138
  start-page: 885
  year: 2009
  end-page: 897
  ident: bib40
  article-title: A vertebrate Polycomb response element governs segmentation of the posterior hindbrain
  publication-title: Cell
– volume: 21
  start-page: 525
  year: 2007
  end-page: 530
  ident: bib8
  article-title: The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells
  publication-title: Genes Dev.
– volume: 453
  start-page: 529
  year: 2008
  end-page: 533
  ident: bib21
  article-title: Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation
  publication-title: Nature
– volume: 423
  start-page: 409
  year: 2003
  end-page: 414
  ident: bib37
  article-title: A role for Wnt signalling in self-renewal of haematopoietic stem cells
  publication-title: Nature
– volume: 100
  start-page: 11606
  year: 2003
  end-page: 11611
  ident: bib26
  article-title: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 419
  start-page: 624
  year: 2002
  end-page: 629
  ident: bib46
  article-title: The polycomb group protein EZH2 is involved in progression of prostate cancer
  publication-title: Nature
– volume: 19
  start-page: 159
  year: 2005
  end-page: 170
  ident: bib16
  article-title: Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin
  publication-title: Mol. Cell
– volume: 65
  start-page: 5506
  year: 2005
  end-page: 5511
  ident: bib34
  article-title: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties
  publication-title: Cancer Res.
– volume: 132
  start-page: 681
  year: 2008
  end-page: 696
  ident: bib38
  article-title: Stems cells and the pathways to aging and cancer
  publication-title: Cell
– volume: 14
  start-page: 155
  year: 2004
  end-page: 164
  ident: bib11
  article-title: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3
  publication-title: Curr. Opin. Genet. Dev.
– volume: 67
  start-page: 8762
  year: 2007
  end-page: 8771
  ident: bib35
  article-title: Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?
  publication-title: Cancer Res.
– volume: 62
  start-page: 3587
  year: 2002
  end-page: 3591
  ident: bib39
  article-title: TBX2 is preferentially amplified in BRCA1- and BRCA2-related breast tumors
  publication-title: Cancer Res.
– volume: 8
  start-page: 180
  year: 2008
  end-page: 192
  ident: bib10
  article-title: Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability
  publication-title: Nat. Rev. Cancer
– volume: 17
  start-page: 1253
  year: 2003
  end-page: 1270
  ident: bib18
  article-title: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells
  publication-title: Genes Dev.
– volume: 196
  start-page: 469
  year: 2002
  end-page: 480
  ident: bib15
  article-title: Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification
  publication-title: J. Exp. Med.
– volume: 23
  start-page: 7274
  year: 2004
  end-page: 7282
  ident: bib2
  article-title: Self-renewal and solid tumor stem cells
  publication-title: Oncogene
– volume: 9
  start-page: 297
  year: 2008
  end-page: 308
  ident: bib9
  article-title: Regulation of DNA repair throughout the cell cycle
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 105
  start-page: 1680
  year: 2008
  end-page: 1685
  ident: bib31
  article-title: BRCA1 regulates human mammary stem/progenitor cell fate
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 458
  start-page: 780
  year: 2009
  ident: 10.1016/j.ccr.2010.10.035_bib14
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
  doi: 10.1038/nature07733
– volume: 62
  start-page: 3587
  year: 2002
  ident: 10.1016/j.ccr.2010.10.035_bib39
  article-title: TBX2 is preferentially amplified in BRCA1- and BRCA2-related breast tumors
  publication-title: Cancer Res.
– volume: 138
  start-page: 885
  year: 2009
  ident: 10.1016/j.ccr.2010.10.035_bib40
  article-title: A vertebrate Polycomb response element governs segmentation of the posterior hindbrain
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.020
– volume: 45
  start-page: 425
  year: 1986
  ident: 10.1016/j.ccr.2010.10.035_bib20
  article-title: Large inverted duplications are associated with gene amplification
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90328-4
– volume: 3
  start-page: 469
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib44
  article-title: Ink4a/Arf regulation by let-7b and Hmga2: a genetic pathway governing stem cell aging
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.008
– volume: 31
  start-page: 567
  year: 2003
  ident: 10.1016/j.ccr.2010.10.035_bib28
  article-title: Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(03)00081-X
– volume: 24
  start-page: 8504
  year: 2004
  ident: 10.1016/j.ccr.2010.10.035_bib6
  article-title: Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.19.8504-8518.2004
– volume: 67
  start-page: 8762
  year: 2007
  ident: 10.1016/j.ccr.2010.10.035_bib35
  article-title: Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-4807
– volume: 26
  start-page: 2048
  year: 2007
  ident: 10.1016/j.ccr.2010.10.035_bib5
  article-title: Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210001
– volume: 7
  start-page: 1011
  year: 2005
  ident: 10.1016/j.ccr.2010.10.035_bib49
  article-title: The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells
  publication-title: Neoplasia
  doi: 10.1593/neo.05472
– volume: 65
  start-page: 5506
  year: 2005
  ident: 10.1016/j.ccr.2010.10.035_bib34
  article-title: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0626
– volume: 100
  start-page: 11606
  year: 2003
  ident: 10.1016/j.ccr.2010.10.035_bib26
  article-title: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1933744100
– volume: 9
  start-page: 204
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib1
  article-title: Genome instability: a mechanistic view of its causes and consequences
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2268
– volume: 6
  start-page: 846
  year: 2006
  ident: 10.1016/j.ccr.2010.10.035_bib41
  article-title: Polycomb silencers control cell fate, development and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1991
– volume: 419
  start-page: 624
  year: 2002
  ident: 10.1016/j.ccr.2010.10.035_bib46
  article-title: The polycomb group protein EZH2 is involved in progression of prostate cancer
  publication-title: Nature
  doi: 10.1038/nature01075
– volume: 118
  start-page: 521
  year: 2002
  ident: 10.1016/j.ccr.2010.10.035_bib27
  article-title: The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells
  publication-title: Br. J. Haematol.
  doi: 10.1046/j.1365-2141.2002.03637.x
– volume: 10
  start-page: 105
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib48
  article-title: Cancer stem cell heterogeneity in hereditary breast cancer
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr1990
– volume: 120
  start-page: 468
  year: 2007
  ident: 10.1016/j.ccr.2010.10.035_bib12
  article-title: Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03348
– volume: 19
  start-page: 159
  year: 2005
  ident: 10.1016/j.ccr.2010.10.035_bib16
  article-title: Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.06.009
– volume: 414
  start-page: 105
  year: 2001
  ident: 10.1016/j.ccr.2010.10.035_bib36
  article-title: Stem cells, cancer, and cancer stem cells
  publication-title: Nature
  doi: 10.1038/35102167
– volume: 140
  start-page: 62
  year: 2010
  ident: 10.1016/j.ccr.2010.10.035_bib33
  article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.007
– volume: 105
  start-page: 1680
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib31
  article-title: BRCA1 regulates human mammary stem/progenitor cell fate
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711613105
– volume: 196
  start-page: 469
  year: 2002
  ident: 10.1016/j.ccr.2010.10.035_bib15
  article-title: Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20020851
– volume: 17
  start-page: 1253
  year: 2003
  ident: 10.1016/j.ccr.2010.10.035_bib18
  article-title: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.1061803
– volume: 444
  start-page: 756
  year: 2006
  ident: 10.1016/j.ccr.2010.10.035_bib4
  article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response
  publication-title: Nature
  doi: 10.1038/nature05236
– volume: 139
  start-page: 871
  year: 2009
  ident: 10.1016/j.ccr.2010.10.035_bib43
  article-title: Epithelial-mesenchymal transitions in development and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.007
– volume: 8
  start-page: 180
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib10
  article-title: Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2344
– volume: 11
  start-page: 185
  year: 2000
  ident: 10.1016/j.ccr.2010.10.035_bib25
  article-title: Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein
  publication-title: Cell Growth Differ.
– volume: 66
  start-page: 733
  year: 1990
  ident: 10.1016/j.ccr.2010.10.035_bib22
  article-title: DNA alterations at proto-oncogene loci and their clinical significance in operable non-small cell lung cancer
  publication-title: Cancer
  doi: 10.1002/1097-0142(19900815)66:4<733::AID-CNCR2820660422>3.0.CO;2-C
– volume: 423
  start-page: 409
  year: 2003
  ident: 10.1016/j.ccr.2010.10.035_bib37
  article-title: A role for Wnt signalling in self-renewal of haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature01593
– volume: 2
  start-page: 196
  year: 2001
  ident: 10.1016/j.ccr.2010.10.035_bib45
  article-title: Chromosomal stability and the DNA double-stranded break connection
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/35056049
– volume: 65
  start-page: 6207
  year: 2005
  ident: 10.1016/j.ccr.2010.10.035_bib32
  article-title: Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0592
– volume: 15
  start-page: 501
  year: 2009
  ident: 10.1016/j.ccr.2010.10.035_bib30
  article-title: Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.03.018
– volume: 21
  start-page: 525
  year: 2007
  ident: 10.1016/j.ccr.2010.10.035_bib8
  article-title: The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.415507
– volume: 26
  start-page: 249
  year: 2007
  ident: 10.1016/j.ccr.2010.10.035_bib7
  article-title: Regulation of DNA repair in hypoxic cancer cells
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-007-9061-3
– volume: 132
  start-page: 681
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib38
  article-title: Stems cells and the pathways to aging and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.036
– volume: 10
  start-page: 529
  year: 2006
  ident: 10.1016/j.ccr.2010.10.035_bib13
  article-title: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.10.009
– volume: 9
  start-page: 297
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib9
  article-title: Regulation of DNA repair throughout the cell cycle
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2351
– volume: 411
  start-page: 349
  year: 2001
  ident: 10.1016/j.ccr.2010.10.035_bib42
  article-title: The Hedgehog and Wnt signalling pathways in cancer
  publication-title: Nature
  doi: 10.1038/35077219
– volume: 100
  start-page: 15853
  year: 2003
  ident: 10.1016/j.ccr.2010.10.035_bib29
  article-title: Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2136825100
– volume: 14
  start-page: 155
  year: 2004
  ident: 10.1016/j.ccr.2010.10.035_bib11
  article-title: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2004.02.001
– volume: 23
  start-page: 7274
  year: 2004
  ident: 10.1016/j.ccr.2010.10.035_bib2
  article-title: Self-renewal and solid tumor stem cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207947
– volume: 136
  start-page: 1122
  year: 2009
  ident: 10.1016/j.ccr.2010.10.035_bib19
  article-title: Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.043
– volume: 44
  start-page: 2760
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib23
  article-title: Molecular characterisation of the tumour microenvironment in breast cancer
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2008.09.038
– volume: 100
  start-page: 3983
  year: 2003
  ident: 10.1016/j.ccr.2010.10.035_bib3
  article-title: Prospective identification of tumorigenic breast cancer cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0530291100
– volume: 23
  start-page: 3864
  year: 2004
  ident: 10.1016/j.ccr.2010.10.035_bib17
  article-title: Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600393
– volume: 8
  start-page: 755
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib47
  article-title: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2499
– volume: 52
  start-page: 79
  year: 2010
  ident: 10.1016/j.ccr.2010.10.035_bib24
  article-title: AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC)
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2009.10.008
– volume: 68
  start-page: 4674
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib50
  article-title: Identification of tumor-initiating cells in a p53-null mouse model of breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-6353
– volume: 453
  start-page: 529
  year: 2008
  ident: 10.1016/j.ccr.2010.10.035_bib21
  article-title: Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation
  publication-title: Nature
  doi: 10.1038/nature06933
SSID ssj0016179
Score 2.518604
Snippet It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms Animals
Benzenesulfonates - pharmacology
Benzimidazoles - pharmacology
Benzimidazoles - therapeutic use
beta Catenin - metabolism
Breast Neoplasms - diagnosis
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Hypoxia - physiology
Cell Line, Tumor
Cell Proliferation - drug effects
Cell Survival - drug effects
Cell Survival - physiology
Centrosome - pathology
Chromosome Aberrations
DNA Breaks, Double-Stranded
DNA Damage - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enhancer of Zeste Homolog 2 Protein
Extracellular Signal-Regulated MAP Kinases - metabolism
Female
Gene Expression - drug effects
Gene Expression - genetics
Gene Expression Regulation, Neoplastic - physiology
Humans
Mice
Mice, Inbred NOD
Mice, SCID
Models, Biological
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Niacinamide - analogs & derivatives
Phenylurea Compounds
Phosphorylation - drug effects
Polycomb Repressive Complex 2
Proto-Oncogene Proteins c-raf - genetics
Proto-Oncogene Proteins c-raf - metabolism
Pyridines - pharmacology
Rad51 Recombinase - genetics
Rad51 Recombinase - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Sorafenib
Spheroids, Cellular - drug effects
Spheroids, Cellular - pathology
Transcription Factors - genetics
Transcription Factors - metabolism
Transplantation, Heterologous - pathology
Xenograft Model Antitumor Assays
Title EZH2 Promotes Expansion of Breast Tumor Initiating Cells through Activation of RAF1-β-Catenin Signaling
URI https://dx.doi.org/10.1016/j.ccr.2010.10.035
https://www.ncbi.nlm.nih.gov/pubmed/21215703
https://www.proquest.com/docview/1751210233
https://www.proquest.com/docview/846901683
https://pubmed.ncbi.nlm.nih.gov/PMC3041516
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QB8QF8Wa8FCROSNFo06bJcUybBgiEeEgTl6pNMigaHdpD4nfxQ_hN2Gk7MV4HLj2kjpTaie3Gn21CDpUMwQuyhqWGCxakacBSxeEhYJQr2eMuQ-7iUnTugrNu2J0jzSoXBmGVpe4vdLrT1uVIveRm_SXL6jdwVtH4S8-Fs6Iu6GEeSJfE1z2ZRhLAQquiZmrIkLqKbDqMl9bDAt2FAC_X8e1H2_Td9_wKofxkk9rLZKl0JmmjWO8KmbP5Klm4KMPla-Sxdd_x6ZVD3NkRbb3C0cfbMTro0RNEo4_p7eR5MKSnCCFKEAFNm7bfH9GyfQ9t6Kr9Gc65brQ99v7GmuCg5llOb7IH9OPzh3Vy127dNjusbK3ANLBozFQSBUr6qfJtZJW0mB-rpQ49C9wwPZXKUINx11xgVpa2PBH4J6W5xMRX0BIbZD4f5HaLUOPr1AShEkaaIOlFCU-4Nlxa_1gYpUyNHFdMjXVZdxzbX_TjCmD2FIMcYpQDDoEcauRoOuWlKLrxF3FQSSqe2TkxGIW_ph1UUo3hRGGYJMntYDKKwaFyVdU4rxH6C43EWwVPSCDZLDbCdKE-1usADtVINLNFpgRY0Hv2TZ49usLeHOsleGL7f1-0QxaLC2-PeXKXzI-HE7sHHtM43Yd_hdPzfXcwPgCRChTP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVoJeEOXV8DQSXJCsdNe7XvvAIQ2JEtpUiKZSxGXZtZ12q3RT5SHgb8H_4Dcxs4-I8OgBqZc9eO1oM-N52PPNDMBLrUL0gpzlqRWSB2ka8FQLfEgcFVqNRZEhNziSvZPg3SgcbcD3OheGYJWV7i91eqGtq5FmRc3mZZY1j1FWyfgrrwhnRaMKWXngvn7Gc9v8Tf8tMvmV73c7w3aPV60FuAmUWHCdRIFWfqp9FzmtHOWHGmVCz-H5xI51qkKDxs0ISVlJxolE0knCCEWJnygl-Ls3YAu9j4i0QX-0vwpdoEugyyKtIafPq0OpBajMmFkJJyNEWdFi7q_G8E9n93fM5i9GsHsHblfeK2uVBNqBDZffhZuDKj5_D846H3s-e19A_Nycdb6grqHrODYds32Cvy_YcHkxnbE-YZYSglyztptM5qzqF8Rapu63Rms-tLoe__GNt9EjzrOcHWendHDIT-_DybUQ_AFs5tPc7QKzvkltEGpplQ2ScZSIRBgrlPP3pNXaNmCvJmpsqkLn1G9jEteItvMY-RATH2gI-dCA16sll2WVj6smBzWn4rWtGqMVumrZi5qrMYowxWWS3E2X8xg9uKKMmxANYP-Yo-gaw5MKpzwsN8LqQ30qEIIUakC0tkVWE6iC-PqbPDsrKokLKtDgyUf_94-ew63ecHAYH_aPDh7Ddnnb7nFPPYHNxWzpnqK7tkifFeLB4NN1y-NPsKZOfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EZH2+promotes+expansion+of+breast+tumor+initiating+cells+through+activation+of+RAF1-%CE%B2-catenin+signaling&rft.jtitle=Cancer+cell&rft.au=Chang%2C+Chun-Ju&rft.au=Yang%2C+Jer-Yen&rft.au=Xia%2C+Weiya&rft.au=Chen%2C+Chun-Te&rft.date=2011-01-18&rft.issn=1535-6108&rft.eissn=1878-3686&rft.volume=19&rft.issue=1&rft.spage=86&rft.epage=100&rft_id=info:doi/10.1016%2Fj.ccr.2010.10.035&rft_id=info%3Apmid%2F21215703&rft.externalDocID=PMC3041516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon