Varying coefficient subdistribution regression for left-truncated semi-competing risks data
Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be fur...
Saved in:
Published in | Journal of multivariate analysis Vol. 131; pp. 65 - 78 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2014
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 0047-259X 1095-7243 |
DOI | 10.1016/j.jmva.2014.06.005 |
Cover
Loading…
Abstract | Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying coefficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov–Smirnov type and Cramér–Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method. |
---|---|
AbstractList | Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method. Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying coefficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramer-Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method. Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying coefficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov–Smirnov type and Cramér–Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method. Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method. |
Author | Peng, Limin Li, Ruosha |
AuthorAffiliation | 1 Department of Biostatistics, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, U.S.A 2 Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road NE., Atlanta, GA 30322, U.S.A. 1- 727-7701 |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, U.S.A – name: 2 Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road NE., Atlanta, GA 30322, U.S.A. 1- 727-7701 |
Author_xml | – sequence: 1 givenname: Ruosha surname: Li fullname: Li, Ruosha organization: Department of Biostatistics, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, USA – sequence: 2 givenname: Limin surname: Peng fullname: Peng, Limin email: lpeng@sph.emory.edu organization: Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road NE., Atlanta, GA 30322, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25125711$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2L1TAUxYOMOG9G_wEXUnDjpjVJmy8QQQa_YMCNiuAiJOntM7Vtnkn6wP_elDcjOotZ5ULOOZx7fxfobAkLIPSU4IZgwl-OzTgfTUMx6RrMG4zZA7QjWLFa0K49QzuMO1FTpr6do4uURowJYaJ7hM4pI5QJQnbo-1cTf_tlX7kAw-CdhyVXabW9Tzl6u2YflirCPkJK2ziEWE0w5DrHdXEmQ18lmH3twnyAvAVFn36mqjfZPEYPBzMleHLzXqIv795-vvpQX396__HqzXXtOtnmWilOcWk0dFa1YuioNQpz3lopZUcV56JVEjPslDPCAmuJBGEE4WqwTkrbXqLXp9zDamfoXVkhmkkfop_LcjoYr___WfwPvQ9H3REqiWAl4MVNQAy_VkhZzz45mCazQFiTJpJypphQqkif35GOYY1LWU8TxkttpSguqmf_Nvpb5fbuRSBPAhdDShEG7Xw227FLQT9pgvWGWI96Q6w3xBpzXRAXK71jvU2_1_TqZILC4egh6rShdtD7CC7rPvj77H8ACwjAwA |
CODEN | JMVAAI |
CitedBy_id | crossref_primary_10_1002_sim_7222 crossref_primary_10_1111_biom_12847 crossref_primary_10_1007_s10985_023_09597_5 crossref_primary_10_1002_sim_8590 crossref_primary_10_1080_01621459_2024_2427431 crossref_primary_10_1007_s10985_022_09571_7 |
Cites_doi | 10.1111/j.1467-9469.2006.00544.x 10.1111/j.1541-0420.2005.00335.x 10.1093/biomet/asm096 10.1016/S0197-2456(02)00307-0 10.1007/s10985-011-9201-5 10.1214/aos/1176345976 10.1111/j.1541-0420.2010.01420.x 10.1093/biomet/asq050 10.1214/aos/1176346584 10.1080/01621459.1991.10475011 10.1111/j.1541-0420.2010.01521.x 10.1198/016214502753479347 10.1111/j.0006-341X.2005.031209.x 10.1093/biomet/asm059 10.1080/01621459.1999.10474144 10.1093/biomet/asm058 10.1093/biomet/80.3.557 10.1198/jasa.2009.tm08228 10.1093/biomet/88.4.907 10.1111/j.1467-9469.2008.00635.x 10.1093/biomet/81.1.61 10.2337/diab.36.2.205 10.1080/01621459.1995.10476493 10.1093/biomet/asn037 10.1093/biostatistics/2.1.85 10.2307/2530374 10.1214/aos/1176325493 10.1198/016214506000000131 10.1002/sim.4264 10.1214/aos/1024691086 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright Taylor & Francis Group Oct 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright Taylor & Francis Group Oct 2014 |
DBID | 6I. AAFTH AAYXX CITATION NPM JQ2 7X8 5PM |
DOI | 10.1016/j.jmva.2014.06.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-7243 |
EndPage | 78 |
ExternalDocumentID | PMC4128175 3425621041 25125711 10_1016_j_jmva_2014_06_005 S0047259X14001353 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL113548 – fundername: NCATS NIH HHS grantid: UL1 TR000005 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYJJ ABAOU ABEFU ABFNM ABIVO ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UHS WUQ XFK XOL XPP YHZ ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM JQ2 7X8 5PM |
ID | FETCH-LOGICAL-c483t-99620251f4b937f42ba90663b888429667398050c9ca7be5318e7a7169fbc88b3 |
IEDL.DBID | AIKHN |
ISSN | 0047-259X |
IngestDate | Thu Aug 21 13:55:06 EDT 2025 Thu Sep 04 21:31:24 EDT 2025 Wed Aug 13 04:32:28 EDT 2025 Mon Jul 21 05:23:38 EDT 2025 Tue Jul 01 01:21:47 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Fri Feb 23 02:27:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cumulative incidence Left truncation Hypothesis testing 62N01 62P10 62N02 Time-varying coefficient Registry data analysis Observational studies |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-99620251f4b937f42ba90663b888429667398050c9ca7be5318e7a7169fbc88b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0047259X14001353 |
PMID | 25125711 |
PQID | 1560669920 |
PQPubID | 27957 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4128175 proquest_miscellaneous_1826595799 proquest_journals_1560669920 pubmed_primary_25125711 crossref_citationtrail_10_1016_j_jmva_2014_06_005 crossref_primary_10_1016_j_jmva_2014_06_005 elsevier_sciencedirect_doi_10_1016_j_jmva_2014_06_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of multivariate analysis |
PublicationTitleAlternate | J Multivar Anal |
PublicationYear | 2014 |
Publisher | Elsevier Inc Taylor & Francis LLC |
Publisher_xml | – name: Elsevier Inc – name: Taylor & Francis LLC |
References | Scheike, Zhang, Gerds (br000140) 2008; 95 Prentice, Kalbfleisch, Peterson, Flournoy, Farewell, Breslow (br000120) 1978; 34 Klein, Andersen (br000065) 2005; 61 Scheike, Zhang (br000135) 2007; 34 Andersen, Borgan, Gill, Keiding (br000005) 1993 Ding, Shi, Wang, Hsieh (br000020) 2009; 36 Woodroofe (br000155) 1985; 13 Wang (br000150) 1991; 86 He, Yang (br000050) 1998; 26 Jiang, Chappell, Fine (br000055) 2003; 24 Lin, Wei, Ying (br000085) 1993; 80 Asgharian, M’Lan, Wolfson (br000015) 2002; 97 Jiang, Fine, Chappell (br000060) 2005; 61 Qian, Peng (br000125) 2010; 97 Shen (br000145) 2012; 18 Peng, Huang (br000115) 2007; 94 Zhang, Zhang, Fine (br000160) 2011; 30 Andersen, Gill (br000010) 1982; 10 Fine, Gray (br000030) 1999; 94 Fine (br000025) 2001; 2 Peng, Fine (br000110) 2009; 104 Peng, Fine (br000100) 2006; 101 Geskus (br000045) 2011; 67 Kosorok (br000075) 2008 Lin, Ying (br000090) 1994; 81 Li, Peng (br000080) 2011; 67 Robins, Rotnitzky, Zhao (br000130) 1995; 90 Kofoed-Enevoldsen, Borch-Johnsen, Kreiner, Nerup, Deckert (br000070) 1987; 36 Fine, Jiang, Chappell (br000035) 2001; 88 Oakes (br000095) 2008; 95 Peng, Fine (br000105) 2007; 94 Fygenson, Ritov (br000040) 1994; 22 He (10.1016/j.jmva.2014.06.005_br000050) 1998; 26 Wang (10.1016/j.jmva.2014.06.005_br000150) 1991; 86 Fine (10.1016/j.jmva.2014.06.005_br000030) 1999; 94 Fygenson (10.1016/j.jmva.2014.06.005_br000040) 1994; 22 Fine (10.1016/j.jmva.2014.06.005_br000035) 2001; 88 Kofoed-Enevoldsen (10.1016/j.jmva.2014.06.005_br000070) 1987; 36 Robins (10.1016/j.jmva.2014.06.005_br000130) 1995; 90 Kosorok (10.1016/j.jmva.2014.06.005_br000075) 2008 Scheike (10.1016/j.jmva.2014.06.005_br000135) 2007; 34 Jiang (10.1016/j.jmva.2014.06.005_br000060) 2005; 61 Peng (10.1016/j.jmva.2014.06.005_br000105) 2007; 94 Lin (10.1016/j.jmva.2014.06.005_br000085) 1993; 80 Scheike (10.1016/j.jmva.2014.06.005_br000140) 2008; 95 Asgharian (10.1016/j.jmva.2014.06.005_br000015) 2002; 97 Zhang (10.1016/j.jmva.2014.06.005_br000160) 2011; 30 Geskus (10.1016/j.jmva.2014.06.005_br000045) 2011; 67 Andersen (10.1016/j.jmva.2014.06.005_br000010) 1982; 10 Fine (10.1016/j.jmva.2014.06.005_br000025) 2001; 2 Woodroofe (10.1016/j.jmva.2014.06.005_br000155) 1985; 13 Peng (10.1016/j.jmva.2014.06.005_br000115) 2007; 94 Ding (10.1016/j.jmva.2014.06.005_br000020) 2009; 36 Peng (10.1016/j.jmva.2014.06.005_br000100) 2006; 101 Peng (10.1016/j.jmva.2014.06.005_br000110) 2009; 104 Qian (10.1016/j.jmva.2014.06.005_br000125) 2010; 97 Lin (10.1016/j.jmva.2014.06.005_br000090) 1994; 81 Klein (10.1016/j.jmva.2014.06.005_br000065) 2005; 61 Li (10.1016/j.jmva.2014.06.005_br000080) 2011; 67 Jiang (10.1016/j.jmva.2014.06.005_br000055) 2003; 24 Shen (10.1016/j.jmva.2014.06.005_br000145) 2012; 18 Andersen (10.1016/j.jmva.2014.06.005_br000005) 1993 Prentice (10.1016/j.jmva.2014.06.005_br000120) 1978; 34 Oakes (10.1016/j.jmva.2014.06.005_br000095) 2008; 95 21557288 - Stat Med. 2011 Jul 20;30(16):1933-51 16011706 - Biometrics. 2005 Jun;61(2):567-75 21133883 - Biometrics. 2011 Sep;67(3):701-10 20377575 - Biometrics. 2011 Mar;67(1):39-49 15737097 - Biometrics. 2005 Mar;61(1):223-9 3803732 - Diabetes. 1987 Feb;36(2):205-9 12689735 - Control Clin Trials. 2003 Apr;24(2):135-46 373811 - Biometrics. 1978 Dec;34(4):541-54 12933558 - Biostatistics. 2001 Mar;2(1):85-97 21833853 - Lifetime Data Anal. 2012 Jan;18(1):1-18 |
References_xml | – volume: 80 start-page: 557 year: 1993 end-page: 572 ident: br000085 article-title: Checking the Cox model with cumulative sums of martingale-based residuals publication-title: Biometrika – volume: 95 start-page: 997 year: 2008 end-page: 1001 ident: br000095 article-title: On consistency of Kendall’s tau under censoring publication-title: Biometrika – volume: 22 start-page: 732 year: 1994 end-page: 746 ident: br000040 article-title: Monotone estimating equations for censored data publication-title: Ann. Statist. – volume: 13 start-page: 163 year: 1985 end-page: 177 ident: br000155 article-title: Estimating a distribution function with truncated data publication-title: Ann. Statist. – volume: 34 start-page: 541 year: 1978 end-page: 554 ident: br000120 article-title: The analysis of failure times in the presence of competing risks publication-title: Biometrics – volume: 97 start-page: 201 year: 2002 end-page: 209 ident: br000015 article-title: Length-biased sampling with right censoring publication-title: J. Amer. Statist. Assoc. – volume: 81 start-page: 61 year: 1994 end-page: 71 ident: br000090 article-title: Semiparametric analysis of the additive risk model publication-title: Biometrika – volume: 101 start-page: 1085 year: 2006 end-page: 1093 ident: br000100 article-title: Rank estimation of accelerated lifetime models with dependent censoring publication-title: J. Amer. Statist. Assoc. – volume: 90 start-page: 106 year: 1995 end-page: 121 ident: br000130 article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: J. Amer. Statist. Assoc. – volume: 95 start-page: 205 year: 2008 end-page: 220 ident: br000140 article-title: Predicting cumulative incidence probability by direct binomial regression publication-title: Biometrika – volume: 2 start-page: 85 year: 2001 end-page: 97 ident: br000025 article-title: Regression modeling of competing crude failure probabilities publication-title: Biostatistics – volume: 97 start-page: 839 year: 2010 end-page: 850 ident: br000125 article-title: Censored quantile regression with partially functional effects publication-title: Biometrika – volume: 104 start-page: 1440 year: 2009 end-page: 1453 ident: br000110 article-title: Competing risks quantile regression publication-title: J. Amer. Statist. Assoc. – year: 1993 ident: br000005 article-title: Statistical Models Based on Counting Processes – volume: 94 start-page: 719 year: 2007 end-page: 733 ident: br000115 article-title: Survival analysis with temporal covariate effects publication-title: Biometrika – volume: 88 start-page: 907 year: 2001 end-page: 919 ident: br000035 article-title: On semi-competing risks data publication-title: Biometrika – volume: 67 start-page: 701 year: 2011 end-page: 710 ident: br000080 article-title: Quantile regression for left-truncated semicompeting risks data publication-title: Biometrics – volume: 26 start-page: 1011 year: 1998 end-page: 1027 ident: br000050 article-title: Estimation of the truncation probability in the random truncation model publication-title: Ann. Statist. – volume: 18 start-page: 1 year: 2012 end-page: 18 ident: br000145 article-title: Regression analysis for cumulative incidence probability under competing risks and left-truncated sampling publication-title: Lifetime Data Anal. – volume: 24 start-page: 135 year: 2003 end-page: 146 ident: br000055 article-title: Estimating the distribution of nonterminal event time in the presence of mortality or informative dropout publication-title: Controlled Clin. Trials – volume: 34 start-page: 17 year: 2007 end-page: 32 ident: br000135 article-title: Direct modelling of regression effects for transition probabilities in multistate models publication-title: Scand. J. Statist. – year: 2008 ident: br000075 article-title: Introduction to Empirical Processes and Semiparametric Inference – volume: 94 start-page: 496 year: 1999 end-page: 497 ident: br000030 article-title: A proportional hazards model for the subdistribution of a competing risk publication-title: J. Amer. Statist. Assoc. – volume: 30 start-page: 1933 year: 2011 end-page: 1951 ident: br000160 article-title: A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data publication-title: Stat. Med. – volume: 36 start-page: 205 year: 1987 end-page: 209 ident: br000070 article-title: Declining incidence of persistent proteinuria in type I (insulin-dependent) diabetic patients in Denmark publication-title: Diabetes – volume: 36 start-page: 481 year: 2009 end-page: 500 ident: br000020 article-title: Marginal regression analysis for semi-competing risks data under dependent censoring publication-title: Scand. J. Statist. – volume: 94 start-page: 735 year: 2007 end-page: 744 ident: br000105 article-title: Nonparametric quantile inference with competing risks data publication-title: Biometrika – volume: 10 start-page: 1100 year: 1982 end-page: 1120 ident: br000010 article-title: Cox’s regression model for counting processes: a large sample study publication-title: Ann. Stat. – volume: 61 start-page: 223 year: 2005 end-page: 229 ident: br000065 article-title: Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function publication-title: Biometrics – volume: 61 start-page: 567 year: 2005 end-page: 575 ident: br000060 article-title: Semiparametric analysis of survival data with left truncation and dependent right censoring publication-title: Biometrics – volume: 67 start-page: 39 year: 2011 end-page: 49 ident: br000045 article-title: Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring publication-title: Biometrics – volume: 86 start-page: 130 year: 1991 end-page: 143 ident: br000150 article-title: Nonparametric estimation from cross-sectional survival data publication-title: J. Amer. Statist. Assoc. – volume: 34 start-page: 17 year: 2007 ident: 10.1016/j.jmva.2014.06.005_br000135 article-title: Direct modelling of regression effects for transition probabilities in multistate models publication-title: Scand. J. Statist. doi: 10.1111/j.1467-9469.2006.00544.x – volume: 61 start-page: 567 year: 2005 ident: 10.1016/j.jmva.2014.06.005_br000060 article-title: Semiparametric analysis of survival data with left truncation and dependent right censoring publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00335.x – volume: 95 start-page: 205 year: 2008 ident: 10.1016/j.jmva.2014.06.005_br000140 article-title: Predicting cumulative incidence probability by direct binomial regression publication-title: Biometrika doi: 10.1093/biomet/asm096 – volume: 24 start-page: 135 year: 2003 ident: 10.1016/j.jmva.2014.06.005_br000055 article-title: Estimating the distribution of nonterminal event time in the presence of mortality or informative dropout publication-title: Controlled Clin. Trials doi: 10.1016/S0197-2456(02)00307-0 – volume: 18 start-page: 1 year: 2012 ident: 10.1016/j.jmva.2014.06.005_br000145 article-title: Regression analysis for cumulative incidence probability under competing risks and left-truncated sampling publication-title: Lifetime Data Anal. doi: 10.1007/s10985-011-9201-5 – volume: 10 start-page: 1100 issue: 4 year: 1982 ident: 10.1016/j.jmva.2014.06.005_br000010 article-title: Cox’s regression model for counting processes: a large sample study publication-title: Ann. Stat. doi: 10.1214/aos/1176345976 – volume: 67 start-page: 39 year: 2011 ident: 10.1016/j.jmva.2014.06.005_br000045 article-title: Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01420.x – volume: 97 start-page: 839 year: 2010 ident: 10.1016/j.jmva.2014.06.005_br000125 article-title: Censored quantile regression with partially functional effects publication-title: Biometrika doi: 10.1093/biomet/asq050 – volume: 13 start-page: 163 year: 1985 ident: 10.1016/j.jmva.2014.06.005_br000155 article-title: Estimating a distribution function with truncated data publication-title: Ann. Statist. doi: 10.1214/aos/1176346584 – year: 2008 ident: 10.1016/j.jmva.2014.06.005_br000075 – volume: 86 start-page: 130 year: 1991 ident: 10.1016/j.jmva.2014.06.005_br000150 article-title: Nonparametric estimation from cross-sectional survival data publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1991.10475011 – volume: 67 start-page: 701 year: 2011 ident: 10.1016/j.jmva.2014.06.005_br000080 article-title: Quantile regression for left-truncated semicompeting risks data publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01521.x – volume: 97 start-page: 201 year: 2002 ident: 10.1016/j.jmva.2014.06.005_br000015 article-title: Length-biased sampling with right censoring publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214502753479347 – volume: 61 start-page: 223 year: 2005 ident: 10.1016/j.jmva.2014.06.005_br000065 article-title: Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function publication-title: Biometrics doi: 10.1111/j.0006-341X.2005.031209.x – volume: 94 start-page: 735 year: 2007 ident: 10.1016/j.jmva.2014.06.005_br000105 article-title: Nonparametric quantile inference with competing risks data publication-title: Biometrika doi: 10.1093/biomet/asm059 – volume: 94 start-page: 496 year: 1999 ident: 10.1016/j.jmva.2014.06.005_br000030 article-title: A proportional hazards model for the subdistribution of a competing risk publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1999.10474144 – volume: 94 start-page: 719 year: 2007 ident: 10.1016/j.jmva.2014.06.005_br000115 article-title: Survival analysis with temporal covariate effects publication-title: Biometrika doi: 10.1093/biomet/asm058 – volume: 80 start-page: 557 year: 1993 ident: 10.1016/j.jmva.2014.06.005_br000085 article-title: Checking the Cox model with cumulative sums of martingale-based residuals publication-title: Biometrika doi: 10.1093/biomet/80.3.557 – volume: 104 start-page: 1440 year: 2009 ident: 10.1016/j.jmva.2014.06.005_br000110 article-title: Competing risks quantile regression publication-title: J. Amer. Statist. Assoc. doi: 10.1198/jasa.2009.tm08228 – volume: 88 start-page: 907 year: 2001 ident: 10.1016/j.jmva.2014.06.005_br000035 article-title: On semi-competing risks data publication-title: Biometrika doi: 10.1093/biomet/88.4.907 – volume: 36 start-page: 481 year: 2009 ident: 10.1016/j.jmva.2014.06.005_br000020 article-title: Marginal regression analysis for semi-competing risks data under dependent censoring publication-title: Scand. J. Statist. doi: 10.1111/j.1467-9469.2008.00635.x – volume: 81 start-page: 61 year: 1994 ident: 10.1016/j.jmva.2014.06.005_br000090 article-title: Semiparametric analysis of the additive risk model publication-title: Biometrika doi: 10.1093/biomet/81.1.61 – volume: 36 start-page: 205 year: 1987 ident: 10.1016/j.jmva.2014.06.005_br000070 article-title: Declining incidence of persistent proteinuria in type I (insulin-dependent) diabetic patients in Denmark publication-title: Diabetes doi: 10.2337/diab.36.2.205 – volume: 90 start-page: 106 year: 1995 ident: 10.1016/j.jmva.2014.06.005_br000130 article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1995.10476493 – volume: 95 start-page: 997 year: 2008 ident: 10.1016/j.jmva.2014.06.005_br000095 article-title: On consistency of Kendall’s tau under censoring publication-title: Biometrika doi: 10.1093/biomet/asn037 – volume: 2 start-page: 85 year: 2001 ident: 10.1016/j.jmva.2014.06.005_br000025 article-title: Regression modeling of competing crude failure probabilities publication-title: Biostatistics doi: 10.1093/biostatistics/2.1.85 – volume: 34 start-page: 541 year: 1978 ident: 10.1016/j.jmva.2014.06.005_br000120 article-title: The analysis of failure times in the presence of competing risks publication-title: Biometrics doi: 10.2307/2530374 – volume: 22 start-page: 732 year: 1994 ident: 10.1016/j.jmva.2014.06.005_br000040 article-title: Monotone estimating equations for censored data publication-title: Ann. Statist. doi: 10.1214/aos/1176325493 – volume: 101 start-page: 1085 year: 2006 ident: 10.1016/j.jmva.2014.06.005_br000100 article-title: Rank estimation of accelerated lifetime models with dependent censoring publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214506000000131 – volume: 30 start-page: 1933 year: 2011 ident: 10.1016/j.jmva.2014.06.005_br000160 article-title: A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data publication-title: Stat. Med. doi: 10.1002/sim.4264 – volume: 26 start-page: 1011 year: 1998 ident: 10.1016/j.jmva.2014.06.005_br000050 article-title: Estimation of the truncation probability in the random truncation model publication-title: Ann. Statist. doi: 10.1214/aos/1024691086 – year: 1993 ident: 10.1016/j.jmva.2014.06.005_br000005 – reference: 15737097 - Biometrics. 2005 Mar;61(1):223-9 – reference: 16011706 - Biometrics. 2005 Jun;61(2):567-75 – reference: 373811 - Biometrics. 1978 Dec;34(4):541-54 – reference: 21833853 - Lifetime Data Anal. 2012 Jan;18(1):1-18 – reference: 21557288 - Stat Med. 2011 Jul 20;30(16):1933-51 – reference: 12689735 - Control Clin Trials. 2003 Apr;24(2):135-46 – reference: 12933558 - Biostatistics. 2001 Mar;2(1):85-97 – reference: 20377575 - Biometrics. 2011 Mar;67(1):39-49 – reference: 3803732 - Diabetes. 1987 Feb;36(2):205-9 – reference: 21133883 - Biometrics. 2011 Sep;67(3):701-10 |
SSID | ssj0011574 |
Score | 2.0959957 |
Snippet | Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | Biomedical research Cumulative incidence Data analysis Hypothesis testing Left truncation Mathematical models Observational studies Probability distribution Registry data analysis Regression analysis Studies Time-varying coefficient |
Title | Varying coefficient subdistribution regression for left-truncated semi-competing risks data |
URI | https://dx.doi.org/10.1016/j.jmva.2014.06.005 https://www.ncbi.nlm.nih.gov/pubmed/25125711 https://www.proquest.com/docview/1560669920 https://www.proquest.com/docview/1826595799 https://pubmed.ncbi.nlm.nih.gov/PMC4128175 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wscEN8ESmUkbsjUSewkPpaKagtqTxRF4mDZiUO3arPVZpcjv52ZxIlYQD1wdGJbib_mjfzmDcBbrSuLbknOk9pJLrVLuXaN5Wi5itoKG9uaApzPzrP5hfxUqnIHjsdYGKJVhrN_ONP70zo8OQyjeXi7WFCMr8wRvJfoIgjK3rALe0mqMzWDvaPTz_Pz6TIhVkGMuRcl0GWInRloXlc3P0h-KJa9jCdlsfu3ffobf_5Jo_zNLp08hAcBULKj4ZsfwY5vH8P9s0mNtXsC377aFUUzsWrpe8UI7Il1G1eTaG7Id8VW_vtAiW0Z4lh27Zs1X682pBnra9b5mwWveoxNHREhvWPELn0KFycfvxzPeUiqwCtZpGuO_k1CfkUjHSKTRibOaoIdDl1htE2UBVQXQokKJzF3Hrdo4XNLmjqNq4rCpc9g1i5b_wJYlWdOpD6pRUY4wNu4KbJc1C4RqrZJGkE8DqWpguI4Jb64NiO17MrQ8BsaftPz61QE76Y2t4Pexp211ThDZmvVGDQId7bbH6fThD3bGYopzzKtExHBm-k17ja6QrGtX26wDnpjim42dQTPh9mfPpOQosrjOIJ8a11MFUjJe_tNu7jsFb0l3Wfm6uV__s4ruEelgWO4DzNcHf41YqW1O4Dd9z_jg7AjsHRafvgFpC0V6w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOiDcpBYzEDVnNw47jI1RUW-j21KJIHCw7cWCrNlttdvn9nUmciAXUA9f4Icev-Ub-5huA91pXFt0SxdPaCS60y7h2jeVouYraxjaxNQU4z0_z2bn4UspyBw7HWBiiVYa7f7jT-9s6fDkIs3lwvVhQjK9QCN5LdBFiyt5wB-4iGshJQP-4_DQ9JSQySDH3kgS6DJEzA8nr4uoXiQ8lohfxpBx2_7ZOf6PPP0mUv1mlo0fwMMBJ9nEY8WPY8e0TeDCftFi7p_D9m11RLBOrlr7Xi8CeWLdxNUnmhmxXbOV_DITYliGKZZe-WfP1akOKsb5mnb9a8KpH2NQR0dE7RtzSZ3B-9PnscMZDSgVeiSJbc_RuUvIqGuEQlzQidVYT6HDoCKNlohyguohlXOESKufxgBZeWVLUaVxVFC57DrvtsvUvgVUqd3Hm0zrOCQV4mzRFruLapbGsbZpFkIxTaaqgN05pLy7NSCy7MDT9hqbf9Ow6GcGHqc31oLZxa205rpDZ2jMGzcGt7fbH5TThxHaGIsrzXOs0juDdVIxnjR5QbOuXG6yDvpikd00dwYth9adhEk6UKkkiUFv7YqpAOt7bJe3iZ6_nLeg1U8m9__ydt3BvdjY_MSfHp19fwX0qGdiG-7CLO8W_RtS0dm_6U3EDl9sVvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Varying+coefficient+subdistribution+regression+for+left-truncated+semi-competing+risks+data&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Li%2C+Ruosha&rft.au=Peng%2C+Limin&rft.date=2014-10-01&rft.pub=Elsevier+Inc&rft.issn=0047-259X&rft.eissn=1095-7243&rft.volume=131&rft.spage=65&rft.epage=78&rft_id=info:doi/10.1016%2Fj.jmva.2014.06.005&rft.externalDocID=S0047259X14001353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon |