Varying coefficient subdistribution regression for left-truncated semi-competing risks data

Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be fur...

Full description

Saved in:
Bibliographic Details
Published inJournal of multivariate analysis Vol. 131; pp. 65 - 78
Main Authors Li, Ruosha, Peng, Limin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2014
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0047-259X
1095-7243
DOI10.1016/j.jmva.2014.06.005

Cover

Loading…
Abstract Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying coefficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov–Smirnov type and Cramér–Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.
AbstractList Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.
Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying coefficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramer-Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.
Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying coefficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov–Smirnov type and Cramér–Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.
Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.
Author Peng, Limin
Li, Ruosha
AuthorAffiliation 1 Department of Biostatistics, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, U.S.A
2 Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road NE., Atlanta, GA 30322, U.S.A. 1- 727-7701
AuthorAffiliation_xml – name: 1 Department of Biostatistics, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, U.S.A
– name: 2 Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road NE., Atlanta, GA 30322, U.S.A. 1- 727-7701
Author_xml – sequence: 1
  givenname: Ruosha
  surname: Li
  fullname: Li, Ruosha
  organization: Department of Biostatistics, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, USA
– sequence: 2
  givenname: Limin
  surname: Peng
  fullname: Peng, Limin
  email: lpeng@sph.emory.edu
  organization: Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road NE., Atlanta, GA 30322, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25125711$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2L1TAUxYOMOG9G_wEXUnDjpjVJmy8QQQa_YMCNiuAiJOntM7Vtnkn6wP_elDcjOotZ5ULOOZx7fxfobAkLIPSU4IZgwl-OzTgfTUMx6RrMG4zZA7QjWLFa0K49QzuMO1FTpr6do4uURowJYaJ7hM4pI5QJQnbo-1cTf_tlX7kAw-CdhyVXabW9Tzl6u2YflirCPkJK2ziEWE0w5DrHdXEmQ18lmH3twnyAvAVFn36mqjfZPEYPBzMleHLzXqIv795-vvpQX396__HqzXXtOtnmWilOcWk0dFa1YuioNQpz3lopZUcV56JVEjPslDPCAmuJBGEE4WqwTkrbXqLXp9zDamfoXVkhmkkfop_LcjoYr___WfwPvQ9H3REqiWAl4MVNQAy_VkhZzz45mCazQFiTJpJypphQqkif35GOYY1LWU8TxkttpSguqmf_Nvpb5fbuRSBPAhdDShEG7Xw227FLQT9pgvWGWI96Q6w3xBpzXRAXK71jvU2_1_TqZILC4egh6rShdtD7CC7rPvj77H8ACwjAwA
CODEN JMVAAI
CitedBy_id crossref_primary_10_1002_sim_7222
crossref_primary_10_1111_biom_12847
crossref_primary_10_1007_s10985_023_09597_5
crossref_primary_10_1002_sim_8590
crossref_primary_10_1080_01621459_2024_2427431
crossref_primary_10_1007_s10985_022_09571_7
Cites_doi 10.1111/j.1467-9469.2006.00544.x
10.1111/j.1541-0420.2005.00335.x
10.1093/biomet/asm096
10.1016/S0197-2456(02)00307-0
10.1007/s10985-011-9201-5
10.1214/aos/1176345976
10.1111/j.1541-0420.2010.01420.x
10.1093/biomet/asq050
10.1214/aos/1176346584
10.1080/01621459.1991.10475011
10.1111/j.1541-0420.2010.01521.x
10.1198/016214502753479347
10.1111/j.0006-341X.2005.031209.x
10.1093/biomet/asm059
10.1080/01621459.1999.10474144
10.1093/biomet/asm058
10.1093/biomet/80.3.557
10.1198/jasa.2009.tm08228
10.1093/biomet/88.4.907
10.1111/j.1467-9469.2008.00635.x
10.1093/biomet/81.1.61
10.2337/diab.36.2.205
10.1080/01621459.1995.10476493
10.1093/biomet/asn037
10.1093/biostatistics/2.1.85
10.2307/2530374
10.1214/aos/1176325493
10.1198/016214506000000131
10.1002/sim.4264
10.1214/aos/1024691086
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright Taylor & Francis Group Oct 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright Taylor & Francis Group Oct 2014
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1016/j.jmva.2014.06.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Computer Science Collection


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7243
EndPage 78
ExternalDocumentID PMC4128175
3425621041
25125711
10_1016_j_jmva_2014_06_005
S0047259X14001353
Genre Journal Article
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL113548
– fundername: NCATS NIH HHS
  grantid: UL1 TR000005
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEFU
ABFNM
ABIVO
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UHS
WUQ
XFK
XOL
XPP
YHZ
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c483t-99620251f4b937f42ba90663b888429667398050c9ca7be5318e7a7169fbc88b3
IEDL.DBID AIKHN
ISSN 0047-259X
IngestDate Thu Aug 21 13:55:06 EDT 2025
Thu Sep 04 21:31:24 EDT 2025
Wed Aug 13 04:32:28 EDT 2025
Mon Jul 21 05:23:38 EDT 2025
Tue Jul 01 01:21:47 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Fri Feb 23 02:27:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cumulative incidence
Left truncation
Hypothesis testing
62N01
62P10
62N02
Time-varying coefficient
Registry data analysis
Observational studies
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-99620251f4b937f42ba90663b888429667398050c9ca7be5318e7a7169fbc88b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0047259X14001353
PMID 25125711
PQID 1560669920
PQPubID 27957
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4128175
proquest_miscellaneous_1826595799
proquest_journals_1560669920
pubmed_primary_25125711
crossref_citationtrail_10_1016_j_jmva_2014_06_005
crossref_primary_10_1016_j_jmva_2014_06_005
elsevier_sciencedirect_doi_10_1016_j_jmva_2014_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of multivariate analysis
PublicationTitleAlternate J Multivar Anal
PublicationYear 2014
Publisher Elsevier Inc
Taylor & Francis LLC
Publisher_xml – name: Elsevier Inc
– name: Taylor & Francis LLC
References Scheike, Zhang, Gerds (br000140) 2008; 95
Prentice, Kalbfleisch, Peterson, Flournoy, Farewell, Breslow (br000120) 1978; 34
Klein, Andersen (br000065) 2005; 61
Scheike, Zhang (br000135) 2007; 34
Andersen, Borgan, Gill, Keiding (br000005) 1993
Ding, Shi, Wang, Hsieh (br000020) 2009; 36
Woodroofe (br000155) 1985; 13
Wang (br000150) 1991; 86
He, Yang (br000050) 1998; 26
Jiang, Chappell, Fine (br000055) 2003; 24
Lin, Wei, Ying (br000085) 1993; 80
Asgharian, M’Lan, Wolfson (br000015) 2002; 97
Jiang, Fine, Chappell (br000060) 2005; 61
Qian, Peng (br000125) 2010; 97
Shen (br000145) 2012; 18
Peng, Huang (br000115) 2007; 94
Zhang, Zhang, Fine (br000160) 2011; 30
Andersen, Gill (br000010) 1982; 10
Fine, Gray (br000030) 1999; 94
Fine (br000025) 2001; 2
Peng, Fine (br000110) 2009; 104
Peng, Fine (br000100) 2006; 101
Geskus (br000045) 2011; 67
Kosorok (br000075) 2008
Lin, Ying (br000090) 1994; 81
Li, Peng (br000080) 2011; 67
Robins, Rotnitzky, Zhao (br000130) 1995; 90
Kofoed-Enevoldsen, Borch-Johnsen, Kreiner, Nerup, Deckert (br000070) 1987; 36
Fine, Jiang, Chappell (br000035) 2001; 88
Oakes (br000095) 2008; 95
Peng, Fine (br000105) 2007; 94
Fygenson, Ritov (br000040) 1994; 22
He (10.1016/j.jmva.2014.06.005_br000050) 1998; 26
Wang (10.1016/j.jmva.2014.06.005_br000150) 1991; 86
Fine (10.1016/j.jmva.2014.06.005_br000030) 1999; 94
Fygenson (10.1016/j.jmva.2014.06.005_br000040) 1994; 22
Fine (10.1016/j.jmva.2014.06.005_br000035) 2001; 88
Kofoed-Enevoldsen (10.1016/j.jmva.2014.06.005_br000070) 1987; 36
Robins (10.1016/j.jmva.2014.06.005_br000130) 1995; 90
Kosorok (10.1016/j.jmva.2014.06.005_br000075) 2008
Scheike (10.1016/j.jmva.2014.06.005_br000135) 2007; 34
Jiang (10.1016/j.jmva.2014.06.005_br000060) 2005; 61
Peng (10.1016/j.jmva.2014.06.005_br000105) 2007; 94
Lin (10.1016/j.jmva.2014.06.005_br000085) 1993; 80
Scheike (10.1016/j.jmva.2014.06.005_br000140) 2008; 95
Asgharian (10.1016/j.jmva.2014.06.005_br000015) 2002; 97
Zhang (10.1016/j.jmva.2014.06.005_br000160) 2011; 30
Geskus (10.1016/j.jmva.2014.06.005_br000045) 2011; 67
Andersen (10.1016/j.jmva.2014.06.005_br000010) 1982; 10
Fine (10.1016/j.jmva.2014.06.005_br000025) 2001; 2
Woodroofe (10.1016/j.jmva.2014.06.005_br000155) 1985; 13
Peng (10.1016/j.jmva.2014.06.005_br000115) 2007; 94
Ding (10.1016/j.jmva.2014.06.005_br000020) 2009; 36
Peng (10.1016/j.jmva.2014.06.005_br000100) 2006; 101
Peng (10.1016/j.jmva.2014.06.005_br000110) 2009; 104
Qian (10.1016/j.jmva.2014.06.005_br000125) 2010; 97
Lin (10.1016/j.jmva.2014.06.005_br000090) 1994; 81
Klein (10.1016/j.jmva.2014.06.005_br000065) 2005; 61
Li (10.1016/j.jmva.2014.06.005_br000080) 2011; 67
Jiang (10.1016/j.jmva.2014.06.005_br000055) 2003; 24
Shen (10.1016/j.jmva.2014.06.005_br000145) 2012; 18
Andersen (10.1016/j.jmva.2014.06.005_br000005) 1993
Prentice (10.1016/j.jmva.2014.06.005_br000120) 1978; 34
Oakes (10.1016/j.jmva.2014.06.005_br000095) 2008; 95
21557288 - Stat Med. 2011 Jul 20;30(16):1933-51
16011706 - Biometrics. 2005 Jun;61(2):567-75
21133883 - Biometrics. 2011 Sep;67(3):701-10
20377575 - Biometrics. 2011 Mar;67(1):39-49
15737097 - Biometrics. 2005 Mar;61(1):223-9
3803732 - Diabetes. 1987 Feb;36(2):205-9
12689735 - Control Clin Trials. 2003 Apr;24(2):135-46
373811 - Biometrics. 1978 Dec;34(4):541-54
12933558 - Biostatistics. 2001 Mar;2(1):85-97
21833853 - Lifetime Data Anal. 2012 Jan;18(1):1-18
References_xml – volume: 80
  start-page: 557
  year: 1993
  end-page: 572
  ident: br000085
  article-title: Checking the Cox model with cumulative sums of martingale-based residuals
  publication-title: Biometrika
– volume: 95
  start-page: 997
  year: 2008
  end-page: 1001
  ident: br000095
  article-title: On consistency of Kendall’s tau under censoring
  publication-title: Biometrika
– volume: 22
  start-page: 732
  year: 1994
  end-page: 746
  ident: br000040
  article-title: Monotone estimating equations for censored data
  publication-title: Ann. Statist.
– volume: 13
  start-page: 163
  year: 1985
  end-page: 177
  ident: br000155
  article-title: Estimating a distribution function with truncated data
  publication-title: Ann. Statist.
– volume: 34
  start-page: 541
  year: 1978
  end-page: 554
  ident: br000120
  article-title: The analysis of failure times in the presence of competing risks
  publication-title: Biometrics
– volume: 97
  start-page: 201
  year: 2002
  end-page: 209
  ident: br000015
  article-title: Length-biased sampling with right censoring
  publication-title: J. Amer. Statist. Assoc.
– volume: 81
  start-page: 61
  year: 1994
  end-page: 71
  ident: br000090
  article-title: Semiparametric analysis of the additive risk model
  publication-title: Biometrika
– volume: 101
  start-page: 1085
  year: 2006
  end-page: 1093
  ident: br000100
  article-title: Rank estimation of accelerated lifetime models with dependent censoring
  publication-title: J. Amer. Statist. Assoc.
– volume: 90
  start-page: 106
  year: 1995
  end-page: 121
  ident: br000130
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: J. Amer. Statist. Assoc.
– volume: 95
  start-page: 205
  year: 2008
  end-page: 220
  ident: br000140
  article-title: Predicting cumulative incidence probability by direct binomial regression
  publication-title: Biometrika
– volume: 2
  start-page: 85
  year: 2001
  end-page: 97
  ident: br000025
  article-title: Regression modeling of competing crude failure probabilities
  publication-title: Biostatistics
– volume: 97
  start-page: 839
  year: 2010
  end-page: 850
  ident: br000125
  article-title: Censored quantile regression with partially functional effects
  publication-title: Biometrika
– volume: 104
  start-page: 1440
  year: 2009
  end-page: 1453
  ident: br000110
  article-title: Competing risks quantile regression
  publication-title: J. Amer. Statist. Assoc.
– year: 1993
  ident: br000005
  article-title: Statistical Models Based on Counting Processes
– volume: 94
  start-page: 719
  year: 2007
  end-page: 733
  ident: br000115
  article-title: Survival analysis with temporal covariate effects
  publication-title: Biometrika
– volume: 88
  start-page: 907
  year: 2001
  end-page: 919
  ident: br000035
  article-title: On semi-competing risks data
  publication-title: Biometrika
– volume: 67
  start-page: 701
  year: 2011
  end-page: 710
  ident: br000080
  article-title: Quantile regression for left-truncated semicompeting risks data
  publication-title: Biometrics
– volume: 26
  start-page: 1011
  year: 1998
  end-page: 1027
  ident: br000050
  article-title: Estimation of the truncation probability in the random truncation model
  publication-title: Ann. Statist.
– volume: 18
  start-page: 1
  year: 2012
  end-page: 18
  ident: br000145
  article-title: Regression analysis for cumulative incidence probability under competing risks and left-truncated sampling
  publication-title: Lifetime Data Anal.
– volume: 24
  start-page: 135
  year: 2003
  end-page: 146
  ident: br000055
  article-title: Estimating the distribution of nonterminal event time in the presence of mortality or informative dropout
  publication-title: Controlled Clin. Trials
– volume: 34
  start-page: 17
  year: 2007
  end-page: 32
  ident: br000135
  article-title: Direct modelling of regression effects for transition probabilities in multistate models
  publication-title: Scand. J. Statist.
– year: 2008
  ident: br000075
  article-title: Introduction to Empirical Processes and Semiparametric Inference
– volume: 94
  start-page: 496
  year: 1999
  end-page: 497
  ident: br000030
  article-title: A proportional hazards model for the subdistribution of a competing risk
  publication-title: J. Amer. Statist. Assoc.
– volume: 30
  start-page: 1933
  year: 2011
  end-page: 1951
  ident: br000160
  article-title: A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data
  publication-title: Stat. Med.
– volume: 36
  start-page: 205
  year: 1987
  end-page: 209
  ident: br000070
  article-title: Declining incidence of persistent proteinuria in type I (insulin-dependent) diabetic patients in Denmark
  publication-title: Diabetes
– volume: 36
  start-page: 481
  year: 2009
  end-page: 500
  ident: br000020
  article-title: Marginal regression analysis for semi-competing risks data under dependent censoring
  publication-title: Scand. J. Statist.
– volume: 94
  start-page: 735
  year: 2007
  end-page: 744
  ident: br000105
  article-title: Nonparametric quantile inference with competing risks data
  publication-title: Biometrika
– volume: 10
  start-page: 1100
  year: 1982
  end-page: 1120
  ident: br000010
  article-title: Cox’s regression model for counting processes: a large sample study
  publication-title: Ann. Stat.
– volume: 61
  start-page: 223
  year: 2005
  end-page: 229
  ident: br000065
  article-title: Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function
  publication-title: Biometrics
– volume: 61
  start-page: 567
  year: 2005
  end-page: 575
  ident: br000060
  article-title: Semiparametric analysis of survival data with left truncation and dependent right censoring
  publication-title: Biometrics
– volume: 67
  start-page: 39
  year: 2011
  end-page: 49
  ident: br000045
  article-title: Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring
  publication-title: Biometrics
– volume: 86
  start-page: 130
  year: 1991
  end-page: 143
  ident: br000150
  article-title: Nonparametric estimation from cross-sectional survival data
  publication-title: J. Amer. Statist. Assoc.
– volume: 34
  start-page: 17
  year: 2007
  ident: 10.1016/j.jmva.2014.06.005_br000135
  article-title: Direct modelling of regression effects for transition probabilities in multistate models
  publication-title: Scand. J. Statist.
  doi: 10.1111/j.1467-9469.2006.00544.x
– volume: 61
  start-page: 567
  year: 2005
  ident: 10.1016/j.jmva.2014.06.005_br000060
  article-title: Semiparametric analysis of survival data with left truncation and dependent right censoring
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00335.x
– volume: 95
  start-page: 205
  year: 2008
  ident: 10.1016/j.jmva.2014.06.005_br000140
  article-title: Predicting cumulative incidence probability by direct binomial regression
  publication-title: Biometrika
  doi: 10.1093/biomet/asm096
– volume: 24
  start-page: 135
  year: 2003
  ident: 10.1016/j.jmva.2014.06.005_br000055
  article-title: Estimating the distribution of nonterminal event time in the presence of mortality or informative dropout
  publication-title: Controlled Clin. Trials
  doi: 10.1016/S0197-2456(02)00307-0
– volume: 18
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmva.2014.06.005_br000145
  article-title: Regression analysis for cumulative incidence probability under competing risks and left-truncated sampling
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-011-9201-5
– volume: 10
  start-page: 1100
  issue: 4
  year: 1982
  ident: 10.1016/j.jmva.2014.06.005_br000010
  article-title: Cox’s regression model for counting processes: a large sample study
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176345976
– volume: 67
  start-page: 39
  year: 2011
  ident: 10.1016/j.jmva.2014.06.005_br000045
  article-title: Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01420.x
– volume: 97
  start-page: 839
  year: 2010
  ident: 10.1016/j.jmva.2014.06.005_br000125
  article-title: Censored quantile regression with partially functional effects
  publication-title: Biometrika
  doi: 10.1093/biomet/asq050
– volume: 13
  start-page: 163
  year: 1985
  ident: 10.1016/j.jmva.2014.06.005_br000155
  article-title: Estimating a distribution function with truncated data
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176346584
– year: 2008
  ident: 10.1016/j.jmva.2014.06.005_br000075
– volume: 86
  start-page: 130
  year: 1991
  ident: 10.1016/j.jmva.2014.06.005_br000150
  article-title: Nonparametric estimation from cross-sectional survival data
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1991.10475011
– volume: 67
  start-page: 701
  year: 2011
  ident: 10.1016/j.jmva.2014.06.005_br000080
  article-title: Quantile regression for left-truncated semicompeting risks data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01521.x
– volume: 97
  start-page: 201
  year: 2002
  ident: 10.1016/j.jmva.2014.06.005_br000015
  article-title: Length-biased sampling with right censoring
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214502753479347
– volume: 61
  start-page: 223
  year: 2005
  ident: 10.1016/j.jmva.2014.06.005_br000065
  article-title: Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2005.031209.x
– volume: 94
  start-page: 735
  year: 2007
  ident: 10.1016/j.jmva.2014.06.005_br000105
  article-title: Nonparametric quantile inference with competing risks data
  publication-title: Biometrika
  doi: 10.1093/biomet/asm059
– volume: 94
  start-page: 496
  year: 1999
  ident: 10.1016/j.jmva.2014.06.005_br000030
  article-title: A proportional hazards model for the subdistribution of a competing risk
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1999.10474144
– volume: 94
  start-page: 719
  year: 2007
  ident: 10.1016/j.jmva.2014.06.005_br000115
  article-title: Survival analysis with temporal covariate effects
  publication-title: Biometrika
  doi: 10.1093/biomet/asm058
– volume: 80
  start-page: 557
  year: 1993
  ident: 10.1016/j.jmva.2014.06.005_br000085
  article-title: Checking the Cox model with cumulative sums of martingale-based residuals
  publication-title: Biometrika
  doi: 10.1093/biomet/80.3.557
– volume: 104
  start-page: 1440
  year: 2009
  ident: 10.1016/j.jmva.2014.06.005_br000110
  article-title: Competing risks quantile regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/jasa.2009.tm08228
– volume: 88
  start-page: 907
  year: 2001
  ident: 10.1016/j.jmva.2014.06.005_br000035
  article-title: On semi-competing risks data
  publication-title: Biometrika
  doi: 10.1093/biomet/88.4.907
– volume: 36
  start-page: 481
  year: 2009
  ident: 10.1016/j.jmva.2014.06.005_br000020
  article-title: Marginal regression analysis for semi-competing risks data under dependent censoring
  publication-title: Scand. J. Statist.
  doi: 10.1111/j.1467-9469.2008.00635.x
– volume: 81
  start-page: 61
  year: 1994
  ident: 10.1016/j.jmva.2014.06.005_br000090
  article-title: Semiparametric analysis of the additive risk model
  publication-title: Biometrika
  doi: 10.1093/biomet/81.1.61
– volume: 36
  start-page: 205
  year: 1987
  ident: 10.1016/j.jmva.2014.06.005_br000070
  article-title: Declining incidence of persistent proteinuria in type I (insulin-dependent) diabetic patients in Denmark
  publication-title: Diabetes
  doi: 10.2337/diab.36.2.205
– volume: 90
  start-page: 106
  year: 1995
  ident: 10.1016/j.jmva.2014.06.005_br000130
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1995.10476493
– volume: 95
  start-page: 997
  year: 2008
  ident: 10.1016/j.jmva.2014.06.005_br000095
  article-title: On consistency of Kendall’s tau under censoring
  publication-title: Biometrika
  doi: 10.1093/biomet/asn037
– volume: 2
  start-page: 85
  year: 2001
  ident: 10.1016/j.jmva.2014.06.005_br000025
  article-title: Regression modeling of competing crude failure probabilities
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/2.1.85
– volume: 34
  start-page: 541
  year: 1978
  ident: 10.1016/j.jmva.2014.06.005_br000120
  article-title: The analysis of failure times in the presence of competing risks
  publication-title: Biometrics
  doi: 10.2307/2530374
– volume: 22
  start-page: 732
  year: 1994
  ident: 10.1016/j.jmva.2014.06.005_br000040
  article-title: Monotone estimating equations for censored data
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176325493
– volume: 101
  start-page: 1085
  year: 2006
  ident: 10.1016/j.jmva.2014.06.005_br000100
  article-title: Rank estimation of accelerated lifetime models with dependent censoring
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214506000000131
– volume: 30
  start-page: 1933
  year: 2011
  ident: 10.1016/j.jmva.2014.06.005_br000160
  article-title: A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data
  publication-title: Stat. Med.
  doi: 10.1002/sim.4264
– volume: 26
  start-page: 1011
  year: 1998
  ident: 10.1016/j.jmva.2014.06.005_br000050
  article-title: Estimation of the truncation probability in the random truncation model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1024691086
– year: 1993
  ident: 10.1016/j.jmva.2014.06.005_br000005
– reference: 15737097 - Biometrics. 2005 Mar;61(1):223-9
– reference: 16011706 - Biometrics. 2005 Jun;61(2):567-75
– reference: 373811 - Biometrics. 1978 Dec;34(4):541-54
– reference: 21833853 - Lifetime Data Anal. 2012 Jan;18(1):1-18
– reference: 21557288 - Stat Med. 2011 Jul 20;30(16):1933-51
– reference: 12689735 - Control Clin Trials. 2003 Apr;24(2):135-46
– reference: 12933558 - Biostatistics. 2001 Mar;2(1):85-97
– reference: 20377575 - Biometrics. 2011 Mar;67(1):39-49
– reference: 3803732 - Diabetes. 1987 Feb;36(2):205-9
– reference: 21133883 - Biometrics. 2011 Sep;67(3):701-10
SSID ssj0011574
Score 2.0959957
Snippet Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms Biomedical research
Cumulative incidence
Data analysis
Hypothesis testing
Left truncation
Mathematical models
Observational studies
Probability distribution
Registry data analysis
Regression analysis
Studies
Time-varying coefficient
Title Varying coefficient subdistribution regression for left-truncated semi-competing risks data
URI https://dx.doi.org/10.1016/j.jmva.2014.06.005
https://www.ncbi.nlm.nih.gov/pubmed/25125711
https://www.proquest.com/docview/1560669920
https://www.proquest.com/docview/1826595799
https://pubmed.ncbi.nlm.nih.gov/PMC4128175
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wscEN8ESmUkbsjUSewkPpaKagtqTxRF4mDZiUO3arPVZpcjv52ZxIlYQD1wdGJbib_mjfzmDcBbrSuLbknOk9pJLrVLuXaN5Wi5itoKG9uaApzPzrP5hfxUqnIHjsdYGKJVhrN_ONP70zo8OQyjeXi7WFCMr8wRvJfoIgjK3rALe0mqMzWDvaPTz_Pz6TIhVkGMuRcl0GWInRloXlc3P0h-KJa9jCdlsfu3ffobf_5Jo_zNLp08hAcBULKj4ZsfwY5vH8P9s0mNtXsC377aFUUzsWrpe8UI7Il1G1eTaG7Id8VW_vtAiW0Z4lh27Zs1X682pBnra9b5mwWveoxNHREhvWPELn0KFycfvxzPeUiqwCtZpGuO_k1CfkUjHSKTRibOaoIdDl1htE2UBVQXQokKJzF3Hrdo4XNLmjqNq4rCpc9g1i5b_wJYlWdOpD6pRUY4wNu4KbJc1C4RqrZJGkE8DqWpguI4Jb64NiO17MrQ8BsaftPz61QE76Y2t4Pexp211ThDZmvVGDQId7bbH6fThD3bGYopzzKtExHBm-k17ja6QrGtX26wDnpjim42dQTPh9mfPpOQosrjOIJ8a11MFUjJe_tNu7jsFb0l3Wfm6uV__s4ruEelgWO4DzNcHf41YqW1O4Dd9z_jg7AjsHRafvgFpC0V6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOiDcpBYzEDVnNw47jI1RUW-j21KJIHCw7cWCrNlttdvn9nUmciAXUA9f4Icev-Ub-5huA91pXFt0SxdPaCS60y7h2jeVouYraxjaxNQU4z0_z2bn4UspyBw7HWBiiVYa7f7jT-9s6fDkIs3lwvVhQjK9QCN5LdBFiyt5wB-4iGshJQP-4_DQ9JSQySDH3kgS6DJEzA8nr4uoXiQ8lohfxpBx2_7ZOf6PPP0mUv1mlo0fwMMBJ9nEY8WPY8e0TeDCftFi7p_D9m11RLBOrlr7Xi8CeWLdxNUnmhmxXbOV_DITYliGKZZe-WfP1akOKsb5mnb9a8KpH2NQR0dE7RtzSZ3B-9PnscMZDSgVeiSJbc_RuUvIqGuEQlzQidVYT6HDoCKNlohyguohlXOESKufxgBZeWVLUaVxVFC57DrvtsvUvgVUqd3Hm0zrOCQV4mzRFruLapbGsbZpFkIxTaaqgN05pLy7NSCy7MDT9hqbf9Ow6GcGHqc31oLZxa205rpDZ2jMGzcGt7fbH5TThxHaGIsrzXOs0juDdVIxnjR5QbOuXG6yDvpikd00dwYth9adhEk6UKkkiUFv7YqpAOt7bJe3iZ6_nLeg1U8m9__ydt3BvdjY_MSfHp19fwX0qGdiG-7CLO8W_RtS0dm_6U3EDl9sVvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Varying+coefficient+subdistribution+regression+for+left-truncated+semi-competing+risks+data&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Li%2C+Ruosha&rft.au=Peng%2C+Limin&rft.date=2014-10-01&rft.pub=Elsevier+Inc&rft.issn=0047-259X&rft.eissn=1095-7243&rft.volume=131&rft.spage=65&rft.epage=78&rft_id=info:doi/10.1016%2Fj.jmva.2014.06.005&rft.externalDocID=S0047259X14001353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon