A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites
Lithium–sulfur batteries are attractive alternatives to lithium-ion batteries because of their high theoretical specific energy and natural abundance of sulfur. However, the practical specific energy and cycle life of Li–S pouch cells are significantly limited by the use of thin sulfur electrodes, f...
Saved in:
Published in | Nature nanotechnology Vol. 16; no. 2; pp. 166 - 173 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Be the first to leave a comment!