A new sequential homogeneous pixel selection algorithm for distributed scatterer InSAR
Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a crucial step in the use of DS InSAR, directly affecting the estimation precision and reliability of subsequent parameter calculations. The exi...
Saved in:
Published in | GIScience and remote sensing Vol. 60; no. 1 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
31.12.2023
Informa UK Limited Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a crucial step in the use of DS InSAR, directly affecting the estimation precision and reliability of subsequent parameter calculations. The existing algorithms for selecting homogeneous pixels have inherent limitations, such as requiring many heterogeneous samples and strict requirements surrounding the required number of synthetic aperture radar (SAR) images. To address these problems, a new sequential selection algorithm for homogeneous pixels is proposed, based on the Baumgartner - Weiss-Schindler (BWS) test algorithm and dynamic interval estimation (DIE) theory. According to Monte Carlo simulation experiments, the average standard deviation (STD) of the mean of the rejection of the BWS-DIE algorithm under six sample conditions is 0.014. Compared with three existing algorithms, including the Kolmogorov‒Smirnov (KS), BWS and fast statistically homogeneous pixel selection (FaSHPS) algorithms, the BWS-DIE algorithm improves homogeneous pixel selection precision by 64.3%, 69.4% and 25.3%, respectively. In the real data experiment, 12 scenes of Advanced Land Observing Satellite-1 Phased Array type L-band Synthetic Aperture Radar (ALOS-1 PALSAR) data from February 2007 to March 2011 were used and the BWS-DIE multitemporal InSAR (MT InSAR) method based on the BWS-DIE algorithm was applied to surface subsidence monitoring in the western mining area of Xuzhou, Jiangsu Province, China. The experimental results show that, compared with the Stanford Method for Persistent Scatterers (StaMPS), the BWS-DIE MT InSAR method improves the ability to monitor the maximum subsidence by 12.3%, increases the point density by 5.7 times and decreases the root mean square error (RMSE) by 50%. In addition, new surface deformation patterns are found in the spatial-temporal evolution. The above experimental results show that the proposed BWS-DIE algorithm exhibits remarkable advantages in selection power and selection precision and is not limited by the number of SAR images. The proposed algorithm can further broaden the application scenarios for DS InSAR and provide high-quality and reliable monitoring data for subsequent scientific research. |
---|---|
AbstractList | Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a crucial step in the use of DS InSAR, directly affecting the estimation precision and reliability of subsequent parameter calculations. The existing algorithms for selecting homogeneous pixels have inherent limitations, such as requiring many heterogeneous samples and strict requirements surrounding the required number of synthetic aperture radar (SAR) images. To address these problems, a new sequential selection algorithm for homogeneous pixels is proposed, based on the Baumgartner – Weiss–Schindler (BWS) test algorithm and dynamic interval estimation (DIE) theory. According to Monte Carlo simulation experiments, the average standard deviation (STD) of the mean of the rejection of the BWS-DIE algorithm under six sample conditions is 0.014. Compared with three existing algorithms, including the Kolmogorov‒Smirnov (KS), BWS and fast statistically homogeneous pixel selection (FaSHPS) algorithms, the BWS-DIE algorithm improves homogeneous pixel selection precision by 64.3%, 69.4% and 25.3%, respectively. In the real data experiment, 12 scenes of Advanced Land Observing Satellite-1 Phased Array type L-band Synthetic Aperture Radar (ALOS-1 PALSAR) data from February 2007 to March 2011 were used and the BWS-DIE multitemporal InSAR (MT InSAR) method based on the BWS-DIE algorithm was applied to surface subsidence monitoring in the western mining area of Xuzhou, Jiangsu Province, China. The experimental results show that, compared with the Stanford Method for Persistent Scatterers (StaMPS), the BWS-DIE MT InSAR method improves the ability to monitor the maximum subsidence by 12.3%, increases the point density by 5.7 times and decreases the root mean square error (RMSE) by 50%. In addition, new surface deformation patterns are found in the spatial-temporal evolution. The above experimental results show that the proposed BWS-DIE algorithm exhibits remarkable advantages in selection power and selection precision and is not limited by the number of SAR images. The proposed algorithm can further broaden the application scenarios for DS InSAR and provide high-quality and reliable monitoring data for subsequent scientific research. |
Author | Yu, Yang Chen, Bingqian Yu, Chen Li, Zhenhong Qin, Lu Yang, Yu Yu, Hao Yang, Jiale |
Author_xml | – sequence: 1 givenname: Bingqian surname: Chen fullname: Chen, Bingqian organization: Big Data Center for Geosciences and Satellites (BDCGS), Chang'an University – sequence: 2 givenname: Jiale surname: Yang fullname: Yang, Jiale organization: Jiangsu Normal University – sequence: 3 givenname: Zhenhong orcidid: 0000-0002-8054-7449 surname: Li fullname: Li, Zhenhong email: zhenhong.li@chd.edu.cn organization: Newcastle University – sequence: 4 givenname: Chen surname: Yu fullname: Yu, Chen organization: Big Data Center for Geosciences and Satellites (BDCGS), Chang'an University – sequence: 5 givenname: Yang surname: Yu fullname: Yu, Yang organization: Jiangsu Normal University – sequence: 6 givenname: Lu surname: Qin fullname: Qin, Lu organization: Jiangsu Normal University – sequence: 7 givenname: Yu surname: Yang fullname: Yang, Yu organization: Jiangsu Normal University – sequence: 8 givenname: Hao surname: Yu fullname: Yu, Hao organization: Jiangsu Normal University |
BackLink | https://www.osti.gov/biblio/1985576$$D View this record in Osti.gov |
BookMark | eNqFUU1r3DAUFCWF5qM_oWB66sWpZH3YppcuIW0XAoX04yqe5eddBVnaSlrS_PvKcXLpob1I4mlmmHlzRk588EjIG0YvGe3oeyZFxxTllw1tytGwrlHsBTllveB12zTqpLwLpl5Ar8hZSneUcsmYPCU_N5XH-yrhryP6bMFV-zCHHXoMx1Qd7G905dOhyTb4CtwuRJv3czWFWI025WiHY8axSgZyxoix2vpvm9sL8nICl_D1031Ofny6_n71pb75-nl7tbmpjeh4rjsF1LRiokIW26KnrZwYK6FMh30nAWBUjJnJiNY0fGglGJwMRRRccg6Un5PtqjsGuNOHaGeIDzqA1Y-DEHcaYrbGoVaC4whUoaK9YE3bdwNvxGC6YWiVMovW21UrpGx1Mjaj2ZvgfQmvWbEjW1VA71bQIYayspT1bJNB5-BxY5pTQXlfsrQF-mGFmhhSijjpIgnLHnME6zSjeqlPP9enl_r0U32FLf9iP6f7H-_jyrO-dDTDfYhu1BkeXIhTBG9sMflviT_V5bIH |
CitedBy_id | crossref_primary_10_3390_rs16244811 crossref_primary_10_1080_19475705_2024_2447543 crossref_primary_10_1109_TGRS_2025_3540718 crossref_primary_10_1109_TGRS_2024_3492505 crossref_primary_10_3390_rs17030379 crossref_primary_10_1016_j_jag_2025_104462 crossref_primary_10_1109_JSTARS_2023_3335293 crossref_primary_10_1109_LGRS_2024_3516354 crossref_primary_10_1016_j_jag_2024_104214 crossref_primary_10_1109_TGRS_2025_3548472 crossref_primary_10_3390_s25020583 |
Cites_doi | 10.1080/10485250902952435 10.5194/isprsarchives-XL-7-W1-173-2013 10.1109/36.898661 10.1109/TGRS.2015.2473818 10.1139/x78-062 10.3390/rs13132541 10.1109/TGRS.2020.3030003 10.1109/36.868878 10.1080/15481603.2022.2026639 10.1179/1752270614Y.0000000153 10.1201/9781420054989 10.1109/LGRS.2015.2430752 10.1029/2010GL044780 10.3390/rs11141673 10.1038/364138a0 10.1080/15481603.2017.1331511 10.3390/rs8080675 10.1016/j.rse.2020.111663 10.1080/15481603.2022.2100054 10.1038/375567a0 10.1080/03610918.2012.665546 10.1109/JSTARS.2018.2795012 10.1080/15481603.2023.2180026 10.1016/j.isprsjprs.2012.06.007 10.1109/TGRS.2014.2352853 10.1029/1999GL900108 10.3390/rs14030788 10.1016/j.jag.2021.102322 10.2307/2533862 10.1016/j.jhydrol.2018.02.067 10.1109/LGRS.2022.3209808 10.1111/j.2517-6161.1991.tb01849.x 10.1109/LGRS.2017.2701878 10.1109/TGRS.2002.803792 10.1029/2006JB004763 10.1038/369227a0 10.1126/science.262.5139.1525 10.1007/s10346-018-0954-8 10.1029/2019JB017908 10.1109/TGRS.2014.2336237 10.1016/j.rse.2012.10.015 10.1080/01621459.1974.10480196 10.5721/EuJRS20154839 10.1109/TGRS.2011.2124465 10.3390/rs10050744 10.1029/2004GL021737 10.1016/j.isprsjprs.2017.02.009 10.1093/bioinformatics/btg454 10.1179/1752270614Y.0000000126 10.1109/TGRS.2008.2001756 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 |
Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 |
DBID | 0YH AAYXX CITATION 7S9 L.6 OTOTI DOA |
DOI | 10.1080/15481603.2023.2218261 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
ExternalDocumentID | oai_doaj_org_article_643eda06e609412798b324bc8bb766c0 1985576 10_1080_15481603_2023_2218261 2218261 |
Genre | Research Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Natural Science Foundation of China – fundername: the China Postdoctoral Science Foundation grantid: 2019M663601 – fundername: Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People's Republic of China grantid: KLSMNR-202203 – fundername: Key Research and Development grantid: 2021TD-51 – fundername: the Fundamental Research Funds for the Central Universities, CHD grantid: 300102260301 and 300102261108 – fundername: the European Space Agency through the ESA-MOST DRAGON-5 project grantid: 59339 – fundername: Natural Science Foundation of China grantid: 41907240 |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 0R~ AAAVI ABJVF ABQHQ AEGYZ AFOLD AHDLD AIRXU FUNRP FVPDL OTOTI V1K |
ID | FETCH-LOGICAL-c483t-86a0c74f04522149075f11108c8e985aaad611cfc47c23b75acefc0ee43533a03 |
IEDL.DBID | DOA |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:19:31 EDT 2025 Mon Jan 01 02:32:13 EST 2024 Mon May 05 21:00:49 EDT 2025 Thu Apr 24 22:52:45 EDT 2025 Tue Jul 01 02:27:29 EDT 2025 Wed Dec 25 09:03:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-86a0c74f04522149075f11108c8e985aaad611cfc47c23b75acefc0ee43533a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research 2021TD-51; 300102260301 and 300102261108; 59339 |
ORCID | 0000-0002-8054-7449 0000000280547449 |
OpenAccessLink | https://doaj.org/article/643eda06e609412798b324bc8bb766c0 |
PQID | 3040392147 |
PQPubID | 24069 |
ParticipantIDs | osti_scitechconnect_1985576 informaworld_taylorfrancis_310_1080_15481603_2023_2218261 crossref_citationtrail_10_1080_15481603_2023_2218261 crossref_primary_10_1080_15481603_2023_2218261 proquest_miscellaneous_3040392147 doaj_primary_oai_doaj_org_article_643eda06e609412798b324bc8bb766c0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2023 |
Publisher | Taylor & Francis Informa UK Limited Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Informa UK Limited – name: Taylor & Francis Group |
References | e_1_3_3_52_1 e_1_3_3_50_1 Oliver C. (e_1_3_3_41_1) 2004 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_40_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_30_1 e_1_3_3_51_1 Jiang M. (e_1_3_3_28_1) 2016; 59 Jiang M. (e_1_3_3_29_1) 2018; 61 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_6_1 e_1_3_3_8_1 Ripley B. D. (e_1_3_3_43_1) 2009 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 |
References_xml | – ident: e_1_3_3_36_1 doi: 10.1080/10485250902952435 – ident: e_1_3_3_55_1 doi: 10.5194/isprsarchives-XL-7-W1-173-2013 – ident: e_1_3_3_21_1 doi: 10.1109/36.898661 – ident: e_1_3_3_7_1 doi: 10.1109/TGRS.2015.2473818 – ident: e_1_3_3_52_1 doi: 10.1139/x78-062 – ident: e_1_3_3_12_1 doi: 10.3390/rs13132541 – ident: e_1_3_3_42_1 doi: 10.1109/TGRS.2020.3030003 – ident: e_1_3_3_20_1 doi: 10.1109/36.868878 – ident: e_1_3_3_48_1 doi: 10.1080/15481603.2022.2026639 – ident: e_1_3_3_18_1 doi: 10.1179/1752270614Y.0000000153 – ident: e_1_3_3_34_1 doi: 10.1201/9781420054989 – ident: e_1_3_3_6_1 doi: 10.1109/LGRS.2015.2430752 – volume: 59 start-page: 3592 issue: 10 year: 2016 ident: e_1_3_3_28_1 article-title: FaSHPS-Insar Technique for Distributed Scatterers: A Case Study Over the Lost Hills Oil Field, California publication-title: Chinese Journal of Geophysics – ident: e_1_3_3_33_1 doi: 10.1029/2010GL044780 – ident: e_1_3_3_50_1 doi: 10.3390/rs11141673 – ident: e_1_3_3_40_1 doi: 10.1038/364138a0 – volume-title: Understanding Synthetic Aperture Radar Images year: 2004 ident: e_1_3_3_41_1 – ident: e_1_3_3_15_1 doi: 10.1080/15481603.2017.1331511 – ident: e_1_3_3_54_1 doi: 10.3390/rs8080675 – ident: e_1_3_3_11_1 doi: 10.1016/j.rse.2020.111663 – ident: e_1_3_3_14_1 doi: 10.1080/15481603.2022.2100054 – ident: e_1_3_3_38_1 doi: 10.1038/375567a0 – ident: e_1_3_3_37_1 doi: 10.1080/03610918.2012.665546 – ident: e_1_3_3_47_1 doi: 10.1109/JSTARS.2018.2795012 – volume: 61 start-page: 4767 issue: 12 year: 2018 ident: e_1_3_3_29_1 article-title: Homogeneous Pixel Selection Algorithm for Multitemporal InSar publication-title: Chinese Journal of Geophysics – ident: e_1_3_3_32_1 doi: 10.1080/15481603.2023.2180026 – ident: e_1_3_3_49_1 doi: 10.1016/j.isprsjprs.2012.06.007 – ident: e_1_3_3_22_1 doi: 10.1109/TGRS.2014.2352853 – ident: e_1_3_3_31_1 doi: 10.1029/1999GL900108 – ident: e_1_3_3_13_1 doi: 10.3390/rs14030788 – ident: e_1_3_3_3_1 doi: 10.1016/j.jag.2021.102322 – ident: e_1_3_3_4_1 doi: 10.2307/2533862 – ident: e_1_3_3_35_1 doi: 10.1016/j.jhydrol.2018.02.067 – ident: e_1_3_3_51_1 doi: 10.1109/LGRS.2022.3209808 – ident: e_1_3_3_44_1 doi: 10.1111/j.2517-6161.1991.tb01849.x – ident: e_1_3_3_45_1 doi: 10.1109/LGRS.2017.2701878 – ident: e_1_3_3_5_1 doi: 10.1109/TGRS.2002.803792 – ident: e_1_3_3_25_1 doi: 10.1029/2006JB004763 – ident: e_1_3_3_39_1 doi: 10.1038/369227a0 – ident: e_1_3_3_23_1 doi: 10.1126/science.262.5139.1525 – ident: e_1_3_3_53_1 doi: 10.1007/s10346-018-0954-8 – ident: e_1_3_3_2_1 doi: 10.1029/2019JB017908 – ident: e_1_3_3_27_1 doi: 10.1109/TGRS.2014.2336237 – volume-title: Stochastic Simulation year: 2009 ident: e_1_3_3_43_1 – ident: e_1_3_3_8_1 doi: 10.1016/j.rse.2012.10.015 – ident: e_1_3_3_46_1 doi: 10.1080/01621459.1974.10480196 – ident: e_1_3_3_10_1 doi: 10.5721/EuJRS20154839 – ident: e_1_3_3_19_1 doi: 10.1109/TGRS.2011.2124465 – ident: e_1_3_3_17_1 doi: 10.3390/rs10050744 – ident: e_1_3_3_26_1 doi: 10.1029/2004GL021737 – ident: e_1_3_3_30_1 doi: 10.1016/j.isprsjprs.2017.02.009 – ident: e_1_3_3_16_1 doi: 10.1093/bioinformatics/btg454 – ident: e_1_3_3_9_1 doi: 10.1179/1752270614Y.0000000126 – ident: e_1_3_3_24_1 doi: 10.1109/TGRS.2008.2001756 |
SSID | ssj0035115 |
Score | 2.378016 |
Snippet | Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a... |
SourceID | doaj osti proquest crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | algorithms China deformation deformation monitoring distributed target evolution homogeneous pixel selection Interferometric synthetic aperture radar interferometry Monte Carlo method standard deviation subsidence synthetic aperture radar time series analysis |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqeumlolDEFoqMVPWWJV-2k-MWFS1I5cBHBSfLnji7K-1u0CaV4N8z4ySIgtAeuCVRnER5M-M3zuQNYz8w7JehyV1APVOD1CgZZDgtBkUppFfQz32ziT_ncnydnt2Ivpqw7soqKYcuW6EIH6vJuY2t-4q4I2LZ1B15SK2_hzFpkFMC9DEma0WTDm_HfTCmz2TCS6ammCzhmP4nnrcu89_05FX8X2iY4tEKne9V6Pbz0ckm-9wRST5qkf_CPrjlFtsd1bS0XS0e-E_ut9uVi3qb_R1xZNC8LZ1Gt57zabWo0Hwc5v78bnbv5rz2TXEQKW7mk2o1a6YLjs_EC1LXpcZYruA1eEVOt-Kny8vRxVd2ffL76ngcdE0VAkizpAkyaUJQCBBJqWN6hJShjOhfAMhcngljTCGjCEpIFcSJVcKAKyF0DnlVkpgw2WEby2rpdhmH2AmLp6W5JF6gjBEShIpFQarzYAcs7d-lhk5xnBpfzHXUCZP2EGiCQHcQDNjwadhdK7mxbsAvAurpZFLM9geq1UR3DqiRebnChNJJTGijWOWZRS5pIbNWSQnhgOXPYdaNXzAp2-4mOlnzAHtkExpJCynvApUoQaMjfJ-Yzg3YYW8qGn2XPsgYj61OMIIiP41S9e0dd99jn2i3VZ_cZxvN6p_7jkypsQfeFx4B_R4D_Q priority: 102 providerName: Taylor & Francis |
Title | A new sequential homogeneous pixel selection algorithm for distributed scatterer InSAR |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2023.2218261 https://www.proquest.com/docview/3040392147 https://www.osti.gov/biblio/1985576 https://doaj.org/article/643eda06e609412798b324bc8bb766c0 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELagJy4IFhAFtjLSiltKXraTY0GLykq7B16Ck-VMHEBqG9QGCf79ztgJ4nHohVtk2ZLjGXu-8eP7GPuFy34VmtwGpJkapEbJIMOwGJSVkI5BP3diE3__yfF1-udW3L6T-qI7YZ4e2A_cMUZMW5pQWomJSBSrPCsQAxSQFYWSEly2jjGvS6b8GkynY8IxpaaYI8kw6d7uZOExlVHRkITDhzExmMvoQ1Ry5P2fqEuxtMY592XFdmHobIOtt_iRj3y_N9mKnf1gu6MF7WjX01d-xN2337BYbLGbEUfgzP2NaZzNE_5QT2v0GospP396fLETvnBaOGggbib39fyxeZhy7BMviVSX9LBsyRfgiDjtnJ_PLkcX2-z67PfV6ThotRQCSLOkCTJpQlBoF2JQx6wIkUIV0RMAyGyeCWNMKaMIKkgVxEmhhAFbQWgtwqkkMWGyw3qzemZ3GYfYigKrpbkkOKCMERKEikVJZPNQ9FnajaWGlmic9C4mOmr5SDsTaDKBbk3QZ8O3Zk-eaWNZgxMy1FtlIsp2Beg-unUfvcx9-ix_b2bduH2Syoua6GRJB_bJJzRiFSLcBbqZBI2OcDwxi-uzw85VNE5ZOocxzrY6wYUTYWmUqr3v-IV9tka98uyTB6zXzJ_tT0RKTTFgq-HdeOCmxn8-fweL |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcigXCgXUbXm4EuKWkJft5Lggqu1rD9Ci3ix74rRVdzfVJisBv54ZJ6lKEeqhtyixk9gZj79xxt_H2Ad0-1VkCheQZmqQGSWDHKfFoKyE9Az6hRebOJnKyVl2eC7O7-yFobRKiqGrjijC-2oa3LQYPaTEfSKYTfLIIWl_hwmRkFME9EQUUpGKQRpNB29M_8mE50zNMFrCOsMunv_d5q_5ydP43yMxxbM1jr5_fLefkPY3GQxN6fJQrsNVa0P4fY_l8XFtfc6e9XiVjzsDe8HW3GKLbY8bWkGv57_4R-6PuwWS5iX7MeYI1HmXoY3eY8Yv63mNVurqVcNvrn66GW-89g4aBDezi3p51V7OObacl0TiS_pbruQNeOJPt-QHi-_jb6_Y2f7X0y-ToNduCCDL0zbIpYlAoR0QYztGYYhMqpi2HEDuilwYY0oZx1BBpiBJrRIGXAWRcwjf0tRE6Wu2vqgXbptxSJywWCwrJMEPZYyQIFQiSiK3Bzti2fDFNPTE5qSvMdNxz3869KGmPtR9H45YeFvtpmP2eKjCZzKH28JEzO1P1MsL3Y9zjQDPlSaSTmLcHCeqyC1CVgu5tUpKiEasuGtMuvXrMlUnoqLTB15glyxPIzYigl-gTChodYz9iVHjiO0NBqnRRdB_H-O_rU7RUSMMjjO184inv2cbk9OTY318MD3aZU_pUkd4-Yatt8uVe4vgrLXv_Oj7A2DyJ24 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqVqq4QCmgLuXDSIhbQr5sJ8cFumoLrBBQxM2yJ05bsbtZbbIS8OuZcZKqtKp66C1K7CR2xuM3zvg9xl6j268iU7iANFODzCgZ5DgtBmUlpGfQL7zYxOepPDzJjn-KIZuw6dMqKYauOqII76tpcC_LasiIe0som9SRQ5L-DhPiIKcAaEsSeTjt4oimgzOm32TCU6ZmGCxhnWETz023-W968iz-VzhM8WyNg--a6_bz0eQBs0NLujSUX-G6tSH8vULyeKem7rD7PVrl4868HrINt9hle-OG1s_r-R_-hvvjbnmkecR-jDnCdN7lZ6PvmPGzel6jjbp63fDl-W83441X3kFz4GZ2Wq_O27M5x4bzkih8SX3LlbwBT_vpVvxo8W389TE7mRx8f38Y9MoNAWR52ga5NBEotALia8cYDHFJFdOGA8hdkQtjTCnjGCrIFCSpVcKAqyByDsFbmpoofcI2F_XC7TEOiRMWi2WFJPChjBEShEpESdT2YEcsGz6Yhp7WnNQ1Zjru2U-HPtTUh7rvwxELL6otO16P2yq8I2u4KEy03P5EvTrV_SjXCO9caSLpJEbNcaKK3CJgtZBbq6SEaMSKy7akW78qU3USKjq95QX2yfA0IiOi9wXKg4JWx9ifGDOO2KvBHjU6CPrrY_y31Sm6aQTBcaae3uHpL9n2lw8T_elo-nGf3aMrHdvlM7bZrtbuOSKz1r7wY-8fjT8mEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+sequential+homogeneous+pixel+selection+algorithm+for+distributed+scatterer+InSAR&rft.jtitle=GIScience+and+remote+sensing&rft.au=Bingqian+Chen&rft.au=Jiale+Yang&rft.au=Zhenhong+Li&rft.au=Chen+Yu&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=60&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2023.2218261&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_643eda06e609412798b324bc8bb766c0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |