A new sequential homogeneous pixel selection algorithm for distributed scatterer InSAR

Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a crucial step in the use of DS InSAR, directly affecting the estimation precision and reliability of subsequent parameter calculations. The exi...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 60; no. 1
Main Authors Chen, Bingqian, Yang, Jiale, Li, Zhenhong, Yu, Chen, Yu, Yang, Qin, Lu, Yang, Yu, Yu, Hao
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 31.12.2023
Informa UK Limited
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a crucial step in the use of DS InSAR, directly affecting the estimation precision and reliability of subsequent parameter calculations. The existing algorithms for selecting homogeneous pixels have inherent limitations, such as requiring many heterogeneous samples and strict requirements surrounding the required number of synthetic aperture radar (SAR) images. To address these problems, a new sequential selection algorithm for homogeneous pixels is proposed, based on the Baumgartner - Weiss-Schindler (BWS) test algorithm and dynamic interval estimation (DIE) theory. According to Monte Carlo simulation experiments, the average standard deviation (STD) of the mean of the rejection of the BWS-DIE algorithm under six sample conditions is 0.014. Compared with three existing algorithms, including the Kolmogorov‒Smirnov (KS), BWS and fast statistically homogeneous pixel selection (FaSHPS) algorithms, the BWS-DIE algorithm improves homogeneous pixel selection precision by 64.3%, 69.4% and 25.3%, respectively. In the real data experiment, 12 scenes of Advanced Land Observing Satellite-1 Phased Array type L-band Synthetic Aperture Radar (ALOS-1 PALSAR) data from February 2007 to March 2011 were used and the BWS-DIE multitemporal InSAR (MT InSAR) method based on the BWS-DIE algorithm was applied to surface subsidence monitoring in the western mining area of Xuzhou, Jiangsu Province, China. The experimental results show that, compared with the Stanford Method for Persistent Scatterers (StaMPS), the BWS-DIE MT InSAR method improves the ability to monitor the maximum subsidence by 12.3%, increases the point density by 5.7 times and decreases the root mean square error (RMSE) by 50%. In addition, new surface deformation patterns are found in the spatial-temporal evolution. The above experimental results show that the proposed BWS-DIE algorithm exhibits remarkable advantages in selection power and selection precision and is not limited by the number of SAR images. The proposed algorithm can further broaden the application scenarios for DS InSAR and provide high-quality and reliable monitoring data for subsequent scientific research.
AbstractList Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a crucial step in the use of DS InSAR, directly affecting the estimation precision and reliability of subsequent parameter calculations. The existing algorithms for selecting homogeneous pixels have inherent limitations, such as requiring many heterogeneous samples and strict requirements surrounding the required number of synthetic aperture radar (SAR) images. To address these problems, a new sequential selection algorithm for homogeneous pixels is proposed, based on the Baumgartner – Weiss–Schindler (BWS) test algorithm and dynamic interval estimation (DIE) theory. According to Monte Carlo simulation experiments, the average standard deviation (STD) of the mean of the rejection of the BWS-DIE algorithm under six sample conditions is 0.014. Compared with three existing algorithms, including the Kolmogorov‒Smirnov (KS), BWS and fast statistically homogeneous pixel selection (FaSHPS) algorithms, the BWS-DIE algorithm improves homogeneous pixel selection precision by 64.3%, 69.4% and 25.3%, respectively. In the real data experiment, 12 scenes of Advanced Land Observing Satellite-1 Phased Array type L-band Synthetic Aperture Radar (ALOS-1 PALSAR) data from February 2007 to March 2011 were used and the BWS-DIE multitemporal InSAR (MT InSAR) method based on the BWS-DIE algorithm was applied to surface subsidence monitoring in the western mining area of Xuzhou, Jiangsu Province, China. The experimental results show that, compared with the Stanford Method for Persistent Scatterers (StaMPS), the BWS-DIE MT InSAR method improves the ability to monitor the maximum subsidence by 12.3%, increases the point density by 5.7 times and decreases the root mean square error (RMSE) by 50%. In addition, new surface deformation patterns are found in the spatial-temporal evolution. The above experimental results show that the proposed BWS-DIE algorithm exhibits remarkable advantages in selection power and selection precision and is not limited by the number of SAR images. The proposed algorithm can further broaden the application scenarios for DS InSAR and provide high-quality and reliable monitoring data for subsequent scientific research.
Author Yu, Yang
Chen, Bingqian
Yu, Chen
Li, Zhenhong
Qin, Lu
Yang, Yu
Yu, Hao
Yang, Jiale
Author_xml – sequence: 1
  givenname: Bingqian
  surname: Chen
  fullname: Chen, Bingqian
  organization: Big Data Center for Geosciences and Satellites (BDCGS), Chang'an University
– sequence: 2
  givenname: Jiale
  surname: Yang
  fullname: Yang, Jiale
  organization: Jiangsu Normal University
– sequence: 3
  givenname: Zhenhong
  orcidid: 0000-0002-8054-7449
  surname: Li
  fullname: Li, Zhenhong
  email: zhenhong.li@chd.edu.cn
  organization: Newcastle University
– sequence: 4
  givenname: Chen
  surname: Yu
  fullname: Yu, Chen
  organization: Big Data Center for Geosciences and Satellites (BDCGS), Chang'an University
– sequence: 5
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
  organization: Jiangsu Normal University
– sequence: 6
  givenname: Lu
  surname: Qin
  fullname: Qin, Lu
  organization: Jiangsu Normal University
– sequence: 7
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
  organization: Jiangsu Normal University
– sequence: 8
  givenname: Hao
  surname: Yu
  fullname: Yu, Hao
  organization: Jiangsu Normal University
BackLink https://www.osti.gov/biblio/1985576$$D View this record in Osti.gov
BookMark eNqFUU1r3DAUFCWF5qM_oWB66sWpZH3YppcuIW0XAoX04yqe5eddBVnaSlrS_PvKcXLpob1I4mlmmHlzRk588EjIG0YvGe3oeyZFxxTllw1tytGwrlHsBTllveB12zTqpLwLpl5Ar8hZSneUcsmYPCU_N5XH-yrhryP6bMFV-zCHHXoMx1Qd7G905dOhyTb4CtwuRJv3czWFWI025WiHY8axSgZyxoix2vpvm9sL8nICl_D1031Ofny6_n71pb75-nl7tbmpjeh4rjsF1LRiokIW26KnrZwYK6FMh30nAWBUjJnJiNY0fGglGJwMRRRccg6Un5PtqjsGuNOHaGeIDzqA1Y-DEHcaYrbGoVaC4whUoaK9YE3bdwNvxGC6YWiVMovW21UrpGx1Mjaj2ZvgfQmvWbEjW1VA71bQIYayspT1bJNB5-BxY5pTQXlfsrQF-mGFmhhSijjpIgnLHnME6zSjeqlPP9enl_r0U32FLf9iP6f7H-_jyrO-dDTDfYhu1BkeXIhTBG9sMflviT_V5bIH
CitedBy_id crossref_primary_10_3390_rs16244811
crossref_primary_10_1080_19475705_2024_2447543
crossref_primary_10_1109_TGRS_2025_3540718
crossref_primary_10_1109_TGRS_2024_3492505
crossref_primary_10_3390_rs17030379
crossref_primary_10_1016_j_jag_2025_104462
crossref_primary_10_1109_JSTARS_2023_3335293
crossref_primary_10_1109_LGRS_2024_3516354
crossref_primary_10_1016_j_jag_2024_104214
crossref_primary_10_1109_TGRS_2025_3548472
crossref_primary_10_3390_s25020583
Cites_doi 10.1080/10485250902952435
10.5194/isprsarchives-XL-7-W1-173-2013
10.1109/36.898661
10.1109/TGRS.2015.2473818
10.1139/x78-062
10.3390/rs13132541
10.1109/TGRS.2020.3030003
10.1109/36.868878
10.1080/15481603.2022.2026639
10.1179/1752270614Y.0000000153
10.1201/9781420054989
10.1109/LGRS.2015.2430752
10.1029/2010GL044780
10.3390/rs11141673
10.1038/364138a0
10.1080/15481603.2017.1331511
10.3390/rs8080675
10.1016/j.rse.2020.111663
10.1080/15481603.2022.2100054
10.1038/375567a0
10.1080/03610918.2012.665546
10.1109/JSTARS.2018.2795012
10.1080/15481603.2023.2180026
10.1016/j.isprsjprs.2012.06.007
10.1109/TGRS.2014.2352853
10.1029/1999GL900108
10.3390/rs14030788
10.1016/j.jag.2021.102322
10.2307/2533862
10.1016/j.jhydrol.2018.02.067
10.1109/LGRS.2022.3209808
10.1111/j.2517-6161.1991.tb01849.x
10.1109/LGRS.2017.2701878
10.1109/TGRS.2002.803792
10.1029/2006JB004763
10.1038/369227a0
10.1126/science.262.5139.1525
10.1007/s10346-018-0954-8
10.1029/2019JB017908
10.1109/TGRS.2014.2336237
10.1016/j.rse.2012.10.015
10.1080/01621459.1974.10480196
10.5721/EuJRS20154839
10.1109/TGRS.2011.2124465
10.3390/rs10050744
10.1029/2004GL021737
10.1016/j.isprsjprs.2017.02.009
10.1093/bioinformatics/btg454
10.1179/1752270614Y.0000000126
10.1109/TGRS.2008.2001756
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
DBID 0YH
AAYXX
CITATION
7S9
L.6
OTOTI
DOA
DOI 10.1080/15481603.2023.2218261
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
ExternalDocumentID oai_doaj_org_article_643eda06e609412798b324bc8bb766c0
1985576
10_1080_15481603_2023_2218261
2218261
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of China
– fundername: the China Postdoctoral Science Foundation
  grantid: 2019M663601
– fundername: Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People's Republic of China
  grantid: KLSMNR-202203
– fundername: Key Research and Development
  grantid: 2021TD-51
– fundername: the Fundamental Research Funds for the Central Universities, CHD
  grantid: 300102260301 and 300102261108
– fundername: the European Space Agency through the ESA-MOST DRAGON-5 project
  grantid: 59339
– fundername: Natural Science Foundation of China
  grantid: 41907240
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
0R~
AAAVI
ABJVF
ABQHQ
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
OTOTI
V1K
ID FETCH-LOGICAL-c483t-86a0c74f04522149075f11108c8e985aaad611cfc47c23b75acefc0ee43533a03
IEDL.DBID DOA
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:19:31 EDT 2025
Mon Jan 01 02:32:13 EST 2024
Mon May 05 21:00:49 EDT 2025
Thu Apr 24 22:52:45 EDT 2025
Tue Jul 01 02:27:29 EDT 2025
Wed Dec 25 09:03:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-86a0c74f04522149075f11108c8e985aaad611cfc47c23b75acefc0ee43533a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research
2021TD-51; 300102260301 and 300102261108; 59339
ORCID 0000-0002-8054-7449
0000000280547449
OpenAccessLink https://doaj.org/article/643eda06e609412798b324bc8bb766c0
PQID 3040392147
PQPubID 24069
ParticipantIDs osti_scitechconnect_1985576
informaworld_taylorfrancis_310_1080_15481603_2023_2218261
crossref_citationtrail_10_1080_15481603_2023_2218261
crossref_primary_10_1080_15481603_2023_2218261
proquest_miscellaneous_3040392147
doaj_primary_oai_doaj_org_article_643eda06e609412798b324bc8bb766c0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle GIScience and remote sensing
PublicationYear 2023
Publisher Taylor & Francis
Informa UK Limited
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Informa UK Limited
– name: Taylor & Francis Group
References e_1_3_3_52_1
e_1_3_3_50_1
Oliver C. (e_1_3_3_41_1) 2004
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
Jiang M. (e_1_3_3_28_1) 2016; 59
Jiang M. (e_1_3_3_29_1) 2018; 61
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_6_1
e_1_3_3_8_1
Ripley B. D. (e_1_3_3_43_1) 2009
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_36_1
  doi: 10.1080/10485250902952435
– ident: e_1_3_3_55_1
  doi: 10.5194/isprsarchives-XL-7-W1-173-2013
– ident: e_1_3_3_21_1
  doi: 10.1109/36.898661
– ident: e_1_3_3_7_1
  doi: 10.1109/TGRS.2015.2473818
– ident: e_1_3_3_52_1
  doi: 10.1139/x78-062
– ident: e_1_3_3_12_1
  doi: 10.3390/rs13132541
– ident: e_1_3_3_42_1
  doi: 10.1109/TGRS.2020.3030003
– ident: e_1_3_3_20_1
  doi: 10.1109/36.868878
– ident: e_1_3_3_48_1
  doi: 10.1080/15481603.2022.2026639
– ident: e_1_3_3_18_1
  doi: 10.1179/1752270614Y.0000000153
– ident: e_1_3_3_34_1
  doi: 10.1201/9781420054989
– ident: e_1_3_3_6_1
  doi: 10.1109/LGRS.2015.2430752
– volume: 59
  start-page: 3592
  issue: 10
  year: 2016
  ident: e_1_3_3_28_1
  article-title: FaSHPS-Insar Technique for Distributed Scatterers: A Case Study Over the Lost Hills Oil Field, California
  publication-title: Chinese Journal of Geophysics
– ident: e_1_3_3_33_1
  doi: 10.1029/2010GL044780
– ident: e_1_3_3_50_1
  doi: 10.3390/rs11141673
– ident: e_1_3_3_40_1
  doi: 10.1038/364138a0
– volume-title: Understanding Synthetic Aperture Radar Images
  year: 2004
  ident: e_1_3_3_41_1
– ident: e_1_3_3_15_1
  doi: 10.1080/15481603.2017.1331511
– ident: e_1_3_3_54_1
  doi: 10.3390/rs8080675
– ident: e_1_3_3_11_1
  doi: 10.1016/j.rse.2020.111663
– ident: e_1_3_3_14_1
  doi: 10.1080/15481603.2022.2100054
– ident: e_1_3_3_38_1
  doi: 10.1038/375567a0
– ident: e_1_3_3_37_1
  doi: 10.1080/03610918.2012.665546
– ident: e_1_3_3_47_1
  doi: 10.1109/JSTARS.2018.2795012
– volume: 61
  start-page: 4767
  issue: 12
  year: 2018
  ident: e_1_3_3_29_1
  article-title: Homogeneous Pixel Selection Algorithm for Multitemporal InSar
  publication-title: Chinese Journal of Geophysics
– ident: e_1_3_3_32_1
  doi: 10.1080/15481603.2023.2180026
– ident: e_1_3_3_49_1
  doi: 10.1016/j.isprsjprs.2012.06.007
– ident: e_1_3_3_22_1
  doi: 10.1109/TGRS.2014.2352853
– ident: e_1_3_3_31_1
  doi: 10.1029/1999GL900108
– ident: e_1_3_3_13_1
  doi: 10.3390/rs14030788
– ident: e_1_3_3_3_1
  doi: 10.1016/j.jag.2021.102322
– ident: e_1_3_3_4_1
  doi: 10.2307/2533862
– ident: e_1_3_3_35_1
  doi: 10.1016/j.jhydrol.2018.02.067
– ident: e_1_3_3_51_1
  doi: 10.1109/LGRS.2022.3209808
– ident: e_1_3_3_44_1
  doi: 10.1111/j.2517-6161.1991.tb01849.x
– ident: e_1_3_3_45_1
  doi: 10.1109/LGRS.2017.2701878
– ident: e_1_3_3_5_1
  doi: 10.1109/TGRS.2002.803792
– ident: e_1_3_3_25_1
  doi: 10.1029/2006JB004763
– ident: e_1_3_3_39_1
  doi: 10.1038/369227a0
– ident: e_1_3_3_23_1
  doi: 10.1126/science.262.5139.1525
– ident: e_1_3_3_53_1
  doi: 10.1007/s10346-018-0954-8
– ident: e_1_3_3_2_1
  doi: 10.1029/2019JB017908
– ident: e_1_3_3_27_1
  doi: 10.1109/TGRS.2014.2336237
– volume-title: Stochastic Simulation
  year: 2009
  ident: e_1_3_3_43_1
– ident: e_1_3_3_8_1
  doi: 10.1016/j.rse.2012.10.015
– ident: e_1_3_3_46_1
  doi: 10.1080/01621459.1974.10480196
– ident: e_1_3_3_10_1
  doi: 10.5721/EuJRS20154839
– ident: e_1_3_3_19_1
  doi: 10.1109/TGRS.2011.2124465
– ident: e_1_3_3_17_1
  doi: 10.3390/rs10050744
– ident: e_1_3_3_26_1
  doi: 10.1029/2004GL021737
– ident: e_1_3_3_30_1
  doi: 10.1016/j.isprsjprs.2017.02.009
– ident: e_1_3_3_16_1
  doi: 10.1093/bioinformatics/btg454
– ident: e_1_3_3_9_1
  doi: 10.1179/1752270614Y.0000000126
– ident: e_1_3_3_24_1
  doi: 10.1109/TGRS.2008.2001756
SSID ssj0035115
Score 2.378016
Snippet Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a...
SourceID doaj
osti
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms algorithms
China
deformation
deformation monitoring
distributed target
evolution
homogeneous pixel selection
Interferometric synthetic aperture radar
interferometry
Monte Carlo method
standard deviation
subsidence
synthetic aperture radar
time series analysis
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqeumlolDEFoqMVPWWJV-2k-MWFS1I5cBHBSfLnji7K-1u0CaV4N8z4ySIgtAeuCVRnER5M-M3zuQNYz8w7JehyV1APVOD1CgZZDgtBkUppFfQz32ziT_ncnydnt2Ivpqw7soqKYcuW6EIH6vJuY2t-4q4I2LZ1B15SK2_hzFpkFMC9DEma0WTDm_HfTCmz2TCS6ammCzhmP4nnrcu89_05FX8X2iY4tEKne9V6Pbz0ckm-9wRST5qkf_CPrjlFtsd1bS0XS0e-E_ut9uVi3qb_R1xZNC8LZ1Gt57zabWo0Hwc5v78bnbv5rz2TXEQKW7mk2o1a6YLjs_EC1LXpcZYruA1eEVOt-Kny8vRxVd2ffL76ngcdE0VAkizpAkyaUJQCBBJqWN6hJShjOhfAMhcngljTCGjCEpIFcSJVcKAKyF0DnlVkpgw2WEby2rpdhmH2AmLp6W5JF6gjBEShIpFQarzYAcs7d-lhk5xnBpfzHXUCZP2EGiCQHcQDNjwadhdK7mxbsAvAurpZFLM9geq1UR3DqiRebnChNJJTGijWOWZRS5pIbNWSQnhgOXPYdaNXzAp2-4mOlnzAHtkExpJCynvApUoQaMjfJ-Yzg3YYW8qGn2XPsgYj61OMIIiP41S9e0dd99jn2i3VZ_cZxvN6p_7jkypsQfeFx4B_R4D_Q
  priority: 102
  providerName: Taylor & Francis
Title A new sequential homogeneous pixel selection algorithm for distributed scatterer InSAR
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2023.2218261
https://www.proquest.com/docview/3040392147
https://www.osti.gov/biblio/1985576
https://doaj.org/article/643eda06e609412798b324bc8bb766c0
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELagJy4IFhAFtjLSiltKXraTY0GLykq7B16Ck-VMHEBqG9QGCf79ztgJ4nHohVtk2ZLjGXu-8eP7GPuFy34VmtwGpJkapEbJIMOwGJSVkI5BP3diE3__yfF1-udW3L6T-qI7YZ4e2A_cMUZMW5pQWomJSBSrPCsQAxSQFYWSEly2jjGvS6b8GkynY8IxpaaYI8kw6d7uZOExlVHRkITDhzExmMvoQ1Ry5P2fqEuxtMY592XFdmHobIOtt_iRj3y_N9mKnf1gu6MF7WjX01d-xN2337BYbLGbEUfgzP2NaZzNE_5QT2v0GospP396fLETvnBaOGggbib39fyxeZhy7BMviVSX9LBsyRfgiDjtnJ_PLkcX2-z67PfV6ThotRQCSLOkCTJpQlBoF2JQx6wIkUIV0RMAyGyeCWNMKaMIKkgVxEmhhAFbQWgtwqkkMWGyw3qzemZ3GYfYigKrpbkkOKCMERKEikVJZPNQ9FnajaWGlmic9C4mOmr5SDsTaDKBbk3QZ8O3Zk-eaWNZgxMy1FtlIsp2Beg-unUfvcx9-ix_b2bduH2Syoua6GRJB_bJJzRiFSLcBbqZBI2OcDwxi-uzw85VNE5ZOocxzrY6wYUTYWmUqr3v-IV9tka98uyTB6zXzJ_tT0RKTTFgq-HdeOCmxn8-fweL
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcigXCgXUbXm4EuKWkJft5Lggqu1rD9Ci3ix74rRVdzfVJisBv54ZJ6lKEeqhtyixk9gZj79xxt_H2Ad0-1VkCheQZmqQGSWDHKfFoKyE9Az6hRebOJnKyVl2eC7O7-yFobRKiqGrjijC-2oa3LQYPaTEfSKYTfLIIWl_hwmRkFME9EQUUpGKQRpNB29M_8mE50zNMFrCOsMunv_d5q_5ydP43yMxxbM1jr5_fLefkPY3GQxN6fJQrsNVa0P4fY_l8XFtfc6e9XiVjzsDe8HW3GKLbY8bWkGv57_4R-6PuwWS5iX7MeYI1HmXoY3eY8Yv63mNVurqVcNvrn66GW-89g4aBDezi3p51V7OObacl0TiS_pbruQNeOJPt-QHi-_jb6_Y2f7X0y-ToNduCCDL0zbIpYlAoR0QYztGYYhMqpi2HEDuilwYY0oZx1BBpiBJrRIGXAWRcwjf0tRE6Wu2vqgXbptxSJywWCwrJMEPZYyQIFQiSiK3Bzti2fDFNPTE5qSvMdNxz3869KGmPtR9H45YeFvtpmP2eKjCZzKH28JEzO1P1MsL3Y9zjQDPlSaSTmLcHCeqyC1CVgu5tUpKiEasuGtMuvXrMlUnoqLTB15glyxPIzYigl-gTChodYz9iVHjiO0NBqnRRdB_H-O_rU7RUSMMjjO184inv2cbk9OTY318MD3aZU_pUkd4-Yatt8uVe4vgrLXv_Oj7A2DyJ24
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqVqq4QCmgLuXDSIhbQr5sJ8cFumoLrBBQxM2yJ05bsbtZbbIS8OuZcZKqtKp66C1K7CR2xuM3zvg9xl6j268iU7iANFODzCgZ5DgtBmUlpGfQL7zYxOepPDzJjn-KIZuw6dMqKYauOqII76tpcC_LasiIe0som9SRQ5L-DhPiIKcAaEsSeTjt4oimgzOm32TCU6ZmGCxhnWETz023-W968iz-VzhM8WyNg--a6_bz0eQBs0NLujSUX-G6tSH8vULyeKem7rD7PVrl4868HrINt9hle-OG1s_r-R_-hvvjbnmkecR-jDnCdN7lZ6PvmPGzel6jjbp63fDl-W83441X3kFz4GZ2Wq_O27M5x4bzkih8SX3LlbwBT_vpVvxo8W389TE7mRx8f38Y9MoNAWR52ga5NBEotALia8cYDHFJFdOGA8hdkQtjTCnjGCrIFCSpVcKAqyByDsFbmpoofcI2F_XC7TEOiRMWi2WFJPChjBEShEpESdT2YEcsGz6Yhp7WnNQ1Zjru2U-HPtTUh7rvwxELL6otO16P2yq8I2u4KEy03P5EvTrV_SjXCO9caSLpJEbNcaKK3CJgtZBbq6SEaMSKy7akW78qU3USKjq95QX2yfA0IiOi9wXKg4JWx9ifGDOO2KvBHjU6CPrrY_y31Sm6aQTBcaae3uHpL9n2lw8T_elo-nGf3aMrHdvlM7bZrtbuOSKz1r7wY-8fjT8mEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+sequential+homogeneous+pixel+selection+algorithm+for+distributed+scatterer+InSAR&rft.jtitle=GIScience+and+remote+sensing&rft.au=Bingqian+Chen&rft.au=Jiale+Yang&rft.au=Zhenhong+Li&rft.au=Chen+Yu&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=60&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2023.2218261&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_643eda06e609412798b324bc8bb766c0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon