Context-Aware Edge-Based AI Models for Wireless Sensor Networks—An Overview
Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions for proces...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5544 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.07.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions for processing large amounts of data from edge-synthesized heterogeneous sensors and drawing accurate conclusions with better understanding of the situation. Integration of the two areas WSN and AI has resulted in more accurate measurements, context-aware analysis and prediction useful for smart sensing applications. In this paper, a comprehensive overview of the latest developments in context-aware intelligent systems using sensor technology is provided. In addition, it also discusses the areas in which they are used, related challenges, motivations for adopting AI solutions, focusing on edge computing, i.e., sensor and AI techniques, along with analysis of existing research gaps. Another contribution of this study is the use of a semantic-aware approach to extract survey-relevant subjects. The latter specifically identifies eleven main research topics supported by the articles included in the work. These are analyzed from various angles to answer five main research questions. Finally, potential future research directions are also discussed. |
---|---|
AbstractList | Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions for processing large amounts of data from edge-synthesized heterogeneous sensors and drawing accurate conclusions with better understanding of the situation. Integration of the two areas WSN and AI has resulted in more accurate measurements, context-aware analysis and prediction useful for smart sensing applications. In this paper, a comprehensive overview of the latest developments in context-aware intelligent systems using sensor technology is provided. In addition, it also discusses the areas in which they are used, related challenges, motivations for adopting AI solutions, focusing on edge computing, i.e., sensor and AI techniques, along with analysis of existing research gaps. Another contribution of this study is the use of a semantic-aware approach to extract survey-relevant subjects. The latter specifically identifies eleven main research topics supported by the articles included in the work. These are analyzed from various angles to answer five main research questions. Finally, potential future research directions are also discussed. Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions for processing large amounts of data from edge-synthesized heterogeneous sensors and drawing accurate conclusions with better understanding of the situation. Integration of the two areas WSN and AI has resulted in more accurate measurements, context-aware analysis and prediction useful for smart sensing applications. In this paper, a comprehensive overview of the latest developments in context-aware intelligent systems using sensor technology is provided. In addition, it also discusses the areas in which they are used, related challenges, motivations for adopting AI solutions, focusing on edge computing, i.e., sensor and AI techniques, along with analysis of existing research gaps. Another contribution of this study is the use of a semantic-aware approach to extract survey-relevant subjects. The latter specifically identifies eleven main research topics supported by the articles included in the work. These are analyzed from various angles to answer five main research questions. Finally, potential future research directions are also discussed.Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions for processing large amounts of data from edge-synthesized heterogeneous sensors and drawing accurate conclusions with better understanding of the situation. Integration of the two areas WSN and AI has resulted in more accurate measurements, context-aware analysis and prediction useful for smart sensing applications. In this paper, a comprehensive overview of the latest developments in context-aware intelligent systems using sensor technology is provided. In addition, it also discusses the areas in which they are used, related challenges, motivations for adopting AI solutions, focusing on edge computing, i.e., sensor and AI techniques, along with analysis of existing research gaps. Another contribution of this study is the use of a semantic-aware approach to extract survey-relevant subjects. The latter specifically identifies eleven main research topics supported by the articles included in the work. These are analyzed from various angles to answer five main research questions. Finally, potential future research directions are also discussed. |
Author | Al-Saedi, Ahmed A. Boeva, Veselka Casalicchio, Emiliano Exner, Peter |
AuthorAffiliation | 2 Department of Computer Science, Sapienza University of Rome, 00185 Roma, Italy 3 Sony, R&D Center Europe, SE-221 88 Lund, Sweden; peter.exner@sony.com 1 Department of Computer Science, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden; veselka.boeva@bth.se (V.B.); emiliano.casalicchio@uniroma1.it (E.C.) |
AuthorAffiliation_xml | – name: 2 Department of Computer Science, Sapienza University of Rome, 00185 Roma, Italy – name: 1 Department of Computer Science, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden; veselka.boeva@bth.se (V.B.); emiliano.casalicchio@uniroma1.it (E.C.) – name: 3 Sony, R&D Center Europe, SE-221 88 Lund, Sweden; peter.exner@sony.com |
Author_xml | – sequence: 1 givenname: Ahmed A. orcidid: 0000-0001-6061-0861 surname: Al-Saedi fullname: Al-Saedi, Ahmed A. – sequence: 2 givenname: Veselka orcidid: 0000-0003-3128-191X surname: Boeva fullname: Boeva, Veselka – sequence: 3 givenname: Emiliano orcidid: 0000-0002-3118-5058 surname: Casalicchio fullname: Casalicchio, Emiliano – sequence: 4 givenname: Peter orcidid: 0000-0002-9629-786X surname: Exner fullname: Exner, Peter |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:bth-23537$$DView record from Swedish Publication Index |
BookMark | eNplkstuEzEUhkeoiF5gwRuMxAYkhvo69myQhlAgUksX3JaWL8epw2Tc2pOk3fEQPCFPwqQpiJSVb9__-ejoHBZ7feyhKJ5i9IrSBh1nQjDnnLEHxQFmhFWSELT3z36_OMx5jhChlMpHxT7lspGIsYPibBL7Aa6Hql3rBOWJm0H1RmdwZTstz6KDLpc-pvJbSNBBzuUn6PN4_gjDOqbv-dePn21fnq8grQKsHxcPve4yPLlbj4ov704-Tz5Up-fvp5P2tLJM0qGSuDGO0cYi6mQjPK2R5oZR4wX3lgsqCQLnMa2504xr4zmuDeM187Xm3tCjYrr1uqjn6jKFhU43Kuqgbi9imimdhmA7UJQ1ztTWWcslA-I09oYJIww2xElDR9fLrSuv4XJpdmxvw9f21maGC0Uop2LEX2_xkV2As9APSXc7qd2XPlyoWVyphgqMhRwFz-8EKV4tIQ9qEbKFrtM9xGVWpG5qhBHDG_TZPXQel6kfO6uIQEiIRiA-UsdbyqaYcwKvbBj0EOLm_9ApjNRmStTfKRkTL-4l_pT_P_sbGGO9SA |
CitedBy_id | crossref_primary_10_3390_s25010249 crossref_primary_10_3390_s23187814 |
Cites_doi | 10.3390/s21144661 10.3390/s21186230 10.1109/ICCV.2019.00736 10.1016/j.future.2019.04.052 10.3390/vehicles3040042 10.3390/en14238171 10.1145/3474085.3475268 10.1109/EMBC46164.2021.9630224 10.1109/ICSPCC.2017.8242610 10.2196/mhealth.4160 10.3390/s21020617 10.4324/9780429346323 10.1016/j.ijinfomgt.2018.06.005 10.3390/s21206760 10.1109/ACCESS.2020.2964237 10.1155/2021/8690662 10.1109/ISCC53001.2021.9631391 10.1109/TVT.2021.3060459 10.3390/s18113604 10.1109/EAIS48028.2020.9122759 10.1109/JETCAS.2018.2850451 10.3390/s16111807 10.1016/j.aeue.2014.09.014 10.20944/preprints201809.0046.v1 10.1016/j.comnet.2018.04.009 10.1016/j.ijmedinf.2017.02.010 10.1145/2693843 10.1145/3349624.3356768 10.1109/WF-IoT48130.2020.9221098 10.1080/0951192X.2019.1667033 10.1145/3313831.3376238 10.1109/LGRS.2021.3123552 10.1109/CiSt49399.2021.9357181 10.3390/s19071716 10.1109/ACCESS.2015.2389854 10.3390/rs12132161 10.1109/ICUFN.2018.8436959 10.5220/0006365601210131 10.1109/JIOT.2017.2767608 10.1109/TNSM.2020.3035315 10.3390/en13226104 10.1007/978-3-030-01267-0_35 10.1109/ACCESS.2020.3014901 10.3390/s21123992 10.1016/j.pmcj.2021.101474 10.1117/12.2514753 10.1109/ACCESS.2019.2946662 10.1109/TASLP.2017.2757263 10.1145/3448891.3448945 10.1109/ACCESS.2020.3044495 10.3233/HSM-1985-5207 10.3390/s20154158 10.3390/s20216300 10.1109/JSEN.2020.3023886 10.1109/TSE.2019.2943554 10.3390/rs13214361 10.1016/j.dcan.2017.10.002 10.1016/j.egypro.2017.07.371 10.1504/IJSNET.2020.106603 10.18494/SAM.2019.2308 10.3390/su12093760 10.1016/j.comcom.2019.02.002 10.1109/TMC.2016.2618873 10.1007/s40747-021-00434-6 10.1109/ICC40277.2020.9149423 10.1145/3139513.3139526 10.1145/2968219.2968279 10.1109/MCOMSTD.001.2000055 10.1007/s12652-019-01439-3 10.1007/s007790170019 10.7551/mitpress/11171.001.0001 10.3390/electronics9061039 10.1109/TBME.2021.3113593 10.1109/BigData.2018.8622515 10.1016/j.rse.2020.111741 10.1109/ACCESS.2020.2989143 10.1049/iet-stg.2019.0249 10.3390/fi13030067 10.1016/j.future.2020.10.030 10.1109/IPSN48710.2020.00-45 10.1016/j.smhl.2020.100171 10.1007/s10462-021-10094-0 10.1007/978-3-030-38516-3_5 10.1109/ACCESS.2019.2948757 10.1109/JIOT.2020.3045009 10.1016/j.jnca.2015.09.008 10.1109/TAFFC.2016.2610975 10.3390/s19030511 10.1109/TMC.2019.2893253 10.1109/ACCESS.2020.3015091 10.3390/app10238482 10.1109/ACCESS.2021.3088608 10.1109/MDAT.2019.2899334 10.1109/JIOT.2015.2498900 10.3390/electronics10121460 10.3390/s20247307 10.1145/3411808 10.1109/EDGE.2018.00016 10.1016/j.compbiomed.2017.11.007 10.5220/0008916700210032 10.3390/s20185050 10.2196/32656 10.1109/ACCESS.2021.3117911 10.1016/j.comnet.2020.107376 10.1016/0004-3702(96)00007-0 10.1109/JSEN.2020.2979191 10.1016/j.sysarc.2019.02.009 10.1145/3460352 10.3390/s20216104 10.3390/s21082866 10.1109/MDAT.2020.2977070 10.3390/s21186303 10.1109/JIOT.2020.2985082 10.3390/info7020021 10.1109/ACCESS.2019.2921096 10.3390/s90201282 10.3390/s21093243 10.20944/preprints202106.0561.v1 10.1016/j.jss.2016.02.010 10.1016/j.future.2013.01.010 10.1016/j.knosys.2020.105816 10.3390/en11061336 10.1007/s00354-009-0060-5 10.3390/s17061382 10.1007/978-3-319-47075-7_38 10.1145/3277593.3277617 10.1146/annurev-clinpsy-032816-044949 10.1145/302979.303126 10.1080/03091902.2020.1759707 10.1007/978-3-319-10554-3_2 10.3390/s17061230 10.1038/s41586-021-03583-3 10.1109/COMST.2017.2691551 10.3390/s19040786 10.1016/j.ijinfomgt.2017.06.007 10.3390/s20010310 10.3766/jaaa.15099 10.1109/PERCOMW.2018.8480180 10.1016/j.procs.2021.08.069 10.3390/s20082189 10.3390/s21227540 10.1109/MOBIQ.2006.340411 10.1016/j.procs.2015.08.357 10.1109/MC.2016.245 10.3390/s20174779 10.3390/s17020273 10.1109/JBHI.2016.2636456 10.1109/IntelliSys.2015.7361247 10.3390/s21237854 10.1109/ACCESS.2020.2971693 10.1016/j.jnca.2018.02.020 10.1186/s40317-021-00251-1 10.1109/TMSCS.2018.2864297 10.3390/s22010403 10.1117/12.2600209 10.1109/TIP.2021.3086590 10.1007/s12652-020-02557-z 10.3390/math9050500 10.3390/en13071555 10.3390/s17030529 10.3390/informatics7030031 10.1145/2699343.2699349 10.3390/s20092638 10.4236/wsn.2016.84006 10.2196/jmir.6821 10.1186/s13673-020-00240-y 10.1109/CloudTech.2017.8284740 10.1109/TMC.2019.2893250 10.1016/j.knosys.2021.106740 10.1016/j.compag.2021.106319 10.3390/s20092533 10.1109/JIOT.2017.2773600 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTPV AOWAS D8T DF3 ZZAVC DOA |
DOI | 10.3390/s22155544 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SWEPUB Blekinge Tekniska Högskola SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_349db6cdcc584e2da1fb47b7b1b2d8b3 oai_DiVA_org_bth_23537 PMC9371178 10_3390_s22155544 |
GrantInformation_xml | – fundername: Sony Research Award Program |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM ADRAZ ADTPV AOWAS D8T DF3 IPNFZ RIG ZZAVC PUEGO |
ID | FETCH-LOGICAL-c483t-819bd439c03d897f360a5b43bf75fc573820edf1365da45abf516b4564f6a5fb3 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Thu Aug 21 07:30:16 EDT 2025 Thu Aug 21 13:50:59 EDT 2025 Tue Aug 05 10:04:30 EDT 2025 Fri Jul 25 20:07:09 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Tue Jul 01 02:42:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-819bd439c03d897f360a5b43bf75fc573820edf1365da45abf516b4564f6a5fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9629-786X 0000-0002-3118-5058 0000-0003-3128-191X 0000-0001-6061-0861 |
OpenAccessLink | https://doaj.org/article/349db6cdcc584e2da1fb47b7b1b2d8b3 |
PMID | 35898044 |
PQID | 2700779705 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_349db6cdcc584e2da1fb47b7b1b2d8b3 swepub_primary_oai_DiVA_org_bth_23537 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371178 proquest_miscellaneous_2696010418 proquest_journals_2700779705 crossref_citationtrail_10_3390_s22155544 crossref_primary_10_3390_s22155544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220725 |
PublicationDateYYYYMMDD | 2022-07-25 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220725 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_137 Hannink (ref_110) 2017; 21 Galindez (ref_172) 2018; 8 ref_138 ref_14 ref_12 ref_131 ref_11 ref_10 ref_98 ref_133 ref_97 ref_132 ref_19 ref_17 ref_16 Shahraki (ref_15) 2021; 18 Rabbi (ref_70) 2015; 3 Gubbi (ref_4) 2013; 29 Shahraki (ref_37) 2020; 180 (ref_125) 2019; 7 ref_129 (ref_161) 2021; 188 Liu (ref_83) 2021; 30 ref_23 ref_120 ref_22 ref_20 ref_121 Choksatchawathi (ref_60) 2020; 20 Schultze (ref_180) 2021; 594 ref_28 Zhang (ref_95) 2020; 8 Mugumya (ref_130) 2020; Volume 489 ref_26 Yang (ref_101) 2021; 9 Pradeep (ref_46) 2019; 137 Islam (ref_119) 2020; 4 Miranda (ref_43) 2021; 55 Bettini (ref_81) 2020; 8 ref_159 ref_71 ref_158 Solomonoff (ref_29) 1985; 5 Yu (ref_64) 2017; 16 ref_151 ref_79 ref_150 ref_78 ref_153 Mahdavinejad (ref_1) 2018; 4 Petrenko (ref_74) 2018; 4 ref_155 ref_75 Orsini (ref_139) 2020; 12 ref_154 ref_156 Dastjerdi (ref_3) 2016; 49 Ruiz (ref_149) 2021; 192 ref_160 Hoareau (ref_21) 2009; 27 Samyoun (ref_127) 2021; 19 Nilsson (ref_27) 1996; 82 Chaytor (ref_56) 2020; 21 ref_148 ref_82 Alqahtani (ref_113) 2021; 21 Chadwick (ref_162) 2022; 19 Momeni (ref_114) 2022; 69 ref_140 ref_142 Rekik (ref_50) 2018; 38 ref_88 ref_141 Wang (ref_166) 2021; 2021 ref_87 ref_86 ref_85 ref_146 ref_84 ref_145 Zappatore (ref_111) 2019; 7 Gonzalez (ref_176) 2017; 25 Koldijk (ref_136) 2018; 9 Masinelli (ref_175) 2020; 37 Asani (ref_42) 2019; 99 Han (ref_117) 2020; 44 Khowaja (ref_123) 2020; 10 Jaccard (ref_53) 1901; 37 Aldaz (ref_126) 2016; 27 Angrisano (ref_157) 2020; 8 Ilarri (ref_49) 2021; 215 Sezer (ref_44) 2018; 5 Khodabandehloo (ref_135) 2021; 116 Boursalie (ref_89) 2015; 63 Zhang (ref_144) 2020; 3 ref_58 ref_173 ref_55 ref_174 ref_177 Yousefpour (ref_24) 2019; 98 ref_52 ref_179 ref_178 Xu (ref_124) 2020; 19 Niar (ref_143) 2017; 4 Dey (ref_18) 2001; 5 ref_182 ref_59 ref_181 Healey (ref_104) 2021; 9 Sukreep (ref_106) 2019; 31 Sliwa (ref_93) 2021; 70 Seo (ref_107) 2021; 18 Naeem (ref_72) 2018; 109 Akmandor (ref_92) 2018; 4 ref_67 ref_164 ref_66 ref_163 Azam (ref_65) 2020; 8 ref_165 ref_63 ref_168 ref_62 ref_167 Waldner (ref_152) 2020; 245 Perera (ref_40) 2014; 2 ref_171 Alghamdi (ref_105) 2021; 12 ref_170 Sikder (ref_118) 2020; 19 Alotaibi (ref_91) 2020; 8 ref_115 Jiang (ref_39) 2009; 9 ref_116 Madoery (ref_102) 2021; 77 Bettini (ref_57) 2020; 196 Razzaque (ref_2) 2016; 3 Rossier (ref_90) 2017; 122 Alharbi (ref_128) 2021; 3 Pejovic (ref_68) 2015; 47 Rashid (ref_36) 2016; 60 Alegre (ref_41) 2016; 117 Chatterjee (ref_48) 2019; 36 ref_32 ref_31 ref_30 Chitnis (ref_35) 2016; 8 ref_112 Ali (ref_169) 2021; 5 Gupta (ref_51) 2018; 42 ref_38 Mehrotra (ref_76) 2021; 47 Zhou (ref_73) 2020; 7 Boyle (ref_61) 2021; 5 Gendy (ref_96) 2020; 8 Noel (ref_34) 2017; 19 Peleg (ref_69) 2017; 101 ref_103 ref_108 ref_109 ref_47 ref_184 Jansson (ref_77) 2020; 32 ref_183 ref_45 Augustyniak (ref_54) 2018; 95 Qian (ref_134) 2021; 8 Wang (ref_13) 2018; 139 Thiebault (ref_100) 2021; 9 Mohr (ref_80) 2017; 13 Li (ref_33) 2015; 69 Pan (ref_25) 2018; 5 ref_9 Dipsis (ref_122) 2019; 11 ref_8 ref_5 ref_7 ref_6 Wang (ref_99) 2019; 7 Turner (ref_147) 2019; 32 |
References_xml | – ident: ref_66 doi: 10.3390/s21144661 – ident: ref_115 doi: 10.3390/s21186230 – ident: ref_8 doi: 10.1109/ICCV.2019.00736 – volume: 99 start-page: 321 year: 2019 ident: ref_42 article-title: Context-Aware Computing for Mobile Crowd Sensing: A Survey publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.04.052 – volume: 3 start-page: 721 year: 2021 ident: ref_128 article-title: Context-Aware Sensor Uncertainty Estimation for Autonomous Vehicles publication-title: Vehicles doi: 10.3390/vehicles3040042 – ident: ref_171 doi: 10.3390/en14238171 – ident: ref_178 doi: 10.1145/3474085.3475268 – ident: ref_163 doi: 10.1109/EMBC46164.2021.9630224 – ident: ref_14 doi: 10.1109/ICSPCC.2017.8242610 – volume: 3 start-page: e4160 year: 2015 ident: ref_70 article-title: Automated Personalized Feedback for Physical Activity and Dietary Behavior Change with Mobile Phones: A Randomized Controlled Trial on Adults publication-title: JMIR mHealth uHealth doi: 10.2196/mhealth.4160 – ident: ref_97 doi: 10.3390/s21020617 – ident: ref_181 doi: 10.4324/9780429346323 – volume: 42 start-page: 78 year: 2018 ident: ref_51 article-title: Big Data With Cognitive Computing: A Review for the Future publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2018.06.005 – volume: 4 start-page: 6 year: 2018 ident: ref_74 article-title: Detection of Human Respiration Patterns Using Deep Convolution Neural Networks publication-title: East.-Eur. J. Enterp. Technol. – ident: ref_16 doi: 10.3390/s21206760 – volume: 8 start-page: 7731 year: 2020 ident: ref_65 article-title: C2fhar: Coarse-to-Fine Human Activity Recognition with Behavioral Context Modeling Using Smart Inertial Sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964237 – volume: 2021 start-page: 1 year: 2021 ident: ref_166 article-title: Enabling Fairness-Aware and Privacy-Preserving for Quality Evaluation in Vehicular Crowdsensing: A Decentralized Approach publication-title: Secur. Commun. Networks doi: 10.1155/2021/8690662 – ident: ref_179 doi: 10.1109/ISCC53001.2021.9631391 – volume: 70 start-page: 5332 year: 2021 ident: ref_93 article-title: Client-Based Intelligence for Resource Efficient Vehicular Big Data Transfer in Future 6G Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3060459 – ident: ref_156 doi: 10.3390/s18113604 – ident: ref_146 doi: 10.1109/EAIS48028.2020.9122759 – volume: 8 start-page: 858 year: 2018 ident: ref_172 article-title: Dynamic Sensor-Frontend Tuning for Resource Efficient Embedded Classification publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2018.2850451 – ident: ref_151 doi: 10.3390/s16111807 – ident: ref_31 – volume: 69 start-page: 455 year: 2015 ident: ref_33 article-title: Maximizing the Lifetime of Wireless Sensor Networks with Random Forwarding publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2014.09.014 – ident: ref_133 doi: 10.20944/preprints201809.0046.v1 – volume: 139 start-page: 119 year: 2018 ident: ref_13 article-title: ETMRM: An Energy-Efficient Trust Management and Routing Mechanism for Sdwsns publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.04.009 – volume: 101 start-page: 108 year: 2017 ident: ref_69 article-title: Assessment of a Personalized and Distributed Patient Guidance System publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2017.02.010 – volume: 47 start-page: 1 year: 2015 ident: ref_68 article-title: Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges publication-title: ACM Comput. Surv. doi: 10.1145/2693843 – ident: ref_177 doi: 10.1145/3349624.3356768 – volume: 37 start-page: 547 year: 1901 ident: ref_53 article-title: Étude comparative de la distribution florale dans une portion des Alpes et du Jura publication-title: Bull. Soc. Vaudoise Sci. Nat. – ident: ref_167 doi: 10.1109/WF-IoT48130.2020.9221098 – volume: 32 start-page: 936 year: 2019 ident: ref_147 article-title: Intelligent Decision Support for Maintenance: An Overview and Future Trends publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2019.1667033 – ident: ref_79 doi: 10.1145/3313831.3376238 – volume: 19 start-page: 1 year: 2022 ident: ref_162 article-title: Species Classification of Automatically Delineated Regenerating Conifer Crowns Using RGB and near-Infrared UAV Imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2021.3123552 – ident: ref_45 – ident: ref_131 doi: 10.1109/CiSt49399.2021.9357181 – ident: ref_84 doi: 10.3390/s19071716 – volume: 2 start-page: 1660 year: 2014 ident: ref_40 article-title: A Survey on Internet of Things from Industrial Market Perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2389854 – ident: ref_10 doi: 10.3390/rs12132161 – ident: ref_11 doi: 10.1109/ICUFN.2018.8436959 – ident: ref_109 doi: 10.5220/0006365601210131 – volume: 5 start-page: 439 year: 2018 ident: ref_25 article-title: Future Edge Cloud and Edge Computing for Internet of Things Applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2767608 – volume: 18 start-page: 2242 year: 2021 ident: ref_15 article-title: A Survey and Future Directions on Clustering: From WSNS to IOT and Modern Networking Paradigms publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2020.3035315 – ident: ref_87 doi: 10.3390/en13226104 – ident: ref_30 – ident: ref_9 doi: 10.1007/978-3-030-01267-0_35 – volume: 8 start-page: 145552 year: 2020 ident: ref_91 article-title: Transportation Mode Detection by Embedded Sensors Based on Ensemble Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014901 – ident: ref_47 – ident: ref_129 doi: 10.3390/s21123992 – volume: 77 start-page: 101474 year: 2021 ident: ref_102 article-title: Feature Selection for Proximity Estimation in COVID-19 Contact Tracing Apps Based on Bluetooth Low Energy (BLE) publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2021.101474 – ident: ref_145 doi: 10.1117/12.2514753 – volume: 7 start-page: 150226 year: 2019 ident: ref_99 article-title: A Mobilenets Convolutional Neural Network for GIS Partial Discharge Pattern Recognition in the Ubiquitous Power Internet of Things Context: Optimization, Comparison, and Application publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946662 – volume: 25 start-page: 2362 year: 2017 ident: ref_176 article-title: Direct Speech Reconstruction from Articulatory Sensor Data by Machine Learning publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2017.2757263 – ident: ref_58 doi: 10.1145/3448891.3448945 – volume: 8 start-page: 225757 year: 2020 ident: ref_96 article-title: Green Crowdsensing with Comprehensive Reputation Awareness and Predictive Device-Application Matching Using a New Real-Life Dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3044495 – volume: 5 start-page: 149 year: 1985 ident: ref_29 article-title: The Time Scale of Artificial Intelligence: Reflections on Social Effects publication-title: Hum. Syst. Manag. doi: 10.3233/HSM-1985-5207 – ident: ref_170 doi: 10.3390/s20154158 – ident: ref_85 doi: 10.3390/s20216300 – volume: 21 start-page: 3366 year: 2021 ident: ref_113 article-title: Using Wearable Physiological Sensors for Affect-Aware Intelligent Tutoring Systems publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3023886 – volume: 47 start-page: 2107 year: 2021 ident: ref_76 article-title: FutureWare: Designing a Middleware for Anticipatory Mobile Computing publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2019.2943554 – ident: ref_103 doi: 10.3390/rs13214361 – volume: 4 start-page: 161 year: 2018 ident: ref_1 article-title: Machine Learning for Internet of Things Data Analysis: A Survey publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2017.10.002 – volume: 122 start-page: 691 year: 2017 ident: ref_90 article-title: Near Real-Time Appliance Recognition Using Low Frequency Monitoring and Active Learning Methods publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.07.371 – volume: 32 start-page: 247 year: 2020 ident: ref_77 article-title: Managing Sensor Data Streams in a Smart Home Application publication-title: Int. J. Sens. Netw. doi: 10.1504/IJSNET.2020.106603 – volume: 31 start-page: 1847 year: 2019 ident: ref_106 article-title: Recognizing Falls, Daily Activities, and Health Monitoring by Smart Devices publication-title: Sensors Mater. doi: 10.18494/SAM.2019.2308 – ident: ref_184 doi: 10.3390/su12093760 – volume: 137 start-page: 44 year: 2019 ident: ref_46 article-title: The Mom of Context-Aware Systems: A Survey publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.02.002 – volume: 16 start-page: 2198 year: 2017 ident: ref_64 article-title: Fine-Grained Abnormal Driving Behaviors Detection and Identification with Smartphones publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2016.2618873 – ident: ref_23 doi: 10.1007/s40747-021-00434-6 – ident: ref_174 doi: 10.1109/ICC40277.2020.9149423 – ident: ref_153 doi: 10.1145/3139513.3139526 – ident: ref_88 doi: 10.1145/2968219.2968279 – volume: 5 start-page: 126 year: 2021 ident: ref_169 article-title: Reinforcement-Learning-Enabled Massive Internet of Things for 6G Wireless Communications publication-title: IEEE Commun. Stand. Mag. doi: 10.1109/MCOMSTD.001.2000055 – volume: 11 start-page: 2963 year: 2019 ident: ref_122 article-title: A RESTful Middleware for AI Controlled Sensors, Actuators and Smart Devices publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01439-3 – volume: 5 start-page: 4 year: 2001 ident: ref_18 article-title: Understanding and Using Context publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s007790170019 – ident: ref_28 doi: 10.7551/mitpress/11171.001.0001 – ident: ref_62 doi: 10.3390/electronics9061039 – volume: 69 start-page: 1072 year: 2022 ident: ref_114 article-title: CAFS: Cost-Aware Features Selection Method for Multimodal Stress Monitoring on Wearable Devices publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3113593 – ident: ref_140 doi: 10.1109/BigData.2018.8622515 – volume: 245 start-page: 111741 year: 2020 ident: ref_152 article-title: Deep Learning on Edge: Extracting Field Boundaries from Satellite Images with a Convolutional Neural Network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111741 – volume: 8 start-page: 75822 year: 2020 ident: ref_95 article-title: A Joint Deep Learning and Internet of Medical Things Driven Framework for Elderly Patients publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989143 – volume: 3 start-page: 730 year: 2020 ident: ref_144 article-title: Machine Learning Algorithm for Activity-Aware Demand Response Considering Energy Savings and Comfort Requirements publication-title: IET Smart Grid doi: 10.1049/iet-stg.2019.0249 – ident: ref_160 doi: 10.3390/fi13030067 – volume: 116 start-page: 168 year: 2021 ident: ref_135 article-title: HealthXAI: Collaborative and Explainable AI for Supporting Early Diagnosis of Cognitive Decline publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.030 – ident: ref_173 doi: 10.1109/IPSN48710.2020.00-45 – volume: 19 start-page: 100171 year: 2021 ident: ref_127 article-title: IWash: A Smartwatch Handwashing Quality Assessment and Reminder System with Real-Time Feedback in the Context of Infectious Disease publication-title: Smart Health doi: 10.1016/j.smhl.2020.100171 – volume: 55 start-page: 3369 year: 2021 ident: ref_43 article-title: A Survey on the Use of Machine Learning Methods in Context-Aware Middlewares for Human Activity Recognition publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10094-0 – ident: ref_38 doi: 10.1007/978-3-030-38516-3_5 – ident: ref_32 – volume: 7 start-page: 154141 year: 2019 ident: ref_111 article-title: Trustworthiness of Context-Aware Urban Pollution Data in Mobile Crowd Sensing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948757 – volume: 8 start-page: 8343 year: 2021 ident: ref_134 article-title: Can Appliances Understand the Behavior of Elderly via Machine Learning? A Feasibility Study publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3045009 – volume: 60 start-page: 192 year: 2016 ident: ref_36 article-title: Applications of Wireless Sensor Networks for Urban Areas: A Survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2015.09.008 – volume: 9 start-page: 227 year: 2018 ident: ref_136 article-title: Detecting Work Stress in Offices by Combining Unobtrusive Sensors publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2016.2610975 – ident: ref_141 doi: 10.3390/s19030511 – volume: 21 start-page: 181 year: 2020 ident: ref_56 article-title: Memory-Aware Active Learning in Mobile Sensing Systems publication-title: IEEE Trans. Mob. Comput. – volume: 19 start-page: 245 year: 2020 ident: ref_118 article-title: A Context-Aware Framework for Detecting Sensor-Based Threats on Smart Devices publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2019.2893253 – volume: 8 start-page: 146876 year: 2020 ident: ref_81 article-title: ProCAVIAR: Hybrid Data-Driven and Probabilistic Knowledge-Based Activity Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015091 – ident: ref_82 doi: 10.3390/app10238482 – volume: 9 start-page: 86054 year: 2021 ident: ref_101 article-title: DeepPIRATES: A Training-Light PIR-Based Localization Method with High Generalization Ability publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088608 – volume: 36 start-page: 7 year: 2019 ident: ref_48 article-title: Context-Aware Intelligence in Resource-Constrained IOT Nodes: Opportunities and Challenges publication-title: IEEE Des. Test doi: 10.1109/MDAT.2019.2899334 – volume: 3 start-page: 70 year: 2016 ident: ref_2 article-title: Middleware for Internet of Things: A Survey publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2015.2498900 – volume: Volume 489 start-page: 012006 year: 2020 ident: ref_130 article-title: Indoor Haze Particulate Control Using Knowledge Graphs within Self-Optimizing HVAC Control Systems publication-title: IOP Conference Series: Earth and Environmental Science – ident: ref_148 doi: 10.3390/electronics10121460 – ident: ref_159 doi: 10.3390/s20247307 – volume: 4 start-page: 1 year: 2020 ident: ref_119 article-title: Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems publication-title: Proc. Acm Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3411808 – ident: ref_7 doi: 10.1109/EDGE.2018.00016 – volume: 95 start-page: 261 year: 2018 ident: ref_54 article-title: Graph-Based Representation of Behavior in Detection and Prediction of Daily Living Activities publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.11.007 – ident: ref_165 doi: 10.5220/0008916700210032 – ident: ref_168 doi: 10.3390/s20185050 – volume: 5 start-page: e32656 year: 2021 ident: ref_61 article-title: Detecting Subclinical Social Anxiety Using Physiological Data from a Wrist-Worn Wearable: A Small-Scale Feasibility Study publication-title: JMIR Form. Res. doi: 10.2196/32656 – volume: 9 start-page: 137419 year: 2021 ident: ref_104 article-title: Measurement Space Partitioning for Estimation and Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3117911 – volume: 180 start-page: 107376 year: 2020 ident: ref_37 article-title: Clustering Objectives in Wireless Sensor Networks: A Survey and Research Direction Analysis publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107376 – volume: 82 start-page: 369 year: 1996 ident: ref_27 article-title: Artificial Intelligence: A Modern Approach publication-title: Artif. Intell. doi: 10.1016/0004-3702(96)00007-0 – volume: 20 start-page: 7433 year: 2020 ident: ref_60 article-title: Improving Heart Rate Estimation on Consumer Grade Wrist-Worn Device Using Post-Calibration Approach publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2979191 – volume: 98 start-page: 289 year: 2019 ident: ref_24 article-title: All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2019.02.009 – volume: 18 start-page: 1 year: 2021 ident: ref_107 article-title: SLO-Aware Inference Scheduler for Heterogeneous Processors in Edge Platforms publication-title: ACM Trans. Archit. Code Optim. doi: 10.1145/3460352 – ident: ref_137 doi: 10.3390/s20216104 – ident: ref_59 doi: 10.3390/s21082866 – volume: 37 start-page: 58 year: 2020 ident: ref_175 article-title: Self-Aware Machine Learning for Multimodal Workload Monitoring during Manual Labor on Edge Wearable Sensors publication-title: IEEE Des. Test doi: 10.1109/MDAT.2020.2977070 – ident: ref_17 doi: 10.3390/s21186303 – volume: 7 start-page: 6429 year: 2020 ident: ref_73 article-title: Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2985082 – ident: ref_78 doi: 10.3390/info7020021 – volume: 7 start-page: 74422 year: 2019 ident: ref_125 article-title: Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on Drnns publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921096 – volume: 9 start-page: 1282 year: 2009 ident: ref_39 article-title: A New Method for Node Fault Detection in Wireless Sensor Networks publication-title: Sensors doi: 10.3390/s90201282 – ident: ref_86 doi: 10.3390/s21093243 – ident: ref_138 doi: 10.20944/preprints202106.0561.v1 – volume: 117 start-page: 55 year: 2016 ident: ref_41 article-title: Engineering Context-Aware Systems and Applications: A Survey publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2016.02.010 – volume: 29 start-page: 1645 year: 2013 ident: ref_4 article-title: Internet of Things (IOT): A Vision, Architectural Elements, and Future Directions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 – volume: 196 start-page: 105816 year: 2020 ident: ref_57 article-title: CAVIAR: Context-Driven Active and Incremental Activity Recognition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105816 – ident: ref_116 doi: 10.3390/en11061336 – volume: 27 start-page: 177 year: 2009 ident: ref_21 article-title: Modeling and Processing Information for Context-Aware Computing: A Survey publication-title: New Gener. Comput. doi: 10.1007/s00354-009-0060-5 – ident: ref_67 doi: 10.3390/s17061382 – ident: ref_112 doi: 10.1007/978-3-319-47075-7_38 – ident: ref_154 doi: 10.1145/3277593.3277617 – volume: 13 start-page: 23 year: 2017 ident: ref_80 article-title: Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning publication-title: Annu. Rev. Clin. Psychol. doi: 10.1146/annurev-clinpsy-032816-044949 – ident: ref_183 – ident: ref_20 doi: 10.1145/302979.303126 – volume: 44 start-page: 177 year: 2020 ident: ref_117 article-title: Objective Stress Monitoring Based on Wearable Sensors in Everyday Settings publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2020.1759707 – ident: ref_52 doi: 10.1007/978-3-319-10554-3_2 – ident: ref_55 doi: 10.3390/s17061230 – volume: 594 start-page: 265 year: 2021 ident: ref_180 article-title: Swarm Learning for Decentralized and Confidential Clinical Machine Learning publication-title: Nature doi: 10.1038/s41586-021-03583-3 – volume: 19 start-page: 1403 year: 2017 ident: ref_34 article-title: Structural Health Monitoring Using Wireless Sensor Networks: A Comprehensive Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2691551 – ident: ref_182 doi: 10.3390/s19040786 – volume: 38 start-page: 201 year: 2018 ident: ref_50 article-title: Assessing Web Sites Quality: A Systematic Literature Review by Text and Association Rules Mining publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2017.06.007 – ident: ref_75 doi: 10.3390/s20010310 – volume: 27 start-page: 732 year: 2016 ident: ref_126 article-title: Smartphone-Based System for Learning and Inferring Hearing Aid Settings publication-title: J. Am. Acad. Audiol. doi: 10.3766/jaaa.15099 – ident: ref_98 doi: 10.1109/PERCOMW.2018.8480180 – volume: 192 start-page: 666 year: 2021 ident: ref_149 article-title: Leveraging Commonsense Reasoning towards a Smarter Smart Home publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.08.069 – ident: ref_63 doi: 10.3390/s20082189 – ident: ref_121 doi: 10.3390/s21227540 – ident: ref_26 doi: 10.1109/MOBIQ.2006.340411 – volume: 63 start-page: 384 year: 2015 ident: ref_89 article-title: M4CVD: Mobile Machine Learning Model for Monitoring Cardiovascular Disease publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.357 – volume: 49 start-page: 112 year: 2016 ident: ref_3 article-title: Fog Computing: Helping the Internet of Things Realize Its Potential publication-title: Computer doi: 10.1109/MC.2016.245 – ident: ref_12 doi: 10.3390/s20174779 – ident: ref_158 doi: 10.3390/s17020273 – volume: 12 start-page: 1 year: 2021 ident: ref_105 article-title: Recognizing Activities of Daily Living Using 1d Convolutional Neural Networks for Efficient Smart Homes publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 21 start-page: 85 year: 2017 ident: ref_110 article-title: Sensor-Based Gait Parameter Extraction with Deep Convolutional Neural Networks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2636456 – ident: ref_19 doi: 10.1109/IntelliSys.2015.7361247 – ident: ref_132 doi: 10.3390/s21237854 – volume: 8 start-page: 27435 year: 2020 ident: ref_157 article-title: Identification of Walker Identity Using Smartphone Sensors: An Experiment Using Ensemble Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971693 – volume: 109 start-page: 24 year: 2018 ident: ref_72 article-title: Continuous Authentication of Smartphone Users Based on Activity Pattern Recognition Using Passive Mobile Sensing publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.02.020 – volume: 9 start-page: 1 year: 2021 ident: ref_100 article-title: Animal-Borne Acoustic Data Alone Can Provide High Accuracy Classification of Activity Budgets publication-title: Anim. Biotelemetry doi: 10.1186/s40317-021-00251-1 – volume: 4 start-page: 914 year: 2018 ident: ref_92 article-title: Smart, Secure, Yet Energy-Efficient, Internet-of-Things Sensors publication-title: IEEE Trans. Multi-Scale Comput. Syst. doi: 10.1109/TMSCS.2018.2864297 – ident: ref_155 doi: 10.3390/s22010403 – ident: ref_164 doi: 10.1117/12.2600209 – volume: 30 start-page: 5573 year: 2021 ident: ref_83 article-title: Semantics-Aware Adaptive Knowledge Distillation for Sensor-to-Vision Action Recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3086590 – volume: 12 start-page: 8229 year: 2020 ident: ref_139 article-title: Saving Bandwidth and Energy of Mobile and IOT Devices with Link Predictions publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02557-z – ident: ref_142 doi: 10.3390/math9050500 – ident: ref_94 doi: 10.3390/en13071555 – ident: ref_120 doi: 10.3390/s17030529 – volume: 4 start-page: 1 year: 2017 ident: ref_143 article-title: Sensing User Context and Habits for Run-Time Energy Optimization publication-title: Eurasip J. Embed. Syst. – ident: ref_150 doi: 10.3390/informatics7030031 – ident: ref_71 doi: 10.1145/2699343.2699349 – ident: ref_5 doi: 10.3390/s20092638 – volume: 8 start-page: 61 year: 2016 ident: ref_35 article-title: An Investigative Study for Smart Home Security: Issues, Challenges and Countermeasures publication-title: Wirel. Sens. Netw. doi: 10.4236/wsn.2016.84006 – ident: ref_108 doi: 10.2196/jmir.6821 – volume: 10 start-page: 1 year: 2020 ident: ref_123 article-title: CAPHAR: Context-Aware Personalized Human Activity Recognition Using Associative Learning in Smart Environments publication-title: Hum.-Centric Comput. Inf. Sci. doi: 10.1186/s13673-020-00240-y – ident: ref_22 doi: 10.1109/CloudTech.2017.8284740 – volume: 19 start-page: 314 year: 2020 ident: ref_124 article-title: Deepwear: Adaptive Local Offloading for on-Wearable Deep Learning publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2019.2893250 – volume: 215 start-page: 106740 year: 2021 ident: ref_49 article-title: AI-Based Mobile Context-Aware Recommender Systems from an Information Management Perspective: Progress and Directions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106740 – volume: 188 start-page: 106319 year: 2021 ident: ref_161 article-title: Intelligent Thermal Image-Based Sensor for Affordable Measurement of Crop Canopy Temperature publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106319 – ident: ref_6 doi: 10.3390/s20092533 – volume: 5 start-page: 1 year: 2018 ident: ref_44 article-title: Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2773600 |
SSID | ssj0023338 |
Score | 2.408174 |
SecondaryResourceType | review_article |
Snippet | Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the... |
SourceID | doaj swepub pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5544 |
SubjectTerms | Artificial intelligence Computer centers Computer Communication Networks computer network context-awareness edge computing Global positioning systems GPS human Humans Internet of Things Review Sensors wireless communication wireless sensor network Wireless Technology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIqUggwCiUvUOH4lJ5RCq4LUcoCivUV-tpVW2bLZ0is_gl_IL2HGyW4JQhyT2JJjz8w3Y4-_IeSVt4Vx0fm88lblogadq60ARy4wwDcDiOjwNvLRsTo8ER9ncjZuuPVjWuXaJiZD7RcO98h38YBU61oX8u3FtxyrRuHp6lhC4ya5hdRlmNKlZ9cBF4f4a2AT4hDa7_Yl4BvAp5hgUKLqn_iXf2dHTjhEE-4c3CN3R4eRNsMK3yc3QveA3PmDRvAhOUoUUxDBNldmGei-Pw35HqCTp80HisXO5j0F35RipuscLBv9DLErPB8PKeD9rx8_m45--o5mI1w9IicH-1_eHeZjmYTciYqvcsB068GvcAX3Va0jV4WRVnAbtYxOag4gH3zEfDZvhDQ2SqYs0shEZWS0_DHZ6hZdeEKor1kdhClt5aPQkhkwy1UwSjldBBVZRt6sJ651I4c4lrKYtxBL4By3mznOyMtN04uBOONfjfZw9jcNkOs6vVgsT9tRdVouapAj550DZymU3rBohbbaMlv6yvKM7KzXrh0VsG-vxSUjLzafQXXwPMR0YXEJbVSdwlFWZURP1nwyoOmX7vwskXAjjyDT0PP1IB2TLu_PvzbpH-zqrC255Hr7_4N8Sm6XeK-iQNqMHbK1Wl6GZ-DtrOzzJNK_AdLfA4w priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKucAB8RQpLTIIJC6BOH4lB1Sl0KogbTnAot4iP9tKqyzsbinc-BH9hf0lzCTZiKAeOSYeS8l4xt-MPP6GkBfeZsZF59PCW5WKEnyutAICucAA3wwgosPbyJMjdTgVH4_l8QZZ99jsFbi8NrXDflLTxez1z--_dsHh32LGCSn7m2UOuAWwKG6QmwBIGv1zIobDhJxDGtaRCo3FR1DUMvaPwsx_iyRHVKIt_BzcJXf6uJFW3ULfIxuhuU9u_8Um-IBMWqYpSGSrC7MIdN-fhHQPQMrT6gPFnmezJYUQlWLB6ww2OPoZUlh4PuoqwZdXvy-rhn76gbtHuHhIpgf7X94dpn23hNSJgq9SgHbrIbxwGfdFqSNXmZFWcBu1jE5qDlgffMSyNm-ENDZKpiyyyURlZLT8Edls5k14TKgvWRmEyW3ho9CSGdidi2CUcjoLKrKEvForrnY9lTh2tJjVkFKgjutBxwl5Poh-6_gzrhPaQ-0PAkh53b6YL07q3oNqLkowJ-edg5gp5N6waIW22jKb-8LyhGyv165em1GNx-palzqTCXk2DIMH4bGIacL8HGRU2WalrEiIHq356IPGI83ZacvFjXSCTMPMl511jKa8P_tatf9gV6d1ziXXW__jT5-QWzlewsiQY2ObbK4W52EHQqOVfdoa_h_rghK0 priority: 102 providerName: Scholars Portal |
Title | Context-Aware Edge-Based AI Models for Wireless Sensor Networks—An Overview |
URI | https://www.proquest.com/docview/2700779705 https://www.proquest.com/docview/2696010418 https://pubmed.ncbi.nlm.nih.gov/PMC9371178 https://urn.kb.se/resolve?urn=urn:nbn:se:bth-23537 https://doaj.org/article/349db6cdcc584e2da1fb47b7b1b2d8b3 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeIpAuzIIJC5R4_iZY7bstiDtgoCivUV-tpVWKepu6ZUfwS_klzB2sqsGIfXCxVLicWTPxP5m5PFnhF47U2gbrMuVMyJnFcy5yjBw5DwBfNOAiDaeRp7NxdEx-7Dgi2tXfcWcsI4euFPcPmUVfMU6awEqfek0CYZJIw0xpVMm8XwC5m2CqT7UohB5dTxCFIL6_VUJyAbAyQbok0j6B57l33mRA_bQhDjTB-h-7yriuuviQ3TLt4_QvWsEgo_RLJFLQexaX-kLjyfuxOdjwCWH6_c4XnO2XGHwSnHMcV3Cmoa_QNQKz_Mu-Xv1--evusUff8QFw189QcfTydeDo7y_ICG3TNF1DmhuHHgUtqBOVTJQUWhuGDVB8mC5pADv3oWYyeY049oEToSJBDJBaB4MfYp22vPWP0PYVaTyTJdGucAkJxoWZOW1EFYWXgSSobcbxTW2Zw-Pl1gsG4gioo6brY4z9Gor-r2jzPiX0DhqfysQWa7TC7B909u-ucn2Gdrd2K7pp96qiTvpUlay4Bl6ua2GSRN3QnTrzy9BRlQpECUqQ3Jg80GHhjXt2Wmi344MgkRCyzfd3zFo8u7sW53GYNanTUk5lc__x0hfoLtlPHdRRFqNXbSzvrj0e-ANrc0I3ZYLCaWaHo7QnfFk_unzKE0GKGdM_QGIFBHQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF8RWsAgKnGJmsROnBwQSmmrXdpdDrRob8G_baVVtt1sWXHjIXgOHoonYZyfLUGIW4-J7SgZz_ibicffALzWMhDKKu2nWiY-y9DmMsnQkTMh4ptARFTuNPJonAyO2YdJPFmDn91ZGJdW2a2J9UKtZ8r9I992G6ScZzyI351f-K5qlNtd7UpoNGpxYL4tMWSr3g53cX63omh_7-j9wG-rCviKpXThIwRKjTCsAqrTjFuaBCKWjErLY6tiThETjbYu_UsLFgtp4zCRjnXFJiK2kuJzb8BNBN7AWRSfXAV4FOO9hr2I0izYriLEU4Rr1sO8ujRAz5_9Oxuzx1la49z-PbjbOqgkbzTqPqyZ8gHc-YO28CGMakorjJjzpZgbsqdPjL-DaKhJPiSuuNq0IugLE5dZO8WVlHzCWBmvx03KefXr-4-8JB-_umXKLB_B8bUI8DGsl7PSPAGiszAzTEQy1ZbxOBQIA6kRSaJ4YBIbevCmE1yhWs5yVzpjWmDs4mRcrGTswatV1_OGqONfnXac9FcdHLd2fWM2PylaUy0oy1BvlVYKnTMTaRFaybjkMpSRTiX1YLObu6I1-Kq4Uk8PXq6a0VTd_osozewS-yRZHf6GqQe8N-e9F-q3lGenNem34y0MOY7carSjN2T37HNef4NcnBYRjSl_-v-XfAG3Bkejw-JwOD7YgNuRO9MROMqOTVhfzC_NM_S0FvJ5rd4Evly3Pf0GYjZAQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAcEL8iUMAgKnGJNo7tODkglLJddSldkKBob6l_20qrbNlsWXHjIXgaHocnYZyfLUGIW4-J7SgZz_ibicffIPTCqEhqp02YGpWELAObyxQDR84SwDcJiKj9aeSDSbJ3yN5O-XQD_ezOwvi0ym5NrBdqM9f-H_nAb5AKkYmID1ybFvFhOHp99iX0FaT8TmtXTqNRkX37bQXhW_VqPIS53o7j0e6nN3thW2Eg1CylyxDgUBmAZB1Rk2bC0SSSXDGqnOBOc0EBH61xPhXMSMalcpwkyjOwuERypyg89wq6Kign3sbE9CLYoxD7NUxGlGbRoIoBWwG6WQ__6jIBPd_278zMHn9pjXmjW-hm66zivNGu22jDlnfQjT8oDO-ig5reCqLnfCUXFu-aYxvuADIanI-xL7Q2qzD4xdhn2c5gVcUfIW6G60mTfl79-v4jL_H7r37Jsqt76PBSBHgfbZbz0j5A2GQks0zGKjWOCU4kQEJqZZJoEdnEkQC97ARX6Ja_3JfRmBUQx3gZF2sZB-j5uutZQ9rxr047XvrrDp5nu74xXxwXrdkWlGWgw9poDY6ajY0kTjGhhCIqNqmiAdrq5q5ojb8qLlQ1QM_WzWC2fi9GlnZ-Dn2SrA6FSRog0Zvz3gv1W8rTk5oA3HMYEgEjtxvt6A0Znn7O629Qy5MippyKh_9_yafoGlhS8W482X-Ersf-eEfk2Tu20OZycW4fg9O1VE9q7cbo6LLN6Tf5hkR5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-Aware+Edge-Based+AI+Models+for+Wireless+Sensor+Networks%E2%80%94An+Overview&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ahmed+A.+Al-Saedi&rft.au=Veselka+Boeva&rft.au=Emiliano+Casalicchio&rft.au=Peter+Exner&rft.date=2022-07-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5544&rft_id=info:doi/10.3390%2Fs22155544&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_349db6cdcc584e2da1fb47b7b1b2d8b3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |