Deep Learning Guided Partitioned Shape Model for Anterior Visual Pathway Segmentation

Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural variations along the path, and low contrast with adjacent anatomic structures. Segmentation of a pathologic AVP (e.g., with low-grade glioma...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 35; no. 8; pp. 1856 - 1865
Main Authors Mansoor, Awais, Cerrolaza, Juan J., Idrees, Rabia, Biggs, Elijah, Alsharid, Mohammad A., Avery, Robert A., Linguraru, Marius George
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural variations along the path, and low contrast with adjacent anatomic structures. Segmentation of a pathologic AVP (e.g., with low-grade gliomas) poses additional challenges. In this work, we propose a fully automated partitioned shape model segmentation mechanism for AVP steered by multiple MRI sequences and deep learning features. Employing deep learning feature representation, this framework presents a joint partitioned statistical shape model able to deal with healthy and pathological AVP. The deep learning assistance is particularly useful in the poor contrast regions, such as optic tracts and pathological areas. Our main contributions are: 1) a fast and robust shape localization method using conditional space deep learning, 2) a volumetric multiscale curvelet transform-based intensity normalization method for robust statistical model, and 3) optimally partitioned statistical shape and appearance models based on regional shape variations for greater local flexibility. Our method was evaluated on MRI sequences obtained from 165 pediatric subjects. A mean Dice similarity coefficient of 0.779 was obtained for the segmentation of the entire AVP (optic nerve only =0.791) using the leave-one-out validation. Results demonstrated that the proposed localized shape and sparse appearance-based learning approach significantly outperforms current state-of-the-art segmentation approaches and is as robust as the manual segmentation.
AbstractList Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural variations along the path, and low contrast with adjacent anatomic structures. Segmentation of a pathologic AVP (e.g., with low-grade gliomas) poses additional challenges. In this work, we propose a fully automated partitioned shape model segmentation mechanism for AVP steered by multiple MRI sequences and deep learning features. Employing deep learning feature representation, this framework presents a joint partitioned statistical shape model able to deal with healthy and pathological AVP. The deep learning assistance is particularly useful in the poor contrast regions, such as optic tracts and pathological areas. Our main contributions are: 1) a fast and robust shape localization method using conditional space deep learning, 2) a volumetric multiscale curvelet transform-based intensity normalization method for robust statistical model, and 3) optimally partitioned statistical shape and appearance models based on regional shape variations for greater local flexibility. Our method was evaluated on MRI sequences obtained from 165 pediatric subjects. A mean Dice similarity coefficient of 0.779 was obtained for the segmentation of the entire AVP (optic nerve only $=0.791$ ) using the leave-one-out validation. Results demonstrated that the proposed localized shape and sparse appearance-based learning approach significantly outperforms current state-of-the-art segmentation approaches and is as robust as the manual segmentation.
Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural variations along the path, and low contrast with adjacent anatomic structures. Segmentation of a pathologic AVP (e.g., with low-grade gliomas) poses additional challenges. In this work, we propose a fully automated partitioned shape model segmentation mechanism for AVP steered by multiple MRI sequences and deep learning features. Employing deep learning feature representation, this framework presents a joint partitioned statistical shape model able to deal with healthy and pathological AVP. The deep learning assistance is particularly useful in the poor contrast regions, such as optic tracts and pathological areas. Our main contributions are: 1) a fast and robust shape localization method using conditional space deep learning, 2) a volumetric multiscale curvelet transform-based intensity normalization method for robust statistical model, and 3) optimally partitioned statistical shape and appearance models based on regional shape variations for greater local flexibility. Our method was evaluated on MRI sequences obtained from 165 pediatric subjects. A mean Dice similarity coefficient of 0.779 was obtained for the segmentation of the entire AVP (optic nerve only [Formula Omitted]) using the leave-one-out validation. Results demonstrated that the proposed localized shape and sparse appearance-based learning approach significantly outperforms current state-of-the-art segmentation approaches and is as robust as the manual segmentation.
Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural variations along the path, and low contrast with adjacent anatomic structures. Segmentation of a pathologic AVP (e.g., with low-grade gliomas) poses additional challenges. In this work, we propose a fully automated partitioned shape model segmentation mechanism for AVP steered by multiple MRI sequences and deep learning features. Employing deep learning feature representation, this framework presents a joint partitioned statistical shape model able to deal with healthy and pathological AVP. The deep learning assistance is particularly useful in the poor contrast regions, such as optic tracts and pathological areas. Our main contributions are: 1) a fast and robust shape localization method using conditional space deep learning, 2) a volumetric multiscale curvelet transform-based intensity normalization method for robust statistical model, and 3) optimally partitioned statistical shape and appearance models based on regional shape variations for greater local flexibility. Our method was evaluated on MRI sequences obtained from 165 pediatric subjects. A mean Dice similarity coefficient of 0.779 was obtained for the segmentation of the entire AVP (optic nerve only =0.791 ) using the leave-one-out validation. Results demonstrated that the proposed localized shape and sparse appearance-based learning approach significantly outperforms current state-of-the-art segmentation approaches and is as robust as the manual segmentation.Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural variations along the path, and low contrast with adjacent anatomic structures. Segmentation of a pathologic AVP (e.g., with low-grade gliomas) poses additional challenges. In this work, we propose a fully automated partitioned shape model segmentation mechanism for AVP steered by multiple MRI sequences and deep learning features. Employing deep learning feature representation, this framework presents a joint partitioned statistical shape model able to deal with healthy and pathological AVP. The deep learning assistance is particularly useful in the poor contrast regions, such as optic tracts and pathological areas. Our main contributions are: 1) a fast and robust shape localization method using conditional space deep learning, 2) a volumetric multiscale curvelet transform-based intensity normalization method for robust statistical model, and 3) optimally partitioned statistical shape and appearance models based on regional shape variations for greater local flexibility. Our method was evaluated on MRI sequences obtained from 165 pediatric subjects. A mean Dice similarity coefficient of 0.779 was obtained for the segmentation of the entire AVP (optic nerve only =0.791 ) using the leave-one-out validation. Results demonstrated that the proposed localized shape and sparse appearance-based learning approach significantly outperforms current state-of-the-art segmentation approaches and is as robust as the manual segmentation.
Author Biggs, Elijah
Idrees, Rabia
Mansoor, Awais
Linguraru, Marius George
Cerrolaza, Juan J.
Alsharid, Mohammad A.
Avery, Robert A.
Author_xml – sequence: 1
  givenname: Awais
  surname: Mansoor
  fullname: Mansoor, Awais
  email: awais.mansoor@gmail.com
  organization: Children's Nat. Health Syst., Washington, DC, USA
– sequence: 2
  givenname: Juan J.
  surname: Cerrolaza
  fullname: Cerrolaza, Juan J.
  organization: Children's Nat. Health Syst., Washington, DC, USA
– sequence: 3
  givenname: Rabia
  surname: Idrees
  fullname: Idrees, Rabia
  organization: Sch. of Med. & Health Sci., George Washington Univ., Washington, DC, USA
– sequence: 4
  givenname: Elijah
  surname: Biggs
  fullname: Biggs, Elijah
  organization: Children's Nat. Health Syst., Washington, DC, USA
– sequence: 5
  givenname: Mohammad A.
  surname: Alsharid
  fullname: Alsharid, Mohammad A.
  organization: Dept. of Comput. Sci., Khalifa Univ., Sharjah, United Arab Emirates
– sequence: 6
  givenname: Robert A.
  surname: Avery
  fullname: Avery, Robert A.
  organization: Children's Nat. Health Syst., Washington, DC, USA
– sequence: 7
  givenname: Marius George
  surname: Linguraru
  fullname: Linguraru, Marius George
  organization: Children's Nat. Health Syst., Washington, DC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26930677$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVJaDZp74VCMfTSi7czkvXhY0jTNLChhXyQm5GtcaLgtbeSTcm_j8xuc8gh5CQhnkfDvO8h2-uHnhj7hLBEhPL71cX5kgOqJZdCcs7fsQVKaXIui9s9tgCuTQ6g-AE7jPEBAAsJ5Xt2wFUpQGm9YNc_iDbZimzofX-XnU3ekcv-2DD60adhLru8txvKLgZHXdYOITvuRwo-XW58nGyX2PH-n33MLuluTf1oZ-0D229tF-nj7jxi1z9Pr05-5avfZ-cnx6u8KYwYc23qwrWFbBqpLFdcloQOhHOt1W3Z1LWyogGBElFJp3SZHtAlCeuy5ajEEfu2_XcThr8TxbFa-9hQ19mehilWaESKA6Qxb0BRalAK3oJCCYXiOKNfX6APwxT6tPNMGTQp7yJRX3bUVK_JVZvg1zY8Vv9rSABsgSYMMQZqnxGEam66Sk1Xc9PVrumkqBdK47fhj8H67jXx81b0RPQ8RxcctNDiCaMnsqA
CODEN ITMID4
CitedBy_id crossref_primary_10_3389_fpubh_2022_854688
crossref_primary_10_1088_1742_6596_1605_1_012026
crossref_primary_10_1002_mp_13264
crossref_primary_10_1007_s42979_021_00784_5
crossref_primary_10_1109_JBHI_2016_2636665
crossref_primary_10_1109_TMI_2021_3055483
crossref_primary_10_1016_j_media_2017_07_005
crossref_primary_10_1109_TBME_2019_2933508
crossref_primary_10_1038_s41598_020_69920_0
crossref_primary_10_1002_cpe_6342
crossref_primary_10_1016_j_patrec_2020_09_003
crossref_primary_10_1515_jisys_2022_0058
crossref_primary_10_2174_1573405617666210127154257
crossref_primary_10_1016_j_media_2021_102303
crossref_primary_10_1016_j_media_2023_102766
crossref_primary_10_3390_sym12040631
crossref_primary_10_1109_TNNLS_2018_2790388
crossref_primary_10_1097_IIO_0000000000000241
crossref_primary_10_3389_fnins_2023_1191999
crossref_primary_10_1093_noajnl_vdad107
crossref_primary_10_3390_app13127079
crossref_primary_10_1016_j_spen_2017_04_006
crossref_primary_10_1007_s11280_019_00764_z
crossref_primary_10_1007_s11517_024_03248_z
crossref_primary_10_1212_WNL_0000000000003402
crossref_primary_10_1007_s11633_022_1329_0
crossref_primary_10_1016_j_ultrasmedbio_2021_09_005
crossref_primary_10_1007_s11042_022_12100_1
Cites_doi 10.1118/1.2826557
10.1007/978-3-319-24553-9_2
10.1007/s00247-013-2694-1
10.1109/SPAC.2014.6982699
10.1145/1273496.1273556
10.1148/radiographics.22.5.g02se041255
10.1007/978-3-319-13909-8_14
10.1148/rg.2015140232
10.1109/ISBI.2015.7164064
10.1109/TMI.2015.2418031
10.1126/science.1136800
10.1109/TMI.2014.2337057
10.1109/ICPR.2006.399
10.1145/37402.37422
10.1109/TMI.2002.803121
10.1007/978-0-387-68979-1
10.1016/j.neuroimage.2014.12.061
10.1016/j.media.2010.09.002
10.1109/TMI.2008.2007820
10.1162/neco.2006.18.7.1527
10.1111/1467-8659.00669
10.1016/j.media.2011.05.001
10.1109/TMI.2008.2004421
10.1109/TIP.2002.1014998
10.1016/j.media.2012.02.001
10.1109/TIP.2003.813140
10.1148/rg.294085743
10.1006/cviu.1995.1004
10.3389/fnins.2014.00229
10.1016/j.media.2008.02.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2016.2535222
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Materials Research Database
MEDLINE

MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1865
ExternalDocumentID 4134869321
26930677
10_1109_TMI_2016_2535222
7420737
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: K23 EY022673
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c483t-78b4df45cc56a26259e1d03ddfa7f9cbb6a3c03151165d679b6a1d8b41b9f2163
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 15:19:57 EDT 2025
Thu Jul 10 18:42:08 EDT 2025
Fri Jul 11 01:52:46 EDT 2025
Mon Jun 30 03:05:00 EDT 2025
Wed Feb 19 02:25:22 EST 2025
Tue Jul 01 03:15:57 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-78b4df45cc56a26259e1d03ddfa7f9cbb6a3c03151165d679b6a1d8b41b9f2163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26930677
PQID 1808185094
PQPubID 85460
PageCount 10
ParticipantIDs crossref_primary_10_1109_TMI_2016_2535222
crossref_citationtrail_10_1109_TMI_2016_2535222
pubmed_primary_26930677
proquest_miscellaneous_1809046218
proquest_journals_1808185094
proquest_miscellaneous_1835580588
proquest_miscellaneous_1815706608
ieee_primary_7420737
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Aug.
2016-8-00
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref37
ref36
ref14
liu (ref17) 2009; 28
ref33
ref11
ref32
ref10
ref16
ref19
ref18
bengio (ref15) 2007; 19
panda (ref7) 2014
chan (ref1) 2007
mansoor (ref12) 2015
zhao (ref31) 2004
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
carpenter (ref38) 1983
ref27
panda (ref8) 2013
ref29
ref9
ref4
ref3
ref6
ref5
frey (ref30) 2007; 315
vincent (ref35) 2010; 11
mansoor (ref2) 2015
References_xml – ident: ref5
  doi: 10.1118/1.2826557
– year: 2013
  ident: ref8
  article-title: Robust segmentation of clinical optic nerve MRI
  publication-title: Int Soc Magn Reson Med
– ident: ref24
  doi: 10.1007/978-3-319-24553-9_2
– ident: ref36
  doi: 10.1007/s00247-013-2694-1
– ident: ref21
  doi: 10.1109/SPAC.2014.6982699
– volume: 19
  start-page: 153
  year: 2007
  ident: ref15
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1145/1273496.1273556
– year: 2015
  ident: ref2
  article-title: Automated MRI segmentation of the anterior visual pathway: Establishing quantitative criteria for OPG in children with NF1
  publication-title: Proc NF Conf Children's Tumor Found
– year: 1983
  ident: ref38
  publication-title: Human Neuroanatomy
– start-page: 90341g
  year: 2014
  ident: ref7
  article-title: Robust optic nerve segmentation on clinically acquired CT
  publication-title: Proc SPIE Med Imag
– ident: ref23
  doi: 10.1148/radiographics.22.5.g02se041255
– ident: ref10
  doi: 10.1007/978-3-319-13909-8_14
– ident: ref11
  doi: 10.1148/rg.2015140232
– ident: ref9
  doi: 10.1109/ISBI.2015.7164064
– start-page: 109
  year: 2015
  ident: ref12
  article-title: Partitioned shape modeling with on-the-fly sparse appearance learning for anterior visual pathway segmentation
  publication-title: Clinical Image-Based Procedures Translational Res in Medical Imaging
– ident: ref25
  doi: 10.1109/TMI.2015.2418031
– volume: 315
  start-page: 972
  year: 2007
  ident: ref30
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– ident: ref3
  doi: 10.1109/TMI.2014.2337057
– ident: ref33
  doi: 10.1109/ICPR.2006.399
– ident: ref28
  doi: 10.1145/37402.37422
– ident: ref32
  doi: 10.1109/TMI.2002.803121
– year: 2007
  ident: ref1
  publication-title: Optic Nerve Disorders
  doi: 10.1007/978-0-387-68979-1
– ident: ref13
  doi: 10.1016/j.neuroimage.2014.12.061
– ident: ref19
  doi: 10.1016/j.media.2010.09.002
– start-page: 1074
  year: 2004
  ident: ref31
  article-title: Shape evaluation for weighted active shape models
  publication-title: Proc Asian Conf Comput Vis
– volume: 28
  start-page: 571
  year: 2009
  ident: ref17
  article-title: Oriented active shape models
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2008.2007820
– ident: ref34
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref22
  doi: 10.1111/1467-8659.00669
– ident: ref6
  doi: 10.1016/j.media.2011.05.001
– ident: ref20
  doi: 10.1109/TMI.2008.2004421
– ident: ref26
  doi: 10.1109/TIP.2002.1014998
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref35
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref37
  doi: 10.1016/j.media.2012.02.001
– ident: ref27
  doi: 10.1109/TIP.2003.813140
– ident: ref4
  doi: 10.1148/rg.294085743
– ident: ref29
  doi: 10.1006/cviu.1995.1004
– ident: ref14
  doi: 10.3389/fnins.2014.00229
– ident: ref18
  doi: 10.1016/j.media.2008.02.001
SSID ssj0014509
Score 2.4501657
Snippet Analysis of cranial nerve systems, such as the anterior visual pathway (AVP), from MRI sequences is challenging due to their thin long architecture, structural...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1856
SubjectTerms Anterior visual pathway
Automation
Biomedical optical imaging
Humans
intensity normalization
Learning
Machine learning
Magnetic Resonance Imaging
Manuals
Models, Statistical
MRI
Nerves
Optical imaging
partitioned statistical model
Pathology
Pathways
Reproducibility of Results
Robustness
Segmentation
Shape
shape model
Similarity
sparse learning
Visual
Visual Pathways
Title Deep Learning Guided Partitioned Shape Model for Anterior Visual Pathway Segmentation
URI https://ieeexplore.ieee.org/document/7420737
https://www.ncbi.nlm.nih.gov/pubmed/26930677
https://www.proquest.com/docview/1808185094
https://www.proquest.com/docview/1809046218
https://www.proquest.com/docview/1815706608
https://www.proquest.com/docview/1835580588
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLe2PSB4gLHxcTBQkHhBondNmqbN48QYA-nQpO3Q3qp8dTsxbid2FWJ__ew2rQDBibeocVSndhS7tn8GeG1UobnPXOI0l4lU0iVaCZuYkueFKwJa3FQoPP2sjmby01l-tgFvh1qYEEKbfBbGNGxj-f7KNfSrbIJuHGpksQmb6Lh1tVpDxEDmXTqHIMTYVIk-JJnqyen0I-VwqbEgLBNBDWwEdQBURfHbbdS2V_m3pdneOIcPYNrz2iWafB03Kzt2N3_AOP7vZrbhfjQ92X6nKw9hIyx24N4vgIQ7cGcaQ-27MDsIYcki_Oo5-9DMffDsmDStRTfy7OTCLAOjZmqXDE1ftk8ymuPgy_y6wRcdo3H5w_xkJ-H8W6xwWjyC2eH703dHSezBkDhZZqukKK30tcydy5UR5CwF7tPM-9oUtXbWKpM56hRBMD4eBY8PuMdF3OpaoLH3GLYWyNRTYAIneAi5qYOV0mrL81JZlxmbiro26QgmvSwqFwHKqU_GZdU6KqmuUJAVCbKKghzBm2HFsgPnWEO7SzIY6OLnH8FeL-4qnt7rilM7kpKgBUfwapjGc0fBFLMIV01Lo6mwl5fraFDh0aZL19IQwH2al0jzpFO3gcdeS5_9nffncJd22KUj7sHW6nsTXqCJtLIv27NxC22TCZw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgE98GihXShgJC5IZDd2HCc5VkDZQlNV6i7qLfIrZdV2u2o3QvDrmclLgGDFzYrHip0Zy58zM98AvNYqybiLbGAzLgOppA0yJUygUx4nNvGIuClROD9S46n8dBqfrsHbPhfGe18Hn_khNWtfvruyFf0qG-E1Di0yuQW38dyPRZOt1fsMZNwEdAjijA2V6JySYTaa5AcUxaWGgthMBJWwEVQDUCXJb-dRXWDl31izPnP2H0DezbYJNTkfVksztD_-IHL83-U8hPst-GR7jbU8gjU_34SNXygJN-FO3jrbt2D63vsFawlYz9jHaua8Y8dkazW_kWMnX_XCMyqndsEQ_LI90tIMG19mNxW-6Bjh5Tf9nZ34s8s2x2n-GKb7HybvxkFbhSGwMo2WQZIa6UoZWxsrLei65LkLI-dKnZSZNUbpyFKtCCLycah6fMAdDuImKwXCvSewPsdJ7QAT2MG9j3XpjZQmMzxOlbGRNqEoSx0OYNTporAtRTlVyrgo6qtKmBWoyIIUWbSKHMCbfsSioedYIbtFOujl2s8_gN1O3UW7f28KTgVJUiIXHMCrvht3HrlT9NxfVbVMRqm9PF0lgyaPqC5cKUMU92Gcosx2Y279HDsrffr3ub-Eu-NJflgcHhx9fgb3aLVNcOIurC-vK_8cAdPSvKj3yU9sGgzm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Guided+Partitioned+Shape+Model+for+Anterior+Visual+Pathway+Segmentation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Mansoor%2C+Awais&rft.au=Cerrolaza%2C+Juan+J&rft.au=Idrees%2C+Rabia&rft.au=Biggs%2C+Elijah&rft.date=2016-08-01&rft.eissn=1558-254X&rft.volume=35&rft.issue=8&rft.spage=1856&rft_id=info:doi/10.1109%2FTMI.2016.2535222&rft_id=info%3Apmid%2F26930677&rft.externalDocID=26930677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon