Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory d...
Saved in:
Published in | Earth system science data Vol. 12; no. 3; pp. 2169 - 2182 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
13.09.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1866-3516 1866-3508 1866-3516 |
DOI | 10.5194/essd-12-2169-2020 |
Cover
Loading…
Abstract | There is currently no glacial lake inventory data set for
the entire high-mountain Asia (HMA) area. The definition and classification
of glacial lakes remain controversial, presenting certain obstacles to
extensive utilization of glacial lake inventory data. This study integrated
glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted
manual visual interpretation to extract glacial lake boundaries within a
10 km buffer from glacier extent using ArcGIS and ENVI software, normalized
difference water index maps, and Google Earth images. The theoretical and
methodological basis for all processing steps including glacial lake
definition and classification, lake boundary delineation, and uncertainty
assessment is discussed comprehensively in the paper. Moreover, detailed
information regarding the coding, location, perimeter and area, area error,
type, time phase, source image information, and subregions of the located
lakes is presented. It was established that 27 205 and 30 121 glacial lakes
(size 0.0054–6.46 km2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km2 in 1990 and 2018,
respectively. The data set is now available from the National Special
Environment and Function of Observation and Research Stations Shared Service
Platform (China): https://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a). |
---|---|
AbstractList | There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM + , and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054–6.46 km 2 ) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km 2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): https://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a). There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054-6.46 km.sup.2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km.sup.2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054–6.46 km2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): https://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a). There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054–6.46 km2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): 10.12072/casnw.064.2019.db (Wang et al., 2019a). |
Audience | Academic |
Author | Jiang, Zongli Liu, Qionghuan Zhang, Yanlin Guo, Xiaoyu Liu, Shiyin Wang, Xin Yang, Chengde Tang, Zhiguang Wei, Junfeng Zhang, Yong |
Author_xml | – sequence: 1 givenname: Xin surname: Wang fullname: Wang, Xin – sequence: 2 givenname: Xiaoyu surname: Guo fullname: Guo, Xiaoyu – sequence: 3 givenname: Chengde surname: Yang fullname: Yang, Chengde – sequence: 4 givenname: Qionghuan surname: Liu fullname: Liu, Qionghuan – sequence: 5 givenname: Junfeng orcidid: 0000-0001-9472-9342 surname: Wei fullname: Wei, Junfeng – sequence: 6 givenname: Yong surname: Zhang fullname: Zhang, Yong – sequence: 7 givenname: Shiyin orcidid: 0000-0002-9625-7497 surname: Liu fullname: Liu, Shiyin – sequence: 8 givenname: Yanlin surname: Zhang fullname: Zhang, Yanlin – sequence: 9 givenname: Zongli surname: Jiang fullname: Jiang, Zongli – sequence: 10 givenname: Zhiguang surname: Tang fullname: Tang, Zhiguang |
BookMark | eNp1kktv1DAUhSPUSrSFH8DOEisWKX7FsZejCspIIyFRumBl3fiRekjiYnsq-u_xMCAYROWFrevznWtdn_PmZImLa5pXBF92RPG3LmfbEtpSIlRLMcXPmjMihWhZR8TJX-fnzXnOW4wFJ3131ny5nsAEmNAEXx0Ky4NbSkyPKHp0F8a7do67pUBY0CoHqPeIKIURLBZRTCSyLoUHZ5FPcUabWs5QUJhhdPlFc-phyu7lr_2iuX3_7vPVh3bz8Xp9tdq0hktW2p7JQSln3MB6RxQIEET53nsriYPeQMeUF5Zb03EjLe6pZZJbaiQTVJiOXTTrg6-NsNX3qXZPjzpC0D8LMY0aUglmcppyzHs7CGbkwAcwgAcjGO0ZEc6RwVev1wev-xS_7Vwueht3aanPryyvcxZKyj-qEappWHwsCcwcstErwTrGpaKsqi7_o6rLujmY-ns-1PoR8OYIqJrivpcRdjnr9c2nY21_0JoUc07OaxMKlFCRBGHSBOt9LPQ-FppQvY-F3seikuQf8vfInmZ-AMyEuZw |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130967 crossref_primary_10_1017_jog_2023_34 crossref_primary_10_1038_s43247_024_01544_y crossref_primary_10_3390_rs16122057 crossref_primary_10_1002_lno_12434 crossref_primary_10_3389_feart_2022_825482 crossref_primary_10_1016_j_rcar_2025_03_005 crossref_primary_10_3390_rs14061351 crossref_primary_10_3390_rs13132429 crossref_primary_10_1016_j_earscirev_2022_103999 crossref_primary_10_3390_rs14194688 crossref_primary_10_3390_rs16050762 crossref_primary_10_1080_27669645_2023_2256034 crossref_primary_10_3390_rs16040725 crossref_primary_10_3390_atmos15020231 crossref_primary_10_1016_j_jhydrol_2023_130155 crossref_primary_10_1038_s41598_024_52558_7 crossref_primary_10_1080_19475705_2023_2266219 crossref_primary_10_5194_essd_14_79_2022 crossref_primary_10_1016_j_scitotenv_2023_169758 crossref_primary_10_1109_JSTARS_2024_3522950 crossref_primary_10_1016_j_isprsjprs_2024_08_012 crossref_primary_10_2139_ssrn_3962879 crossref_primary_10_1016_j_jhydrol_2024_132591 crossref_primary_10_1016_j_gloplacha_2024_104656 crossref_primary_10_1017_jog_2021_18 crossref_primary_10_2139_ssrn_3980483 crossref_primary_10_1016_j_geomorph_2022_108552 crossref_primary_10_1016_j_enggeo_2022_106763 crossref_primary_10_3389_feart_2021_775195 crossref_primary_10_3390_w13101376 crossref_primary_10_1080_17538947_2022_2131008 crossref_primary_10_5194_tc_17_5137_2023 crossref_primary_10_1016_j_ijdrr_2024_104476 crossref_primary_10_1016_j_rse_2022_112910 crossref_primary_10_1029_2022EF003253 crossref_primary_10_1016_j_scitotenv_2023_168770 crossref_primary_10_1016_j_jhydrol_2023_129311 crossref_primary_10_1016_j_jhydrol_2022_127973 crossref_primary_10_1016_j_scib_2023_05_035 crossref_primary_10_1109_TGRS_2023_3349281 crossref_primary_10_1109_LGRS_2021_3131717 crossref_primary_10_5194_tc_16_297_2022 crossref_primary_10_3390_rs14195034 crossref_primary_10_3390_rs16163027 crossref_primary_10_5194_essd_15_3941_2023 crossref_primary_10_1017_jog_2024_9 crossref_primary_10_1038_s41598_025_86546_2 crossref_primary_10_1080_19475705_2024_2356216 crossref_primary_10_3390_rs15112745 crossref_primary_10_1038_s41597_022_01275_9 crossref_primary_10_5194_hess_29_969_2025 crossref_primary_10_1016_j_scitotenv_2024_174701 crossref_primary_10_3390_rs17010040 crossref_primary_10_3390_rs16132307 crossref_primary_10_1007_s43832_021_00007_1 crossref_primary_10_3390_ijgi9100560 crossref_primary_10_1038_s43017_024_00554_w crossref_primary_10_3390_rs14194698 crossref_primary_10_1002_ldr_4870 crossref_primary_10_3390_rs15143604 crossref_primary_10_3390_rs15215142 crossref_primary_10_1515_geo_2022_0623 crossref_primary_10_3390_rs16071231 crossref_primary_10_3390_su16167118 crossref_primary_10_1016_j_gloplacha_2024_104675 crossref_primary_10_11922_11_6035_csd_2022_0005_zh crossref_primary_10_3390_rs13183614 crossref_primary_10_3389_fevo_2023_1296111 crossref_primary_10_3390_rs15020416 crossref_primary_10_3390_rs13224728 crossref_primary_10_1016_j_rse_2021_112853 crossref_primary_10_1038_s41597_024_03553_0 crossref_primary_10_1007_s11442_023_2076_z crossref_primary_10_1016_j_jag_2022_102911 crossref_primary_10_3389_feart_2024_1361889 crossref_primary_10_3390_rs15010214 crossref_primary_10_1080_10106049_2021_1975831 crossref_primary_10_1038_s41597_025_04809_z crossref_primary_10_1016_j_srs_2024_100157 crossref_primary_10_1016_j_gloplacha_2022_103893 crossref_primary_10_1016_j_ijdrr_2022_102914 crossref_primary_10_3390_rs14122878 crossref_primary_10_1016_j_rsase_2025_101470 crossref_primary_10_1016_j_jag_2025_104371 crossref_primary_10_1038_s41597_023_02285_x crossref_primary_10_5194_tc_15_3159_2021 crossref_primary_10_3389_feart_2021_723386 crossref_primary_10_1007_s10346_024_02358_x crossref_primary_10_1016_j_catena_2023_107614 crossref_primary_10_3390_rs16101709 crossref_primary_10_5194_nhess_22_3765_2022 crossref_primary_10_1007_s11442_024_2274_3 crossref_primary_10_1016_j_jhydrol_2025_133072 crossref_primary_10_1017_jog_2023_5 crossref_primary_10_1080_17538947_2024_2365964 crossref_primary_10_5194_tc_18_525_2024 crossref_primary_10_1007_s43538_024_00360_4 crossref_primary_10_1016_j_gloplacha_2022_103923 crossref_primary_10_3390_rs15061475 crossref_primary_10_1109_JSTARS_2023_3243771 crossref_primary_10_5194_tc_15_4145_2021 crossref_primary_10_3390_rs13245091 crossref_primary_10_1038_s43017_022_00299_4 crossref_primary_10_1016_j_scitotenv_2023_165598 crossref_primary_10_1109_LGRS_2024_3370229 crossref_primary_10_3389_feart_2022_927762 crossref_primary_10_5194_esurf_10_723_2022 crossref_primary_10_1017_jog_2024_40 crossref_primary_10_3389_fclim_2021_689823 crossref_primary_10_1080_10106049_2022_2102219 crossref_primary_10_1029_2021EF002426 crossref_primary_10_3390_rs13183757 crossref_primary_10_3389_feart_2022_1038777 crossref_primary_10_1007_s40808_022_01512_5 crossref_primary_10_1016_j_scitotenv_2021_150442 crossref_primary_10_5194_essd_13_741_2021 crossref_primary_10_1016_j_catena_2024_108280 crossref_primary_10_1029_2021EA001950 crossref_primary_10_1002_esp_5576 crossref_primary_10_1038_s44221_025_00388_w crossref_primary_10_1080_19475705_2024_2413893 crossref_primary_10_1093_nsr_nwaf041 crossref_primary_10_1016_j_jhydrol_2025_133016 crossref_primary_10_5194_essd_14_5489_2022 crossref_primary_10_1080_13658816_2024_2437811 crossref_primary_10_1007_s12524_021_01452_0 crossref_primary_10_1016_j_rse_2024_114413 crossref_primary_10_1144_jgs2021_084 crossref_primary_10_34133_2022_9821275 crossref_primary_10_1007_s10113_023_02142_y crossref_primary_10_1109_LGRS_2022_3165045 crossref_primary_10_1590_0001_37652022020210683 crossref_primary_10_1016_j_jag_2024_104329 crossref_primary_10_3390_rs14081927 crossref_primary_10_3390_w17030385 crossref_primary_10_3389_feart_2022_821798 crossref_primary_10_3389_feart_2022_934033 crossref_primary_10_1016_j_rsase_2024_101286 crossref_primary_10_1038_s41561_023_01150_1 crossref_primary_10_1016_j_geomorph_2024_109063 crossref_primary_10_3390_rs15051456 crossref_primary_10_1038_s43017_020_00124_w crossref_primary_10_1016_j_catena_2022_106734 crossref_primary_10_1038_s41467_023_44123_z crossref_primary_10_5194_tc_15_4557_2021 crossref_primary_10_1016_j_geomorph_2024_109348 crossref_primary_10_1038_s43017_025_00650_5 crossref_primary_10_1109_JSTARS_2022_3215722 |
Cites_doi | 10.1016/j.scib.2019.03.011 10.1016/j.scitotenv.2012.11.043 10.1016/j.geomorph.2016.02.009 10.1080/2150704X.2014.960606 10.1038/ngeo2999 10.1080/01431169608948714 10.1126/science.1215828 10.1007/s11069-011-9860-2 10.1139/t01-099 10.1088/1748-9326/4/4/045205 10.1007/s12665-016-5686-2 10.1016/S0277-3791(00)00090-1 10.1002/hyp.10199 10.5194/essd-2020-57 10.1007/s11629-017-4518-5 10.18307/2019.0301 10.1016/j.gloplacha.2015.05.013 10.1039/c3em00243h 10.1017/jog.2017.14 10.1016/j.scitotenv.2017.03.068 10.1080/10095020.2015.1017911 10.1007/s12665-016-5498-4 10.1016/j.rse.2003.11.007 10.1088/1748-9326/8/4/044052 10.1659/MRD-JOURNAL-D-11-00044.1 10.1016/j.isprsjprs.2014.03.001 10.5194/tc-8-359-2014 10.5194/tc-9-557-2015 10.3189/2014JoG13J176 10.1016/j.gloplacha.2012.04.001 10.1038/nature11324 10.1016/j.gloplacha.2018.03.003 10.1016/j.gloplacha.2010.10.003 10.1007/s11442-018-1467-z 10.1016/j.jhydrol.2016.06.054 10.1080/17445647.2018.1445561 10.1126/science.1234532 10.1038/nclimate1580 10.1017/jog.2019.13 10.1126/science.aat4981 10.1016/S0034-4257(03)00134-2 10.1080/01431161.2016.1201228 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2 10.1016/j.rse.2016.11.008 10.1016/j.rse.2017.12.025 10.11834/jrs.20110103 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/essd-12-2169-2020 |
DatabaseName | CrossRef Gale In Context: Science Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Continental Europe Database (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1866-3516 |
EndPage | 2182 |
ExternalDocumentID | oai_doaj_org_article_24047db63c8b4baca0bc6327316ee1bf A635348923 10_5194_essd_12_2169_2020 |
GeographicLocations | Tibetan Plateau Hengduan Mountains Tibet Asia |
GeographicLocations_xml | – name: Tibetan Plateau – name: Asia – name: Tibet – name: Hengduan Mountains |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA BBORY PQGLB 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c483t-738b99eceb37e19a6a619f7ffd81ea7ca539f6d4dc54c8d072d384d2c83626c53 |
IEDL.DBID | BENPR |
ISSN | 1866-3516 1866-3508 |
IngestDate | Wed Aug 27 01:31:33 EDT 2025 Fri Jul 25 10:32:44 EDT 2025 Tue Jun 17 22:04:23 EDT 2025 Thu Jul 17 05:59:27 EDT 2025 Fri Jun 27 05:25:21 EDT 2025 Tue Jul 01 02:14:29 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-738b99eceb37e19a6a619f7ffd81ea7ca539f6d4dc54c8d072d384d2c83626c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9625-7497 0000-0001-9472-9342 |
OpenAccessLink | https://www.proquest.com/docview/2441946988?pq-origsite=%requestingapplication% |
PQID | 2441946988 |
PQPubID | 105729 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_24047db63c8b4baca0bc6327316ee1bf proquest_journals_2441946988 gale_infotracmisc_A635348923 gale_infotracacademiconefile_A635348923 gale_incontextgauss_ISR_A635348923 crossref_citationtrail_10_5194_essd_12_2169_2020 crossref_primary_10_5194_essd_12_2169_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-13 |
PublicationDateYYYYMMDD | 2020-09-13 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref1 doi: 10.1016/j.scib.2019.03.011 – ident: ref47 doi: 10.1016/j.scitotenv.2012.11.043 – ident: ref15 doi: 10.1016/j.geomorph.2016.02.009 – ident: ref11 doi: 10.1080/2150704X.2014.960606 – ident: ref5 doi: 10.1038/ngeo2999 – ident: ref28 doi: 10.1080/01431169608948714 – ident: ref4 doi: 10.1126/science.1215828 – ident: ref3 doi: 10.1007/s11069-011-9860-2 – ident: ref20 doi: 10.1139/t01-099 – ident: ref12 doi: 10.1088/1748-9326/4/4/045205 – ident: ref27 doi: 10.1007/s12665-016-5686-2 – ident: ref8 doi: 10.1016/S0277-3791(00)00090-1 – ident: ref40 doi: 10.1002/hyp.10199 – ident: ref7 doi: 10.5194/essd-2020-57 – ident: ref54 doi: 10.1007/s11629-017-4518-5 – ident: ref2 – ident: ref46 doi: 10.18307/2019.0301 – ident: ref52 doi: 10.1016/j.gloplacha.2015.05.013 – ident: ref36 doi: 10.1039/c3em00243h – ident: ref44 doi: 10.1017/jog.2017.14 – ident: ref26 – ident: ref32 doi: 10.1016/j.scitotenv.2017.03.068 – ident: ref51 doi: 10.1080/10095020.2015.1017911 – ident: ref43 doi: 10.1007/s12665-016-5498-4 – ident: ref31 doi: 10.1016/j.rse.2003.11.007 – ident: ref42 doi: 10.1088/1748-9326/8/4/044052 – ident: ref41 doi: 10.1659/MRD-JOURNAL-D-11-00044.1 – ident: ref37 doi: 10.1016/j.isprsjprs.2014.03.001 – ident: ref17 doi: 10.5194/tc-8-359-2014 – ident: ref23 doi: 10.5194/tc-9-557-2015 – ident: ref45 – ident: ref29 – ident: ref33 doi: 10.3189/2014JoG13J176 – ident: ref34 doi: 10.1016/j.gloplacha.2012.04.001 – ident: ref48 – ident: ref22 doi: 10.1038/nature11324 – ident: ref19 – ident: ref6 doi: 10.1016/j.gloplacha.2018.03.003 – ident: ref13 doi: 10.1016/j.gloplacha.2010.10.003 – ident: ref50 doi: 10.1007/s11442-018-1467-z – ident: ref38 doi: 10.1016/j.jhydrol.2016.06.054 – ident: ref35 doi: 10.1080/17445647.2018.1445561 – ident: ref14 doi: 10.1126/science.1234532 – ident: ref21 – ident: ref49 doi: 10.1038/nclimate1580 – ident: ref53 doi: 10.1017/jog.2019.13 – ident: ref9 doi: 10.1126/science.aat4981 – ident: ref16 doi: 10.1016/S0034-4257(03)00134-2 – ident: ref25 doi: 10.1080/01431161.2016.1201228 – ident: ref18 doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2 – ident: ref30 doi: 10.1016/j.rse.2016.11.008 – ident: ref39 doi: 10.1016/j.rse.2017.12.025 – ident: ref24 doi: 10.11834/jrs.20110103 – ident: ref10 doi: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2 |
SSID | ssj0064175 |
Score | 2.576775 |
Snippet | There is currently no glacial lake inventory data set for
the entire high-mountain Asia (HMA) area. The definition and classification
of glacial lakes remain... There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2169 |
SubjectTerms | Classification Cryosphere Data Datasets Earth resources technology satellites Floods Glacial lakes Glaciers Lakes Landsat Landsat satellites Mountains Regions Remote sensing Satellite imagery |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEOil9BW6bVpEKQQKIpYl63HcljxamhyaBJKT0LMs3XhLvCnk32fG9obsoemlV3sM1ufP87BH3xDyUdmmSpoHpsAvMhlsYtaYwqTO1tdB1qmXzD8-UUfn8ttFc_Fg1Bf2hA3ywANwexBxpE5BiWiCDD76KkQlahy4lDMPBb0vxLxVMTX4YCV5L7GLam5MQA4y_M-EbEXugQNJ2I9Qc2WBIzjo-0FE6oX7_-ae-5hz8Iw8HZNFOh1u8jnZyO0LsnXYD-O9fUkuD-cev3jTuf-V6axvH19c39JFoahCzK5wDgRU_nTazTycpxyCAvVtohCPDU1Avj85UdxhQr_jll-_pLMrcDDdK3J-sH_25YiNoxJYlEYsmRYmWJsjlMY6c-uVh8Ko6FKS4dnr6Bthi0oyxUZGkypdJ2FkqqNBOZrYiG2y2S7a_JpQGyKEfGWSEpXMKZpoI2TgwaJ4nSx6QqoVXC6OOuI4zmLuoJ5AhB0i7HjtEGGHCE_Ip_tLfg8iGo8Zf8ZncG-I-tf9AWCFG1nh_sWKCfmAT9ChwkWLLTQ__U3Xua-nP9wUUiwhDSS2E7I7GpUFrCD6cUcC4ICiWGuWO2uW8ArG9dMrorjRBXRwixLWp4D5b_7Hit6SJ4gOtqpwsUM2l9c3-R3kQ8vwvqf-HcSNArA priority: 102 providerName: Directory of Open Access Journals |
Title | Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images |
URI | https://www.proquest.com/docview/2441946988 https://doaj.org/article/24047db63c8b4baca0bc6327316ee1bf |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYKiRe0PgShVFZCAkJyVoSO479hFpYOxBMaDBpPFn-ylTRJaPpJu2_5y51B31gr_Elkc_n-_L5d4S8kbrMQpU7JkEvMuF0YFqpmokqals4UYQeMv_rsTw6FZ_PyrOUcOtSWeVGJ_aKOrQec-QHYIYg3pbwofeXvxl2jcLT1dRCY4cM4FcKgq_B5PD428lGF0uR91C7iOrGOPgi63NN8FrEASiSgHUJRS41yAo2_P7HMvUA_v9T073tme6Rh8lppOP1Kj8i92LzmNyf9U15b56Qn7OFxcw3Xdhfkc77MvJ2eUPbmiIaMbvAfhB23tBxN7cwTnMwDtQ2gYJdVjSAEF7HQPGmCf2CV3_tis4vQNF0T8np9PDHhyOWWiYwLxRfsYorp3X0ECJXMddWWgiQ6qqug8qjrbwtua5lEMGXwquQVUXgSoTCK4Sl8SV_RnabtonPCdXOA8-lCpJnIgavvPbgiTuNIHairoYk27DL-IQnjm0tFgbiCuSwQQ6bvDDIYYMcHpJ3t69crsE07iKe4BrcEiIOdv-gXZ6btK0M-COiCk5yr5xw1tvMeckLbMcVY-7qIXmNK2gQ6aLBUppze9V15tP3EzMGV4sLBQ7ukLxNRHULM_A23UwAPiA41hbl_hYlbEW_PbwRFJNUQWf-Cu6Lu4dfkgc4byxGyfk-2V0tr-Ir8HhWbkR21HQ2IoPx5ONkOkpCPurzB38Ao7T-QQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsFLAQCAnJahJ7HfuA0PLYB932AK1UTsavVCu2SdlsQfun-I3MZJPCHuit13gSKeN5JuPvI-SF1P0k5KljEuIiE04HppUqmMijtpkTWWgg8_cP5PhIfDruH2-R391ZGByr7GJiE6hD5fEb-S6kIei3JTzo7dkPhqxR-He1o9BYm8VeXP2Clq1-M_kA-_syy4YfD9-PWcsqwLxQfMlyrpzW0UMXmcdUW2mhhyjyoggqjTb3ts91IYMIvi-8CkmeBa5EyLxC5BaPLBEQ8q8JzjV6lBqOusgvRdoA-yKGHONQ-az_okKNJHYhbAWcgshSqcEykV78nzzY0AX8Lyk0mW54m9xqS1Q6WNvUHbIVy7vk-qihAF7dI19Hc4vf2encfo901gytV4sVrQqK2MfsFNkn7Kykg3pmYZ2mkIqoLQOFKkDRACb_MwaK51roFA8a2yWdnUJYq--ToytR5QOyXVZlfEiodh52WKogeSJi8MprD3W_0wiZJ4q8R5JOXca36OVIojE30MWghg1q2KSZQQ0b1HCPvL645WwN3XGZ8DvcgwtBRN1uLlSLE9M6sYHqR-TBSe6VE856mzgveYbkXzGmruiR57iDBnE1ShzcObHndW0mXz6bARR2XCgop3vkVStUVPAG3rbnIEAPCMW1IbmzIQmO7zeXO0MxbeCpzV83eXT58jNyY3y4PzXTycHeY3ITdYBjMCnfIdvLxXl8ArXW0j1tDJySb1ftUX8A6RM3Uw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEG1FjkBc2BFOArQQCAlp4lnaPd0HhByCE5NFbFHCqeltIivOTPDYIPNp_Ao_Q9V4JmAkcsuBq7tsaWpe1-Kufo-QJ1x2Q5dGJuAQFwNmpAukEFnAUi91bFjsKsr8vX2-fcDeHHWPlsiP5i4MjlU2MbEK1K6w-B95B9IQ9NscfqiT1WMRbzf7L8--BKgghSetjZzGHCI7fvYN2rfyxWAT3vXTOO6__vhqO6gVBgLLRDIJ0kQYKb2FjjL1kdRcQz-RpVnmROR1anU3kRl3zNkus8KFaewSwVxsBbK4WFSMgPC_LLjoxi2yvNHfe3fY5AHOoormFxnlggTqoPmZKlRMrANBzOFMRBxxCThFsfE_smIlHvCvFFHlvf4N8rPx2Hzc5WR9OjHr9vtfZJL_p0tvkut1OU578_1ziyz5_Da5slXJHc_ukE9bI41nCnSkTzwdVgP6xXhGi4wiz3NwikobepjTXjnUsE4jSLtU545CxSOog-391TuKd3joLl6q1hM6PIUQXt4lB5fyXPdIKy9yf59QaSy4ngvHk5B5Z4WVFnocI5EekGVpm4QNGJStmdpRMGSkoGND_CjEj4pihfhRiJ82eX7-lbM5TclFxhuIsHNDZBivPijGx6oOWAoqPZY6wxMrDDPa6tBYnsQodOZ9ZLI2eYz4VMghkiN0jvW0LNXgw3vVgyI2YQJahzZ5VhtlBTyB1fWdD_AD0o4tWK4tWEKQs4vLDYRVHWRL9Ru_KxcvPyJXAdhqd7C_s0quoQtw4idK1khrMp76B1BWTszDev9S8vmy8f0LnJqE8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glacial+lake+inventory+of+high-mountain+Asia+in+1990+and+2018+derived+from+Landsat+images&rft.jtitle=Earth+system+science+data&rft.au=Wang%2C+Xin&rft.au=Guo%2C+Xiaoyu&rft.au=Yang%2C+Chengde&rft.au=Liu%2C+Qionghuan&rft.date=2020-09-13&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.eissn=1866-3516&rft.volume=12&rft.issue=3&rft.spage=2169&rft.epage=2182&rft_id=info:doi/10.5194%2Fessd-12-2169-2020&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |