Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images

There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory d...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 12; no. 3; pp. 2169 - 2182
Main Authors Wang, Xin, Guo, Xiaoyu, Yang, Chengde, Liu, Qionghuan, Wei, Junfeng, Zhang, Yong, Liu, Shiyin, Zhang, Yanlin, Jiang, Zongli, Tang, Zhiguang
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 13.09.2020
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1866-3516
1866-3508
1866-3516
DOI10.5194/essd-12-2169-2020

Cover

Loading…
Abstract There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054–6.46 km2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): https://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a).
AbstractList There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM + , and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054–6.46 km 2 ) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28  km 2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): https://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a).
There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054-6.46 km.sup.2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km.sup.2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China):
There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054–6.46 km2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): https://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a).
There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted manual visual interpretation to extract glacial lake boundaries within a 10 km buffer from glacier extent using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and uncertainty assessment is discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and subregions of the located lakes is presented. It was established that 27 205 and 30 121 glacial lakes (size 0.0054–6.46 km2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km2 in 1990 and 2018, respectively. The data set is now available from the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China): 10.12072/casnw.064.2019.db (Wang et al., 2019a).
Audience Academic
Author Jiang, Zongli
Liu, Qionghuan
Zhang, Yanlin
Guo, Xiaoyu
Liu, Shiyin
Wang, Xin
Yang, Chengde
Tang, Zhiguang
Wei, Junfeng
Zhang, Yong
Author_xml – sequence: 1
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
– sequence: 2
  givenname: Xiaoyu
  surname: Guo
  fullname: Guo, Xiaoyu
– sequence: 3
  givenname: Chengde
  surname: Yang
  fullname: Yang, Chengde
– sequence: 4
  givenname: Qionghuan
  surname: Liu
  fullname: Liu, Qionghuan
– sequence: 5
  givenname: Junfeng
  orcidid: 0000-0001-9472-9342
  surname: Wei
  fullname: Wei, Junfeng
– sequence: 6
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
– sequence: 7
  givenname: Shiyin
  orcidid: 0000-0002-9625-7497
  surname: Liu
  fullname: Liu, Shiyin
– sequence: 8
  givenname: Yanlin
  surname: Zhang
  fullname: Zhang, Yanlin
– sequence: 9
  givenname: Zongli
  surname: Jiang
  fullname: Jiang, Zongli
– sequence: 10
  givenname: Zhiguang
  surname: Tang
  fullname: Tang, Zhiguang
BookMark eNp1kktv1DAUhSPUSrSFH8DOEisWKX7FsZejCspIIyFRumBl3fiRekjiYnsq-u_xMCAYROWFrevznWtdn_PmZImLa5pXBF92RPG3LmfbEtpSIlRLMcXPmjMihWhZR8TJX-fnzXnOW4wFJ3131ny5nsAEmNAEXx0Ky4NbSkyPKHp0F8a7do67pUBY0CoHqPeIKIURLBZRTCSyLoUHZ5FPcUabWs5QUJhhdPlFc-phyu7lr_2iuX3_7vPVh3bz8Xp9tdq0hktW2p7JQSln3MB6RxQIEET53nsriYPeQMeUF5Zb03EjLe6pZZJbaiQTVJiOXTTrg6-NsNX3qXZPjzpC0D8LMY0aUglmcppyzHs7CGbkwAcwgAcjGO0ZEc6RwVev1wev-xS_7Vwueht3aanPryyvcxZKyj-qEappWHwsCcwcstErwTrGpaKsqi7_o6rLujmY-ns-1PoR8OYIqJrivpcRdjnr9c2nY21_0JoUc07OaxMKlFCRBGHSBOt9LPQ-FppQvY-F3seikuQf8vfInmZ-AMyEuZw
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130967
crossref_primary_10_1017_jog_2023_34
crossref_primary_10_1038_s43247_024_01544_y
crossref_primary_10_3390_rs16122057
crossref_primary_10_1002_lno_12434
crossref_primary_10_3389_feart_2022_825482
crossref_primary_10_1016_j_rcar_2025_03_005
crossref_primary_10_3390_rs14061351
crossref_primary_10_3390_rs13132429
crossref_primary_10_1016_j_earscirev_2022_103999
crossref_primary_10_3390_rs14194688
crossref_primary_10_3390_rs16050762
crossref_primary_10_1080_27669645_2023_2256034
crossref_primary_10_3390_rs16040725
crossref_primary_10_3390_atmos15020231
crossref_primary_10_1016_j_jhydrol_2023_130155
crossref_primary_10_1038_s41598_024_52558_7
crossref_primary_10_1080_19475705_2023_2266219
crossref_primary_10_5194_essd_14_79_2022
crossref_primary_10_1016_j_scitotenv_2023_169758
crossref_primary_10_1109_JSTARS_2024_3522950
crossref_primary_10_1016_j_isprsjprs_2024_08_012
crossref_primary_10_2139_ssrn_3962879
crossref_primary_10_1016_j_jhydrol_2024_132591
crossref_primary_10_1016_j_gloplacha_2024_104656
crossref_primary_10_1017_jog_2021_18
crossref_primary_10_2139_ssrn_3980483
crossref_primary_10_1016_j_geomorph_2022_108552
crossref_primary_10_1016_j_enggeo_2022_106763
crossref_primary_10_3389_feart_2021_775195
crossref_primary_10_3390_w13101376
crossref_primary_10_1080_17538947_2022_2131008
crossref_primary_10_5194_tc_17_5137_2023
crossref_primary_10_1016_j_ijdrr_2024_104476
crossref_primary_10_1016_j_rse_2022_112910
crossref_primary_10_1029_2022EF003253
crossref_primary_10_1016_j_scitotenv_2023_168770
crossref_primary_10_1016_j_jhydrol_2023_129311
crossref_primary_10_1016_j_jhydrol_2022_127973
crossref_primary_10_1016_j_scib_2023_05_035
crossref_primary_10_1109_TGRS_2023_3349281
crossref_primary_10_1109_LGRS_2021_3131717
crossref_primary_10_5194_tc_16_297_2022
crossref_primary_10_3390_rs14195034
crossref_primary_10_3390_rs16163027
crossref_primary_10_5194_essd_15_3941_2023
crossref_primary_10_1017_jog_2024_9
crossref_primary_10_1038_s41598_025_86546_2
crossref_primary_10_1080_19475705_2024_2356216
crossref_primary_10_3390_rs15112745
crossref_primary_10_1038_s41597_022_01275_9
crossref_primary_10_5194_hess_29_969_2025
crossref_primary_10_1016_j_scitotenv_2024_174701
crossref_primary_10_3390_rs17010040
crossref_primary_10_3390_rs16132307
crossref_primary_10_1007_s43832_021_00007_1
crossref_primary_10_3390_ijgi9100560
crossref_primary_10_1038_s43017_024_00554_w
crossref_primary_10_3390_rs14194698
crossref_primary_10_1002_ldr_4870
crossref_primary_10_3390_rs15143604
crossref_primary_10_3390_rs15215142
crossref_primary_10_1515_geo_2022_0623
crossref_primary_10_3390_rs16071231
crossref_primary_10_3390_su16167118
crossref_primary_10_1016_j_gloplacha_2024_104675
crossref_primary_10_11922_11_6035_csd_2022_0005_zh
crossref_primary_10_3390_rs13183614
crossref_primary_10_3389_fevo_2023_1296111
crossref_primary_10_3390_rs15020416
crossref_primary_10_3390_rs13224728
crossref_primary_10_1016_j_rse_2021_112853
crossref_primary_10_1038_s41597_024_03553_0
crossref_primary_10_1007_s11442_023_2076_z
crossref_primary_10_1016_j_jag_2022_102911
crossref_primary_10_3389_feart_2024_1361889
crossref_primary_10_3390_rs15010214
crossref_primary_10_1080_10106049_2021_1975831
crossref_primary_10_1038_s41597_025_04809_z
crossref_primary_10_1016_j_srs_2024_100157
crossref_primary_10_1016_j_gloplacha_2022_103893
crossref_primary_10_1016_j_ijdrr_2022_102914
crossref_primary_10_3390_rs14122878
crossref_primary_10_1016_j_rsase_2025_101470
crossref_primary_10_1016_j_jag_2025_104371
crossref_primary_10_1038_s41597_023_02285_x
crossref_primary_10_5194_tc_15_3159_2021
crossref_primary_10_3389_feart_2021_723386
crossref_primary_10_1007_s10346_024_02358_x
crossref_primary_10_1016_j_catena_2023_107614
crossref_primary_10_3390_rs16101709
crossref_primary_10_5194_nhess_22_3765_2022
crossref_primary_10_1007_s11442_024_2274_3
crossref_primary_10_1016_j_jhydrol_2025_133072
crossref_primary_10_1017_jog_2023_5
crossref_primary_10_1080_17538947_2024_2365964
crossref_primary_10_5194_tc_18_525_2024
crossref_primary_10_1007_s43538_024_00360_4
crossref_primary_10_1016_j_gloplacha_2022_103923
crossref_primary_10_3390_rs15061475
crossref_primary_10_1109_JSTARS_2023_3243771
crossref_primary_10_5194_tc_15_4145_2021
crossref_primary_10_3390_rs13245091
crossref_primary_10_1038_s43017_022_00299_4
crossref_primary_10_1016_j_scitotenv_2023_165598
crossref_primary_10_1109_LGRS_2024_3370229
crossref_primary_10_3389_feart_2022_927762
crossref_primary_10_5194_esurf_10_723_2022
crossref_primary_10_1017_jog_2024_40
crossref_primary_10_3389_fclim_2021_689823
crossref_primary_10_1080_10106049_2022_2102219
crossref_primary_10_1029_2021EF002426
crossref_primary_10_3390_rs13183757
crossref_primary_10_3389_feart_2022_1038777
crossref_primary_10_1007_s40808_022_01512_5
crossref_primary_10_1016_j_scitotenv_2021_150442
crossref_primary_10_5194_essd_13_741_2021
crossref_primary_10_1016_j_catena_2024_108280
crossref_primary_10_1029_2021EA001950
crossref_primary_10_1002_esp_5576
crossref_primary_10_1038_s44221_025_00388_w
crossref_primary_10_1080_19475705_2024_2413893
crossref_primary_10_1093_nsr_nwaf041
crossref_primary_10_1016_j_jhydrol_2025_133016
crossref_primary_10_5194_essd_14_5489_2022
crossref_primary_10_1080_13658816_2024_2437811
crossref_primary_10_1007_s12524_021_01452_0
crossref_primary_10_1016_j_rse_2024_114413
crossref_primary_10_1144_jgs2021_084
crossref_primary_10_34133_2022_9821275
crossref_primary_10_1007_s10113_023_02142_y
crossref_primary_10_1109_LGRS_2022_3165045
crossref_primary_10_1590_0001_37652022020210683
crossref_primary_10_1016_j_jag_2024_104329
crossref_primary_10_3390_rs14081927
crossref_primary_10_3390_w17030385
crossref_primary_10_3389_feart_2022_821798
crossref_primary_10_3389_feart_2022_934033
crossref_primary_10_1016_j_rsase_2024_101286
crossref_primary_10_1038_s41561_023_01150_1
crossref_primary_10_1016_j_geomorph_2024_109063
crossref_primary_10_3390_rs15051456
crossref_primary_10_1038_s43017_020_00124_w
crossref_primary_10_1016_j_catena_2022_106734
crossref_primary_10_1038_s41467_023_44123_z
crossref_primary_10_5194_tc_15_4557_2021
crossref_primary_10_1016_j_geomorph_2024_109348
crossref_primary_10_1038_s43017_025_00650_5
crossref_primary_10_1109_JSTARS_2022_3215722
Cites_doi 10.1016/j.scib.2019.03.011
10.1016/j.scitotenv.2012.11.043
10.1016/j.geomorph.2016.02.009
10.1080/2150704X.2014.960606
10.1038/ngeo2999
10.1080/01431169608948714
10.1126/science.1215828
10.1007/s11069-011-9860-2
10.1139/t01-099
10.1088/1748-9326/4/4/045205
10.1007/s12665-016-5686-2
10.1016/S0277-3791(00)00090-1
10.1002/hyp.10199
10.5194/essd-2020-57
10.1007/s11629-017-4518-5
10.18307/2019.0301
10.1016/j.gloplacha.2015.05.013
10.1039/c3em00243h
10.1017/jog.2017.14
10.1016/j.scitotenv.2017.03.068
10.1080/10095020.2015.1017911
10.1007/s12665-016-5498-4
10.1016/j.rse.2003.11.007
10.1088/1748-9326/8/4/044052
10.1659/MRD-JOURNAL-D-11-00044.1
10.1016/j.isprsjprs.2014.03.001
10.5194/tc-8-359-2014
10.5194/tc-9-557-2015
10.3189/2014JoG13J176
10.1016/j.gloplacha.2012.04.001
10.1038/nature11324
10.1016/j.gloplacha.2018.03.003
10.1016/j.gloplacha.2010.10.003
10.1007/s11442-018-1467-z
10.1016/j.jhydrol.2016.06.054
10.1080/17445647.2018.1445561
10.1126/science.1234532
10.1038/nclimate1580
10.1017/jog.2019.13
10.1126/science.aat4981
10.1016/S0034-4257(03)00134-2
10.1080/01431161.2016.1201228
10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
10.1016/j.rse.2016.11.008
10.1016/j.rse.2017.12.025
10.11834/jrs.20110103
10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/essd-12-2169-2020
DatabaseName CrossRef
Gale In Context: Science
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Continental Europe Database (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-3516
EndPage 2182
ExternalDocumentID oai_doaj_org_article_24047db63c8b4baca0bc6327316ee1bf
A635348923
10_5194_essd_12_2169_2020
GeographicLocations Tibetan Plateau
Hengduan Mountains
Tibet
Asia
GeographicLocations_xml – name: Tibetan Plateau
– name: Asia
– name: Tibet
– name: Hengduan Mountains
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RKB
RNS
TR2
TUS
ZBA
BBORY
PQGLB
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c483t-738b99eceb37e19a6a619f7ffd81ea7ca539f6d4dc54c8d072d384d2c83626c53
IEDL.DBID BENPR
ISSN 1866-3516
1866-3508
IngestDate Wed Aug 27 01:31:33 EDT 2025
Fri Jul 25 10:32:44 EDT 2025
Tue Jun 17 22:04:23 EDT 2025
Thu Jul 17 05:59:27 EDT 2025
Fri Jun 27 05:25:21 EDT 2025
Tue Jul 01 02:14:29 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-738b99eceb37e19a6a619f7ffd81ea7ca539f6d4dc54c8d072d384d2c83626c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9625-7497
0000-0001-9472-9342
OpenAccessLink https://www.proquest.com/docview/2441946988?pq-origsite=%requestingapplication%
PQID 2441946988
PQPubID 105729
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_24047db63c8b4baca0bc6327316ee1bf
proquest_journals_2441946988
gale_infotracmisc_A635348923
gale_infotracacademiconefile_A635348923
gale_incontextgauss_ISR_A635348923
crossref_citationtrail_10_5194_essd_12_2169_2020
crossref_primary_10_5194_essd_12_2169_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-13
PublicationDateYYYYMMDD 2020-09-13
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-13
  day: 13
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref1
  doi: 10.1016/j.scib.2019.03.011
– ident: ref47
  doi: 10.1016/j.scitotenv.2012.11.043
– ident: ref15
  doi: 10.1016/j.geomorph.2016.02.009
– ident: ref11
  doi: 10.1080/2150704X.2014.960606
– ident: ref5
  doi: 10.1038/ngeo2999
– ident: ref28
  doi: 10.1080/01431169608948714
– ident: ref4
  doi: 10.1126/science.1215828
– ident: ref3
  doi: 10.1007/s11069-011-9860-2
– ident: ref20
  doi: 10.1139/t01-099
– ident: ref12
  doi: 10.1088/1748-9326/4/4/045205
– ident: ref27
  doi: 10.1007/s12665-016-5686-2
– ident: ref8
  doi: 10.1016/S0277-3791(00)00090-1
– ident: ref40
  doi: 10.1002/hyp.10199
– ident: ref7
  doi: 10.5194/essd-2020-57
– ident: ref54
  doi: 10.1007/s11629-017-4518-5
– ident: ref2
– ident: ref46
  doi: 10.18307/2019.0301
– ident: ref52
  doi: 10.1016/j.gloplacha.2015.05.013
– ident: ref36
  doi: 10.1039/c3em00243h
– ident: ref44
  doi: 10.1017/jog.2017.14
– ident: ref26
– ident: ref32
  doi: 10.1016/j.scitotenv.2017.03.068
– ident: ref51
  doi: 10.1080/10095020.2015.1017911
– ident: ref43
  doi: 10.1007/s12665-016-5498-4
– ident: ref31
  doi: 10.1016/j.rse.2003.11.007
– ident: ref42
  doi: 10.1088/1748-9326/8/4/044052
– ident: ref41
  doi: 10.1659/MRD-JOURNAL-D-11-00044.1
– ident: ref37
  doi: 10.1016/j.isprsjprs.2014.03.001
– ident: ref17
  doi: 10.5194/tc-8-359-2014
– ident: ref23
  doi: 10.5194/tc-9-557-2015
– ident: ref45
– ident: ref29
– ident: ref33
  doi: 10.3189/2014JoG13J176
– ident: ref34
  doi: 10.1016/j.gloplacha.2012.04.001
– ident: ref48
– ident: ref22
  doi: 10.1038/nature11324
– ident: ref19
– ident: ref6
  doi: 10.1016/j.gloplacha.2018.03.003
– ident: ref13
  doi: 10.1016/j.gloplacha.2010.10.003
– ident: ref50
  doi: 10.1007/s11442-018-1467-z
– ident: ref38
  doi: 10.1016/j.jhydrol.2016.06.054
– ident: ref35
  doi: 10.1080/17445647.2018.1445561
– ident: ref14
  doi: 10.1126/science.1234532
– ident: ref21
– ident: ref49
  doi: 10.1038/nclimate1580
– ident: ref53
  doi: 10.1017/jog.2019.13
– ident: ref9
  doi: 10.1126/science.aat4981
– ident: ref16
  doi: 10.1016/S0034-4257(03)00134-2
– ident: ref25
  doi: 10.1080/01431161.2016.1201228
– ident: ref18
  doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
– ident: ref30
  doi: 10.1016/j.rse.2016.11.008
– ident: ref39
  doi: 10.1016/j.rse.2017.12.025
– ident: ref24
  doi: 10.11834/jrs.20110103
– ident: ref10
  doi: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
SSID ssj0064175
Score 2.576775
Snippet There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain...
There is currently no glacial lake inventory data set for the entire high-mountain Asia (HMA) area. The definition and classification of glacial lakes remain...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2169
SubjectTerms Classification
Cryosphere
Data
Datasets
Earth resources technology satellites
Floods
Glacial lakes
Glaciers
Lakes
Landsat
Landsat satellites
Mountains
Regions
Remote sensing
Satellite imagery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEOil9BW6bVpEKQQKIpYl63HcljxamhyaBJKT0LMs3XhLvCnk32fG9obsoemlV3sM1ufP87BH3xDyUdmmSpoHpsAvMhlsYtaYwqTO1tdB1qmXzD8-UUfn8ttFc_Fg1Bf2hA3ywANwexBxpE5BiWiCDD76KkQlahy4lDMPBb0vxLxVMTX4YCV5L7GLam5MQA4y_M-EbEXugQNJ2I9Qc2WBIzjo-0FE6oX7_-ae-5hz8Iw8HZNFOh1u8jnZyO0LsnXYD-O9fUkuD-cev3jTuf-V6axvH19c39JFoahCzK5wDgRU_nTazTycpxyCAvVtohCPDU1Avj85UdxhQr_jll-_pLMrcDDdK3J-sH_25YiNoxJYlEYsmRYmWJsjlMY6c-uVh8Ko6FKS4dnr6Bthi0oyxUZGkypdJ2FkqqNBOZrYiG2y2S7a_JpQGyKEfGWSEpXMKZpoI2TgwaJ4nSx6QqoVXC6OOuI4zmLuoJ5AhB0i7HjtEGGHCE_Ip_tLfg8iGo8Zf8ZncG-I-tf9AWCFG1nh_sWKCfmAT9ChwkWLLTQ__U3Xua-nP9wUUiwhDSS2E7I7GpUFrCD6cUcC4ICiWGuWO2uW8ArG9dMrorjRBXRwixLWp4D5b_7Hit6SJ4gOtqpwsUM2l9c3-R3kQ8vwvqf-HcSNArA
  priority: 102
  providerName: Directory of Open Access Journals
Title Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
URI https://www.proquest.com/docview/2441946988
https://doaj.org/article/24047db63c8b4baca0bc6327316ee1bf
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYKiRe0PgShVFZCAkJyVoSO479hFpYOxBMaDBpPFn-ylTRJaPpJu2_5y51B31gr_Elkc_n-_L5d4S8kbrMQpU7JkEvMuF0YFqpmokqals4UYQeMv_rsTw6FZ_PyrOUcOtSWeVGJ_aKOrQec-QHYIYg3pbwofeXvxl2jcLT1dRCY4cM4FcKgq_B5PD428lGF0uR91C7iOrGOPgi63NN8FrEASiSgHUJRS41yAo2_P7HMvUA_v9T073tme6Rh8lppOP1Kj8i92LzmNyf9U15b56Qn7OFxcw3Xdhfkc77MvJ2eUPbmiIaMbvAfhB23tBxN7cwTnMwDtQ2gYJdVjSAEF7HQPGmCf2CV3_tis4vQNF0T8np9PDHhyOWWiYwLxRfsYorp3X0ECJXMddWWgiQ6qqug8qjrbwtua5lEMGXwquQVUXgSoTCK4Sl8SV_RnabtonPCdXOA8-lCpJnIgavvPbgiTuNIHairoYk27DL-IQnjm0tFgbiCuSwQQ6bvDDIYYMcHpJ3t69crsE07iKe4BrcEiIOdv-gXZ6btK0M-COiCk5yr5xw1tvMeckLbMcVY-7qIXmNK2gQ6aLBUppze9V15tP3EzMGV4sLBQ7ukLxNRHULM_A23UwAPiA41hbl_hYlbEW_PbwRFJNUQWf-Cu6Lu4dfkgc4byxGyfk-2V0tr-Ir8HhWbkR21HQ2IoPx5ONkOkpCPurzB38Ao7T-QQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsFLAQCAnJahJ7HfuA0PLYB932AK1UTsavVCu2SdlsQfun-I3MZJPCHuit13gSKeN5JuPvI-SF1P0k5KljEuIiE04HppUqmMijtpkTWWgg8_cP5PhIfDruH2-R391ZGByr7GJiE6hD5fEb-S6kIei3JTzo7dkPhqxR-He1o9BYm8VeXP2Clq1-M_kA-_syy4YfD9-PWcsqwLxQfMlyrpzW0UMXmcdUW2mhhyjyoggqjTb3ts91IYMIvi-8CkmeBa5EyLxC5BaPLBEQ8q8JzjV6lBqOusgvRdoA-yKGHONQ-az_okKNJHYhbAWcgshSqcEykV78nzzY0AX8Lyk0mW54m9xqS1Q6WNvUHbIVy7vk-qihAF7dI19Hc4vf2encfo901gytV4sVrQqK2MfsFNkn7Kykg3pmYZ2mkIqoLQOFKkDRACb_MwaK51roFA8a2yWdnUJYq--ToytR5QOyXVZlfEiodh52WKogeSJi8MprD3W_0wiZJ4q8R5JOXca36OVIojE30MWghg1q2KSZQQ0b1HCPvL645WwN3XGZ8DvcgwtBRN1uLlSLE9M6sYHqR-TBSe6VE856mzgveYbkXzGmruiR57iDBnE1ShzcObHndW0mXz6bARR2XCgop3vkVStUVPAG3rbnIEAPCMW1IbmzIQmO7zeXO0MxbeCpzV83eXT58jNyY3y4PzXTycHeY3ITdYBjMCnfIdvLxXl8ArXW0j1tDJySb1ftUX8A6RM3Uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEG1FjkBc2BFOArQQCAlp4lnaPd0HhByCE5NFbFHCqeltIivOTPDYIPNp_Ao_Q9V4JmAkcsuBq7tsaWpe1-Kufo-QJ1x2Q5dGJuAQFwNmpAukEFnAUi91bFjsKsr8vX2-fcDeHHWPlsiP5i4MjlU2MbEK1K6w-B95B9IQ9NscfqiT1WMRbzf7L8--BKgghSetjZzGHCI7fvYN2rfyxWAT3vXTOO6__vhqO6gVBgLLRDIJ0kQYKb2FjjL1kdRcQz-RpVnmROR1anU3kRl3zNkus8KFaewSwVxsBbK4WFSMgPC_LLjoxi2yvNHfe3fY5AHOoormFxnlggTqoPmZKlRMrANBzOFMRBxxCThFsfE_smIlHvCvFFHlvf4N8rPx2Hzc5WR9OjHr9vtfZJL_p0tvkut1OU578_1ziyz5_Da5slXJHc_ukE9bI41nCnSkTzwdVgP6xXhGi4wiz3NwikobepjTXjnUsE4jSLtU545CxSOog-391TuKd3joLl6q1hM6PIUQXt4lB5fyXPdIKy9yf59QaSy4ngvHk5B5Z4WVFnocI5EekGVpm4QNGJStmdpRMGSkoGND_CjEj4pihfhRiJ82eX7-lbM5TclFxhuIsHNDZBivPijGx6oOWAoqPZY6wxMrDDPa6tBYnsQodOZ9ZLI2eYz4VMghkiN0jvW0LNXgw3vVgyI2YQJahzZ5VhtlBTyB1fWdD_AD0o4tWK4tWEKQs4vLDYRVHWRL9Ru_KxcvPyJXAdhqd7C_s0quoQtw4idK1khrMp76B1BWTszDev9S8vmy8f0LnJqE8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glacial+lake+inventory+of+high-mountain+Asia+in+1990+and+2018+derived+from+Landsat+images&rft.jtitle=Earth+system+science+data&rft.au=Wang%2C+Xin&rft.au=Guo%2C+Xiaoyu&rft.au=Yang%2C+Chengde&rft.au=Liu%2C+Qionghuan&rft.date=2020-09-13&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.eissn=1866-3516&rft.volume=12&rft.issue=3&rft.spage=2169&rft.epage=2182&rft_id=info:doi/10.5194%2Fessd-12-2169-2020&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon