Feroxichthys yunnanensis gen. et sp. nov. (Colobodontidae, Neopterygii), a large durophagous predator from the Middle Triassic (Anisian) Luoping Biota, eastern Yunnan, China

Neopterygii is a large group of ray-finned fishes which underwent a rapid radiation in the Middle Triassic. Until recently, 11 stem neopterygians have been recovered from the early Middle Triassic Luoping Biota in eastern Yunnan, China, and they are small to medium-sized fishes. Here, I report the d...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 8; p. e10229
Main Author Xu, Guang-Hui
Format Journal Article
LanguageEnglish
Published San Diego PeerJ. Ltd 20.10.2020
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neopterygii is a large group of ray-finned fishes which underwent a rapid radiation in the Middle Triassic. Until recently, 11 stem neopterygians have been recovered from the early Middle Triassic Luoping Biota in eastern Yunnan, China, and they are small to medium-sized fishes. Here, I report the discovery of a new stem neopterygian, Feroxichthys yunnanensis gen. et sp. nov. from the Luoping Biota, which represents the first evidence of large-sized stem neopteygians in this biota with a total length of ~340 mm (290 mm in standard length). The skull of the new taxon is exceptionally well-preserved, showing some peculiar features rarely known in other stem neopterygians, for example fusion of paired premaxillae, fusion of lacrimal with maxilla, and a fused parieto-dermopterotic with a strong posterior process. Phylogenetic studies recover Feroxichthys as a basal colobodontid, and a revised diagnosis of this family is presented. The feeding apparatus indicates that Feroxichthys might have been predominantly durophagous, resembling other colobodontids. However, the anterior peg-like teeth in the jaws of Feroxichthys are much longer and stronger than other colobodontids, enabling a more powerful initial prey capture before food was passed posteriorly to molariform teeth for crushing in the oral cavity. As a mysterious large durophagous predator previously unknown from the Luoping Biota, the new finding is important not only for understanding the early diversification of neopterygians during this age but also for investigating the trophic structure in this marine ecosystem.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.10229