Rapid Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates Directly from Clinical Samples

The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistant Mycobacterium tuberculosis . Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical microbiology Vol. 53; no. 7; pp. 2230 - 2237
Main Authors Brown, Amanda C., Bryant, Josephine M., Einer-Jensen, Katja, Holdstock, Jolyon, Houniet, Darren T., Chan, Jacqueline Z. M., Depledge, Daniel P., Nikolayevskyy, Vladyslav, Broda, Agnieszka, Stone, Madeline J., Christiansen, Mette T., Williams, Rachel, McAndrew, Michael B., Tutill, Helena, Brown, Julianne, Melzer, Mark, Rosmarin, Caryn, McHugh, Timothy D., Shorten, Robert J., Drobniewski, Francis, Speight, Graham, Breuer, Judith
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistant Mycobacterium tuberculosis . Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular tests, this has previously been achievable only from cultures of M. tuberculosis . Here we describe a method utilizing biotinylated RNA baits designed specifically for M. tuberculosis DNA to capture full M. tuberculosis genomes directly from infected sputum samples, allowing whole-genome sequencing without the requirement of culture. This was carried out on 24 smear-positive sputum samples, collected from the United Kingdom and Lithuania where a matched culture sample was available, and 2 samples that had failed to grow in culture. M. tuberculosis sequencing data were obtained directly from all 24 smear-positive culture-positive sputa, of which 20 were of high quality (>20× depth and >90% of the genome covered). Results were compared with those of conventional molecular and culture-based methods, and high levels of concordance between phenotypical resistance and predicted resistance based on genotype were observed. High-quality sequence data were obtained from one smear-positive culture-negative case. This study demonstrated for the first time the successful and accurate sequencing of M. tuberculosis genomes directly from uncultured sputa. Identification of known resistance mutations within a week of sample receipt offers the prospect for personalized rather than empirical treatment of drug-resistant tuberculosis, including the use of antimicrobial-sparing regimens, leading to improved outcomes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
A. C. Brown and J. M. Bryant contributed equally to this article.
Citation Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZM, Depledge DP, Nikolayevskyy V, Broda A, Stone MJ, Christiansen MT, Williams R, McAndrew MB, Tutill H, Brown J, Melzer M, Rosmarin C, McHugh TD, Shorten RJ, Drobniewski F, Speight G, Breuer J. 2015. Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 53:2230–2237. doi:10.1128/JCM.00486-15.
Present address: Amanda C. Brown, Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA.
ISSN:0095-1137
1098-660X
DOI:10.1128/JCM.00486-15