Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials
Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis an...
Saved in:
Published in | Chemical Society reviews Vol. 51; no. 18; pp. 7883 - 7943 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
20.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Calcium carbonate (CaCO
3
) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO
3
, the stabilization of amorphous CaCO
3
(ACC), and CaCO
3
-based nanostructured materials. In this review, the controlled synthesis of CaCO
3
is first examined, including Ca
2+
-CO
3
2−
systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO
3
have led to the development of efficient routes towards the controlled synthesis of CaCO
3
with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO
3
include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO
3
can then be further engineered
via
template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organicinorganic nanocomposites. The introduction of CaCO
3
into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO
3
-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO
3
and its expanding applications are highlighted.
Various new strategies have been recently developed to produce CaCO
3
micro-/nanoparticles with controlled size, morphology, polymorphism and crystallinity, which are then surface modified, functionalized and hierarchically assembled to yield medical, environmental, and energy materials. |
---|---|
AbstractList | Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted. Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO 3 , the stabilization of amorphous CaCO 3 (ACC), and CaCO 3 -based nanostructured materials. In this review, the controlled synthesis of CaCO 3 is first examined, including Ca 2+ -CO 3 2− systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO 3 have led to the development of efficient routes towards the controlled synthesis of CaCO 3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO 3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO 3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organicinorganic nanocomposites. The introduction of CaCO 3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO 3 -based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO 3 and its expanding applications are highlighted. Various new strategies have been recently developed to produce CaCO 3 micro-/nanoparticles with controlled size, morphology, polymorphism and crystallinity, which are then surface modified, functionalized and hierarchically assembled to yield medical, environmental, and energy materials. Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+–CO32− systems, solid–liquid–gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core–shell organic–inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted. Calcium carbonate (CaCO₃) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO₃, the stabilization of amorphous CaCO₃ (ACC), and CaCO₃-based nanostructured materials. In this review, the controlled synthesis of CaCO₃ is first examined, including Ca²⁺–CO₃²⁻ systems, solid–liquid–gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO₃ have led to the development of efficient routes towards the controlled synthesis of CaCO₃ with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO₃ include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO₃ can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core–shell organic–inorganic nanocomposites. The introduction of CaCO₃ into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO₃-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO₃ and its expanding applications are highlighted. Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO 3 , the stabilization of amorphous CaCO 3 (ACC), and CaCO 3 -based nanostructured materials. In this review, the controlled synthesis of CaCO 3 is first examined, including Ca 2+ –CO 3 2− systems, solid–liquid–gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO 3 have led to the development of efficient routes towards the controlled synthesis of CaCO 3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO 3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO 3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core–shell organic–inorganic nanocomposites. The introduction of CaCO 3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO 3 -based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO 3 and its expanding applications are highlighted. |
Author | Aymonier, Cyril Niu, Yu-Qin Kralj, Damir Falini, Giuseppe Fermani, Simona Zhou, Chun-Hui Liu, Jia-Hui |
AuthorAffiliation | Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS Ru er Boškovi Institute Department of Chemistry "Giacomo Ciamician" University of Bologna Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang Laboratory for Precipitation Processes Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology |
AuthorAffiliation_xml | – name: University of Bologna – name: Ru er Boškovi Institute – name: Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna – name: Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang – name: Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – name: Department of Chemistry "Giacomo Ciamician" – name: Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS – name: Laboratory for Precipitation Processes |
Author_xml | – sequence: 1 givenname: Yu-Qin surname: Niu fullname: Niu, Yu-Qin – sequence: 2 givenname: Jia-Hui surname: Liu fullname: Liu, Jia-Hui – sequence: 3 givenname: Cyril surname: Aymonier fullname: Aymonier, Cyril – sequence: 4 givenname: Simona surname: Fermani fullname: Fermani, Simona – sequence: 5 givenname: Damir surname: Kralj fullname: Kralj, Damir – sequence: 6 givenname: Giuseppe surname: Falini fullname: Falini, Giuseppe – sequence: 7 givenname: Chun-Hui surname: Zhou fullname: Zhou, Chun-Hui |
BackLink | https://hal.science/hal-03760034$$DView record in HAL |
BookMark | eNqNks9LHTEQx4NY8Pnj4l1Y6KUtrs1sNslub_LaauGBh9rzdjab1EheYpOsYP9683xFQXroaYbh8_0y-U72ya4PXhNyDPQMKOs_TqASpRz6XztkAa2gdSvbdpcsKKOiphSaPbKf0m3pQIpmQX4u0Sk7ryuFcQwes_5UqeBzDM7pqUoPPt_oZNNpleZoUOnKzF5lW1Bn_-CmOa3QT5VHH1KOs8pzLMJ1cYoWXTokb0wp-uhvPSA_vn65Xl7Wq6uLb8vzVa3ajuWaT2jGzowTSI26E6PCUUjBGTMgOk6bBniPHJtJKqMBNR17kB0To0DTsJ4dkPdb3xt0w120a4wPQ0A7XJ6vhs2MMikoZe09FPbdlr2L4fesUx7WNintHHod5jQ0smEAJUbxHyjlrO-4bAv69hV6G-ZYctpQwEV5DJeF-rClVAwpRW2elwU6bG44fIbl96cbXhSYvoKVzU-h54jW_VtyspXEpJ6tX74FewQIcKox |
CitedBy_id | crossref_primary_10_3390_jfb14020098 crossref_primary_10_1016_j_jece_2024_112294 crossref_primary_10_1016_j_mtsust_2023_100520 crossref_primary_10_1016_j_tim_2023_06_005 crossref_primary_10_1016_j_jclepro_2024_143716 crossref_primary_10_3390_polym16152198 crossref_primary_10_1021_acs_inorgchem_3c01648 crossref_primary_10_3390_jfb16030086 crossref_primary_10_1016_j_envres_2025_121006 crossref_primary_10_1016_j_jwpe_2024_105525 crossref_primary_10_1021_acsomega_3c06186 crossref_primary_10_1016_j_jece_2024_112607 crossref_primary_10_1016_j_jclepro_2024_144091 crossref_primary_10_1039_D4QI01715C crossref_primary_10_1016_j_fbio_2025_105905 crossref_primary_10_1016_j_snb_2024_135312 crossref_primary_10_1016_j_jobe_2024_111457 crossref_primary_10_1016_j_molliq_2023_123743 crossref_primary_10_1016_j_cej_2024_150625 crossref_primary_10_1016_j_powtec_2024_119622 crossref_primary_10_3390_ma16247665 crossref_primary_10_3390_pharmaceutics16050653 crossref_primary_10_1038_s41467_023_43608_1 crossref_primary_10_1016_j_compositesb_2024_111601 crossref_primary_10_31857_S0869813924060107 crossref_primary_10_1016_j_jcis_2024_10_100 crossref_primary_10_1021_acs_jpcc_4c07444 crossref_primary_10_1021_acsmaterialslett_4c01432 crossref_primary_10_1039_D4RA04356A crossref_primary_10_1002_cjoc_202400067 crossref_primary_10_1016_j_envres_2025_121376 crossref_primary_10_1039_D2CS00513A crossref_primary_10_1021_acs_cgd_3c01007 crossref_primary_10_1039_D3TB00165B crossref_primary_10_1002_ppsc_202400097 crossref_primary_10_1016_j_powtec_2024_119588 crossref_primary_10_1021_acsami_4c02456 crossref_primary_10_3390_w15081615 crossref_primary_10_1016_j_cej_2023_145763 crossref_primary_10_1002_smll_202406909 crossref_primary_10_1016_j_gee_2024_08_002 crossref_primary_10_1016_j_apsb_2023_08_027 crossref_primary_10_1021_acsomega_2c05386 crossref_primary_10_1021_acs_langmuir_4c03688 crossref_primary_10_1002_advs_202303090 crossref_primary_10_1016_j_carbpol_2024_122505 crossref_primary_10_1021_acs_jpclett_4c01026 crossref_primary_10_1039_D4RA03324H crossref_primary_10_1093_rb_rbae104 crossref_primary_10_62669_17270227_2024_2_21 crossref_primary_10_3390_pharmaceutics15010300 crossref_primary_10_1007_s12155_023_10576_9 crossref_primary_10_1016_j_cis_2023_102880 crossref_primary_10_1186_s12951_023_02112_w crossref_primary_10_1016_j_mtcomm_2024_109441 crossref_primary_10_1021_acssuschemeng_4c09662 crossref_primary_10_1680_jgrma_24_00010 crossref_primary_10_1016_j_microc_2023_108927 crossref_primary_10_1021_acsomega_3c09987 crossref_primary_10_1002_cplu_202400487 crossref_primary_10_1016_j_apt_2025_104850 crossref_primary_10_1016_j_jece_2025_115872 crossref_primary_10_33920_med_13_2401_02 crossref_primary_10_1016_j_jcrysgro_2024_127808 crossref_primary_10_1016_j_jobe_2025_112427 crossref_primary_10_3390_pharmaceutics15030771 crossref_primary_10_1007_s12649_023_02302_5 crossref_primary_10_1088_1742_6596_2900_1_012032 crossref_primary_10_3390_microorganisms13010064 crossref_primary_10_1016_j_jcrysgro_2025_128077 crossref_primary_10_1007_s11440_024_02425_6 crossref_primary_10_1016_j_mtbio_2025_101467 crossref_primary_10_1016_j_conbuildmat_2024_139141 crossref_primary_10_1002_crat_202300113 crossref_primary_10_1007_s10854_024_13861_1 crossref_primary_10_1021_acsenvironau_4c00076 crossref_primary_10_1016_j_jconrel_2024_03_026 crossref_primary_10_1007_s11051_025_06279_1 crossref_primary_10_1007_s00339_024_07848_2 crossref_primary_10_1016_j_mtchem_2024_102381 crossref_primary_10_1038_s41598_024_68037_y crossref_primary_10_1016_j_ijbiomac_2024_131076 crossref_primary_10_1021_acsami_4c14901 crossref_primary_10_1680_jgeot_24_01104 crossref_primary_10_1021_acsami_4c03451 crossref_primary_10_1039_D3NR05986C crossref_primary_10_2174_0113852728304647240426201554 crossref_primary_10_9719_EEG_2023_56_3_217 crossref_primary_10_1021_acssuschemeng_3c04462 crossref_primary_10_1039_D2RA07647K crossref_primary_10_1016_j_indcrop_2023_116644 crossref_primary_10_1021_acscatal_3c05900 crossref_primary_10_1016_j_psep_2023_12_015 crossref_primary_10_1016_j_jtice_2024_105727 crossref_primary_10_1021_acs_jpcc_4c02074 crossref_primary_10_1021_acs_est_4c04700 crossref_primary_10_3390_ma16103788 crossref_primary_10_1016_j_seppur_2024_131349 crossref_primary_10_1021_acs_jpcc_5c01202 crossref_primary_10_1016_j_seppur_2024_128610 crossref_primary_10_1002_adfm_202414118 crossref_primary_10_3390_molecules29153611 crossref_primary_10_1016_j_rinma_2025_100670 crossref_primary_10_1039_D3CE00738C crossref_primary_10_1002_adem_202300430 crossref_primary_10_1016_j_ijbiomac_2025_141962 crossref_primary_10_1016_j_mtcomm_2024_111149 crossref_primary_10_1039_D4SM01268B crossref_primary_10_1016_j_diamond_2023_110563 crossref_primary_10_1016_j_jconrel_2025_02_002 crossref_primary_10_15407_kataliz2024_35_107 crossref_primary_10_3390_ijms252111497 crossref_primary_10_1016_j_cemconres_2024_107572 crossref_primary_10_3390_ceramics6010034 crossref_primary_10_1021_acs_langmuir_4c04458 crossref_primary_10_1016_j_jobe_2024_111528 crossref_primary_10_1080_1536383X_2023_2224466 crossref_primary_10_1038_s41413_024_00356_2 crossref_primary_10_1016_j_ijbiomac_2024_136871 crossref_primary_10_1016_j_bioadv_2023_213563 crossref_primary_10_1016_j_conbuildmat_2024_138800 crossref_primary_10_3390_ijms25116147 crossref_primary_10_1016_j_pmatsci_2023_101168 crossref_primary_10_1557_s43578_024_01418_1 crossref_primary_10_1038_s44296_024_00005_z crossref_primary_10_1016_j_cscm_2024_e03516 crossref_primary_10_1021_acs_nanolett_3c03564 crossref_primary_10_1016_j_jclepro_2023_137845 crossref_primary_10_1016_j_indcrop_2023_117110 crossref_primary_10_1016_j_ceramint_2024_09_057 crossref_primary_10_1039_D3CP04432G crossref_primary_10_1088_2051_672X_ad7bd2 crossref_primary_10_1557_s43577_024_00673_1 crossref_primary_10_1016_j_corsci_2024_112387 crossref_primary_10_1016_j_jenvman_2024_120136 crossref_primary_10_1007_s10934_024_01731_4 crossref_primary_10_3390_su17062683 crossref_primary_10_1002_apj_3064 crossref_primary_10_1016_j_ceramint_2025_02_064 crossref_primary_10_1002_aoc_7745 crossref_primary_10_1016_j_matlet_2024_135944 crossref_primary_10_3390_molecules28176194 crossref_primary_10_1016_j_ijpharm_2024_123802 crossref_primary_10_1016_j_seppur_2024_131207 crossref_primary_10_1016_j_ces_2022_118287 crossref_primary_10_1093_jambio_lxad309 crossref_primary_10_1016_j_ijbiomac_2024_137824 crossref_primary_10_1021_acsnano_3c03523 crossref_primary_10_1039_D4CE01030B crossref_primary_10_1016_j_memsci_2024_123392 crossref_primary_10_3390_pharmaceutics15112574 crossref_primary_10_1016_j_rser_2024_115192 crossref_primary_10_1208_s12249_024_02872_0 crossref_primary_10_1039_D4MA00580E crossref_primary_10_1007_s00339_024_07367_0 crossref_primary_10_3390_pharmaceutics15041058 |
Cites_doi | 10.1016/j.cis.2014.04.001 10.1126/science.1102289 10.1016/j.colsurfa.2009.10.029 10.1039/a604512j 10.1039/C5CS00836K 10.1016/j.powtec.2015.06.064 10.1038/s41467-020-19566-3 10.1002/jbm.a.32518 10.1016/j.matlet.2007.06.063 10.1016/j.powtec.2013.04.041 10.1007/s00339-020-03913-8 10.1016/0022-0248(89)90168-1 10.1002/est2.214 10.1002/adma.200300381 10.4236/wjnse.2012.21005 10.1016/j.ejpb.2014.02.009 10.1016/0927-7757(94)03063-6 10.1016/j.msec.2020.111019 10.1039/C8TB00312B 10.1016/j.msec.2008.11.009 10.1211/jpp.59.11.0004 10.1016/j.fuproc.2019.106247 10.1039/b717057b 10.1021/jacs.7b11036 10.1007/s11998-013-9547-6 10.1016/j.msea.2006.08.105 10.1002/adma.201706407 10.1002/adfm.202201394 10.1016/j.apt.2016.12.018 10.1016/j.proeps.2014.08.047 10.1016/j.powtec.2006.10.046 10.1021/jp103464p 10.1007/BF02555994 10.1021/acsabm.0c01475 10.1002/crat.201300388 10.1021/cg301759t 10.1021/cg070195n 10.1021/acs.cgd.9b00758 10.1016/j.ultras.2020.106198 10.1016/j.ultsonch.2017.10.022 10.4012/dmj.2020-254 10.1039/c3cc45427d 10.1002/adfm.201201805 10.1016/j.chemosphere.2020.126903 10.1038/ncomms4169 10.1038/35090573 10.1016/j.jcrysgro.2020.125870 10.1039/C7TB03170J 10.1007/s00396-007-1696-7 10.3390/cryst9010016 10.1039/C5CE00708A 10.1016/j.apt.2014.05.017 10.1126/science.1169434 10.1016/j.chemosphere.2020.125842 10.1002/aic.10205 10.1126/science.aad1246 10.1016/j.marchem.2014.02.003 10.1021/cr8002856 10.1021/acs.est.5b01693 10.1021/acssuschemeng.6b02758 10.1002/adfm.202004153 10.1002/chem.200305313 10.1021/acsami.6b07177 10.1038/s41467-019-13422-9 10.1021/acssuschemeng.9b03935 10.3390/ijms222212588 10.1002/admi.202000819 10.1016/S0022-0248(99)00749-6 10.1016/j.cej.2016.08.079 10.1002/app.25962 10.1016/j.powtec.2018.08.066 10.1007/s11164-012-0767-7 10.1039/C0NR00589D 10.1002/ppsc.201900471 10.13189/nn.2015.030102 10.1021/acsami.8b03939 10.1021/acssuschemeng.7b04834 10.1039/C4CE02460E 10.1142/S0218625X1950224X 10.1016/j.scitotenv.2019.136171 10.1029/93WR02655 10.1002/adfm.201201994 10.1016/j.cej.2020.126597 10.1021/acs.chemmater.8b02339 10.1016/S0022-0248(03)01153-9 10.1016/j.cej.2020.124304 10.1016/j.chemosphere.2019.02.139 10.1016/j.powtec.2011.07.032 10.1021/acs.cgd.5b01635 10.1021/acsami.6b10697 10.1021/acs.cgd.6b01493 10.3390/ma14123350 10.1016/j.actbio.2018.09.045 10.1002/cphc.201402136 10.1002/adfm.201808146 10.1002/anie.201203125 10.1016/j.powtec.2012.11.015 10.1007/s10068-013-0054-4 10.3390/ma12091481 10.1016/j.jcrysgro.2015.07.009 10.1039/c2cc00135g 10.1038/pj.2012.171 10.1002/adma.200800773 10.1016/j.colsurfa.2016.02.020 10.1086/648194 10.1021/jacs.5b07931 10.2307/1543569 10.1039/C5CS00258C 10.1021/acsami.9b04936 10.1002/smll.201603100 10.1016/j.jcrysgro.2004.09.090 10.1016/0022-0248(90)90104-S 10.1073/pnas.1118085109 10.1016/j.egypro.2009.01.132 10.1002/adfm.201504891 10.1002/polb.20774 10.3390/pharmaceutics10040167 10.1002/aenm.201801090 10.1098/rsta.2009.0007 10.1021/acs.langmuir.8b03084 10.1016/j.jcrysgro.2018.01.023 10.1038/s41586-019-1645-x 10.1073/pnas.1707890114 10.1016/j.renene.2021.07.024 10.1039/C5TB01990G 10.1073/pnas.1102608108 10.1016/j.jcis.2020.06.047 10.1517/17425247.2015.1049530 10.1002/anie.201408510 10.1039/C6CS00746E 10.1021/acs.cgd.0c00061 10.1039/C6CC04522G 10.1002/adma.202006946 10.1021/cg901240n 10.1016/j.powtec.2008.06.004 10.1126/science.aaf8991 10.1007/s13146-017-0341-x 10.1016/j.jallcom.2011.11.057 10.1039/c3mb70502a 10.1021/acsami.6b02115 10.1021/acs.cgd.6b01501 10.1073/pnas.1109243109 10.4028/www.scientific.net/AMR.79-82.1967 10.1021/acsami.5b04819 10.1007/s12039-015-0849-3 10.1016/j.biomaterials.2016.07.007 10.1039/c2jm14661d 10.1016/j.cej.2018.06.142 10.1002/smll.201302745 10.1021/acs.cgd.7b01328 10.1073/pnas.0502577102 10.1021/acs.cgd.6b00514 10.1007/s10098-012-0450-0 10.1073/pnas.84.9.2732 10.1002/term.1782 10.1039/C5TB02338F 10.1016/j.msec.2019.110226 10.15541/jim20150660 10.1016/j.colsurfa.2014.07.020 10.1016/j.msec.2015.02.019 10.1002/adma.200900295 10.1016/j.biomaterials.2005.09.026 10.1088/1468-6996/12/6/064710 10.1021/jp0343640 10.1002/chem.201900691 10.1016/j.matt.2020.09.022 10.1126/sciadv.1500849 10.1021/la052419e 10.1016/j.bioactmat.2020.06.018 10.1038/nmat4193 10.1016/j.ceramint.2017.12.106 10.1021/acs.energyfuels.0c03695 10.1016/j.msec.2017.12.019 10.1021/acsami.9b18664 10.1093/rb/rbv010 10.3390/cryst11091075 10.1002/adfm.201201079 10.1515/pjct-2015-0079 10.1021/cg500829p 10.1002/jbm.820250806 10.1016/j.semcdb.2015.09.005 10.1016/j.scitotenv.2019.134270 10.1002/pat.4452 10.1016/j.colsurfa.2016.12.027 10.3390/min8050179 10.1021/nn506210a 10.1021/ie9703090 10.1002/anie.201907388 10.1016/j.msec.2016.03.009 10.1021/acsbiomaterials.0c00364 10.1021/acs.cgd.0c01282 10.1021/acs.langmuir.6b02439 10.1039/C7CE00197E 10.1021/acs.cgd.9b01720 10.1021/cm702032v 10.1038/s41427-018-0009-6 10.1021/la025918d 10.1016/j.jiec.2019.02.002 10.1002/adma.201806957 10.1002/anie.201502323 10.1016/S0022-0248(98)00002-5 10.1126/science.abg1915 10.1016/j.colsurfb.2015.05.014 10.1021/acs.cgd.7b01364 10.1002/chem.200390150 10.1021/acsbiomaterials.7b00301 10.1039/C8CC07694D 10.1039/c2jm30778b 10.1039/C4CE01598C 10.3390/polym12112668 10.14233/ajchem.2013.OH19 10.1002/anie.201003220 10.1021/acssuschemeng.8b06658 10.1002/smll.201704272 10.2113/0540057 10.1016/j.apenergy.2016.03.037 10.1039/C7CE01681F 10.1002/anie.201402890 10.1016/j.jconrel.2020.08.061 10.1016/S0025-5408(03)00174-0 10.1002/adfm.201500400 10.1039/C7CC01420A 10.1016/j.actbio.2014.05.021 10.1179/095066003225005836 10.1088/0031-9155/48/21/011 10.1042/BJ20130285 10.1002/anie.201602849 10.1021/la803541m 10.1021/la061975l 10.1021/cg801338b 10.1039/c3cc40807h 10.1002/term.2273 10.1111/jace.16593 10.1016/j.biomaterials.2021.120885 10.1002/adfm.201100749 10.1002/adfm.202007830 10.1002/smll.201501083 10.1146/annurev-matsci-070317-124327 10.1016/j.mcat.2020.110786 10.1021/cg300676b 10.1002/open.202000040 10.1103/PhysRevE.72.011605 10.1021/acsanm.9b02036 10.1021/jp308353t 10.1007/s00396-006-1535-2 10.1016/j.energy.2015.04.096 10.1016/j.msec.2005.01.005 10.1039/c1jm10770d 10.1038/35016535 10.1016/j.biomaterials.2016.09.025 10.1039/D1TB01072G 10.1126/science.1178583 10.1038/nchembio.532 10.1002/1616-3028(20020101)12:1<43::AID-ADFM43>3.0.CO;2-C 10.1038/s41565-018-0319-4 10.2138/am.2012.3983 10.1016/j.jcrysgro.2013.10.009 10.1021/acsbiomaterials.1c01280 10.1016/j.colsurfb.2016.03.020 10.1073/pnas.0806604105 10.1002/pi.4824 10.3390/cryst11030250 10.1021/cr050358j 10.1021/acs.cgd.6b00630 10.1002/adma.202104829 10.1016/j.jcis.2013.12.008 10.1039/C7TA02070H 10.1016/j.matchemphys.2020.123552 10.1021/acs.est.9b03795 10.1016/j.micromeso.2019.109736 10.1080/17425247.2019.1587408 10.1039/C9CC03749G 10.1021/acs.cgd.0c01376 10.1016/S0169-4332(02)00534-2 10.1002/cplu.201600457 10.1038/ncomms1604 10.1016/j.nantod.2011.10.005 10.2147/IJN.S193976 10.1007/s11051-019-4693-0 10.1021/bi025630n 10.1016/j.jclepro.2021.126802 10.1515/zpch-1897-2233 10.1038/s41598-020-65667-w 10.1016/j.jiec.2015.03.015 10.1007/s00396-013-2960-7 10.1016/j.powtec.2004.02.018 10.1007/s10853-006-0747-7 10.1016/j.powtec.2019.08.054 10.1002/adma.201002395 10.1016/j.colsurfa.2017.05.002 10.1039/C8CP00540K 10.3390/coatings8010043 10.1016/j.powtec.2007.05.004 10.1039/C4TA02070G 10.1039/c3tb20192a 10.1039/C9TB01148J 10.1039/c0nr00443j 10.1021/jacs.9b01883 10.1021/acs.langmuir.7b03813 10.1002/anie.202008055 10.1039/C9BM00463G 10.1146/annurev-physchem-040215-112621 10.1016/0016-7037(82)90056-4 10.1038/nmat4631 10.1016/j.jallcom.2007.09.009 10.1016/j.materresbull.2013.01.048 10.1016/j.ces.2008.04.022 10.1021/ef5005539 10.1039/C5TB01623A 10.1021/acs.chemmater.0c00975 10.1186/s12951-015-0111-7 10.1039/C3CS60451A 10.1126/science.aav0210 10.1016/j.jconrel.2015.12.051 10.1002/adma.201202733 10.3390/cryst7120355 10.1039/b710895h 10.1002/anie.200200562 10.1021/acssuschemeng.9b05128 10.1002/adfm.202000003 10.1039/C1CS15106A 10.1038/ncomms1970 10.1002/anie.201903662 10.1246/cl.2000.186 10.3390/biomimetics6030046 10.1007/s10853-021-06204-6 10.1021/acsomega.8b02445 10.1016/j.partic.2012.07.009 10.1016/j.colsurfa.2020.125583 10.1016/j.apenergy.2013.10.029 10.1039/C7CE01693J 10.1002/adma.202004647 10.1186/s12932-015-0019-z 10.1038/35081034 10.1039/C5RA15382D 10.1021/acssuschemeng.9b00563 10.1038/s41598-017-05395-w 10.1021/cr800443h 10.1039/C8TA10822F 10.1007/s10853-015-9327-z 10.1039/C6CC03010F 10.1039/C9TB00237E 10.1021/acs.cgd.0c01245 10.1016/j.biomaterials.2010.10.035 10.1021/cg5015847 10.1038/s41598-019-56023-8 10.1002/asia.201300745 10.1039/C7TB01635B 10.1021/acsami.7b09304 10.1016/j.actbio.2010.03.034 10.1016/j.jhazmat.2012.01.054 10.1002/smll.201400559 10.1126/science.1164271 10.1039/C7RA07169H 10.1016/j.colsurfb.2014.03.007 10.1039/c3mh00134b 10.1038/ncomms6967 10.1016/j.cep.2015.10.003 10.1073/pnas.2009531117 10.1039/D0TB01453B 10.1016/j.powtec.2006.08.016 10.1021/cr078259o 10.1002/adhm.201500170 10.1016/j.colsurfa.2020.126084 10.3390/cryst9040223 10.1038/ncomms15933 10.1002/slct.201901436 10.1021/la1016559 10.1016/j.apsusc.2016.03.205 10.1186/s11671-016-1338-4 10.1089/152091503763816409 10.1016/j.jcrysgro.2011.11.016 10.1039/C6TB02826H 10.1002/crat.201300178 10.1002/slct.201800444 10.1002/(SICI)1521-4095(199903)11:4<324::AID-ADMA324>3.0.CO;2-A 10.1021/acs.chemmater.6b00769 10.1002/jbm.a.36849 10.1016/j.jlumin.2018.06.041 10.1016/j.chemosphere.2020.126227 10.1126/sciadv.1500379 10.1016/j.jcou.2020.101333 10.1021/acs.cgd.8b01314 10.1039/D0CE01854F 10.1016/0142-9612(95)93584-Z 10.1016/j.pnsc.2018.09.004 10.1098/rspb.1997.0066 10.1002/adfm.201704956 10.1016/j.jhazmat.2019.05.100 10.1021/acsomega.8b02014 10.1002/pc.22947 10.1021/cg9012813 10.1038/s41545-018-0001-2 10.1016/j.supflu.2012.08.004 10.1016/j.envpol.2011.04.017 10.1039/c3ce41275j 10.1073/pnas.1700342114 10.1007/s10561-010-9208-2 10.1007/s12257-014-0898-3 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 – notice: Attribution - NonCommercial - NoDerivatives |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1039/d1cs00519g |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Medicine |
EISSN | 1460-4744 |
EndPage | 7943 |
ExternalDocumentID | oai_HAL_hal_03760034v1 10_1039_D1CS00519G d1cs00519g |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 5GY 6J9 705 70J 70~ 7~J 85S AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GNO HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B R7D RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 53G AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 M4U R56 RAOCF 2WC 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 0UZ 186 1TJ 1XC 3EH 6TJ 71~ 8WZ 9M8 A6W AAUTI ABDPE ACHDF ACKIV ACPVT ACRPL ADNMO AETEA AFFDN AFFNX AGQPQ AHGXI AI. AIDUJ ALSGL ANBJS ANLMG AQHUZ ASPBG AVWKF BBWZM CAG EEHRC EJD FA8 FEDTE HF~ HVGLF H~9 IDY J3G J3H L-8 MVM NDZJH RCLXC RIG ROL RRXOS SC5 UMC UQL VH1 VOOES WHG XJT XOL ZCG ZKB |
ID | FETCH-LOGICAL-c483t-5dafb8fbd17eae86bcab676533f1685022159a5a2d7cfe1ae0b917836b6af2393 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri May 09 12:28:44 EDT 2025 Fri Jul 11 11:28:43 EDT 2025 Fri Jul 11 02:21:14 EDT 2025 Mon Jun 30 04:28:51 EDT 2025 Tue Jul 01 04:18:48 EDT 2025 Thu Apr 24 23:07:25 EDT 2025 Wed Sep 21 13:29:58 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c483t-5dafb8fbd17eae86bcab676533f1685022159a5a2d7cfe1ae0b917836b6af2393 |
Notes | Yu Qin Niu is currently a postgraduate at Research Group for Advanced Materials & Sustainable Catalysis (AMSC), College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, China. She received her Bachelor's Degree in Chemical Engineering and Technology from Qingdao University of Science and Technology. Her research presently focuses on organic-inorganic mineral bio-composites under the supervision of Prof. Chun Hui ZHOU. She has coauthored scientific papers in respected peer-reviewed international journals. Damir Kralj is a senior scientist and a head of the Laboratory for Precipitation Processes, Ruder Boskovic Institute, Zagreb, Croatia. He studied Chemical Engineering and Chemistry at the University of Zagreb and completed his PhD in 1990. He held a research fellowship at the University of Copenhagen (Arne E. Nielsen) and a postdoc fellowship at the TU Delft (Gerda van Rosmalen). His research focus is on the kinetics and mechanisms of precipitation of slightly soluble ionic salts (calcium carbonates, oxalates, phosphates), metastable and precursor phases, interfacial interactions between mineral surfaces and dissolved species, biomineralization, pathological mineralization and industrial crystallization. Dr Chun Hui ZHOU, born and brought up in Miaoqian, Qingyang, Anhui, is Professor of Chemical Engineering and Leader of Research Group for Advanced Materials and Sustainable Catalysis (AMSC), Zhejiang University of Technology. He is Director of Qing Yang Institute for Industrial Minerals. He acts as AIPEA Councilor (2017-) and Vice President (2022-). He also serves as Principal Editor of Clay Minerals, Associate Editor of Clays and Clay Minerals, and Editorial Member of Applied Clay Science, Journal of Porous Materials and Journal of Inclusion Phenomena and Macrocyclic Chemistry. He worked as a visiting academic at the University of Queensland (2006-2007) and as a visiting professor at the University of Western Australia (2010). His R&D centers on clay minerals, limestone and dolomite and related functional materials as well as catalysts for converting biochemicals and biomass, He teaches Catalysis, Materials Science and Engineering, and Scientific Literacy. Prof. Giuseppe FALINI, PhD in Chemistry, is full professor in chemistry at the University of Bologna. Currently, his research activities are addressed to the design and preparation of innovative materials from waste marine biominerals and biopolymers and to the study of the biomineralization process in corals and echinoderms and under environmental stresses. He is co-author of about 230 scientific publications in international journals (two in Science). He also wrote 3 book chapters and is co-inventor of 3 patents. He has been awarded of grants from national institutions, companies and European Community (ERC Adv). Jia Hui Liu is currently a PhD candidate at Research Group for Advanced Materials & Sustainable Catalysis (AMSC), College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, China and under the supervision of Prof. Chun Hui Zhou. She received her Bachelor's Degree in Applied Chemistry from Anhui Jianzhu University. Her research presently focuses on colloid and surface chemistry of carbonate and clay minerals, and related hydrogels and nanostructured functional composites and their applications in healthcare, adsorption and catalysis. She has authored and coauthored several scientific papers in respected peer-reviewed international journals. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1775-0716 0000-0002-3056-3432 0000-0002-4152-4893 0000-0001-5733-9011 0000-0002-2367-3721 |
OpenAccessLink | https://hal.science/hal-03760034 |
PQID | 2715665357 |
PQPubID | 2047503 |
PageCount | 61 |
ParticipantIDs | crossref_primary_10_1039_D1CS00519G rsc_primary_d1cs00519g proquest_journals_2715665357 crossref_citationtrail_10_1039_D1CS00519G hal_primary_oai_HAL_hal_03760034v1 proquest_miscellaneous_2723110516 proquest_miscellaneous_2705398574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Chemical Society reviews |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gopi (D1CS00519G/cit137/1) 2013; 48 Yoğurtcuoğlu (D1CS00519G/cit207/1) 2011; 214 Kajiyama (D1CS00519G/cit373/1) 2014; 10 Wang (D1CS00519G/cit316/1) 2020; 3 Combes (D1CS00519G/cit225/1) 2006; 27 Ping (D1CS00519G/cit412/1) 2016; 4 Ehrlich (D1CS00519G/cit4/1) 2011; 21 Wang (D1CS00519G/cit417/1) 2018; 54 Mori (D1CS00519G/cit104/1) 2009; 29 Shi (D1CS00519G/cit2/1) 2018; 3 Kontrec (D1CS00519G/cit122/1) 2021; 11 Tran (D1CS00519G/cit251/1) 2010; 12 Parakhonskiy (D1CS00519G/cit115/1) 2015; 13 Zhu (D1CS00519G/cit387/1) 2013; 8 Milovanovic (D1CS00519G/cit413/1) 2021; 56 Pouget (D1CS00519G/cit92/1) 2009; 323 Zhu (D1CS00519G/cit311/1) 2015; 54 Svenskaya (D1CS00519G/cit76/1) 2018; 18 Li (D1CS00519G/cit197/1) 2009; 79-82 Pai (D1CS00519G/cit62/1) 2008; 10 Jimoh (D1CS00519G/cit77/1) 2017; 33 Zhu (D1CS00519G/cit363/1) 2018; 203 Bots (D1CS00519G/cit186/1) 2012; 12 Douglas (D1CS00519G/cit245/1) 2017; 11 Shi (D1CS00519G/cit282/1) 2015; 17 Guillemet (D1CS00519G/cit386/1) 2006; 22 Studart (D1CS00519G/cit308/1) 2016; 45 Buljan Meić (D1CS00519G/cit61/1) 2018; 20 Levi-Kalisman (D1CS00519G/cit368/1) 2002; 12 Zeng (D1CS00519G/cit209/1) 2020; 249 Iwase (D1CS00519G/cit304/1) 2020; 20 Lee (D1CS00519G/cit199/1) 2019; 74 Gebauer (D1CS00519G/cit183/1) 2014; 43 Akiva-Tal (D1CS00519G/cit18/1) 2011; 108 Snook (D1CS00519G/cit292/1) 2016; 4 Tan (D1CS00519G/cit191/1) 2020; 42 Brečević (D1CS00519G/cit126/1) 1989; 98 Zhao (D1CS00519G/cit309/1) 2018; 10 Lai (D1CS00519G/cit158/1) 2015; 15 Emir (D1CS00519G/cit360/1) 2020; 3 Henry (D1CS00519G/cit328/1) 2015; 49 Xue (D1CS00519G/cit73/1) 2020; 6 Tang (D1CS00519G/cit198/1) 2014; 25 Bai (D1CS00519G/cit313/1) 2015; 1 Pontoni (D1CS00519G/cit147/1) 2003; 107 Zaharia (D1CS00519G/cit333/1) 2021; 613 Pouget (D1CS00519G/cit394/1) 2009; 323 Ihli (D1CS00519G/cit381/1) 2013; 49 Kato (D1CS00519G/cit295/1) 2000 Jiang (D1CS00519G/cit356/1) 2018; 34 Wei (D1CS00519G/cit359/1) 2019; 7 Murphy (D1CS00519G/cit7/1) 2020; 3 Shi (D1CS00519G/cit52/1) 2021; 4 Viateau (D1CS00519G/cit250/1) 2016; 10 Lopez-Berganza (D1CS00519G/cit31/1) 2016; 16 Ostwald (D1CS00519G/cit98/1) 1897; 22 Sondi (D1CS00519G/cit378/1) 2008; 8 Lee (D1CS00519G/cit234/1) 2007; 42 Li (D1CS00519G/cit299/1) 2015; 350 Maleki Dizaj (D1CS00519G/cit274/1) 2015; 12 Han (D1CS00519G/cit33/1) 2019; 356 Liu (D1CS00519G/cit322/1) 2019; 378 Kralj (D1CS00519G/cit118/1) 1990; 104 Jacob (D1CS00519G/cit321/1) 2018; 1 Badnore (D1CS00519G/cit113/1) 2015; 98 Smeets (D1CS00519G/cit91/1) 2017; 114 Trofimov (D1CS00519G/cit95/1) 2018; 10 Lei (D1CS00519G/cit336/1) 2019; 53 Junaidi (D1CS00519G/cit298/1) 2007; 6 Zhang (D1CS00519G/cit320/1) 2019; 224 Walsh (D1CS00519G/cit159/1) 1999; 11 Pedrosa (D1CS00519G/cit192/1) 2016; 497 Turner (D1CS00519G/cit153/1) 1998; 37 Zhang (D1CS00519G/cit353/1) 2019; 4 Boyjoo (D1CS00519G/cit23/1) 2014; 2 Štajner (D1CS00519G/cit30/1) 2018; 486 Wang (D1CS00519G/cit72/1) 2019; 14 Li (D1CS00519G/cit241/1) 2009; 326 Guan (D1CS00519G/cit269/1) 2020; 59 Chang (D1CS00519G/cit270/1) 2020; 32 Evík (D1CS00519G/cit105/1) 2015; 284 Opitz (D1CS00519G/cit232/1) 2021; 31 Ihli (D1CS00519G/cit385/1) 2013; 23 Rugabirwa (D1CS00519G/cit110/1) 2018; 19 Parakhonskiy (D1CS00519G/cit101/1) 2014; 15 Kim (D1CS00519G/cit93/1) 2007; 23 Grassmann (D1CS00519G/cit242/1) 2003; 9 Colfen (D1CS00519G/cit181/1) 2003; 42 Zhang (D1CS00519G/cit347/1) 2020; 388 Su (D1CS00519G/cit401/1) 2013; 453 Magnabosco (D1CS00519G/cit278/1) 2015; 4 Rodriguez-Blanco (D1CS00519G/cit389/1) 2012; 536 Du (D1CS00519G/cit329/1) 2011; 159 Gower (D1CS00519G/cit398/1) 2000; 210 Ji (D1CS00519G/cit143/1) 2008; 62 Wang (D1CS00519G/cit396/1) 2013; 13 Chen (D1CS00519G/cit156/1) 2010; 353 Fermani (D1CS00519G/cit138/1) 2017; 19 Tang (D1CS00519G/cit344/1) 2021; 405 Qi (D1CS00519G/cit261/1) 2018; 47 Kim (D1CS00519G/cit203/1) 2015; 20 Zhou (D1CS00519G/cit330/1) 2018; 351 Altay (D1CS00519G/cit136/1) 2007; 178 Lee (D1CS00519G/cit54/1) 2016; 223 Deepika (D1CS00519G/cit210/1) 2013; 235 Zhang (D1CS00519G/cit275/1) 2012; 02 Seto (D1CS00519G/cit188/1) 2012; 109 Zhang (D1CS00519G/cit216/1) 2004; 141 Wu (D1CS00519G/cit286/1) 2017; 5 Mass (D1CS00519G/cit17/1) 2017; 114 Zou (D1CS00519G/cit371/1) 2020; 30 McCann (D1CS00519G/cit162/1) 2009; 1 Min (D1CS00519G/cit222/1) 2015; 9 Huang (D1CS00519G/cit56/1) 2020; 108 Liang (D1CS00519G/cit288/1) 2015; 64 Ma (D1CS00519G/cit324/1) 2012; 338 Gebauer (D1CS00519G/cit80/1) 2008; 322 Yang (D1CS00519G/cit64/1) 2016; 52 Faatz (D1CS00519G/cit379/1) 2005; 25 Cui (D1CS00519G/cit213/1) 2010; 26 Dai (D1CS00519G/cit341/1) 2020; 12 Li (D1CS00519G/cit47/1) 2018; 28 He (D1CS00519G/cit362/1) 2018; 44 Das (D1CS00519G/cit310/1) 2015; 6 Volodkin (D1CS00519G/cit35/1) 2014; 207 Rossler (D1CS00519G/cit237/1) 2020; 10 Beniash (D1CS00519G/cit407/1) 1997; 264 Kuo (D1CS00519G/cit411/1) 2018; 3 Yu (D1CS00519G/cit348/1) 2014; 28 Zou (D1CS00519G/cit403/1) 2018; 6 Zhou (D1CS00519G/cit201/1) 2006; 44 Dong (D1CS00519G/cit55/1) 2016; 110 Li (D1CS00519G/cit343/1) 2018; 34 Yang (D1CS00519G/cit8/1) 2020; 117 Gal (D1CS00519G/cit391/1) 2010; 132 Hu (D1CS00519G/cit130/1) 2015; 15 Sánchez (D1CS00519G/cit351/1) 2007; 285 Sarkar (D1CS00519G/cit96/1) 2010; 10 Morse (D1CS00519G/cit1/1) 2007; 107 Luz (D1CS00519G/cit307/1) 2009; 367 Dai (D1CS00519G/cit339/1) 2020; 12 Lam (D1CS00519G/cit369/1) 2007; 9 Zhang (D1CS00519G/cit346/1) 2020; 484 Njegić Džakula (D1CS00519G/cit87/1) 2014; 49 Xu (D1CS00519G/cit272/1) 2019; 29 Kralj (D1CS00519G/cit125/1) 1995; 96 Sommerdijk (D1CS00519G/cit28/1) 2008; 108 Lin (D1CS00519G/cit323/1) 2020; 254 Jiang (D1CS00519G/cit112/1) 2015; 5 Reilly (D1CS00519G/cit123/1) 1994; 30 Sovova (D1CS00519G/cit133/1) 2021; 9 Zhong (D1CS00519G/cit377/1) 2009; 25 Wang (D1CS00519G/cit355/1) 2016; 171 Fukui (D1CS00519G/cit160/1) 2012; 22 Kertmen (D1CS00519G/cit5/1) 2021; 22 Cheng (D1CS00519G/cit196/1) 2013; 25 Jiang (D1CS00519G/cit350/1) 2007; 104 Yu (D1CS00519G/cit354/1) 2014; 114 Beuvier (D1CS00519G/cit161/1) 2011; 21 Orme (D1CS00519G/cit172/1) 2001; 411 Gong (D1CS00519G/cit243/1) 2019; 7 Murai (D1CS00519G/cit114/1) 2016; 32 Kakisawa (D1CS00519G/cit294/1) 2011; 12 Chen (D1CS00519G/cit290/1) 2019; 14 Nagaraja (D1CS00519G/cit107/1) 2014; 418 Kosanović (D1CS00519G/cit165/1) 2017; 7 Sugawara-Narutaki (D1CS00519G/cit296/1) 2012; 45 Andreassen (D1CS00519G/cit135/1) 2004; 50 Munro (D1CS00519G/cit240/1) 2012; 48 Baylis (D1CS00519G/cit258/1) 2015; 1 Zhang (D1CS00519G/cit265/1) 2015; 7 Bahrom (D1CS00519G/cit25/1) 2019; 7 Loste (D1CS00519G/cit388/1) 2003; 254 Mao (D1CS00519G/cit314/1) 2016; 354 Jeon (D1CS00519G/cit206/1) 2018; 8 Gebauer (D1CS00519G/cit81/1) 2011; 6 Rodríguez-Sánchez (D1CS00519G/cit229/1) 2019; 102 Bolze (D1CS00519G/cit146/1) 2002; 18 Liu (D1CS00519G/cit34/1) 2021; 35 Rieger (D1CS00519G/cit185/1) 2014; 53 Ma (D1CS00519G/cit129/1) 2019; 19 Choukrani (D1CS00519G/cit221/1) 2020; 106 Demichelis (D1CS00519G/cit140/1) 2018; 48 Xiong (D1CS00519G/cit332/1) 2020; 698 Gong (D1CS00519G/cit19/1) 2012; 109 Saharay (D1CS00519G/cit406/1) 2013; 117 Buljan Meić (D1CS00519G/cit97/1) 2017; 17 Barbotteau (D1CS00519G/cit236/1) 2003; 48 Zhang (D1CS00519G/cit302/1) 2016; 45 Stepić (D1CS00519G/cit167/1) 2020; 20 Kontrec (D1CS00519G/cit163/1) 2013; 48 Chen (D1CS00519G/cit384/1) 2013; 49 Mlinarić (D1CS00519G/cit88/1) 2021; 11 Tang (D1CS00519G/cit121/1) 2008; 463 Yang (D1CS00519G/cit284/1) 2016; 63 Woldetsadik (D1CS00519G/cit254/1) 2017; 3 Njegić-Džakula (D1CS00519G/cit177/1) 2009; 9 Kurapati (D1CS00519G/cit280/1) 2013; 1 Merrikhpour (D1CS00519G/cit331/1) 2012; 14 Leukel (D1CS00519G/cit382/1) 2018; 30 Gower (D1CS00519G/cit59/1) 2008; 108 Begley (D1CS00519G/cit235/1) 1995; 16 Demichelis (D1CS00519G/cit184/1) 2011; 2 Ma (D1CS00519G/cit281/1) 2013; 15 Zou (D1CS00519G/cit144/1) 2016; 31 Shen (D1CS00519G/cit164/1) 2007; 443 Sato (D1CS00519G/cit393/1) 2011; 7 Tobler (D1CS00519G/cit68/1) 2015; 25 Addadi (D1CS00519G/cit169/1) 1987; 84 Raz (D1CS00519G/cit409/1) 2002; 203 Wan (D1CS00519G/cit268/1) 2019; 58 Liu (D1CS00519G/cit89/1) 2019; 574 Andreassen (D1CS00519G/cit134/1) 2005; 274 Zhu (D1CS00519G/cit154/1) 2015; 428 Li (D1CS00519G/cit255/1) 2020; 30 Yang (D1CS00519G/cit24/1) 2020; 114 Fujioka-Kobayashi (D1CS00519G/cit46/1) 2018; 12 Wada (D1CS00519G/cit82/1) 2018; 3 Li (D1CS00519G/cit266/1) 2016; 8 Hu (D1CS00519G/cit127/1) 2012; 97 Cai (D1CS00519G/cit37/1) 2020; 7 Vergaro (D1CS00519G/cit84/1) 2017; 28 Maleki Dizaj (D1CS00519G/cit283/1) 2019; 16 Kim (D1CS00519G/cit211/1) 2018; 536 Wysokowski (D1CS00519G/cit12/1) 2020; 6 Donnelly (D1CS00519G/cit152/1) 2017; 53 Fujita (D1CS00519G/cit224/1) 1991; 25 Kruppke (D1CS00519G/cit252/1) 2020; 108 Wen (D1CS00519G/cit327/1) 2020; 246 Racca (D1CS00519G/cit202/1) 2019; 21 Sarkar (D1CS00519G/cit194/1) 2012; 22 Ramola (D1CS00519G/cit337/1) 2021; 299 Wang (D1CS00519G/cit40/1) 2018; 14 Kim (D1CS00519G/cit53/1) 2016; 8 Gupta (D1CS00519G/cit340/1) 2017; 5 Addadi (D1CS00519G/cit365/1) 2003; 15 Xto (D1CS00519G/cit380/1) 2019; 55 Juhasz-Bortuzzo (D1CS00519G/cit86/1) 2017; 17 Hanafy (D1CS00519G/cit145/1) 2015; 4 Guo (D1CS00519G/cit345/1) 2019; 7 Zhou (D1CS00519G/cit326/1) 2017; 9 Pan (D1CS00519G/cit361/1) 2003; 38 Sharma (D1CS00519G/cit220/1) 2015; 133 Oaki (D1CS00519G/cit60/1) 2008; 20 Matijaković (D1CS00519G/cit157/1) 2019; 9 Turner, Jr. (D1CS00519G/cit259/1) 2002; 41 Zhang (D1CS00519G/cit390/1) 2022; 32 Aufort (D1CS00519G/cit14/1) 2020; 20 Enyedi (D1CS00519G/cit36/1) 2020; 10 Milovanovic (D1CS00519G/cit66/1) 2020; 579 Huang (D1CS00519G/cit71/1) 2015; 36 Mu (D1CS00519G/cit90/1) 2021; 372 Barhoum (D1CS00519G/cit195/1) 2015; 50 Xu (D1CS00519G/cit180/1) 2021; 21 Borukhin (D1CS00519G/cit171/1) 2012; 22 Myszka (D1CS00519G/cit231/1) 2019; 7 Saveleva (D1CS00519G/cit253/1) 2018; 85 Tobler (D1CS00519G/cit404/1) 2016; 16 Yaraghi (D1CS00519G/cit306/1) 2018; 69 Shi (D1CS00519G/cit74/1) 2021; 23 Yuan (D1CS00519G/cit338/1) 2018; 28 Xu (D1CS00519G/cit48/1) 2020; 9 Wang (D1CS00519G/cit420/1) 2020; 8 Dong (D1CS00519G/cit267/1) 2017; 516 Kamat (D1CS00519G/cit303/1) 2000; 405 Root (D1CS00519G/cit366/1) 1990; 47 Liu (D1CS00519G/cit416/1) 2011; 32 Ma (D1CS00519G/cit352/1) 2015; 87 Shi (D1CS00519G/cit397/1) 2017; 7 Fang (D1CS00519G/cit357/1) 2017; 5 Cui (D1CS00519G/cit217/1) 2015; 17 Zou (D1CS00519G/cit400/1) 2017; 13 Goss (D1CS00519G/cit264/1) 2007; 59 Shi (D1CS00519G/cit289/1) 2018; 6 Nassif (D1CS00519G/cit367/1) 2005; 102 Dhand (D1CS |
References_xml | – issn: 2020 publication-title: Synthetic bone graft substitutes: Calcium-based biomaterials doi: Diez-Escudero Espanol Ginebra – issn: 2000 publication-title: Kinetics and mechanisms of crystal growth in aqueous systems doi: Bre evi Kralj – volume: 207 start-page: 306 year: 2014 ident: D1CS00519G/cit35/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2014.04.001 – volume: 20 start-page: 1273 year: 2009 ident: D1CS00519G/cit249/1 publication-title: J. Mater. Sci.: Mater. Med. – volume: 306 start-page: 1161 year: 2004 ident: D1CS00519G/cit6/1 publication-title: Science doi: 10.1126/science.1102289 – volume: 353 start-page: 97 year: 2010 ident: D1CS00519G/cit156/1 publication-title: Colloid Surf., A doi: 10.1016/j.colsurfa.2009.10.029 – volume: 7 start-page: 689 year: 1997 ident: D1CS00519G/cit168/1 publication-title: J. Mater. Chem. doi: 10.1039/a604512j – volume: 45 start-page: 359 year: 2016 ident: D1CS00519G/cit308/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00836K – volume: 284 start-page: 265 year: 2015 ident: D1CS00519G/cit132/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.06.064 – volume: 11 start-page: 5792 year: 2020 ident: D1CS00519G/cit300/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19566-3 – volume: 93A start-page: 965 year: 2010 ident: D1CS00519G/cit239/1 publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.32518 – volume: 62 start-page: 751 year: 2008 ident: D1CS00519G/cit143/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.06.063 – volume: 245 start-page: 208 year: 2013 ident: D1CS00519G/cit205/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.04.041 – volume: 126 start-page: 727 year: 2020 ident: D1CS00519G/cit13/1 publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03913-8 – volume: 98 start-page: 504 year: 1989 ident: D1CS00519G/cit126/1 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(89)90168-1 – volume: 3 start-page: e214 year: 2020 ident: D1CS00519G/cit360/1 publication-title: Energy Storage doi: 10.1002/est2.214 – volume: 15 start-page: 959 year: 2003 ident: D1CS00519G/cit365/1 publication-title: Adv. Mater. doi: 10.1002/adma.200300381 – volume: 02 start-page: 25 year: 2012 ident: D1CS00519G/cit275/1 publication-title: World J. Nano Sci. Eng. doi: 10.4236/wjnse.2012.21005 – volume: 87 start-page: 548 year: 2014 ident: D1CS00519G/cit277/1 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2014.02.009 – volume: 96 start-page: 287 year: 1995 ident: D1CS00519G/cit125/1 publication-title: Colloids Surf., A doi: 10.1016/0927-7757(94)03063-6 – volume: 114 start-page: 111019 year: 2020 ident: D1CS00519G/cit24/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2020.111019 – volume: 6 start-page: 4205 year: 2018 ident: D1CS00519G/cit289/1 publication-title: J. Mat. Chem. B doi: 10.1039/C8TB00312B – volume: 29 start-page: 1409 year: 2009 ident: D1CS00519G/cit104/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2008.11.009 – volume: 59 start-page: 1485 year: 2007 ident: D1CS00519G/cit264/1 publication-title: J. Pharm. Pharmacol. doi: 10.1211/jpp.59.11.0004 – volume: 199 start-page: 106247 year: 2020 ident: D1CS00519G/cit318/1 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106247 – volume: 10 start-page: 865 year: 2008 ident: D1CS00519G/cit62/1 publication-title: CrystEngComm doi: 10.1039/b717057b – volume: 140 start-page: 2165 year: 2018 ident: D1CS00519G/cit42/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11036 – volume: 11 start-page: 273 year: 2014 ident: D1CS00519G/cit208/1 publication-title: J. Coat. Technol. Res. doi: 10.1007/s11998-013-9547-6 – volume: 443 start-page: 95 year: 2007 ident: D1CS00519G/cit164/1 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2006.08.105 – volume: 30 start-page: e1706407 year: 2018 ident: D1CS00519G/cit419/1 publication-title: Adv. Mater. doi: 10.1002/adma.201706407 – volume: 32 start-page: 2201394 year: 2022 ident: D1CS00519G/cit390/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201394 – volume: 28 start-page: 2445 year: 2017 ident: D1CS00519G/cit84/1 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.12.018 – volume: 10 start-page: 143 year: 2014 ident: D1CS00519G/cit402/1 publication-title: Procedia Earth Planet. Sci. doi: 10.1016/j.proeps.2014.08.047 – volume: 171 start-page: 192 year: 2007 ident: D1CS00519G/cit150/1 publication-title: J. Powder Technol. doi: 10.1016/j.powtec.2006.10.046 – volume: 114 start-page: 12948 year: 2010 ident: D1CS00519G/cit67/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp103464p – volume: 47 start-page: 112 year: 1990 ident: D1CS00519G/cit366/1 publication-title: Calcif. Tissue Int. doi: 10.1007/BF02555994 – volume: 284 start-page: 265 year: 2015 ident: D1CS00519G/cit105/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.06.064 – volume: 4 start-page: 1030 year: 2021 ident: D1CS00519G/cit52/1 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c01475 – volume: 49 start-page: 244 year: 2014 ident: D1CS00519G/cit87/1 publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201300388 – volume: 13 start-page: 1937 year: 2013 ident: D1CS00519G/cit396/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg301759t – volume: 8 start-page: 435 year: 2008 ident: D1CS00519G/cit378/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg070195n – volume: 19 start-page: 6972 year: 2019 ident: D1CS00519G/cit129/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00758 – volume: 108 start-page: 106198 year: 2020 ident: D1CS00519G/cit56/1 publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106198 – volume: 41 start-page: 572 year: 2018 ident: D1CS00519G/cit319/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.10.022 – volume: 40 start-page: 1202 year: 2021 ident: D1CS00519G/cit227/1 publication-title: Dent. Mater. J. doi: 10.4012/dmj.2020-254 – volume: 49 start-page: 9564 year: 2013 ident: D1CS00519G/cit384/1 publication-title: Chem. Commun. doi: 10.1039/c3cc45427d – volume: 23 start-page: 1575 year: 2013 ident: D1CS00519G/cit385/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201805 – volume: 254 start-page: 126903 year: 2020 ident: D1CS00519G/cit323/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126903 – volume: 5 start-page: 3169 year: 2014 ident: D1CS00519G/cit405/1 publication-title: Nat. Commun. doi: 10.1038/ncomms4169 – volume: 412 start-page: 819 year: 2001 ident: D1CS00519G/cit9/1 publication-title: Nature doi: 10.1038/35090573 – volume: 549 start-page: 125870 year: 2020 ident: D1CS00519G/cit100/1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2020.125870 – volume: 6 start-page: 449 year: 2018 ident: D1CS00519G/cit403/1 publication-title: J. Mat. Chem. B doi: 10.1039/C7TB03170J – volume: 285 start-page: 1377 year: 2007 ident: D1CS00519G/cit351/1 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-007-1696-7 – volume: 9 start-page: 16 year: 2019 ident: D1CS00519G/cit157/1 publication-title: Crystals doi: 10.3390/cryst9010016 – volume: 17 start-page: 4768 year: 2015 ident: D1CS00519G/cit282/1 publication-title: CrystEngComm doi: 10.1039/C5CE00708A – volume: 25 start-page: 1618 year: 2014 ident: D1CS00519G/cit198/1 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2014.05.017 – volume: 323 start-page: 1455 year: 2009 ident: D1CS00519G/cit394/1 publication-title: Science doi: 10.1126/science.1169434 – volume: 246 start-page: 125842 year: 2020 ident: D1CS00519G/cit327/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125842 – volume: 50 start-page: 2772 year: 2004 ident: D1CS00519G/cit135/1 publication-title: AIChE J. doi: 10.1002/aic.10205 – volume: 350 start-page: 952 year: 2015 ident: D1CS00519G/cit299/1 publication-title: Science doi: 10.1126/science.aad1246 – volume: 162 start-page: 10 year: 2014 ident: D1CS00519G/cit15/1 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2014.02.003 – volume: 108 start-page: 4332 year: 2008 ident: D1CS00519G/cit29/1 publication-title: Chem. Rev. doi: 10.1021/cr8002856 – volume: 49 start-page: 8948 year: 2015 ident: D1CS00519G/cit328/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01693 – volume: 5 start-page: 3074 year: 2017 ident: D1CS00519G/cit357/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b02758 – volume: 30 start-page: 2004153 year: 2020 ident: D1CS00519G/cit255/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004153 – volume: 10 start-page: 1647 year: 2004 ident: D1CS00519G/cit116/1 publication-title: Chemistry doi: 10.1002/chem.200305313 – volume: 8 start-page: 22056 year: 2016 ident: D1CS00519G/cit44/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07177 – volume: 10 start-page: 5682 year: 2019 ident: D1CS00519G/cit166/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13422-9 – volume: 7 start-page: 18854 year: 2019 ident: D1CS00519G/cit359/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b03935 – volume: 22 start-page: 12588 year: 2021 ident: D1CS00519G/cit5/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222212588 – volume: 7 start-page: 2000819 year: 2020 ident: D1CS00519G/cit37/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000819 – volume: 210 start-page: 719 year: 2000 ident: D1CS00519G/cit398/1 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(99)00749-6 – volume: 12 start-page: 2077 year: 2018 ident: D1CS00519G/cit46/1 publication-title: J. Tissue Eng. Regen. Med. – volume: 307 start-page: 208 year: 2017 ident: D1CS00519G/cit317/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.079 – volume: 104 start-page: 2799 year: 2007 ident: D1CS00519G/cit350/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.25962 – volume: 339 start-page: 781 year: 2018 ident: D1CS00519G/cit109/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.08.066 – volume: 39 start-page: 2407 year: 2013 ident: D1CS00519G/cit173/1 publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-012-0767-7 – volume: 3 start-page: 265 year: 2011 ident: D1CS00519G/cit190/1 publication-title: Nanoscale doi: 10.1039/C0NR00589D – volume: 37 start-page: 1900471 year: 2020 ident: D1CS00519G/cit260/1 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201900471 – volume: 3 start-page: 8 year: 2015 ident: D1CS00519G/cit200/1 publication-title: Nanosci. Nanoeng. doi: 10.13189/nn.2015.030102 – volume: 10 start-page: 21556 year: 2018 ident: D1CS00519G/cit383/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03939 – volume: 6 start-page: 5182 year: 2018 ident: D1CS00519G/cit358/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04834 – volume: 17 start-page: 1773 year: 2015 ident: D1CS00519G/cit106/1 publication-title: CrystEngComm doi: 10.1039/C4CE02460E – volume: 27 start-page: 1950224 year: 2020 ident: D1CS00519G/cit193/1 publication-title: Surf. Rev. Lett. doi: 10.1142/S0218625X1950224X – volume: 709 start-page: 136171 year: 2020 ident: D1CS00519G/cit334/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136171 – volume: 30 start-page: 421 year: 1994 ident: D1CS00519G/cit123/1 publication-title: Water Resour. Res. doi: 10.1029/93WR02655 – volume: 23 start-page: 10 year: 2013 ident: D1CS00519G/cit233/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201994 – volume: 405 start-page: 126597 year: 2021 ident: D1CS00519G/cit344/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126597 – volume: 30 start-page: 6040 year: 2018 ident: D1CS00519G/cit382/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02339 – volume: 254 start-page: 206 year: 2003 ident: D1CS00519G/cit388/1 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(03)01153-9 – volume: 388 start-page: 124304 year: 2020 ident: D1CS00519G/cit347/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124304 – volume: 224 start-page: 390 year: 2019 ident: D1CS00519G/cit320/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.02.139 – volume: 214 start-page: 47 year: 2011 ident: D1CS00519G/cit207/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.07.032 – volume: 16 start-page: 4813 year: 2016 ident: D1CS00519G/cit175/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01635 – volume: 8 start-page: 30027 year: 2016 ident: D1CS00519G/cit266/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10697 – volume: 17 start-page: 2351 year: 2017 ident: D1CS00519G/cit86/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01493 – volume: 14 start-page: 3350 year: 2021 ident: D1CS00519G/cit256/1 publication-title: Materials doi: 10.3390/ma14123350 – volume: 81 start-page: 242 year: 2018 ident: D1CS00519G/cit50/1 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.09.045 – volume: 15 start-page: 2817 year: 2014 ident: D1CS00519G/cit101/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201402136 – volume: 29 start-page: 1808146 year: 2019 ident: D1CS00519G/cit414/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808146 – volume: 51 start-page: 11960 year: 2012 ident: D1CS00519G/cit58/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201203125 – volume: 235 start-page: 581 year: 2013 ident: D1CS00519G/cit210/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.11.015 – volume: 22 start-page: 99 year: 2013 ident: D1CS00519G/cit257/1 publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-013-0054-4 – start-page: 8749238 year: 2020 ident: D1CS00519G/cit273/1 publication-title: Adv. Polym. Technol. – volume: 12 start-page: 1481 year: 2019 ident: D1CS00519G/cit38/1 publication-title: Materials doi: 10.3390/ma12091481 – volume: 428 start-page: 16 year: 2015 ident: D1CS00519G/cit154/1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2015.07.009 – volume: 48 start-page: 4716 year: 2012 ident: D1CS00519G/cit240/1 publication-title: Chem. Commun. doi: 10.1039/c2cc00135g – volume: 45 start-page: 269 year: 2012 ident: D1CS00519G/cit296/1 publication-title: Polym. J. doi: 10.1038/pj.2012.171 – volume: 20 start-page: 3633 year: 2008 ident: D1CS00519G/cit60/1 publication-title: Adv. Mater. doi: 10.1002/adma.200800773 – volume: 497 start-page: 1 year: 2016 ident: D1CS00519G/cit192/1 publication-title: Colloid Surf., A doi: 10.1016/j.colsurfa.2016.02.020 – volume: 101 start-page: 21 year: 1993 ident: D1CS00519G/cit124/1 publication-title: J. Geol. doi: 10.1086/648194 – volume: 137 start-page: 13325 year: 2015 ident: D1CS00519G/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07931 – volume: 203 start-page: 269 year: 2002 ident: D1CS00519G/cit409/1 publication-title: Biol. Bull. doi: 10.2307/1543569 – volume: 45 start-page: 2378 year: 2016 ident: D1CS00519G/cit302/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00258C – volume: 11 start-page: 19522 year: 2019 ident: D1CS00519G/cit45/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04936 – volume: 13 start-page: 1603100 year: 2017 ident: D1CS00519G/cit400/1 publication-title: Small doi: 10.1002/smll.201603100 – volume: 274 start-page: 256 year: 2005 ident: D1CS00519G/cit134/1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.09.090 – volume: 104 start-page: 793 year: 1990 ident: D1CS00519G/cit118/1 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(90)90104-S – volume: 109 start-page: 6088 year: 2012 ident: D1CS00519G/cit19/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1118085109 – volume: 1 start-page: 995 year: 2009 ident: D1CS00519G/cit162/1 publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.01.132 – volume: 26 start-page: 2503 year: 2016 ident: D1CS00519G/cit3/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504891 – volume: 44 start-page: 1226 year: 2006 ident: D1CS00519G/cit201/1 publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.20774 – volume: 10 start-page: 167 year: 2018 ident: D1CS00519G/cit95/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10040167 – volume: 8 start-page: 1801090 year: 2018 ident: D1CS00519G/cit43/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801090 – volume: 367 start-page: 1587 year: 2009 ident: D1CS00519G/cit307/1 publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2009.0007 – volume: 34 start-page: 14254 year: 2018 ident: D1CS00519G/cit356/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03084 – volume: 486 start-page: 71 year: 2018 ident: D1CS00519G/cit30/1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2018.01.023 – volume: 574 start-page: 394 year: 2019 ident: D1CS00519G/cit89/1 publication-title: Nature doi: 10.1038/s41586-019-1645-x – volume: 114 start-page: E7670 year: 2017 ident: D1CS00519G/cit17/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1707890114 – volume: 179 start-page: 47 year: 2021 ident: D1CS00519G/cit349/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2021.07.024 – volume: 4 start-page: 880 year: 2016 ident: D1CS00519G/cit412/1 publication-title: J. Mater. Chem. B doi: 10.1039/C5TB01990G – volume: 108 start-page: 14763 year: 2011 ident: D1CS00519G/cit18/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1102608108 – volume: 579 start-page: 357 year: 2020 ident: D1CS00519G/cit66/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.06.047 – volume: 12 start-page: 1649 year: 2015 ident: D1CS00519G/cit274/1 publication-title: Expert Opin. Drug Delivery doi: 10.1517/17425247.2015.1049530 – volume: 54 start-page: 919 year: 2015 ident: D1CS00519G/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408510 – volume: 47 start-page: 357 year: 2018 ident: D1CS00519G/cit75/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00746E – volume: 20 start-page: 2853 year: 2020 ident: D1CS00519G/cit167/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00061 – volume: 52 start-page: 11527 year: 2016 ident: D1CS00519G/cit64/1 publication-title: Chem. Commun. doi: 10.1039/C6CC04522G – volume: 33 start-page: e2006946 year: 2021 ident: D1CS00519G/cit305/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006946 – volume: 11 start-page: 39 year: 2011 ident: D1CS00519G/cit108/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg901240n – volume: 189 start-page: 64 year: 2009 ident: D1CS00519G/cit131/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2008.06.004 – volume: 354 start-page: 107 year: 2016 ident: D1CS00519G/cit314/1 publication-title: Science doi: 10.1126/science.aaf8991 – volume: 33 start-page: 331 year: 2017 ident: D1CS00519G/cit77/1 publication-title: Carbonates Evaporites doi: 10.1007/s13146-017-0341-x – volume: 536 start-page: S477 year: 2012 ident: D1CS00519G/cit389/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.11.057 – volume: 10 start-page: 672 year: 2014 ident: D1CS00519G/cit287/1 publication-title: Mol. Biosyst. doi: 10.1039/c3mb70502a – volume: 8 start-page: 8409 year: 2016 ident: D1CS00519G/cit53/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02115 – volume: 17 start-page: 1103 year: 2017 ident: D1CS00519G/cit97/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01501 – volume: 109 start-page: 3699 year: 2012 ident: D1CS00519G/cit188/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1109243109 – volume: 79-82 start-page: 1967 year: 2009 ident: D1CS00519G/cit197/1 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.79-82.1967 – volume: 7 start-page: 15686 year: 2015 ident: D1CS00519G/cit265/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04819 – volume: 127 start-page: 843 year: 2015 ident: D1CS00519G/cit142/1 publication-title: J. Chem. Sci. doi: 10.1007/s12039-015-0849-3 – volume: 104 start-page: 323 year: 2016 ident: D1CS00519G/cit248/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.07.007 – volume: 22 start-page: 3493 year: 2012 ident: D1CS00519G/cit160/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm14661d – volume: 351 start-page: 816 year: 2018 ident: D1CS00519G/cit330/1 publication-title: Chem. Eng. J doi: 10.1016/j.cej.2018.06.142 – volume: 10 start-page: 1634 year: 2014 ident: D1CS00519G/cit373/1 publication-title: Small doi: 10.1002/smll.201302745 – volume: 18 start-page: 331 year: 2018 ident: D1CS00519G/cit76/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01328 – volume: 102 start-page: 12653 year: 2005 ident: D1CS00519G/cit367/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0502577102 – volume: 16 start-page: 6186 year: 2016 ident: D1CS00519G/cit31/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00514 – volume: 14 start-page: 845 year: 2012 ident: D1CS00519G/cit331/1 publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-012-0450-0 – volume: 84 start-page: 2732 year: 1987 ident: D1CS00519G/cit169/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.84.9.2732 – volume: 10 start-page: E177 year: 2016 ident: D1CS00519G/cit250/1 publication-title: J. Tissue Eng. Regener. Med. doi: 10.1002/term.1782 – volume: 4 start-page: 1219 year: 2016 ident: D1CS00519G/cit223/1 publication-title: J. Mat. Chem. B doi: 10.1039/C5TB02338F – volume: 106 start-page: 110226 year: 2020 ident: D1CS00519G/cit221/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2019.110226 – volume: 31 start-page: 711 year: 2016 ident: D1CS00519G/cit144/1 publication-title: J. Inorg. Mater. doi: 10.15541/jim20150660 – volume: 461 start-page: 1 year: 2014 ident: D1CS00519G/cit212/1 publication-title: Colloid Surf., A doi: 10.1016/j.colsurfa.2014.07.020 – volume: 50 start-page: 257 year: 2015 ident: D1CS00519G/cit226/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2015.02.019 – volume: 21 start-page: 4011 year: 2009 ident: D1CS00519G/cit392/1 publication-title: Adv. Mater. doi: 10.1002/adma.200900295 – volume: 27 start-page: 1945 year: 2006 ident: D1CS00519G/cit225/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.09.026 – volume: 12 start-page: 064710 year: 2011 ident: D1CS00519G/cit294/1 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/12/6/064710 – volume: 107 start-page: 5123 year: 2003 ident: D1CS00519G/cit147/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0343640 – volume: 25 start-page: 10616 year: 2019 ident: D1CS00519G/cit119/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201900691 – volume: 3 start-page: 2029 year: 2020 ident: D1CS00519G/cit7/1 publication-title: Matter doi: 10.1016/j.matt.2020.09.022 – volume: 1 start-page: e1500849 year: 2015 ident: D1CS00519G/cit313/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500849 – volume: 22 start-page: 1875 year: 2006 ident: D1CS00519G/cit386/1 publication-title: Langmuir doi: 10.1021/la052419e – volume: 21 start-page: 425102 year: 2009 ident: D1CS00519G/cit128/1 publication-title: J. Phys.: Condens. Matter – volume: 5 start-page: 980 year: 2020 ident: D1CS00519G/cit247/1 publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2020.06.018 – volume: 14 start-page: 394 year: 2015 ident: D1CS00519G/cit178/1 publication-title: Nat. Mater. doi: 10.1038/nmat4193 – volume: 44 start-page: 5070 year: 2018 ident: D1CS00519G/cit362/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.12.106 – volume: 35 start-page: 1358 year: 2021 ident: D1CS00519G/cit34/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03695 – volume: 85 start-page: 57 year: 2018 ident: D1CS00519G/cit253/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2017.12.019 – volume: 12 start-page: 4482 year: 2020 ident: D1CS00519G/cit339/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18664 – volume: 2 start-page: 187 year: 2015 ident: D1CS00519G/cit179/1 publication-title: Regener. Biomater. doi: 10.1093/rb/rbv010 – volume: 54 start-page: 919 year: 2015 ident: D1CS00519G/cit415/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408510 – volume: 11 start-page: 1075 year: 2021 ident: D1CS00519G/cit122/1 publication-title: Crystals doi: 10.3390/cryst11091075 – volume: 22 start-page: 4216 year: 2012 ident: D1CS00519G/cit171/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201079 – volume: 17 start-page: 128 year: 2015 ident: D1CS00519G/cit217/1 publication-title: Pol. J. Chem. Technol. doi: 10.1515/pjct-2015-0079 – volume: 15 start-page: 1596 year: 2015 ident: D1CS00519G/cit130/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg500829p – volume: 25 start-page: 991 year: 1991 ident: D1CS00519G/cit224/1 publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820250806 – volume: 46 start-page: 17 year: 2015 ident: D1CS00519G/cit297/1 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2015.09.005 – volume: 698 start-page: 134270 year: 2020 ident: D1CS00519G/cit332/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134270 – volume: 30 start-page: 143 year: 2019 ident: D1CS00519G/cit51/1 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4452 – volume: 516 start-page: 190 year: 2017 ident: D1CS00519G/cit267/1 publication-title: Colloid Surf., A doi: 10.1016/j.colsurfa.2016.12.027 – volume: 8 start-page: 179 year: 2018 ident: D1CS00519G/cit139/1 publication-title: Minerals doi: 10.3390/min8050179 – volume: 9 start-page: 134 year: 2015 ident: D1CS00519G/cit222/1 publication-title: ACS Nano doi: 10.1021/nn506210a – volume: 37 start-page: 439 year: 1998 ident: D1CS00519G/cit153/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9703090 – volume: 58 start-page: 14134 year: 2019 ident: D1CS00519G/cit268/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907388 – volume: 63 start-page: 384 year: 2016 ident: D1CS00519G/cit284/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2016.03.009 – volume: 6 start-page: 5357 year: 2020 ident: D1CS00519G/cit12/1 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00364 – volume: 20 start-page: 8028 year: 2020 ident: D1CS00519G/cit14/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01282 – volume: 32 start-page: 9351 year: 2016 ident: D1CS00519G/cit114/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02439 – volume: 19 start-page: 2451 year: 2017 ident: D1CS00519G/cit138/1 publication-title: CrystEngComm doi: 10.1039/C7CE00197E – volume: 20 start-page: 2091 year: 2020 ident: D1CS00519G/cit304/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01720 – volume: 20 start-page: 1064 year: 2008 ident: D1CS00519G/cit408/1 publication-title: Chem. Mater. doi: 10.1021/cm702032v – volume: 10 start-page: 1 year: 2018 ident: D1CS00519G/cit309/1 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0009-6 – volume: 6 start-page: 591 year: 2007 ident: D1CS00519G/cit298/1 publication-title: J. Anim. Vet. Adv. – volume: 18 start-page: 8364 year: 2002 ident: D1CS00519G/cit146/1 publication-title: Langmuir doi: 10.1021/la025918d – volume: 74 start-page: 63 year: 2019 ident: D1CS00519G/cit199/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.02.002 – volume: 31 start-page: e1806957 year: 2019 ident: D1CS00519G/cit291/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806957 – volume: 54 start-page: 8653 year: 2015 ident: D1CS00519G/cit311/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502323 – volume: 191 start-page: 153 year: 1998 ident: D1CS00519G/cit170/1 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)00002-5 – volume: 372 start-page: 1466 year: 2021 ident: D1CS00519G/cit90/1 publication-title: Science doi: 10.1126/science.abg1915 – volume: 133 start-page: 120 year: 2015 ident: D1CS00519G/cit220/1 publication-title: Colloid Surf., B doi: 10.1016/j.colsurfb.2015.05.014 – volume: 18 start-page: 872 year: 2018 ident: D1CS00519G/cit174/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01364 – volume: 323 start-page: 1455 year: 2009 ident: D1CS00519G/cit92/1 publication-title: Science doi: 10.1126/science.1169434 – volume: 9 start-page: 1310 year: 2003 ident: D1CS00519G/cit242/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.200390150 – volume: 3 start-page: 2457 year: 2017 ident: D1CS00519G/cit254/1 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00301 – volume: 54 start-page: 13080 year: 2018 ident: D1CS00519G/cit417/1 publication-title: Chem. Commun. doi: 10.1039/C8CC07694D – volume: 22 start-page: 11113 year: 2012 ident: D1CS00519G/cit194/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm30778b – volume: 17 start-page: 5725 year: 2015 ident: D1CS00519G/cit99/1 publication-title: CrystEngComm doi: 10.1039/C4CE01598C – volume: 12 start-page: 2668 year: 2020 ident: D1CS00519G/cit27/1 publication-title: Polymers doi: 10.3390/polym12112668 – volume: 25 start-page: 5558 year: 2013 ident: D1CS00519G/cit196/1 publication-title: Asian J. Chem. doi: 10.14233/ajchem.2013.OH19 – volume: 49 start-page: 8889 year: 2010 ident: D1CS00519G/cit370/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003220 – volume: 7 start-page: 6251 year: 2019 ident: D1CS00519G/cit78/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b06658 – volume: 14 start-page: e1704272 year: 2018 ident: D1CS00519G/cit40/1 publication-title: Small doi: 10.1002/smll.201704272 – volume: 54 start-page: 57 year: 2003 ident: D1CS00519G/cit141/1 publication-title: Rev. Mineral. Geochem. doi: 10.2113/0540057 – volume: 171 start-page: 113 year: 2016 ident: D1CS00519G/cit355/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.037 – volume: 19 start-page: 7332 year: 2017 ident: D1CS00519G/cit83/1 publication-title: CrystEngComm doi: 10.1039/C7CE01681F – volume: 53 start-page: 12380 year: 2014 ident: D1CS00519G/cit185/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402890 – volume: 328 start-page: 470 year: 2020 ident: D1CS00519G/cit219/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2020.08.061 – volume: 38 start-page: 1537 year: 2003 ident: D1CS00519G/cit361/1 publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(03)00174-0 – volume: 25 start-page: 3081 year: 2015 ident: D1CS00519G/cit68/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500400 – volume: 53 start-page: 6657 year: 2017 ident: D1CS00519G/cit152/1 publication-title: Chem. Commun. doi: 10.1039/C7CC01420A – volume: 10 start-page: 3942 year: 2014 ident: D1CS00519G/cit244/1 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.05.021 – volume: 48 start-page: 187 year: 2003 ident: D1CS00519G/cit22/1 publication-title: Int. Mater. Rev. doi: 10.1179/095066003225005836 – volume: 48 start-page: 3611 year: 2003 ident: D1CS00519G/cit236/1 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/48/21/011 – volume: 453 start-page: 179 year: 2013 ident: D1CS00519G/cit401/1 publication-title: Biochem. J. doi: 10.1042/BJ20130285 – volume: 55 start-page: 11765 year: 2016 ident: D1CS00519G/cit70/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602849 – volume: 25 start-page: 3045 year: 2009 ident: D1CS00519G/cit377/1 publication-title: Langmuir doi: 10.1021/la803541m – volume: 23 start-page: 4862 year: 2007 ident: D1CS00519G/cit93/1 publication-title: Langmuir doi: 10.1021/la061975l – volume: 9 start-page: 2425 year: 2009 ident: D1CS00519G/cit177/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg801338b – volume: 49 start-page: 3134 year: 2013 ident: D1CS00519G/cit381/1 publication-title: Chem. Commun. doi: 10.1039/c3cc40807h – volume: 11 start-page: 3556 year: 2017 ident: D1CS00519G/cit245/1 publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.2273 – volume: 102 start-page: 6980 year: 2019 ident: D1CS00519G/cit229/1 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16593 – volume: 274 start-page: 120885 year: 2021 ident: D1CS00519G/cit271/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120885 – volume: 21 start-page: 3473 year: 2011 ident: D1CS00519G/cit4/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100749 – volume: 31 start-page: 2007830 year: 2021 ident: D1CS00519G/cit232/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007830 – volume: 11 start-page: 5127 year: 2015 ident: D1CS00519G/cit374/1 publication-title: Small doi: 10.1002/smll.201501083 – volume: 48 start-page: 327 year: 2018 ident: D1CS00519G/cit140/1 publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev-matsci-070317-124327 – volume: 484 start-page: 110786 year: 2020 ident: D1CS00519G/cit346/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2020.110786 – volume: 12 start-page: 3806 year: 2012 ident: D1CS00519G/cit186/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg300676b – volume: 9 start-page: 451 year: 2020 ident: D1CS00519G/cit48/1 publication-title: ChemistryOpen doi: 10.1002/open.202000040 – volume: 72 start-page: 011605 year: 2005 ident: D1CS00519G/cit189/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.72.011605 – volume: 3 start-page: 1272 year: 2020 ident: D1CS00519G/cit316/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02036 – volume: 117 start-page: 3328 year: 2013 ident: D1CS00519G/cit406/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp308353t – volume: 285 start-page: 65 year: 2006 ident: D1CS00519G/cit218/1 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-006-1535-2 – volume: 87 start-page: 86 year: 2015 ident: D1CS00519G/cit352/1 publication-title: Energy doi: 10.1016/j.energy.2015.04.096 – volume: 25 start-page: 153 year: 2005 ident: D1CS00519G/cit379/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2005.01.005 – volume: 21 start-page: 9757 year: 2011 ident: D1CS00519G/cit161/1 publication-title: J. Mater. Chem. doi: 10.1039/c1jm10770d – volume: 405 start-page: 1036 year: 2000 ident: D1CS00519G/cit303/1 publication-title: Nature doi: 10.1038/35016535 – volume: 110 start-page: 60 year: 2016 ident: D1CS00519G/cit55/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.025 – volume: 9 start-page: 8308 year: 2021 ident: D1CS00519G/cit133/1 publication-title: J. Mater. Chem. B doi: 10.1039/D1TB01072G – volume: 326 start-page: 1244 year: 2009 ident: D1CS00519G/cit241/1 publication-title: Science doi: 10.1126/science.1178583 – volume: 8 start-page: 8409 year: 2016 ident: D1CS00519G/cit262/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02115 – volume: 7 start-page: 197 year: 2011 ident: D1CS00519G/cit393/1 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.532 – volume: 12 start-page: 43 year: 2002 ident: D1CS00519G/cit368/1 publication-title: Adv. Funct. Mater. doi: 10.1002/1616-3028(20020101)12:1<43::AID-ADFM43>3.0.CO;2-C – volume: 14 start-page: 89 year: 2019 ident: D1CS00519G/cit290/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0319-4 – volume-title: Kinetics and mechanisms of crystal growth in aqueous systems year: 2000 ident: D1CS00519G/cit102/1 – volume: 97 start-page: 1437 year: 2012 ident: D1CS00519G/cit127/1 publication-title: Am. Mineral. doi: 10.2138/am.2012.3983 – volume: 386 start-page: 119 year: 2014 ident: D1CS00519G/cit155/1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.10.009 – volume: 8 start-page: 526 year: 2022 ident: D1CS00519G/cit10/1 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c01280 – volume: 143 start-page: 56 year: 2016 ident: D1CS00519G/cit228/1 publication-title: Colloid Surf., B doi: 10.1016/j.colsurfb.2016.03.020 – volume: 105 start-page: 17362 year: 2008 ident: D1CS00519G/cit187/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0806604105 – volume: 64 start-page: 647 year: 2015 ident: D1CS00519G/cit288/1 publication-title: Polym. Int. doi: 10.1002/pi.4824 – volume: 11 start-page: 250 year: 2021 ident: D1CS00519G/cit88/1 publication-title: Crystals doi: 10.3390/cryst11030250 – volume: 107 start-page: 342 year: 2007 ident: D1CS00519G/cit1/1 publication-title: Chem. Rev. doi: 10.1021/cr050358j – volume: 16 start-page: 4500 year: 2016 ident: D1CS00519G/cit404/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00630 – volume: 9 start-page: e2104829 year: 2021 ident: D1CS00519G/cit246/1 publication-title: Adv. Mater. doi: 10.1002/adma.202104829 – volume: 418 start-page: 366 year: 2014 ident: D1CS00519G/cit107/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.12.008 – volume: 5 start-page: 16025 year: 2017 ident: D1CS00519G/cit340/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02070H – volume: 255 start-page: 123552 year: 2020 ident: D1CS00519G/cit65/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123552 – volume: 53 start-page: 10774 year: 2019 ident: D1CS00519G/cit336/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03795 – volume: 292 start-page: 109736 year: 2020 ident: D1CS00519G/cit69/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.109736 – volume: 16 start-page: 331 year: 2019 ident: D1CS00519G/cit283/1 publication-title: Expert Opin. Drug Delivery doi: 10.1080/17425247.2019.1587408 – volume: 55 start-page: 10725 year: 2019 ident: D1CS00519G/cit380/1 publication-title: Chem. Commun. doi: 10.1039/C9CC03749G – volume: 12 start-page: 4482 year: 2020 ident: D1CS00519G/cit341/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18664 – volume: 21 start-page: 7306 year: 2021 ident: D1CS00519G/cit180/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01376 – volume: 202 start-page: 15 year: 2002 ident: D1CS00519G/cit215/1 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(02)00534-2 – volume: 82 start-page: 107 year: 2017 ident: D1CS00519G/cit57/1 publication-title: ChemPlusChem doi: 10.1002/cplu.201600457 – volume: 2 start-page: 590 year: 2011 ident: D1CS00519G/cit184/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1604 – volume: 6 start-page: 564 year: 2011 ident: D1CS00519G/cit81/1 publication-title: Nano Today doi: 10.1016/j.nantod.2011.10.005 – volume: 14 start-page: 1503 year: 2019 ident: D1CS00519G/cit72/1 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S193976 – volume: 21 start-page: 232 year: 2019 ident: D1CS00519G/cit202/1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-019-4693-0 – volume-title: Synthetic bone graft substitutes: Calcium-based biomaterials year: 2020 ident: D1CS00519G/cit230/1 – volume: 41 start-page: 7947 year: 2002 ident: D1CS00519G/cit259/1 publication-title: Biochemistry doi: 10.1021/bi025630n – volume: 299 start-page: 126802 year: 2021 ident: D1CS00519G/cit337/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.126802 – volume: 22 start-page: 289 year: 1897 ident: D1CS00519G/cit98/1 publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1897-2233 – volume: 10 start-page: 8696 year: 2020 ident: D1CS00519G/cit36/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-65667-w – volume: 28 start-page: 351 year: 2015 ident: D1CS00519G/cit214/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.03.015 – volume: 291 start-page: 2191 year: 2013 ident: D1CS00519G/cit120/1 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-013-2960-7 – volume: 141 start-page: 75 year: 2004 ident: D1CS00519G/cit216/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2004.02.018 – volume: 42 start-page: 5728 year: 2007 ident: D1CS00519G/cit234/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0747-7 – volume: 356 start-page: 414 year: 2019 ident: D1CS00519G/cit33/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.08.054 – volume: 22 start-page: 5255 year: 2010 ident: D1CS00519G/cit41/1 publication-title: Adv. Mater. doi: 10.1002/adma.201002395 – volume: 29 start-page: 1808146 year: 2019 ident: D1CS00519G/cit272/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808146 – volume: 536 start-page: 213 year: 2018 ident: D1CS00519G/cit211/1 publication-title: Colloid Surf., A doi: 10.1016/j.colsurfa.2017.05.002 – volume: 20 start-page: 13825 year: 2018 ident: D1CS00519G/cit26/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP00540K – volume: 3 start-page: 336 year: 2017 ident: D1CS00519G/cit79/1 publication-title: Adv. Tissue Eng. Regen. Med. – volume: 8 start-page: 43 year: 2018 ident: D1CS00519G/cit206/1 publication-title: Coatings doi: 10.3390/coatings8010043 – volume: 108 start-page: 4332 year: 2008 ident: D1CS00519G/cit176/1 publication-title: Chem. Rev. doi: 10.1021/cr8002856 – volume: 178 start-page: 194 year: 2007 ident: D1CS00519G/cit136/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.05.004 – volume: 2 start-page: 171 year: 2022 ident: D1CS00519G/cit364/1 publication-title: Fortschr. Zool. – volume: 2 start-page: 14270 year: 2014 ident: D1CS00519G/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02070G – volume: 1 start-page: 3175 year: 2013 ident: D1CS00519G/cit280/1 publication-title: J. Mat. Chem. B doi: 10.1039/c3tb20192a – volume: 7 start-page: 5808 year: 2019 ident: D1CS00519G/cit279/1 publication-title: J. Mat. Chem. B doi: 10.1039/C9TB01148J – volume: 2 start-page: 2358 year: 2010 ident: D1CS00519G/cit376/1 publication-title: Nanoscale doi: 10.1039/c0nr00443j – volume: 141 start-page: 10120 year: 2019 ident: D1CS00519G/cit182/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01883 – volume: 34 start-page: 2942 year: 2018 ident: D1CS00519G/cit343/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b03813 – volume: 59 start-page: 18042 year: 2020 ident: D1CS00519G/cit269/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008055 – volume: 7 start-page: 3614 year: 2019 ident: D1CS00519G/cit243/1 publication-title: Biomater. Sci. doi: 10.1039/C9BM00463G – volume: 69 start-page: 23 year: 2018 ident: D1CS00519G/cit306/1 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040215-112621 – volume: 46 start-page: 1011 year: 1982 ident: D1CS00519G/cit117/1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90056-4 – volume: 15 start-page: 903 year: 2016 ident: D1CS00519G/cit32/1 publication-title: Nat. Mater. doi: 10.1038/nmat4631 – volume: 463 start-page: 343 year: 2008 ident: D1CS00519G/cit121/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.09.009 – volume: 48 start-page: 1906 year: 2013 ident: D1CS00519G/cit137/1 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.01.048 – volume: 63 start-page: 3632 year: 2008 ident: D1CS00519G/cit111/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.04.022 – volume: 28 start-page: 3519 year: 2014 ident: D1CS00519G/cit348/1 publication-title: Energy Fuels doi: 10.1021/ef5005539 – volume: 4 start-page: 1640 year: 2016 ident: D1CS00519G/cit292/1 publication-title: J. Mater. Chem. B doi: 10.1039/C5TB01623A – volume: 32 start-page: 4282 year: 2020 ident: D1CS00519G/cit63/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00975 – volume: 13 start-page: 53 year: 2015 ident: D1CS00519G/cit115/1 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-015-0111-7 – volume: 43 start-page: 2348 year: 2014 ident: D1CS00519G/cit183/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60451A – volume: 363 start-page: 396 year: 2019 ident: D1CS00519G/cit16/1 publication-title: Science doi: 10.1126/science.aav0210 – volume: 223 start-page: 197 year: 2016 ident: D1CS00519G/cit54/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2015.12.051 – volume: 24 start-page: 6277 year: 2012 ident: D1CS00519G/cit315/1 publication-title: Adv. Mater. doi: 10.1002/adma.201202733 – volume: 7 start-page: 355 year: 2017 ident: D1CS00519G/cit165/1 publication-title: Crystals doi: 10.3390/cryst7120355 – volume: 9 start-page: 1226 year: 2007 ident: D1CS00519G/cit369/1 publication-title: CrystEngComm doi: 10.1039/b710895h – volume: 42 start-page: 2350 year: 2003 ident: D1CS00519G/cit181/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200200562 – volume: 7 start-page: 19142 year: 2019 ident: D1CS00519G/cit25/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b05128 – volume: 30 start-page: 2000003 year: 2020 ident: D1CS00519G/cit371/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000003 – volume: 41 start-page: 1111 year: 2012 ident: D1CS00519G/cit301/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15106A – volume: 3 start-page: 966 year: 2012 ident: D1CS00519G/cit312/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1970 – volume: 59 start-page: 1798 year: 2020 ident: D1CS00519G/cit94/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903662 – start-page: 186 year: 2000 ident: D1CS00519G/cit295/1 publication-title: Chem. Lett. doi: 10.1246/cl.2000.186 – volume: 6 start-page: 46 year: 2021 ident: D1CS00519G/cit11/1 publication-title: Biomimetics doi: 10.3390/biomimetics6030046 – volume: 56 start-page: 15299 year: 2021 ident: D1CS00519G/cit413/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06204-6 – volume: 3 start-page: 16681 year: 2018 ident: D1CS00519G/cit82/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b02445 – volume: 11 start-page: 421 year: 2013 ident: D1CS00519G/cit151/1 publication-title: Particuology doi: 10.1016/j.partic.2012.07.009 – volume: 608 start-page: 125583 year: 2021 ident: D1CS00519G/cit342/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2020.125583 – volume: 114 start-page: 632 year: 2014 ident: D1CS00519G/cit354/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.029 – volume: 20 start-page: 35 year: 2018 ident: D1CS00519G/cit61/1 publication-title: CrystEngComm doi: 10.1039/C7CE01693J – volume: 32 start-page: 2004647 year: 2020 ident: D1CS00519G/cit270/1 publication-title: Adv. Mater. doi: 10.1002/adma.202004647 – volume: 16 start-page: 4 year: 2015 ident: D1CS00519G/cit21/1 publication-title: Geochem. Trans. doi: 10.1186/s12932-015-0019-z – volume: 411 start-page: 775 year: 2001 ident: D1CS00519G/cit172/1 publication-title: Nature doi: 10.1038/35081034 – volume: 132 start-page: 13208 year: 2010 ident: D1CS00519G/cit391/1 publication-title: J. Am. Ceram. Soc. – volume: 5 start-page: 80216 year: 2015 ident: D1CS00519G/cit112/1 publication-title: RSC Adv. doi: 10.1039/C5RA15382D – volume: 7 start-page: 7362 year: 2019 ident: D1CS00519G/cit335/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b00563 – volume: 7 start-page: 5370 year: 2017 ident: D1CS00519G/cit263/1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05395-w – volume: 108 start-page: 4551 year: 2008 ident: D1CS00519G/cit59/1 publication-title: Chem. Rev. doi: 10.1021/cr800443h – volume: 7 start-page: 8832 year: 2019 ident: D1CS00519G/cit345/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10822F – volume: 50 start-page: 7908 year: 2015 ident: D1CS00519G/cit195/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9327-z – volume: 52 start-page: 7036 year: 2016 ident: D1CS00519G/cit395/1 publication-title: Chem. Commun. doi: 10.1039/C6CC03010F – volume: 7 start-page: 3403 year: 2019 ident: D1CS00519G/cit231/1 publication-title: J. Mater. Chem. B doi: 10.1039/C9TB00237E – volume: 21 start-page: 414 year: 2020 ident: D1CS00519G/cit372/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01245 – volume: 32 start-page: 1657 year: 2011 ident: D1CS00519G/cit416/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.10.035 – volume: 15 start-page: 1194 year: 2015 ident: D1CS00519G/cit158/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg5015847 – volume: 10 start-page: 118 year: 2020 ident: D1CS00519G/cit237/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56023-8 – volume: 8 start-page: 3002 year: 2013 ident: D1CS00519G/cit387/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201300745 – volume: 5 start-page: 7194 year: 2017 ident: D1CS00519G/cit286/1 publication-title: J. Mat. Chem. B doi: 10.1039/C7TB01635B – volume: 9 start-page: 35785 year: 2017 ident: D1CS00519G/cit326/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09304 – volume: 6 start-page: 3665 year: 2010 ident: D1CS00519G/cit238/1 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.03.034 – volume: 209–210 start-page: 467 year: 2012 ident: D1CS00519G/cit325/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.01.054 – volume: 10 start-page: 3207 year: 2014 ident: D1CS00519G/cit375/1 publication-title: Small doi: 10.1002/smll.201400559 – volume: 322 start-page: 1819 year: 2008 ident: D1CS00519G/cit80/1 publication-title: Science doi: 10.1126/science.1164271 – volume: 7 start-page: 45113 year: 2017 ident: D1CS00519G/cit397/1 publication-title: RSC Adv. doi: 10.1039/C7RA07169H – volume: 118 start-page: 111 year: 2014 ident: D1CS00519G/cit285/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2014.03.007 – volume: 1 start-page: 321 year: 2014 ident: D1CS00519G/cit410/1 publication-title: Mater. Horiz. doi: 10.1039/c3mh00134b – volume: 6 start-page: 5967 year: 2015 ident: D1CS00519G/cit310/1 publication-title: Nat. Commun. doi: 10.1038/ncomms6967 – volume: 98 start-page: 13 year: 2015 ident: D1CS00519G/cit113/1 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2015.10.003 – volume: 117 start-page: 23450 year: 2020 ident: D1CS00519G/cit8/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2009531117 – volume: 8 start-page: 8261 year: 2020 ident: D1CS00519G/cit420/1 publication-title: J. Mat. Chem. B doi: 10.1039/D0TB01453B – volume: 170 start-page: 31 year: 2006 ident: D1CS00519G/cit149/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2006.08.016 – volume: 108 start-page: 4499 year: 2008 ident: D1CS00519G/cit28/1 publication-title: Chem. Rev. doi: 10.1021/cr078259o – volume: 4 start-page: 1510 year: 2015 ident: D1CS00519G/cit278/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201500170 – volume: 613 start-page: 126084 year: 2021 ident: D1CS00519G/cit333/1 publication-title: Colloid Surf., A doi: 10.1016/j.colsurfa.2020.126084 – volume: 9 start-page: 223 year: 2019 ident: D1CS00519G/cit103/1 publication-title: Crystals doi: 10.3390/cryst9040223 – volume: 8 start-page: 15933 year: 2017 ident: D1CS00519G/cit399/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15933 – volume: 4 start-page: 8482 year: 2019 ident: D1CS00519G/cit353/1 publication-title: ChemistrySelect doi: 10.1002/slct.201901436 – volume: 26 start-page: 12567 year: 2010 ident: D1CS00519G/cit213/1 publication-title: Langmuir doi: 10.1021/la1016559 – volume: 378 start-page: 320 year: 2016 ident: D1CS00519G/cit204/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.205 – volume: 4 start-page: 60 year: 2015 ident: D1CS00519G/cit145/1 publication-title: Beni-Suef Univ. J. Basic Appl. Sci. – volume: 11 start-page: 120 year: 2016 ident: D1CS00519G/cit85/1 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1338-4 – volume: 5 start-page: 1 year: 2003 ident: D1CS00519G/cit276/1 publication-title: Diabetes Technol. Ther. doi: 10.1089/152091503763816409 – volume: 338 start-page: 272 year: 2012 ident: D1CS00519G/cit324/1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2011.11.016 – volume: 5 start-page: 2068 year: 2017 ident: D1CS00519G/cit418/1 publication-title: J. Mater. Chem. B doi: 10.1039/C6TB02826H – volume: 48 start-page: 622 year: 2013 ident: D1CS00519G/cit163/1 publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201300178 – volume: 3 start-page: 6050 year: 2018 ident: D1CS00519G/cit2/1 publication-title: ChemistrySelect doi: 10.1002/slct.201800444 – volume: 11 start-page: 324 year: 1999 ident: D1CS00519G/cit159/1 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199903)11:4<324::AID-ADMA324>3.0.CO;2-A – volume: 28 start-page: 3796 year: 2016 ident: D1CS00519G/cit293/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00769 – volume: 108 start-page: 694 year: 2020 ident: D1CS00519G/cit252/1 publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.36849 – volume: 203 start-page: 441 year: 2018 ident: D1CS00519G/cit363/1 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.06.041 – volume: 249 start-page: 126227 year: 2020 ident: D1CS00519G/cit209/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126227 – volume: 17 start-page: 4768 year: 2015 ident: D1CS00519G/cit49/1 publication-title: CrystEngComm doi: 10.1039/C5CE00708A – volume: 1 start-page: e1500379 year: 2015 ident: D1CS00519G/cit258/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500379 – volume: 42 start-page: 101333 year: 2020 ident: D1CS00519G/cit191/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101333 – volume: 19 start-page: 242 year: 2018 ident: D1CS00519G/cit110/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b01314 – volume: 23 start-page: 3033 year: 2021 ident: D1CS00519G/cit74/1 publication-title: CrystEngComm doi: 10.1039/D0CE01854F – volume: 16 start-page: 1181 year: 1995 ident: D1CS00519G/cit235/1 publication-title: Biomaterials doi: 10.1016/0142-9612(95)93584-Z – volume: 28 start-page: 598 year: 2018 ident: D1CS00519G/cit47/1 publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2018.09.004 – volume: 264 start-page: 461 year: 1997 ident: D1CS00519G/cit407/1 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.1997.0066 – volume: 28 start-page: 1704956 year: 2018 ident: D1CS00519G/cit338/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704956 – volume: 378 start-page: 120707 year: 2019 ident: D1CS00519G/cit322/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.05.100 – volume: 3 start-page: 12722 year: 2018 ident: D1CS00519G/cit411/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b02014 – volume: 36 start-page: 330 year: 2015 ident: D1CS00519G/cit71/1 publication-title: Polym. Compos. doi: 10.1002/pc.22947 – volume: 6 start-page: 2008732 year: 2020 ident: D1CS00519G/cit73/1 publication-title: Sci. Adv. – volume: 10 start-page: 2129 year: 2010 ident: D1CS00519G/cit96/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg9012813 – volume: 1 start-page: 1 year: 2018 ident: D1CS00519G/cit321/1 publication-title: npj Clean Water doi: 10.1038/s41545-018-0001-2 – volume: 72 start-page: 78 year: 2012 ident: D1CS00519G/cit148/1 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2012.08.004 – volume: 159 start-page: 1763 year: 2011 ident: D1CS00519G/cit329/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.04.017 – volume: 15 start-page: 8288 year: 2013 ident: D1CS00519G/cit281/1 publication-title: CrystEngComm doi: 10.1039/c3ce41275j – volume: 47 start-page: 357 year: 2018 ident: D1CS00519G/cit261/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00746E – volume: 114 start-page: E7882 year: 2017 ident: D1CS00519G/cit91/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1700342114 – volume: 12 start-page: 247 year: 2010 ident: D1CS00519G/cit251/1 publication-title: Cell Tissue Bank. doi: 10.1007/s10561-010-9208-2 – volume: 20 start-page: 794 year: 2015 ident: D1CS00519G/cit203/1 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-014-0898-3 |
SSID | ssj0011762 |
Score | 2.6917343 |
SecondaryResourceType | review_article |
Snippet | Calcium carbonate (CaCO
3
) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking,... Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking,... Calcium carbonate (CaCO₃) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking,... |
SourceID | hal proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7883 |
SubjectTerms | Additives Amorphous materials biocompatible materials Biomedical materials biomineralization Building materials Calcium carbonate Calcium ions Carbonation Chemical Sciences Construction materials Cosmetics Crystallization drugs Emulsions energy Energy storage Hydrogels Inorganic chemistry Magnetic properties magnetism Material chemistry medicine Nanocomposites Nanostructure Nanostructured materials Nucleation Optical properties Papermaking remediation Stabilization Surface reactions Synthesis Textiles |
Title | Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials |
URI | https://www.proquest.com/docview/2715665357 https://www.proquest.com/docview/2705398574 https://www.proquest.com/docview/2723110516 https://hal.science/hal-03760034 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELba3QNcVrxWFBYUHhfEBuLGsVNuVWkpqBShbaXegp3YUKmborZBKr-Cn8w4dpysqFbAJapcK3U9nz0z9sw3CD0nKsi4EoFPBIl8QmPqx10FAgkZWKecqaCsEvFxSsdz8mERLVqtX42opWInXqU_D-aV_I9UoQ3kqrNk_0Gy7qXQAJ9BvvAECcPzr2Q84Kt0WVxqemmhT8HLPHMbfL4CS3K7z8G-2xoagW2xURxWsdZk5gDQpmBWAZw5z9eGTrbQQelgypr_0LRfHb9AFe1p2Uzd5lH4nw0rwXRZuOicJffHhUnDrlv7e5inpc1D3G_qUI-RVhZlpamXF4AkU967OpkAp1Zf1gQOS-b8oxpOGVxiS9g19rhQH2gENpJamj2YUIAOM7SQ1SZtWWktGOPGlgs-fNhQ35rw7qBqCELNrJrhdFuarV9rBVhd-k8_JaP5ZJLMhotZGx13wfGAnfO4P5y9n7ibKcyovZkyA68ob8Pe6_rdV4yc9jcdYtvwX9qbqrhMacTMbqET6314fQOl26gl8zvohpuxu-iLhZTnIPXGqwHlOUCdexZO3h9wOvcATN5VMHkOTPfQfDScDca-LcLhpyQOd36kl3KsRIaZ5DKmIuWCMgpegsI0jkDsYBDziHczliqJuQxED-vUIEG50vx6p-goX-fyPvKEwpJkOOwqmhEO_SiPAyaIBBcX1ErUQS-qWUtSy1CvC6WskjJSIuwlb_Hgopzhdx30zPX9bnhZDvZ6CpPvOmgq9XF_kui2QEeDBSH5gTvorJJNYhf3NukyfbARhRHroCfuaxCGvk_juVwXug9osF4cMXJdH3CgwIfBtINOQe5uLDVYHlz_-w_RzXpxnaEjEJ18BIbwTjy22PwNnzi3fw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+carbonate%3A+controlled+synthesis%2C+surface+functionalization%2C+and+nanostructured+materials&rft.jtitle=Chemical+Society+reviews&rft.au=Yu-Qin%2C+Niu&rft.au=Jia-Hui%2C+Liu&rft.au=Aymonier%2C+Cyril&rft.au=Fermani%2C+Simona&rft.date=2022-09-20&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=18&rft.spage=7883&rft.epage=7943&rft_id=info:doi/10.1039%2Fd1cs00519g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |