Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials

Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis an...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 51; no. 18; pp. 7883 - 7943
Main Authors Niu, Yu-Qin, Liu, Jia-Hui, Aymonier, Cyril, Fermani, Simona, Kralj, Damir, Falini, Giuseppe, Zhou, Chun-Hui
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 20.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO 3 , the stabilization of amorphous CaCO 3 (ACC), and CaCO 3 -based nanostructured materials. In this review, the controlled synthesis of CaCO 3 is first examined, including Ca 2+ -CO 3 2− systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO 3 have led to the development of efficient routes towards the controlled synthesis of CaCO 3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO 3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO 3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organicinorganic nanocomposites. The introduction of CaCO 3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO 3 -based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO 3 and its expanding applications are highlighted. Various new strategies have been recently developed to produce CaCO 3 micro-/nanoparticles with controlled size, morphology, polymorphism and crystallinity, which are then surface modified, functionalized and hierarchically assembled to yield medical, environmental, and energy materials.
AbstractList Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO 3 , the stabilization of amorphous CaCO 3 (ACC), and CaCO 3 -based nanostructured materials. In this review, the controlled synthesis of CaCO 3 is first examined, including Ca 2+ -CO 3 2− systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO 3 have led to the development of efficient routes towards the controlled synthesis of CaCO 3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO 3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO 3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organicinorganic nanocomposites. The introduction of CaCO 3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO 3 -based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO 3 and its expanding applications are highlighted. Various new strategies have been recently developed to produce CaCO 3 micro-/nanoparticles with controlled size, morphology, polymorphism and crystallinity, which are then surface modified, functionalized and hierarchically assembled to yield medical, environmental, and energy materials.
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+–CO32− systems, solid–liquid–gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core–shell organic–inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Calcium carbonate (CaCO₃) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO₃, the stabilization of amorphous CaCO₃ (ACC), and CaCO₃-based nanostructured materials. In this review, the controlled synthesis of CaCO₃ is first examined, including Ca²⁺–CO₃²⁻ systems, solid–liquid–gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO₃ have led to the development of efficient routes towards the controlled synthesis of CaCO₃ with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO₃ include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO₃ can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core–shell organic–inorganic nanocomposites. The introduction of CaCO₃ into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO₃-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO₃ and its expanding applications are highlighted.
Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO 3 , the stabilization of amorphous CaCO 3 (ACC), and CaCO 3 -based nanostructured materials. In this review, the controlled synthesis of CaCO 3 is first examined, including Ca 2+ –CO 3 2− systems, solid–liquid–gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO 3 have led to the development of efficient routes towards the controlled synthesis of CaCO 3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO 3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO 3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core–shell organic–inorganic nanocomposites. The introduction of CaCO 3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO 3 -based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO 3 and its expanding applications are highlighted.
Author Aymonier, Cyril
Niu, Yu-Qin
Kralj, Damir
Falini, Giuseppe
Fermani, Simona
Zhou, Chun-Hui
Liu, Jia-Hui
AuthorAffiliation Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna
Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS
Ru er Boškovi Institute
Department of Chemistry "Giacomo Ciamician"
University of Bologna
Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang
Laboratory for Precipitation Processes
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
AuthorAffiliation_xml – name: University of Bologna
– name: Ru er Boškovi Institute
– name: Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna
– name: Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang
– name: Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– name: Department of Chemistry "Giacomo Ciamician"
– name: Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS
– name: Laboratory for Precipitation Processes
Author_xml – sequence: 1
  givenname: Yu-Qin
  surname: Niu
  fullname: Niu, Yu-Qin
– sequence: 2
  givenname: Jia-Hui
  surname: Liu
  fullname: Liu, Jia-Hui
– sequence: 3
  givenname: Cyril
  surname: Aymonier
  fullname: Aymonier, Cyril
– sequence: 4
  givenname: Simona
  surname: Fermani
  fullname: Fermani, Simona
– sequence: 5
  givenname: Damir
  surname: Kralj
  fullname: Kralj, Damir
– sequence: 6
  givenname: Giuseppe
  surname: Falini
  fullname: Falini, Giuseppe
– sequence: 7
  givenname: Chun-Hui
  surname: Zhou
  fullname: Zhou, Chun-Hui
BackLink https://hal.science/hal-03760034$$DView record in HAL
BookMark eNqNks9LHTEQx4NY8Pnj4l1Y6KUtrs1sNslub_LaauGBh9rzdjab1EheYpOsYP9683xFQXroaYbh8_0y-U72ya4PXhNyDPQMKOs_TqASpRz6XztkAa2gdSvbdpcsKKOiphSaPbKf0m3pQIpmQX4u0Sk7ryuFcQwes_5UqeBzDM7pqUoPPt_oZNNpleZoUOnKzF5lW1Bn_-CmOa3QT5VHH1KOs8pzLMJ1cYoWXTokb0wp-uhvPSA_vn65Xl7Wq6uLb8vzVa3ajuWaT2jGzowTSI26E6PCUUjBGTMgOk6bBniPHJtJKqMBNR17kB0To0DTsJ4dkPdb3xt0w120a4wPQ0A7XJ6vhs2MMikoZe09FPbdlr2L4fesUx7WNintHHod5jQ0smEAJUbxHyjlrO-4bAv69hV6G-ZYctpQwEV5DJeF-rClVAwpRW2elwU6bG44fIbl96cbXhSYvoKVzU-h54jW_VtyspXEpJ6tX74FewQIcKox
CitedBy_id crossref_primary_10_3390_jfb14020098
crossref_primary_10_1016_j_jece_2024_112294
crossref_primary_10_1016_j_mtsust_2023_100520
crossref_primary_10_1016_j_tim_2023_06_005
crossref_primary_10_1016_j_jclepro_2024_143716
crossref_primary_10_3390_polym16152198
crossref_primary_10_1021_acs_inorgchem_3c01648
crossref_primary_10_3390_jfb16030086
crossref_primary_10_1016_j_envres_2025_121006
crossref_primary_10_1016_j_jwpe_2024_105525
crossref_primary_10_1021_acsomega_3c06186
crossref_primary_10_1016_j_jece_2024_112607
crossref_primary_10_1016_j_jclepro_2024_144091
crossref_primary_10_1039_D4QI01715C
crossref_primary_10_1016_j_fbio_2025_105905
crossref_primary_10_1016_j_snb_2024_135312
crossref_primary_10_1016_j_jobe_2024_111457
crossref_primary_10_1016_j_molliq_2023_123743
crossref_primary_10_1016_j_cej_2024_150625
crossref_primary_10_1016_j_powtec_2024_119622
crossref_primary_10_3390_ma16247665
crossref_primary_10_3390_pharmaceutics16050653
crossref_primary_10_1038_s41467_023_43608_1
crossref_primary_10_1016_j_compositesb_2024_111601
crossref_primary_10_31857_S0869813924060107
crossref_primary_10_1016_j_jcis_2024_10_100
crossref_primary_10_1021_acs_jpcc_4c07444
crossref_primary_10_1021_acsmaterialslett_4c01432
crossref_primary_10_1039_D4RA04356A
crossref_primary_10_1002_cjoc_202400067
crossref_primary_10_1016_j_envres_2025_121376
crossref_primary_10_1039_D2CS00513A
crossref_primary_10_1021_acs_cgd_3c01007
crossref_primary_10_1039_D3TB00165B
crossref_primary_10_1002_ppsc_202400097
crossref_primary_10_1016_j_powtec_2024_119588
crossref_primary_10_1021_acsami_4c02456
crossref_primary_10_3390_w15081615
crossref_primary_10_1016_j_cej_2023_145763
crossref_primary_10_1002_smll_202406909
crossref_primary_10_1016_j_gee_2024_08_002
crossref_primary_10_1016_j_apsb_2023_08_027
crossref_primary_10_1021_acsomega_2c05386
crossref_primary_10_1021_acs_langmuir_4c03688
crossref_primary_10_1002_advs_202303090
crossref_primary_10_1016_j_carbpol_2024_122505
crossref_primary_10_1021_acs_jpclett_4c01026
crossref_primary_10_1039_D4RA03324H
crossref_primary_10_1093_rb_rbae104
crossref_primary_10_62669_17270227_2024_2_21
crossref_primary_10_3390_pharmaceutics15010300
crossref_primary_10_1007_s12155_023_10576_9
crossref_primary_10_1016_j_cis_2023_102880
crossref_primary_10_1186_s12951_023_02112_w
crossref_primary_10_1016_j_mtcomm_2024_109441
crossref_primary_10_1021_acssuschemeng_4c09662
crossref_primary_10_1680_jgrma_24_00010
crossref_primary_10_1016_j_microc_2023_108927
crossref_primary_10_1021_acsomega_3c09987
crossref_primary_10_1002_cplu_202400487
crossref_primary_10_1016_j_apt_2025_104850
crossref_primary_10_1016_j_jece_2025_115872
crossref_primary_10_33920_med_13_2401_02
crossref_primary_10_1016_j_jcrysgro_2024_127808
crossref_primary_10_1016_j_jobe_2025_112427
crossref_primary_10_3390_pharmaceutics15030771
crossref_primary_10_1007_s12649_023_02302_5
crossref_primary_10_1088_1742_6596_2900_1_012032
crossref_primary_10_3390_microorganisms13010064
crossref_primary_10_1016_j_jcrysgro_2025_128077
crossref_primary_10_1007_s11440_024_02425_6
crossref_primary_10_1016_j_mtbio_2025_101467
crossref_primary_10_1016_j_conbuildmat_2024_139141
crossref_primary_10_1002_crat_202300113
crossref_primary_10_1007_s10854_024_13861_1
crossref_primary_10_1021_acsenvironau_4c00076
crossref_primary_10_1016_j_jconrel_2024_03_026
crossref_primary_10_1007_s11051_025_06279_1
crossref_primary_10_1007_s00339_024_07848_2
crossref_primary_10_1016_j_mtchem_2024_102381
crossref_primary_10_1038_s41598_024_68037_y
crossref_primary_10_1016_j_ijbiomac_2024_131076
crossref_primary_10_1021_acsami_4c14901
crossref_primary_10_1680_jgeot_24_01104
crossref_primary_10_1021_acsami_4c03451
crossref_primary_10_1039_D3NR05986C
crossref_primary_10_2174_0113852728304647240426201554
crossref_primary_10_9719_EEG_2023_56_3_217
crossref_primary_10_1021_acssuschemeng_3c04462
crossref_primary_10_1039_D2RA07647K
crossref_primary_10_1016_j_indcrop_2023_116644
crossref_primary_10_1021_acscatal_3c05900
crossref_primary_10_1016_j_psep_2023_12_015
crossref_primary_10_1016_j_jtice_2024_105727
crossref_primary_10_1021_acs_jpcc_4c02074
crossref_primary_10_1021_acs_est_4c04700
crossref_primary_10_3390_ma16103788
crossref_primary_10_1016_j_seppur_2024_131349
crossref_primary_10_1021_acs_jpcc_5c01202
crossref_primary_10_1016_j_seppur_2024_128610
crossref_primary_10_1002_adfm_202414118
crossref_primary_10_3390_molecules29153611
crossref_primary_10_1016_j_rinma_2025_100670
crossref_primary_10_1039_D3CE00738C
crossref_primary_10_1002_adem_202300430
crossref_primary_10_1016_j_ijbiomac_2025_141962
crossref_primary_10_1016_j_mtcomm_2024_111149
crossref_primary_10_1039_D4SM01268B
crossref_primary_10_1016_j_diamond_2023_110563
crossref_primary_10_1016_j_jconrel_2025_02_002
crossref_primary_10_15407_kataliz2024_35_107
crossref_primary_10_3390_ijms252111497
crossref_primary_10_1016_j_cemconres_2024_107572
crossref_primary_10_3390_ceramics6010034
crossref_primary_10_1021_acs_langmuir_4c04458
crossref_primary_10_1016_j_jobe_2024_111528
crossref_primary_10_1080_1536383X_2023_2224466
crossref_primary_10_1038_s41413_024_00356_2
crossref_primary_10_1016_j_ijbiomac_2024_136871
crossref_primary_10_1016_j_bioadv_2023_213563
crossref_primary_10_1016_j_conbuildmat_2024_138800
crossref_primary_10_3390_ijms25116147
crossref_primary_10_1016_j_pmatsci_2023_101168
crossref_primary_10_1557_s43578_024_01418_1
crossref_primary_10_1038_s44296_024_00005_z
crossref_primary_10_1016_j_cscm_2024_e03516
crossref_primary_10_1021_acs_nanolett_3c03564
crossref_primary_10_1016_j_jclepro_2023_137845
crossref_primary_10_1016_j_indcrop_2023_117110
crossref_primary_10_1016_j_ceramint_2024_09_057
crossref_primary_10_1039_D3CP04432G
crossref_primary_10_1088_2051_672X_ad7bd2
crossref_primary_10_1557_s43577_024_00673_1
crossref_primary_10_1016_j_corsci_2024_112387
crossref_primary_10_1016_j_jenvman_2024_120136
crossref_primary_10_1007_s10934_024_01731_4
crossref_primary_10_3390_su17062683
crossref_primary_10_1002_apj_3064
crossref_primary_10_1016_j_ceramint_2025_02_064
crossref_primary_10_1002_aoc_7745
crossref_primary_10_1016_j_matlet_2024_135944
crossref_primary_10_3390_molecules28176194
crossref_primary_10_1016_j_ijpharm_2024_123802
crossref_primary_10_1016_j_seppur_2024_131207
crossref_primary_10_1016_j_ces_2022_118287
crossref_primary_10_1093_jambio_lxad309
crossref_primary_10_1016_j_ijbiomac_2024_137824
crossref_primary_10_1021_acsnano_3c03523
crossref_primary_10_1039_D4CE01030B
crossref_primary_10_1016_j_memsci_2024_123392
crossref_primary_10_3390_pharmaceutics15112574
crossref_primary_10_1016_j_rser_2024_115192
crossref_primary_10_1208_s12249_024_02872_0
crossref_primary_10_1039_D4MA00580E
crossref_primary_10_1007_s00339_024_07367_0
crossref_primary_10_3390_pharmaceutics15041058
Cites_doi 10.1016/j.cis.2014.04.001
10.1126/science.1102289
10.1016/j.colsurfa.2009.10.029
10.1039/a604512j
10.1039/C5CS00836K
10.1016/j.powtec.2015.06.064
10.1038/s41467-020-19566-3
10.1002/jbm.a.32518
10.1016/j.matlet.2007.06.063
10.1016/j.powtec.2013.04.041
10.1007/s00339-020-03913-8
10.1016/0022-0248(89)90168-1
10.1002/est2.214
10.1002/adma.200300381
10.4236/wjnse.2012.21005
10.1016/j.ejpb.2014.02.009
10.1016/0927-7757(94)03063-6
10.1016/j.msec.2020.111019
10.1039/C8TB00312B
10.1016/j.msec.2008.11.009
10.1211/jpp.59.11.0004
10.1016/j.fuproc.2019.106247
10.1039/b717057b
10.1021/jacs.7b11036
10.1007/s11998-013-9547-6
10.1016/j.msea.2006.08.105
10.1002/adma.201706407
10.1002/adfm.202201394
10.1016/j.apt.2016.12.018
10.1016/j.proeps.2014.08.047
10.1016/j.powtec.2006.10.046
10.1021/jp103464p
10.1007/BF02555994
10.1021/acsabm.0c01475
10.1002/crat.201300388
10.1021/cg301759t
10.1021/cg070195n
10.1021/acs.cgd.9b00758
10.1016/j.ultras.2020.106198
10.1016/j.ultsonch.2017.10.022
10.4012/dmj.2020-254
10.1039/c3cc45427d
10.1002/adfm.201201805
10.1016/j.chemosphere.2020.126903
10.1038/ncomms4169
10.1038/35090573
10.1016/j.jcrysgro.2020.125870
10.1039/C7TB03170J
10.1007/s00396-007-1696-7
10.3390/cryst9010016
10.1039/C5CE00708A
10.1016/j.apt.2014.05.017
10.1126/science.1169434
10.1016/j.chemosphere.2020.125842
10.1002/aic.10205
10.1126/science.aad1246
10.1016/j.marchem.2014.02.003
10.1021/cr8002856
10.1021/acs.est.5b01693
10.1021/acssuschemeng.6b02758
10.1002/adfm.202004153
10.1002/chem.200305313
10.1021/acsami.6b07177
10.1038/s41467-019-13422-9
10.1021/acssuschemeng.9b03935
10.3390/ijms222212588
10.1002/admi.202000819
10.1016/S0022-0248(99)00749-6
10.1016/j.cej.2016.08.079
10.1002/app.25962
10.1016/j.powtec.2018.08.066
10.1007/s11164-012-0767-7
10.1039/C0NR00589D
10.1002/ppsc.201900471
10.13189/nn.2015.030102
10.1021/acsami.8b03939
10.1021/acssuschemeng.7b04834
10.1039/C4CE02460E
10.1142/S0218625X1950224X
10.1016/j.scitotenv.2019.136171
10.1029/93WR02655
10.1002/adfm.201201994
10.1016/j.cej.2020.126597
10.1021/acs.chemmater.8b02339
10.1016/S0022-0248(03)01153-9
10.1016/j.cej.2020.124304
10.1016/j.chemosphere.2019.02.139
10.1016/j.powtec.2011.07.032
10.1021/acs.cgd.5b01635
10.1021/acsami.6b10697
10.1021/acs.cgd.6b01493
10.3390/ma14123350
10.1016/j.actbio.2018.09.045
10.1002/cphc.201402136
10.1002/adfm.201808146
10.1002/anie.201203125
10.1016/j.powtec.2012.11.015
10.1007/s10068-013-0054-4
10.3390/ma12091481
10.1016/j.jcrysgro.2015.07.009
10.1039/c2cc00135g
10.1038/pj.2012.171
10.1002/adma.200800773
10.1016/j.colsurfa.2016.02.020
10.1086/648194
10.1021/jacs.5b07931
10.2307/1543569
10.1039/C5CS00258C
10.1021/acsami.9b04936
10.1002/smll.201603100
10.1016/j.jcrysgro.2004.09.090
10.1016/0022-0248(90)90104-S
10.1073/pnas.1118085109
10.1016/j.egypro.2009.01.132
10.1002/adfm.201504891
10.1002/polb.20774
10.3390/pharmaceutics10040167
10.1002/aenm.201801090
10.1098/rsta.2009.0007
10.1021/acs.langmuir.8b03084
10.1016/j.jcrysgro.2018.01.023
10.1038/s41586-019-1645-x
10.1073/pnas.1707890114
10.1016/j.renene.2021.07.024
10.1039/C5TB01990G
10.1073/pnas.1102608108
10.1016/j.jcis.2020.06.047
10.1517/17425247.2015.1049530
10.1002/anie.201408510
10.1039/C6CS00746E
10.1021/acs.cgd.0c00061
10.1039/C6CC04522G
10.1002/adma.202006946
10.1021/cg901240n
10.1016/j.powtec.2008.06.004
10.1126/science.aaf8991
10.1007/s13146-017-0341-x
10.1016/j.jallcom.2011.11.057
10.1039/c3mb70502a
10.1021/acsami.6b02115
10.1021/acs.cgd.6b01501
10.1073/pnas.1109243109
10.4028/www.scientific.net/AMR.79-82.1967
10.1021/acsami.5b04819
10.1007/s12039-015-0849-3
10.1016/j.biomaterials.2016.07.007
10.1039/c2jm14661d
10.1016/j.cej.2018.06.142
10.1002/smll.201302745
10.1021/acs.cgd.7b01328
10.1073/pnas.0502577102
10.1021/acs.cgd.6b00514
10.1007/s10098-012-0450-0
10.1073/pnas.84.9.2732
10.1002/term.1782
10.1039/C5TB02338F
10.1016/j.msec.2019.110226
10.15541/jim20150660
10.1016/j.colsurfa.2014.07.020
10.1016/j.msec.2015.02.019
10.1002/adma.200900295
10.1016/j.biomaterials.2005.09.026
10.1088/1468-6996/12/6/064710
10.1021/jp0343640
10.1002/chem.201900691
10.1016/j.matt.2020.09.022
10.1126/sciadv.1500849
10.1021/la052419e
10.1016/j.bioactmat.2020.06.018
10.1038/nmat4193
10.1016/j.ceramint.2017.12.106
10.1021/acs.energyfuels.0c03695
10.1016/j.msec.2017.12.019
10.1021/acsami.9b18664
10.1093/rb/rbv010
10.3390/cryst11091075
10.1002/adfm.201201079
10.1515/pjct-2015-0079
10.1021/cg500829p
10.1002/jbm.820250806
10.1016/j.semcdb.2015.09.005
10.1016/j.scitotenv.2019.134270
10.1002/pat.4452
10.1016/j.colsurfa.2016.12.027
10.3390/min8050179
10.1021/nn506210a
10.1021/ie9703090
10.1002/anie.201907388
10.1016/j.msec.2016.03.009
10.1021/acsbiomaterials.0c00364
10.1021/acs.cgd.0c01282
10.1021/acs.langmuir.6b02439
10.1039/C7CE00197E
10.1021/acs.cgd.9b01720
10.1021/cm702032v
10.1038/s41427-018-0009-6
10.1021/la025918d
10.1016/j.jiec.2019.02.002
10.1002/adma.201806957
10.1002/anie.201502323
10.1016/S0022-0248(98)00002-5
10.1126/science.abg1915
10.1016/j.colsurfb.2015.05.014
10.1021/acs.cgd.7b01364
10.1002/chem.200390150
10.1021/acsbiomaterials.7b00301
10.1039/C8CC07694D
10.1039/c2jm30778b
10.1039/C4CE01598C
10.3390/polym12112668
10.14233/ajchem.2013.OH19
10.1002/anie.201003220
10.1021/acssuschemeng.8b06658
10.1002/smll.201704272
10.2113/0540057
10.1016/j.apenergy.2016.03.037
10.1039/C7CE01681F
10.1002/anie.201402890
10.1016/j.jconrel.2020.08.061
10.1016/S0025-5408(03)00174-0
10.1002/adfm.201500400
10.1039/C7CC01420A
10.1016/j.actbio.2014.05.021
10.1179/095066003225005836
10.1088/0031-9155/48/21/011
10.1042/BJ20130285
10.1002/anie.201602849
10.1021/la803541m
10.1021/la061975l
10.1021/cg801338b
10.1039/c3cc40807h
10.1002/term.2273
10.1111/jace.16593
10.1016/j.biomaterials.2021.120885
10.1002/adfm.201100749
10.1002/adfm.202007830
10.1002/smll.201501083
10.1146/annurev-matsci-070317-124327
10.1016/j.mcat.2020.110786
10.1021/cg300676b
10.1002/open.202000040
10.1103/PhysRevE.72.011605
10.1021/acsanm.9b02036
10.1021/jp308353t
10.1007/s00396-006-1535-2
10.1016/j.energy.2015.04.096
10.1016/j.msec.2005.01.005
10.1039/c1jm10770d
10.1038/35016535
10.1016/j.biomaterials.2016.09.025
10.1039/D1TB01072G
10.1126/science.1178583
10.1038/nchembio.532
10.1002/1616-3028(20020101)12:1<43::AID-ADFM43>3.0.CO;2-C
10.1038/s41565-018-0319-4
10.2138/am.2012.3983
10.1016/j.jcrysgro.2013.10.009
10.1021/acsbiomaterials.1c01280
10.1016/j.colsurfb.2016.03.020
10.1073/pnas.0806604105
10.1002/pi.4824
10.3390/cryst11030250
10.1021/cr050358j
10.1021/acs.cgd.6b00630
10.1002/adma.202104829
10.1016/j.jcis.2013.12.008
10.1039/C7TA02070H
10.1016/j.matchemphys.2020.123552
10.1021/acs.est.9b03795
10.1016/j.micromeso.2019.109736
10.1080/17425247.2019.1587408
10.1039/C9CC03749G
10.1021/acs.cgd.0c01376
10.1016/S0169-4332(02)00534-2
10.1002/cplu.201600457
10.1038/ncomms1604
10.1016/j.nantod.2011.10.005
10.2147/IJN.S193976
10.1007/s11051-019-4693-0
10.1021/bi025630n
10.1016/j.jclepro.2021.126802
10.1515/zpch-1897-2233
10.1038/s41598-020-65667-w
10.1016/j.jiec.2015.03.015
10.1007/s00396-013-2960-7
10.1016/j.powtec.2004.02.018
10.1007/s10853-006-0747-7
10.1016/j.powtec.2019.08.054
10.1002/adma.201002395
10.1016/j.colsurfa.2017.05.002
10.1039/C8CP00540K
10.3390/coatings8010043
10.1016/j.powtec.2007.05.004
10.1039/C4TA02070G
10.1039/c3tb20192a
10.1039/C9TB01148J
10.1039/c0nr00443j
10.1021/jacs.9b01883
10.1021/acs.langmuir.7b03813
10.1002/anie.202008055
10.1039/C9BM00463G
10.1146/annurev-physchem-040215-112621
10.1016/0016-7037(82)90056-4
10.1038/nmat4631
10.1016/j.jallcom.2007.09.009
10.1016/j.materresbull.2013.01.048
10.1016/j.ces.2008.04.022
10.1021/ef5005539
10.1039/C5TB01623A
10.1021/acs.chemmater.0c00975
10.1186/s12951-015-0111-7
10.1039/C3CS60451A
10.1126/science.aav0210
10.1016/j.jconrel.2015.12.051
10.1002/adma.201202733
10.3390/cryst7120355
10.1039/b710895h
10.1002/anie.200200562
10.1021/acssuschemeng.9b05128
10.1002/adfm.202000003
10.1039/C1CS15106A
10.1038/ncomms1970
10.1002/anie.201903662
10.1246/cl.2000.186
10.3390/biomimetics6030046
10.1007/s10853-021-06204-6
10.1021/acsomega.8b02445
10.1016/j.partic.2012.07.009
10.1016/j.colsurfa.2020.125583
10.1016/j.apenergy.2013.10.029
10.1039/C7CE01693J
10.1002/adma.202004647
10.1186/s12932-015-0019-z
10.1038/35081034
10.1039/C5RA15382D
10.1021/acssuschemeng.9b00563
10.1038/s41598-017-05395-w
10.1021/cr800443h
10.1039/C8TA10822F
10.1007/s10853-015-9327-z
10.1039/C6CC03010F
10.1039/C9TB00237E
10.1021/acs.cgd.0c01245
10.1016/j.biomaterials.2010.10.035
10.1021/cg5015847
10.1038/s41598-019-56023-8
10.1002/asia.201300745
10.1039/C7TB01635B
10.1021/acsami.7b09304
10.1016/j.actbio.2010.03.034
10.1016/j.jhazmat.2012.01.054
10.1002/smll.201400559
10.1126/science.1164271
10.1039/C7RA07169H
10.1016/j.colsurfb.2014.03.007
10.1039/c3mh00134b
10.1038/ncomms6967
10.1016/j.cep.2015.10.003
10.1073/pnas.2009531117
10.1039/D0TB01453B
10.1016/j.powtec.2006.08.016
10.1021/cr078259o
10.1002/adhm.201500170
10.1016/j.colsurfa.2020.126084
10.3390/cryst9040223
10.1038/ncomms15933
10.1002/slct.201901436
10.1021/la1016559
10.1016/j.apsusc.2016.03.205
10.1186/s11671-016-1338-4
10.1089/152091503763816409
10.1016/j.jcrysgro.2011.11.016
10.1039/C6TB02826H
10.1002/crat.201300178
10.1002/slct.201800444
10.1002/(SICI)1521-4095(199903)11:4<324::AID-ADMA324>3.0.CO;2-A
10.1021/acs.chemmater.6b00769
10.1002/jbm.a.36849
10.1016/j.jlumin.2018.06.041
10.1016/j.chemosphere.2020.126227
10.1126/sciadv.1500379
10.1016/j.jcou.2020.101333
10.1021/acs.cgd.8b01314
10.1039/D0CE01854F
10.1016/0142-9612(95)93584-Z
10.1016/j.pnsc.2018.09.004
10.1098/rspb.1997.0066
10.1002/adfm.201704956
10.1016/j.jhazmat.2019.05.100
10.1021/acsomega.8b02014
10.1002/pc.22947
10.1021/cg9012813
10.1038/s41545-018-0001-2
10.1016/j.supflu.2012.08.004
10.1016/j.envpol.2011.04.017
10.1039/c3ce41275j
10.1073/pnas.1700342114
10.1007/s10561-010-9208-2
10.1007/s12257-014-0898-3
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
– notice: Attribution - NonCommercial - NoDerivatives
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
1XC
VOOES
DOI 10.1039/d1cs00519g
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Medicine
EISSN 1460-4744
EndPage 7943
ExternalDocumentID oai_HAL_hal_03760034v1
10_1039_D1CS00519G
d1cs00519g
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
5GY
6J9
705
70J
70~
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
53G
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
M4U
R56
RAOCF
2WC
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
0UZ
186
1TJ
1XC
3EH
6TJ
71~
8WZ
9M8
A6W
AAUTI
ABDPE
ACHDF
ACKIV
ACPVT
ACRPL
ADNMO
AETEA
AFFDN
AFFNX
AGQPQ
AHGXI
AI.
AIDUJ
ALSGL
ANBJS
ANLMG
AQHUZ
ASPBG
AVWKF
BBWZM
CAG
EEHRC
EJD
FA8
FEDTE
HF~
HVGLF
H~9
IDY
J3G
J3H
L-8
MVM
NDZJH
RCLXC
RIG
ROL
RRXOS
SC5
UMC
UQL
VH1
VOOES
WHG
XJT
XOL
ZCG
ZKB
ID FETCH-LOGICAL-c483t-5dafb8fbd17eae86bcab676533f1685022159a5a2d7cfe1ae0b917836b6af2393
ISSN 0306-0012
1460-4744
IngestDate Fri May 09 12:28:44 EDT 2025
Fri Jul 11 11:28:43 EDT 2025
Fri Jul 11 02:21:14 EDT 2025
Mon Jun 30 04:28:51 EDT 2025
Tue Jul 01 04:18:48 EDT 2025
Thu Apr 24 23:07:25 EDT 2025
Wed Sep 21 13:29:58 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-5dafb8fbd17eae86bcab676533f1685022159a5a2d7cfe1ae0b917836b6af2393
Notes Yu Qin Niu is currently a postgraduate at Research Group for Advanced Materials & Sustainable Catalysis (AMSC), College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, China. She received her Bachelor's Degree in Chemical Engineering and Technology from Qingdao University of Science and Technology. Her research presently focuses on organic-inorganic mineral bio-composites under the supervision of Prof. Chun Hui ZHOU. She has coauthored scientific papers in respected peer-reviewed international journals.
Damir Kralj is a senior scientist and a head of the Laboratory for Precipitation Processes, Ruder Boskovic Institute, Zagreb, Croatia. He studied Chemical Engineering and Chemistry at the University of Zagreb and completed his PhD in 1990. He held a research fellowship at the University of Copenhagen (Arne E. Nielsen) and a postdoc fellowship at the TU Delft (Gerda van Rosmalen). His research focus is on the kinetics and mechanisms of precipitation of slightly soluble ionic salts (calcium carbonates, oxalates, phosphates), metastable and precursor phases, interfacial interactions between mineral surfaces and dissolved species, biomineralization, pathological mineralization and industrial crystallization.
Dr Chun Hui ZHOU, born and brought up in Miaoqian, Qingyang, Anhui, is Professor of Chemical Engineering and Leader of Research Group for Advanced Materials and Sustainable Catalysis (AMSC), Zhejiang University of Technology. He is Director of Qing Yang Institute for Industrial Minerals. He acts as AIPEA Councilor (2017-) and Vice President (2022-). He also serves as Principal Editor of Clay Minerals, Associate Editor of Clays and Clay Minerals, and Editorial Member of Applied Clay Science, Journal of Porous Materials and Journal of Inclusion Phenomena and Macrocyclic Chemistry. He worked as a visiting academic at the University of Queensland (2006-2007) and as a visiting professor at the University of Western Australia (2010). His R&D centers on clay minerals, limestone and dolomite and related functional materials as well as catalysts for converting biochemicals and biomass, He teaches Catalysis, Materials Science and Engineering, and Scientific Literacy.
Prof. Giuseppe FALINI, PhD in Chemistry, is full professor in chemistry at the University of Bologna. Currently, his research activities are addressed to the design and preparation of innovative materials from waste marine biominerals and biopolymers and to the study of the biomineralization process in corals and echinoderms and under environmental stresses. He is co-author of about 230 scientific publications in international journals (two in Science). He also wrote 3 book chapters and is co-inventor of 3 patents. He has been awarded of grants from national institutions, companies and European Community (ERC Adv).
Jia Hui Liu is currently a PhD candidate at Research Group for Advanced Materials & Sustainable Catalysis (AMSC), College of Chemical Engineering, Zhejiang University of Technology (ZJUT), Hangzhou, China and under the supervision of Prof. Chun Hui Zhou. She received her Bachelor's Degree in Applied Chemistry from Anhui Jianzhu University. Her research presently focuses on colloid and surface chemistry of carbonate and clay minerals, and related hydrogels and nanostructured functional composites and their applications in healthcare, adsorption and catalysis. She has authored and coauthored several scientific papers in respected peer-reviewed international journals.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1775-0716
0000-0002-3056-3432
0000-0002-4152-4893
0000-0001-5733-9011
0000-0002-2367-3721
OpenAccessLink https://hal.science/hal-03760034
PQID 2715665357
PQPubID 2047503
PageCount 61
ParticipantIDs crossref_primary_10_1039_D1CS00519G
rsc_primary_d1cs00519g
proquest_journals_2715665357
crossref_citationtrail_10_1039_D1CS00519G
hal_primary_oai_HAL_hal_03760034v1
proquest_miscellaneous_2723110516
proquest_miscellaneous_2705398574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Chemical Society reviews
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gopi (D1CS00519G/cit137/1) 2013; 48
Yoğurtcuoğlu (D1CS00519G/cit207/1) 2011; 214
Kajiyama (D1CS00519G/cit373/1) 2014; 10
Wang (D1CS00519G/cit316/1) 2020; 3
Combes (D1CS00519G/cit225/1) 2006; 27
Ping (D1CS00519G/cit412/1) 2016; 4
Ehrlich (D1CS00519G/cit4/1) 2011; 21
Wang (D1CS00519G/cit417/1) 2018; 54
Mori (D1CS00519G/cit104/1) 2009; 29
Shi (D1CS00519G/cit2/1) 2018; 3
Kontrec (D1CS00519G/cit122/1) 2021; 11
Tran (D1CS00519G/cit251/1) 2010; 12
Parakhonskiy (D1CS00519G/cit115/1) 2015; 13
Zhu (D1CS00519G/cit387/1) 2013; 8
Milovanovic (D1CS00519G/cit413/1) 2021; 56
Pouget (D1CS00519G/cit92/1) 2009; 323
Zhu (D1CS00519G/cit311/1) 2015; 54
Svenskaya (D1CS00519G/cit76/1) 2018; 18
Li (D1CS00519G/cit197/1) 2009; 79-82
Pai (D1CS00519G/cit62/1) 2008; 10
Jimoh (D1CS00519G/cit77/1) 2017; 33
Zhu (D1CS00519G/cit363/1) 2018; 203
Bots (D1CS00519G/cit186/1) 2012; 12
Douglas (D1CS00519G/cit245/1) 2017; 11
Shi (D1CS00519G/cit282/1) 2015; 17
Guillemet (D1CS00519G/cit386/1) 2006; 22
Studart (D1CS00519G/cit308/1) 2016; 45
Buljan Meić (D1CS00519G/cit61/1) 2018; 20
Levi-Kalisman (D1CS00519G/cit368/1) 2002; 12
Zeng (D1CS00519G/cit209/1) 2020; 249
Iwase (D1CS00519G/cit304/1) 2020; 20
Lee (D1CS00519G/cit199/1) 2019; 74
Gebauer (D1CS00519G/cit183/1) 2014; 43
Akiva-Tal (D1CS00519G/cit18/1) 2011; 108
Snook (D1CS00519G/cit292/1) 2016; 4
Tan (D1CS00519G/cit191/1) 2020; 42
Brečević (D1CS00519G/cit126/1) 1989; 98
Zhao (D1CS00519G/cit309/1) 2018; 10
Lai (D1CS00519G/cit158/1) 2015; 15
Emir (D1CS00519G/cit360/1) 2020; 3
Henry (D1CS00519G/cit328/1) 2015; 49
Xue (D1CS00519G/cit73/1) 2020; 6
Tang (D1CS00519G/cit198/1) 2014; 25
Bai (D1CS00519G/cit313/1) 2015; 1
Pontoni (D1CS00519G/cit147/1) 2003; 107
Zaharia (D1CS00519G/cit333/1) 2021; 613
Pouget (D1CS00519G/cit394/1) 2009; 323
Ihli (D1CS00519G/cit381/1) 2013; 49
Kato (D1CS00519G/cit295/1) 2000
Jiang (D1CS00519G/cit356/1) 2018; 34
Wei (D1CS00519G/cit359/1) 2019; 7
Murphy (D1CS00519G/cit7/1) 2020; 3
Shi (D1CS00519G/cit52/1) 2021; 4
Viateau (D1CS00519G/cit250/1) 2016; 10
Lopez-Berganza (D1CS00519G/cit31/1) 2016; 16
Ostwald (D1CS00519G/cit98/1) 1897; 22
Sondi (D1CS00519G/cit378/1) 2008; 8
Lee (D1CS00519G/cit234/1) 2007; 42
Li (D1CS00519G/cit299/1) 2015; 350
Maleki Dizaj (D1CS00519G/cit274/1) 2015; 12
Han (D1CS00519G/cit33/1) 2019; 356
Liu (D1CS00519G/cit322/1) 2019; 378
Kralj (D1CS00519G/cit118/1) 1990; 104
Jacob (D1CS00519G/cit321/1) 2018; 1
Badnore (D1CS00519G/cit113/1) 2015; 98
Smeets (D1CS00519G/cit91/1) 2017; 114
Trofimov (D1CS00519G/cit95/1) 2018; 10
Lei (D1CS00519G/cit336/1) 2019; 53
Junaidi (D1CS00519G/cit298/1) 2007; 6
Zhang (D1CS00519G/cit320/1) 2019; 224
Walsh (D1CS00519G/cit159/1) 1999; 11
Pedrosa (D1CS00519G/cit192/1) 2016; 497
Turner (D1CS00519G/cit153/1) 1998; 37
Zhang (D1CS00519G/cit353/1) 2019; 4
Boyjoo (D1CS00519G/cit23/1) 2014; 2
Štajner (D1CS00519G/cit30/1) 2018; 486
Wang (D1CS00519G/cit72/1) 2019; 14
Li (D1CS00519G/cit241/1) 2009; 326
Guan (D1CS00519G/cit269/1) 2020; 59
Chang (D1CS00519G/cit270/1) 2020; 32
Evík (D1CS00519G/cit105/1) 2015; 284
Opitz (D1CS00519G/cit232/1) 2021; 31
Ihli (D1CS00519G/cit385/1) 2013; 23
Rugabirwa (D1CS00519G/cit110/1) 2018; 19
Parakhonskiy (D1CS00519G/cit101/1) 2014; 15
Kim (D1CS00519G/cit93/1) 2007; 23
Grassmann (D1CS00519G/cit242/1) 2003; 9
Colfen (D1CS00519G/cit181/1) 2003; 42
Zhang (D1CS00519G/cit347/1) 2020; 388
Su (D1CS00519G/cit401/1) 2013; 453
Magnabosco (D1CS00519G/cit278/1) 2015; 4
Rodriguez-Blanco (D1CS00519G/cit389/1) 2012; 536
Du (D1CS00519G/cit329/1) 2011; 159
Gower (D1CS00519G/cit398/1) 2000; 210
Ji (D1CS00519G/cit143/1) 2008; 62
Wang (D1CS00519G/cit396/1) 2013; 13
Chen (D1CS00519G/cit156/1) 2010; 353
Fermani (D1CS00519G/cit138/1) 2017; 19
Tang (D1CS00519G/cit344/1) 2021; 405
Qi (D1CS00519G/cit261/1) 2018; 47
Kim (D1CS00519G/cit203/1) 2015; 20
Zhou (D1CS00519G/cit330/1) 2018; 351
Altay (D1CS00519G/cit136/1) 2007; 178
Lee (D1CS00519G/cit54/1) 2016; 223
Deepika (D1CS00519G/cit210/1) 2013; 235
Zhang (D1CS00519G/cit275/1) 2012; 02
Seto (D1CS00519G/cit188/1) 2012; 109
Zhang (D1CS00519G/cit216/1) 2004; 141
Wu (D1CS00519G/cit286/1) 2017; 5
Mass (D1CS00519G/cit17/1) 2017; 114
Zou (D1CS00519G/cit371/1) 2020; 30
McCann (D1CS00519G/cit162/1) 2009; 1
Min (D1CS00519G/cit222/1) 2015; 9
Huang (D1CS00519G/cit56/1) 2020; 108
Liang (D1CS00519G/cit288/1) 2015; 64
Ma (D1CS00519G/cit324/1) 2012; 338
Gebauer (D1CS00519G/cit80/1) 2008; 322
Yang (D1CS00519G/cit64/1) 2016; 52
Faatz (D1CS00519G/cit379/1) 2005; 25
Cui (D1CS00519G/cit213/1) 2010; 26
Dai (D1CS00519G/cit341/1) 2020; 12
Li (D1CS00519G/cit47/1) 2018; 28
He (D1CS00519G/cit362/1) 2018; 44
Das (D1CS00519G/cit310/1) 2015; 6
Volodkin (D1CS00519G/cit35/1) 2014; 207
Rossler (D1CS00519G/cit237/1) 2020; 10
Beniash (D1CS00519G/cit407/1) 1997; 264
Kuo (D1CS00519G/cit411/1) 2018; 3
Yu (D1CS00519G/cit348/1) 2014; 28
Zou (D1CS00519G/cit403/1) 2018; 6
Zhou (D1CS00519G/cit201/1) 2006; 44
Dong (D1CS00519G/cit55/1) 2016; 110
Li (D1CS00519G/cit343/1) 2018; 34
Yang (D1CS00519G/cit8/1) 2020; 117
Gal (D1CS00519G/cit391/1) 2010; 132
Hu (D1CS00519G/cit130/1) 2015; 15
Sánchez (D1CS00519G/cit351/1) 2007; 285
Sarkar (D1CS00519G/cit96/1) 2010; 10
Morse (D1CS00519G/cit1/1) 2007; 107
Luz (D1CS00519G/cit307/1) 2009; 367
Dai (D1CS00519G/cit339/1) 2020; 12
Lam (D1CS00519G/cit369/1) 2007; 9
Zhang (D1CS00519G/cit346/1) 2020; 484
Njegić Džakula (D1CS00519G/cit87/1) 2014; 49
Xu (D1CS00519G/cit272/1) 2019; 29
Kralj (D1CS00519G/cit125/1) 1995; 96
Sommerdijk (D1CS00519G/cit28/1) 2008; 108
Lin (D1CS00519G/cit323/1) 2020; 254
Jiang (D1CS00519G/cit112/1) 2015; 5
Reilly (D1CS00519G/cit123/1) 1994; 30
Sovova (D1CS00519G/cit133/1) 2021; 9
Zhong (D1CS00519G/cit377/1) 2009; 25
Wang (D1CS00519G/cit355/1) 2016; 171
Fukui (D1CS00519G/cit160/1) 2012; 22
Kertmen (D1CS00519G/cit5/1) 2021; 22
Cheng (D1CS00519G/cit196/1) 2013; 25
Jiang (D1CS00519G/cit350/1) 2007; 104
Yu (D1CS00519G/cit354/1) 2014; 114
Beuvier (D1CS00519G/cit161/1) 2011; 21
Orme (D1CS00519G/cit172/1) 2001; 411
Gong (D1CS00519G/cit243/1) 2019; 7
Murai (D1CS00519G/cit114/1) 2016; 32
Kakisawa (D1CS00519G/cit294/1) 2011; 12
Chen (D1CS00519G/cit290/1) 2019; 14
Nagaraja (D1CS00519G/cit107/1) 2014; 418
Kosanović (D1CS00519G/cit165/1) 2017; 7
Sugawara-Narutaki (D1CS00519G/cit296/1) 2012; 45
Andreassen (D1CS00519G/cit135/1) 2004; 50
Munro (D1CS00519G/cit240/1) 2012; 48
Baylis (D1CS00519G/cit258/1) 2015; 1
Zhang (D1CS00519G/cit265/1) 2015; 7
Bahrom (D1CS00519G/cit25/1) 2019; 7
Loste (D1CS00519G/cit388/1) 2003; 254
Mao (D1CS00519G/cit314/1) 2016; 354
Jeon (D1CS00519G/cit206/1) 2018; 8
Gebauer (D1CS00519G/cit81/1) 2011; 6
Rodríguez-Sánchez (D1CS00519G/cit229/1) 2019; 102
Bolze (D1CS00519G/cit146/1) 2002; 18
Liu (D1CS00519G/cit34/1) 2021; 35
Rieger (D1CS00519G/cit185/1) 2014; 53
Ma (D1CS00519G/cit129/1) 2019; 19
Choukrani (D1CS00519G/cit221/1) 2020; 106
Demichelis (D1CS00519G/cit140/1) 2018; 48
Xiong (D1CS00519G/cit332/1) 2020; 698
Gong (D1CS00519G/cit19/1) 2012; 109
Saharay (D1CS00519G/cit406/1) 2013; 117
Buljan Meić (D1CS00519G/cit97/1) 2017; 17
Barbotteau (D1CS00519G/cit236/1) 2003; 48
Zhang (D1CS00519G/cit302/1) 2016; 45
Stepić (D1CS00519G/cit167/1) 2020; 20
Kontrec (D1CS00519G/cit163/1) 2013; 48
Chen (D1CS00519G/cit384/1) 2013; 49
Mlinarić (D1CS00519G/cit88/1) 2021; 11
Tang (D1CS00519G/cit121/1) 2008; 463
Yang (D1CS00519G/cit284/1) 2016; 63
Woldetsadik (D1CS00519G/cit254/1) 2017; 3
Njegić-Džakula (D1CS00519G/cit177/1) 2009; 9
Kurapati (D1CS00519G/cit280/1) 2013; 1
Merrikhpour (D1CS00519G/cit331/1) 2012; 14
Leukel (D1CS00519G/cit382/1) 2018; 30
Gower (D1CS00519G/cit59/1) 2008; 108
Begley (D1CS00519G/cit235/1) 1995; 16
Demichelis (D1CS00519G/cit184/1) 2011; 2
Ma (D1CS00519G/cit281/1) 2013; 15
Zou (D1CS00519G/cit144/1) 2016; 31
Shen (D1CS00519G/cit164/1) 2007; 443
Sato (D1CS00519G/cit393/1) 2011; 7
Tobler (D1CS00519G/cit68/1) 2015; 25
Addadi (D1CS00519G/cit169/1) 1987; 84
Raz (D1CS00519G/cit409/1) 2002; 203
Wan (D1CS00519G/cit268/1) 2019; 58
Liu (D1CS00519G/cit89/1) 2019; 574
Andreassen (D1CS00519G/cit134/1) 2005; 274
Zhu (D1CS00519G/cit154/1) 2015; 428
Li (D1CS00519G/cit255/1) 2020; 30
Yang (D1CS00519G/cit24/1) 2020; 114
Fujioka-Kobayashi (D1CS00519G/cit46/1) 2018; 12
Wada (D1CS00519G/cit82/1) 2018; 3
Li (D1CS00519G/cit266/1) 2016; 8
Hu (D1CS00519G/cit127/1) 2012; 97
Cai (D1CS00519G/cit37/1) 2020; 7
Vergaro (D1CS00519G/cit84/1) 2017; 28
Maleki Dizaj (D1CS00519G/cit283/1) 2019; 16
Kim (D1CS00519G/cit211/1) 2018; 536
Wysokowski (D1CS00519G/cit12/1) 2020; 6
Donnelly (D1CS00519G/cit152/1) 2017; 53
Fujita (D1CS00519G/cit224/1) 1991; 25
Kruppke (D1CS00519G/cit252/1) 2020; 108
Wen (D1CS00519G/cit327/1) 2020; 246
Racca (D1CS00519G/cit202/1) 2019; 21
Sarkar (D1CS00519G/cit194/1) 2012; 22
Ramola (D1CS00519G/cit337/1) 2021; 299
Wang (D1CS00519G/cit40/1) 2018; 14
Kim (D1CS00519G/cit53/1) 2016; 8
Gupta (D1CS00519G/cit340/1) 2017; 5
Addadi (D1CS00519G/cit365/1) 2003; 15
Xto (D1CS00519G/cit380/1) 2019; 55
Juhasz-Bortuzzo (D1CS00519G/cit86/1) 2017; 17
Hanafy (D1CS00519G/cit145/1) 2015; 4
Guo (D1CS00519G/cit345/1) 2019; 7
Zhou (D1CS00519G/cit326/1) 2017; 9
Pan (D1CS00519G/cit361/1) 2003; 38
Sharma (D1CS00519G/cit220/1) 2015; 133
Oaki (D1CS00519G/cit60/1) 2008; 20
Matijaković (D1CS00519G/cit157/1) 2019; 9
Turner, Jr. (D1CS00519G/cit259/1) 2002; 41
Zhang (D1CS00519G/cit390/1) 2022; 32
Aufort (D1CS00519G/cit14/1) 2020; 20
Enyedi (D1CS00519G/cit36/1) 2020; 10
Milovanovic (D1CS00519G/cit66/1) 2020; 579
Huang (D1CS00519G/cit71/1) 2015; 36
Mu (D1CS00519G/cit90/1) 2021; 372
Barhoum (D1CS00519G/cit195/1) 2015; 50
Xu (D1CS00519G/cit180/1) 2021; 21
Borukhin (D1CS00519G/cit171/1) 2012; 22
Myszka (D1CS00519G/cit231/1) 2019; 7
Saveleva (D1CS00519G/cit253/1) 2018; 85
Tobler (D1CS00519G/cit404/1) 2016; 16
Yaraghi (D1CS00519G/cit306/1) 2018; 69
Shi (D1CS00519G/cit74/1) 2021; 23
Yuan (D1CS00519G/cit338/1) 2018; 28
Xu (D1CS00519G/cit48/1) 2020; 9
Wang (D1CS00519G/cit420/1) 2020; 8
Dong (D1CS00519G/cit267/1) 2017; 516
Kamat (D1CS00519G/cit303/1) 2000; 405
Root (D1CS00519G/cit366/1) 1990; 47
Liu (D1CS00519G/cit416/1) 2011; 32
Ma (D1CS00519G/cit352/1) 2015; 87
Shi (D1CS00519G/cit397/1) 2017; 7
Fang (D1CS00519G/cit357/1) 2017; 5
Cui (D1CS00519G/cit217/1) 2015; 17
Zou (D1CS00519G/cit400/1) 2017; 13
Goss (D1CS00519G/cit264/1) 2007; 59
Shi (D1CS00519G/cit289/1) 2018; 6
Nassif (D1CS00519G/cit367/1) 2005; 102
Dhand (D1CS
References_xml – issn: 2020
  publication-title: Synthetic bone graft substitutes: Calcium-based biomaterials
  doi: Diez-Escudero Espanol Ginebra
– issn: 2000
  publication-title: Kinetics and mechanisms of crystal growth in aqueous systems
  doi: Bre evi Kralj
– volume: 207
  start-page: 306
  year: 2014
  ident: D1CS00519G/cit35/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2014.04.001
– volume: 20
  start-page: 1273
  year: 2009
  ident: D1CS00519G/cit249/1
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 306
  start-page: 1161
  year: 2004
  ident: D1CS00519G/cit6/1
  publication-title: Science
  doi: 10.1126/science.1102289
– volume: 353
  start-page: 97
  year: 2010
  ident: D1CS00519G/cit156/1
  publication-title: Colloid Surf., A
  doi: 10.1016/j.colsurfa.2009.10.029
– volume: 7
  start-page: 689
  year: 1997
  ident: D1CS00519G/cit168/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/a604512j
– volume: 45
  start-page: 359
  year: 2016
  ident: D1CS00519G/cit308/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00836K
– volume: 284
  start-page: 265
  year: 2015
  ident: D1CS00519G/cit132/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.06.064
– volume: 11
  start-page: 5792
  year: 2020
  ident: D1CS00519G/cit300/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19566-3
– volume: 93A
  start-page: 965
  year: 2010
  ident: D1CS00519G/cit239/1
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.32518
– volume: 62
  start-page: 751
  year: 2008
  ident: D1CS00519G/cit143/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2007.06.063
– volume: 245
  start-page: 208
  year: 2013
  ident: D1CS00519G/cit205/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.04.041
– volume: 126
  start-page: 727
  year: 2020
  ident: D1CS00519G/cit13/1
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03913-8
– volume: 98
  start-page: 504
  year: 1989
  ident: D1CS00519G/cit126/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(89)90168-1
– volume: 3
  start-page: e214
  year: 2020
  ident: D1CS00519G/cit360/1
  publication-title: Energy Storage
  doi: 10.1002/est2.214
– volume: 15
  start-page: 959
  year: 2003
  ident: D1CS00519G/cit365/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200300381
– volume: 02
  start-page: 25
  year: 2012
  ident: D1CS00519G/cit275/1
  publication-title: World J. Nano Sci. Eng.
  doi: 10.4236/wjnse.2012.21005
– volume: 87
  start-page: 548
  year: 2014
  ident: D1CS00519G/cit277/1
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2014.02.009
– volume: 96
  start-page: 287
  year: 1995
  ident: D1CS00519G/cit125/1
  publication-title: Colloids Surf., A
  doi: 10.1016/0927-7757(94)03063-6
– volume: 114
  start-page: 111019
  year: 2020
  ident: D1CS00519G/cit24/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2020.111019
– volume: 6
  start-page: 4205
  year: 2018
  ident: D1CS00519G/cit289/1
  publication-title: J. Mat. Chem. B
  doi: 10.1039/C8TB00312B
– volume: 29
  start-page: 1409
  year: 2009
  ident: D1CS00519G/cit104/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2008.11.009
– volume: 59
  start-page: 1485
  year: 2007
  ident: D1CS00519G/cit264/1
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.59.11.0004
– volume: 199
  start-page: 106247
  year: 2020
  ident: D1CS00519G/cit318/1
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2019.106247
– volume: 10
  start-page: 865
  year: 2008
  ident: D1CS00519G/cit62/1
  publication-title: CrystEngComm
  doi: 10.1039/b717057b
– volume: 140
  start-page: 2165
  year: 2018
  ident: D1CS00519G/cit42/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11036
– volume: 11
  start-page: 273
  year: 2014
  ident: D1CS00519G/cit208/1
  publication-title: J. Coat. Technol. Res.
  doi: 10.1007/s11998-013-9547-6
– volume: 443
  start-page: 95
  year: 2007
  ident: D1CS00519G/cit164/1
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2006.08.105
– volume: 30
  start-page: e1706407
  year: 2018
  ident: D1CS00519G/cit419/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706407
– volume: 32
  start-page: 2201394
  year: 2022
  ident: D1CS00519G/cit390/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202201394
– volume: 28
  start-page: 2445
  year: 2017
  ident: D1CS00519G/cit84/1
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.12.018
– volume: 10
  start-page: 143
  year: 2014
  ident: D1CS00519G/cit402/1
  publication-title: Procedia Earth Planet. Sci.
  doi: 10.1016/j.proeps.2014.08.047
– volume: 171
  start-page: 192
  year: 2007
  ident: D1CS00519G/cit150/1
  publication-title: J. Powder Technol.
  doi: 10.1016/j.powtec.2006.10.046
– volume: 114
  start-page: 12948
  year: 2010
  ident: D1CS00519G/cit67/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103464p
– volume: 47
  start-page: 112
  year: 1990
  ident: D1CS00519G/cit366/1
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF02555994
– volume: 284
  start-page: 265
  year: 2015
  ident: D1CS00519G/cit105/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.06.064
– volume: 4
  start-page: 1030
  year: 2021
  ident: D1CS00519G/cit52/1
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01475
– volume: 49
  start-page: 244
  year: 2014
  ident: D1CS00519G/cit87/1
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.201300388
– volume: 13
  start-page: 1937
  year: 2013
  ident: D1CS00519G/cit396/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg301759t
– volume: 8
  start-page: 435
  year: 2008
  ident: D1CS00519G/cit378/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070195n
– volume: 19
  start-page: 6972
  year: 2019
  ident: D1CS00519G/cit129/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00758
– volume: 108
  start-page: 106198
  year: 2020
  ident: D1CS00519G/cit56/1
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106198
– volume: 41
  start-page: 572
  year: 2018
  ident: D1CS00519G/cit319/1
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.10.022
– volume: 40
  start-page: 1202
  year: 2021
  ident: D1CS00519G/cit227/1
  publication-title: Dent. Mater. J.
  doi: 10.4012/dmj.2020-254
– volume: 49
  start-page: 9564
  year: 2013
  ident: D1CS00519G/cit384/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45427d
– volume: 23
  start-page: 1575
  year: 2013
  ident: D1CS00519G/cit385/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201805
– volume: 254
  start-page: 126903
  year: 2020
  ident: D1CS00519G/cit323/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126903
– volume: 5
  start-page: 3169
  year: 2014
  ident: D1CS00519G/cit405/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4169
– volume: 412
  start-page: 819
  year: 2001
  ident: D1CS00519G/cit9/1
  publication-title: Nature
  doi: 10.1038/35090573
– volume: 549
  start-page: 125870
  year: 2020
  ident: D1CS00519G/cit100/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2020.125870
– volume: 6
  start-page: 449
  year: 2018
  ident: D1CS00519G/cit403/1
  publication-title: J. Mat. Chem. B
  doi: 10.1039/C7TB03170J
– volume: 285
  start-page: 1377
  year: 2007
  ident: D1CS00519G/cit351/1
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-007-1696-7
– volume: 9
  start-page: 16
  year: 2019
  ident: D1CS00519G/cit157/1
  publication-title: Crystals
  doi: 10.3390/cryst9010016
– volume: 17
  start-page: 4768
  year: 2015
  ident: D1CS00519G/cit282/1
  publication-title: CrystEngComm
  doi: 10.1039/C5CE00708A
– volume: 25
  start-page: 1618
  year: 2014
  ident: D1CS00519G/cit198/1
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2014.05.017
– volume: 323
  start-page: 1455
  year: 2009
  ident: D1CS00519G/cit394/1
  publication-title: Science
  doi: 10.1126/science.1169434
– volume: 246
  start-page: 125842
  year: 2020
  ident: D1CS00519G/cit327/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125842
– volume: 50
  start-page: 2772
  year: 2004
  ident: D1CS00519G/cit135/1
  publication-title: AIChE J.
  doi: 10.1002/aic.10205
– volume: 350
  start-page: 952
  year: 2015
  ident: D1CS00519G/cit299/1
  publication-title: Science
  doi: 10.1126/science.aad1246
– volume: 162
  start-page: 10
  year: 2014
  ident: D1CS00519G/cit15/1
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2014.02.003
– volume: 108
  start-page: 4332
  year: 2008
  ident: D1CS00519G/cit29/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr8002856
– volume: 49
  start-page: 8948
  year: 2015
  ident: D1CS00519G/cit328/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01693
– volume: 5
  start-page: 3074
  year: 2017
  ident: D1CS00519G/cit357/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02758
– volume: 30
  start-page: 2004153
  year: 2020
  ident: D1CS00519G/cit255/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004153
– volume: 10
  start-page: 1647
  year: 2004
  ident: D1CS00519G/cit116/1
  publication-title: Chemistry
  doi: 10.1002/chem.200305313
– volume: 8
  start-page: 22056
  year: 2016
  ident: D1CS00519G/cit44/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07177
– volume: 10
  start-page: 5682
  year: 2019
  ident: D1CS00519G/cit166/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13422-9
– volume: 7
  start-page: 18854
  year: 2019
  ident: D1CS00519G/cit359/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03935
– volume: 22
  start-page: 12588
  year: 2021
  ident: D1CS00519G/cit5/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222212588
– volume: 7
  start-page: 2000819
  year: 2020
  ident: D1CS00519G/cit37/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000819
– volume: 210
  start-page: 719
  year: 2000
  ident: D1CS00519G/cit398/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(99)00749-6
– volume: 12
  start-page: 2077
  year: 2018
  ident: D1CS00519G/cit46/1
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 307
  start-page: 208
  year: 2017
  ident: D1CS00519G/cit317/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.079
– volume: 104
  start-page: 2799
  year: 2007
  ident: D1CS00519G/cit350/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.25962
– volume: 339
  start-page: 781
  year: 2018
  ident: D1CS00519G/cit109/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.08.066
– volume: 39
  start-page: 2407
  year: 2013
  ident: D1CS00519G/cit173/1
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-012-0767-7
– volume: 3
  start-page: 265
  year: 2011
  ident: D1CS00519G/cit190/1
  publication-title: Nanoscale
  doi: 10.1039/C0NR00589D
– volume: 37
  start-page: 1900471
  year: 2020
  ident: D1CS00519G/cit260/1
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201900471
– volume: 3
  start-page: 8
  year: 2015
  ident: D1CS00519G/cit200/1
  publication-title: Nanosci. Nanoeng.
  doi: 10.13189/nn.2015.030102
– volume: 10
  start-page: 21556
  year: 2018
  ident: D1CS00519G/cit383/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03939
– volume: 6
  start-page: 5182
  year: 2018
  ident: D1CS00519G/cit358/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04834
– volume: 17
  start-page: 1773
  year: 2015
  ident: D1CS00519G/cit106/1
  publication-title: CrystEngComm
  doi: 10.1039/C4CE02460E
– volume: 27
  start-page: 1950224
  year: 2020
  ident: D1CS00519G/cit193/1
  publication-title: Surf. Rev. Lett.
  doi: 10.1142/S0218625X1950224X
– volume: 709
  start-page: 136171
  year: 2020
  ident: D1CS00519G/cit334/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136171
– volume: 30
  start-page: 421
  year: 1994
  ident: D1CS00519G/cit123/1
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR02655
– volume: 23
  start-page: 10
  year: 2013
  ident: D1CS00519G/cit233/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201994
– volume: 405
  start-page: 126597
  year: 2021
  ident: D1CS00519G/cit344/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126597
– volume: 30
  start-page: 6040
  year: 2018
  ident: D1CS00519G/cit382/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02339
– volume: 254
  start-page: 206
  year: 2003
  ident: D1CS00519G/cit388/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(03)01153-9
– volume: 388
  start-page: 124304
  year: 2020
  ident: D1CS00519G/cit347/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124304
– volume: 224
  start-page: 390
  year: 2019
  ident: D1CS00519G/cit320/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.02.139
– volume: 214
  start-page: 47
  year: 2011
  ident: D1CS00519G/cit207/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.07.032
– volume: 16
  start-page: 4813
  year: 2016
  ident: D1CS00519G/cit175/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01635
– volume: 8
  start-page: 30027
  year: 2016
  ident: D1CS00519G/cit266/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10697
– volume: 17
  start-page: 2351
  year: 2017
  ident: D1CS00519G/cit86/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01493
– volume: 14
  start-page: 3350
  year: 2021
  ident: D1CS00519G/cit256/1
  publication-title: Materials
  doi: 10.3390/ma14123350
– volume: 81
  start-page: 242
  year: 2018
  ident: D1CS00519G/cit50/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.09.045
– volume: 15
  start-page: 2817
  year: 2014
  ident: D1CS00519G/cit101/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402136
– volume: 29
  start-page: 1808146
  year: 2019
  ident: D1CS00519G/cit414/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808146
– volume: 51
  start-page: 11960
  year: 2012
  ident: D1CS00519G/cit58/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201203125
– volume: 235
  start-page: 581
  year: 2013
  ident: D1CS00519G/cit210/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.11.015
– volume: 22
  start-page: 99
  year: 2013
  ident: D1CS00519G/cit257/1
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-013-0054-4
– start-page: 8749238
  year: 2020
  ident: D1CS00519G/cit273/1
  publication-title: Adv. Polym. Technol.
– volume: 12
  start-page: 1481
  year: 2019
  ident: D1CS00519G/cit38/1
  publication-title: Materials
  doi: 10.3390/ma12091481
– volume: 428
  start-page: 16
  year: 2015
  ident: D1CS00519G/cit154/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2015.07.009
– volume: 48
  start-page: 4716
  year: 2012
  ident: D1CS00519G/cit240/1
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc00135g
– volume: 45
  start-page: 269
  year: 2012
  ident: D1CS00519G/cit296/1
  publication-title: Polym. J.
  doi: 10.1038/pj.2012.171
– volume: 20
  start-page: 3633
  year: 2008
  ident: D1CS00519G/cit60/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800773
– volume: 497
  start-page: 1
  year: 2016
  ident: D1CS00519G/cit192/1
  publication-title: Colloid Surf., A
  doi: 10.1016/j.colsurfa.2016.02.020
– volume: 101
  start-page: 21
  year: 1993
  ident: D1CS00519G/cit124/1
  publication-title: J. Geol.
  doi: 10.1086/648194
– volume: 137
  start-page: 13325
  year: 2015
  ident: D1CS00519G/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07931
– volume: 203
  start-page: 269
  year: 2002
  ident: D1CS00519G/cit409/1
  publication-title: Biol. Bull.
  doi: 10.2307/1543569
– volume: 45
  start-page: 2378
  year: 2016
  ident: D1CS00519G/cit302/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00258C
– volume: 11
  start-page: 19522
  year: 2019
  ident: D1CS00519G/cit45/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04936
– volume: 13
  start-page: 1603100
  year: 2017
  ident: D1CS00519G/cit400/1
  publication-title: Small
  doi: 10.1002/smll.201603100
– volume: 274
  start-page: 256
  year: 2005
  ident: D1CS00519G/cit134/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.09.090
– volume: 104
  start-page: 793
  year: 1990
  ident: D1CS00519G/cit118/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(90)90104-S
– volume: 109
  start-page: 6088
  year: 2012
  ident: D1CS00519G/cit19/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1118085109
– volume: 1
  start-page: 995
  year: 2009
  ident: D1CS00519G/cit162/1
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2009.01.132
– volume: 26
  start-page: 2503
  year: 2016
  ident: D1CS00519G/cit3/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504891
– volume: 44
  start-page: 1226
  year: 2006
  ident: D1CS00519G/cit201/1
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.20774
– volume: 10
  start-page: 167
  year: 2018
  ident: D1CS00519G/cit95/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics10040167
– volume: 8
  start-page: 1801090
  year: 2018
  ident: D1CS00519G/cit43/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801090
– volume: 367
  start-page: 1587
  year: 2009
  ident: D1CS00519G/cit307/1
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2009.0007
– volume: 34
  start-page: 14254
  year: 2018
  ident: D1CS00519G/cit356/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03084
– volume: 486
  start-page: 71
  year: 2018
  ident: D1CS00519G/cit30/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2018.01.023
– volume: 574
  start-page: 394
  year: 2019
  ident: D1CS00519G/cit89/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1645-x
– volume: 114
  start-page: E7670
  year: 2017
  ident: D1CS00519G/cit17/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1707890114
– volume: 179
  start-page: 47
  year: 2021
  ident: D1CS00519G/cit349/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2021.07.024
– volume: 4
  start-page: 880
  year: 2016
  ident: D1CS00519G/cit412/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01990G
– volume: 108
  start-page: 14763
  year: 2011
  ident: D1CS00519G/cit18/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1102608108
– volume: 579
  start-page: 357
  year: 2020
  ident: D1CS00519G/cit66/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.06.047
– volume: 12
  start-page: 1649
  year: 2015
  ident: D1CS00519G/cit274/1
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1517/17425247.2015.1049530
– volume: 54
  start-page: 919
  year: 2015
  ident: D1CS00519G/cit39/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408510
– volume: 47
  start-page: 357
  year: 2018
  ident: D1CS00519G/cit75/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00746E
– volume: 20
  start-page: 2853
  year: 2020
  ident: D1CS00519G/cit167/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00061
– volume: 52
  start-page: 11527
  year: 2016
  ident: D1CS00519G/cit64/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04522G
– volume: 33
  start-page: e2006946
  year: 2021
  ident: D1CS00519G/cit305/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006946
– volume: 11
  start-page: 39
  year: 2011
  ident: D1CS00519G/cit108/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg901240n
– volume: 189
  start-page: 64
  year: 2009
  ident: D1CS00519G/cit131/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2008.06.004
– volume: 354
  start-page: 107
  year: 2016
  ident: D1CS00519G/cit314/1
  publication-title: Science
  doi: 10.1126/science.aaf8991
– volume: 33
  start-page: 331
  year: 2017
  ident: D1CS00519G/cit77/1
  publication-title: Carbonates Evaporites
  doi: 10.1007/s13146-017-0341-x
– volume: 536
  start-page: S477
  year: 2012
  ident: D1CS00519G/cit389/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.11.057
– volume: 10
  start-page: 672
  year: 2014
  ident: D1CS00519G/cit287/1
  publication-title: Mol. Biosyst.
  doi: 10.1039/c3mb70502a
– volume: 8
  start-page: 8409
  year: 2016
  ident: D1CS00519G/cit53/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02115
– volume: 17
  start-page: 1103
  year: 2017
  ident: D1CS00519G/cit97/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01501
– volume: 109
  start-page: 3699
  year: 2012
  ident: D1CS00519G/cit188/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1109243109
– volume: 79-82
  start-page: 1967
  year: 2009
  ident: D1CS00519G/cit197/1
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.79-82.1967
– volume: 7
  start-page: 15686
  year: 2015
  ident: D1CS00519G/cit265/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04819
– volume: 127
  start-page: 843
  year: 2015
  ident: D1CS00519G/cit142/1
  publication-title: J. Chem. Sci.
  doi: 10.1007/s12039-015-0849-3
– volume: 104
  start-page: 323
  year: 2016
  ident: D1CS00519G/cit248/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.07.007
– volume: 22
  start-page: 3493
  year: 2012
  ident: D1CS00519G/cit160/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm14661d
– volume: 351
  start-page: 816
  year: 2018
  ident: D1CS00519G/cit330/1
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2018.06.142
– volume: 10
  start-page: 1634
  year: 2014
  ident: D1CS00519G/cit373/1
  publication-title: Small
  doi: 10.1002/smll.201302745
– volume: 18
  start-page: 331
  year: 2018
  ident: D1CS00519G/cit76/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01328
– volume: 102
  start-page: 12653
  year: 2005
  ident: D1CS00519G/cit367/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502577102
– volume: 16
  start-page: 6186
  year: 2016
  ident: D1CS00519G/cit31/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00514
– volume: 14
  start-page: 845
  year: 2012
  ident: D1CS00519G/cit331/1
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-012-0450-0
– volume: 84
  start-page: 2732
  year: 1987
  ident: D1CS00519G/cit169/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.84.9.2732
– volume: 10
  start-page: E177
  year: 2016
  ident: D1CS00519G/cit250/1
  publication-title: J. Tissue Eng. Regener. Med.
  doi: 10.1002/term.1782
– volume: 4
  start-page: 1219
  year: 2016
  ident: D1CS00519G/cit223/1
  publication-title: J. Mat. Chem. B
  doi: 10.1039/C5TB02338F
– volume: 106
  start-page: 110226
  year: 2020
  ident: D1CS00519G/cit221/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2019.110226
– volume: 31
  start-page: 711
  year: 2016
  ident: D1CS00519G/cit144/1
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20150660
– volume: 461
  start-page: 1
  year: 2014
  ident: D1CS00519G/cit212/1
  publication-title: Colloid Surf., A
  doi: 10.1016/j.colsurfa.2014.07.020
– volume: 50
  start-page: 257
  year: 2015
  ident: D1CS00519G/cit226/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2015.02.019
– volume: 21
  start-page: 4011
  year: 2009
  ident: D1CS00519G/cit392/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900295
– volume: 27
  start-page: 1945
  year: 2006
  ident: D1CS00519G/cit225/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.09.026
– volume: 12
  start-page: 064710
  year: 2011
  ident: D1CS00519G/cit294/1
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/12/6/064710
– volume: 107
  start-page: 5123
  year: 2003
  ident: D1CS00519G/cit147/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0343640
– volume: 25
  start-page: 10616
  year: 2019
  ident: D1CS00519G/cit119/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201900691
– volume: 3
  start-page: 2029
  year: 2020
  ident: D1CS00519G/cit7/1
  publication-title: Matter
  doi: 10.1016/j.matt.2020.09.022
– volume: 1
  start-page: e1500849
  year: 2015
  ident: D1CS00519G/cit313/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500849
– volume: 22
  start-page: 1875
  year: 2006
  ident: D1CS00519G/cit386/1
  publication-title: Langmuir
  doi: 10.1021/la052419e
– volume: 21
  start-page: 425102
  year: 2009
  ident: D1CS00519G/cit128/1
  publication-title: J. Phys.: Condens. Matter
– volume: 5
  start-page: 980
  year: 2020
  ident: D1CS00519G/cit247/1
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2020.06.018
– volume: 14
  start-page: 394
  year: 2015
  ident: D1CS00519G/cit178/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4193
– volume: 44
  start-page: 5070
  year: 2018
  ident: D1CS00519G/cit362/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.12.106
– volume: 35
  start-page: 1358
  year: 2021
  ident: D1CS00519G/cit34/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03695
– volume: 85
  start-page: 57
  year: 2018
  ident: D1CS00519G/cit253/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2017.12.019
– volume: 12
  start-page: 4482
  year: 2020
  ident: D1CS00519G/cit339/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18664
– volume: 2
  start-page: 187
  year: 2015
  ident: D1CS00519G/cit179/1
  publication-title: Regener. Biomater.
  doi: 10.1093/rb/rbv010
– volume: 54
  start-page: 919
  year: 2015
  ident: D1CS00519G/cit415/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408510
– volume: 11
  start-page: 1075
  year: 2021
  ident: D1CS00519G/cit122/1
  publication-title: Crystals
  doi: 10.3390/cryst11091075
– volume: 22
  start-page: 4216
  year: 2012
  ident: D1CS00519G/cit171/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201079
– volume: 17
  start-page: 128
  year: 2015
  ident: D1CS00519G/cit217/1
  publication-title: Pol. J. Chem. Technol.
  doi: 10.1515/pjct-2015-0079
– volume: 15
  start-page: 1596
  year: 2015
  ident: D1CS00519G/cit130/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg500829p
– volume: 25
  start-page: 991
  year: 1991
  ident: D1CS00519G/cit224/1
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820250806
– volume: 46
  start-page: 17
  year: 2015
  ident: D1CS00519G/cit297/1
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2015.09.005
– volume: 698
  start-page: 134270
  year: 2020
  ident: D1CS00519G/cit332/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134270
– volume: 30
  start-page: 143
  year: 2019
  ident: D1CS00519G/cit51/1
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4452
– volume: 516
  start-page: 190
  year: 2017
  ident: D1CS00519G/cit267/1
  publication-title: Colloid Surf., A
  doi: 10.1016/j.colsurfa.2016.12.027
– volume: 8
  start-page: 179
  year: 2018
  ident: D1CS00519G/cit139/1
  publication-title: Minerals
  doi: 10.3390/min8050179
– volume: 9
  start-page: 134
  year: 2015
  ident: D1CS00519G/cit222/1
  publication-title: ACS Nano
  doi: 10.1021/nn506210a
– volume: 37
  start-page: 439
  year: 1998
  ident: D1CS00519G/cit153/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9703090
– volume: 58
  start-page: 14134
  year: 2019
  ident: D1CS00519G/cit268/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907388
– volume: 63
  start-page: 384
  year: 2016
  ident: D1CS00519G/cit284/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2016.03.009
– volume: 6
  start-page: 5357
  year: 2020
  ident: D1CS00519G/cit12/1
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00364
– volume: 20
  start-page: 8028
  year: 2020
  ident: D1CS00519G/cit14/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01282
– volume: 32
  start-page: 9351
  year: 2016
  ident: D1CS00519G/cit114/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b02439
– volume: 19
  start-page: 2451
  year: 2017
  ident: D1CS00519G/cit138/1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00197E
– volume: 20
  start-page: 2091
  year: 2020
  ident: D1CS00519G/cit304/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01720
– volume: 20
  start-page: 1064
  year: 2008
  ident: D1CS00519G/cit408/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm702032v
– volume: 10
  start-page: 1
  year: 2018
  ident: D1CS00519G/cit309/1
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0009-6
– volume: 6
  start-page: 591
  year: 2007
  ident: D1CS00519G/cit298/1
  publication-title: J. Anim. Vet. Adv.
– volume: 18
  start-page: 8364
  year: 2002
  ident: D1CS00519G/cit146/1
  publication-title: Langmuir
  doi: 10.1021/la025918d
– volume: 74
  start-page: 63
  year: 2019
  ident: D1CS00519G/cit199/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.02.002
– volume: 31
  start-page: e1806957
  year: 2019
  ident: D1CS00519G/cit291/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806957
– volume: 54
  start-page: 8653
  year: 2015
  ident: D1CS00519G/cit311/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502323
– volume: 191
  start-page: 153
  year: 1998
  ident: D1CS00519G/cit170/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)00002-5
– volume: 372
  start-page: 1466
  year: 2021
  ident: D1CS00519G/cit90/1
  publication-title: Science
  doi: 10.1126/science.abg1915
– volume: 133
  start-page: 120
  year: 2015
  ident: D1CS00519G/cit220/1
  publication-title: Colloid Surf., B
  doi: 10.1016/j.colsurfb.2015.05.014
– volume: 18
  start-page: 872
  year: 2018
  ident: D1CS00519G/cit174/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01364
– volume: 323
  start-page: 1455
  year: 2009
  ident: D1CS00519G/cit92/1
  publication-title: Science
  doi: 10.1126/science.1169434
– volume: 9
  start-page: 1310
  year: 2003
  ident: D1CS00519G/cit242/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200390150
– volume: 3
  start-page: 2457
  year: 2017
  ident: D1CS00519G/cit254/1
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00301
– volume: 54
  start-page: 13080
  year: 2018
  ident: D1CS00519G/cit417/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07694D
– volume: 22
  start-page: 11113
  year: 2012
  ident: D1CS00519G/cit194/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30778b
– volume: 17
  start-page: 5725
  year: 2015
  ident: D1CS00519G/cit99/1
  publication-title: CrystEngComm
  doi: 10.1039/C4CE01598C
– volume: 12
  start-page: 2668
  year: 2020
  ident: D1CS00519G/cit27/1
  publication-title: Polymers
  doi: 10.3390/polym12112668
– volume: 25
  start-page: 5558
  year: 2013
  ident: D1CS00519G/cit196/1
  publication-title: Asian J. Chem.
  doi: 10.14233/ajchem.2013.OH19
– volume: 49
  start-page: 8889
  year: 2010
  ident: D1CS00519G/cit370/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003220
– volume: 7
  start-page: 6251
  year: 2019
  ident: D1CS00519G/cit78/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06658
– volume: 14
  start-page: e1704272
  year: 2018
  ident: D1CS00519G/cit40/1
  publication-title: Small
  doi: 10.1002/smll.201704272
– volume: 54
  start-page: 57
  year: 2003
  ident: D1CS00519G/cit141/1
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2113/0540057
– volume: 171
  start-page: 113
  year: 2016
  ident: D1CS00519G/cit355/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.037
– volume: 19
  start-page: 7332
  year: 2017
  ident: D1CS00519G/cit83/1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01681F
– volume: 53
  start-page: 12380
  year: 2014
  ident: D1CS00519G/cit185/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402890
– volume: 328
  start-page: 470
  year: 2020
  ident: D1CS00519G/cit219/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2020.08.061
– volume: 38
  start-page: 1537
  year: 2003
  ident: D1CS00519G/cit361/1
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(03)00174-0
– volume: 25
  start-page: 3081
  year: 2015
  ident: D1CS00519G/cit68/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500400
– volume: 53
  start-page: 6657
  year: 2017
  ident: D1CS00519G/cit152/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01420A
– volume: 10
  start-page: 3942
  year: 2014
  ident: D1CS00519G/cit244/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.05.021
– volume: 48
  start-page: 187
  year: 2003
  ident: D1CS00519G/cit22/1
  publication-title: Int. Mater. Rev.
  doi: 10.1179/095066003225005836
– volume: 48
  start-page: 3611
  year: 2003
  ident: D1CS00519G/cit236/1
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/21/011
– volume: 453
  start-page: 179
  year: 2013
  ident: D1CS00519G/cit401/1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20130285
– volume: 55
  start-page: 11765
  year: 2016
  ident: D1CS00519G/cit70/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602849
– volume: 25
  start-page: 3045
  year: 2009
  ident: D1CS00519G/cit377/1
  publication-title: Langmuir
  doi: 10.1021/la803541m
– volume: 23
  start-page: 4862
  year: 2007
  ident: D1CS00519G/cit93/1
  publication-title: Langmuir
  doi: 10.1021/la061975l
– volume: 9
  start-page: 2425
  year: 2009
  ident: D1CS00519G/cit177/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg801338b
– volume: 49
  start-page: 3134
  year: 2013
  ident: D1CS00519G/cit381/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40807h
– volume: 11
  start-page: 3556
  year: 2017
  ident: D1CS00519G/cit245/1
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.2273
– volume: 102
  start-page: 6980
  year: 2019
  ident: D1CS00519G/cit229/1
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16593
– volume: 274
  start-page: 120885
  year: 2021
  ident: D1CS00519G/cit271/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120885
– volume: 21
  start-page: 3473
  year: 2011
  ident: D1CS00519G/cit4/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100749
– volume: 31
  start-page: 2007830
  year: 2021
  ident: D1CS00519G/cit232/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007830
– volume: 11
  start-page: 5127
  year: 2015
  ident: D1CS00519G/cit374/1
  publication-title: Small
  doi: 10.1002/smll.201501083
– volume: 48
  start-page: 327
  year: 2018
  ident: D1CS00519G/cit140/1
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev-matsci-070317-124327
– volume: 484
  start-page: 110786
  year: 2020
  ident: D1CS00519G/cit346/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2020.110786
– volume: 12
  start-page: 3806
  year: 2012
  ident: D1CS00519G/cit186/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg300676b
– volume: 9
  start-page: 451
  year: 2020
  ident: D1CS00519G/cit48/1
  publication-title: ChemistryOpen
  doi: 10.1002/open.202000040
– volume: 72
  start-page: 011605
  year: 2005
  ident: D1CS00519G/cit189/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.72.011605
– volume: 3
  start-page: 1272
  year: 2020
  ident: D1CS00519G/cit316/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02036
– volume: 117
  start-page: 3328
  year: 2013
  ident: D1CS00519G/cit406/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp308353t
– volume: 285
  start-page: 65
  year: 2006
  ident: D1CS00519G/cit218/1
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-006-1535-2
– volume: 87
  start-page: 86
  year: 2015
  ident: D1CS00519G/cit352/1
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.096
– volume: 25
  start-page: 153
  year: 2005
  ident: D1CS00519G/cit379/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2005.01.005
– volume: 21
  start-page: 9757
  year: 2011
  ident: D1CS00519G/cit161/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10770d
– volume: 405
  start-page: 1036
  year: 2000
  ident: D1CS00519G/cit303/1
  publication-title: Nature
  doi: 10.1038/35016535
– volume: 110
  start-page: 60
  year: 2016
  ident: D1CS00519G/cit55/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.025
– volume: 9
  start-page: 8308
  year: 2021
  ident: D1CS00519G/cit133/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01072G
– volume: 326
  start-page: 1244
  year: 2009
  ident: D1CS00519G/cit241/1
  publication-title: Science
  doi: 10.1126/science.1178583
– volume: 8
  start-page: 8409
  year: 2016
  ident: D1CS00519G/cit262/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02115
– volume: 7
  start-page: 197
  year: 2011
  ident: D1CS00519G/cit393/1
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.532
– volume: 12
  start-page: 43
  year: 2002
  ident: D1CS00519G/cit368/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/1616-3028(20020101)12:1<43::AID-ADFM43>3.0.CO;2-C
– volume: 14
  start-page: 89
  year: 2019
  ident: D1CS00519G/cit290/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0319-4
– volume-title: Kinetics and mechanisms of crystal growth in aqueous systems
  year: 2000
  ident: D1CS00519G/cit102/1
– volume: 97
  start-page: 1437
  year: 2012
  ident: D1CS00519G/cit127/1
  publication-title: Am. Mineral.
  doi: 10.2138/am.2012.3983
– volume: 386
  start-page: 119
  year: 2014
  ident: D1CS00519G/cit155/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.10.009
– volume: 8
  start-page: 526
  year: 2022
  ident: D1CS00519G/cit10/1
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c01280
– volume: 143
  start-page: 56
  year: 2016
  ident: D1CS00519G/cit228/1
  publication-title: Colloid Surf., B
  doi: 10.1016/j.colsurfb.2016.03.020
– volume: 105
  start-page: 17362
  year: 2008
  ident: D1CS00519G/cit187/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0806604105
– volume: 64
  start-page: 647
  year: 2015
  ident: D1CS00519G/cit288/1
  publication-title: Polym. Int.
  doi: 10.1002/pi.4824
– volume: 11
  start-page: 250
  year: 2021
  ident: D1CS00519G/cit88/1
  publication-title: Crystals
  doi: 10.3390/cryst11030250
– volume: 107
  start-page: 342
  year: 2007
  ident: D1CS00519G/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050358j
– volume: 16
  start-page: 4500
  year: 2016
  ident: D1CS00519G/cit404/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00630
– volume: 9
  start-page: e2104829
  year: 2021
  ident: D1CS00519G/cit246/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104829
– volume: 418
  start-page: 366
  year: 2014
  ident: D1CS00519G/cit107/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.12.008
– volume: 5
  start-page: 16025
  year: 2017
  ident: D1CS00519G/cit340/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02070H
– volume: 255
  start-page: 123552
  year: 2020
  ident: D1CS00519G/cit65/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123552
– volume: 53
  start-page: 10774
  year: 2019
  ident: D1CS00519G/cit336/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03795
– volume: 292
  start-page: 109736
  year: 2020
  ident: D1CS00519G/cit69/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.109736
– volume: 16
  start-page: 331
  year: 2019
  ident: D1CS00519G/cit283/1
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1080/17425247.2019.1587408
– volume: 55
  start-page: 10725
  year: 2019
  ident: D1CS00519G/cit380/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03749G
– volume: 12
  start-page: 4482
  year: 2020
  ident: D1CS00519G/cit341/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18664
– volume: 21
  start-page: 7306
  year: 2021
  ident: D1CS00519G/cit180/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01376
– volume: 202
  start-page: 15
  year: 2002
  ident: D1CS00519G/cit215/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(02)00534-2
– volume: 82
  start-page: 107
  year: 2017
  ident: D1CS00519G/cit57/1
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600457
– volume: 2
  start-page: 590
  year: 2011
  ident: D1CS00519G/cit184/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1604
– volume: 6
  start-page: 564
  year: 2011
  ident: D1CS00519G/cit81/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2011.10.005
– volume: 14
  start-page: 1503
  year: 2019
  ident: D1CS00519G/cit72/1
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S193976
– volume: 21
  start-page: 232
  year: 2019
  ident: D1CS00519G/cit202/1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-019-4693-0
– volume-title: Synthetic bone graft substitutes: Calcium-based biomaterials
  year: 2020
  ident: D1CS00519G/cit230/1
– volume: 41
  start-page: 7947
  year: 2002
  ident: D1CS00519G/cit259/1
  publication-title: Biochemistry
  doi: 10.1021/bi025630n
– volume: 299
  start-page: 126802
  year: 2021
  ident: D1CS00519G/cit337/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.126802
– volume: 22
  start-page: 289
  year: 1897
  ident: D1CS00519G/cit98/1
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1897-2233
– volume: 10
  start-page: 8696
  year: 2020
  ident: D1CS00519G/cit36/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65667-w
– volume: 28
  start-page: 351
  year: 2015
  ident: D1CS00519G/cit214/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.03.015
– volume: 291
  start-page: 2191
  year: 2013
  ident: D1CS00519G/cit120/1
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-013-2960-7
– volume: 141
  start-page: 75
  year: 2004
  ident: D1CS00519G/cit216/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2004.02.018
– volume: 42
  start-page: 5728
  year: 2007
  ident: D1CS00519G/cit234/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0747-7
– volume: 356
  start-page: 414
  year: 2019
  ident: D1CS00519G/cit33/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.08.054
– volume: 22
  start-page: 5255
  year: 2010
  ident: D1CS00519G/cit41/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002395
– volume: 29
  start-page: 1808146
  year: 2019
  ident: D1CS00519G/cit272/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808146
– volume: 536
  start-page: 213
  year: 2018
  ident: D1CS00519G/cit211/1
  publication-title: Colloid Surf., A
  doi: 10.1016/j.colsurfa.2017.05.002
– volume: 20
  start-page: 13825
  year: 2018
  ident: D1CS00519G/cit26/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00540K
– volume: 3
  start-page: 336
  year: 2017
  ident: D1CS00519G/cit79/1
  publication-title: Adv. Tissue Eng. Regen. Med.
– volume: 8
  start-page: 43
  year: 2018
  ident: D1CS00519G/cit206/1
  publication-title: Coatings
  doi: 10.3390/coatings8010043
– volume: 108
  start-page: 4332
  year: 2008
  ident: D1CS00519G/cit176/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr8002856
– volume: 178
  start-page: 194
  year: 2007
  ident: D1CS00519G/cit136/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.05.004
– volume: 2
  start-page: 171
  year: 2022
  ident: D1CS00519G/cit364/1
  publication-title: Fortschr. Zool.
– volume: 2
  start-page: 14270
  year: 2014
  ident: D1CS00519G/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02070G
– volume: 1
  start-page: 3175
  year: 2013
  ident: D1CS00519G/cit280/1
  publication-title: J. Mat. Chem. B
  doi: 10.1039/c3tb20192a
– volume: 7
  start-page: 5808
  year: 2019
  ident: D1CS00519G/cit279/1
  publication-title: J. Mat. Chem. B
  doi: 10.1039/C9TB01148J
– volume: 2
  start-page: 2358
  year: 2010
  ident: D1CS00519G/cit376/1
  publication-title: Nanoscale
  doi: 10.1039/c0nr00443j
– volume: 141
  start-page: 10120
  year: 2019
  ident: D1CS00519G/cit182/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01883
– volume: 34
  start-page: 2942
  year: 2018
  ident: D1CS00519G/cit343/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b03813
– volume: 59
  start-page: 18042
  year: 2020
  ident: D1CS00519G/cit269/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008055
– volume: 7
  start-page: 3614
  year: 2019
  ident: D1CS00519G/cit243/1
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00463G
– volume: 69
  start-page: 23
  year: 2018
  ident: D1CS00519G/cit306/1
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040215-112621
– volume: 46
  start-page: 1011
  year: 1982
  ident: D1CS00519G/cit117/1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(82)90056-4
– volume: 15
  start-page: 903
  year: 2016
  ident: D1CS00519G/cit32/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4631
– volume: 463
  start-page: 343
  year: 2008
  ident: D1CS00519G/cit121/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.09.009
– volume: 48
  start-page: 1906
  year: 2013
  ident: D1CS00519G/cit137/1
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.01.048
– volume: 63
  start-page: 3632
  year: 2008
  ident: D1CS00519G/cit111/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.04.022
– volume: 28
  start-page: 3519
  year: 2014
  ident: D1CS00519G/cit348/1
  publication-title: Energy Fuels
  doi: 10.1021/ef5005539
– volume: 4
  start-page: 1640
  year: 2016
  ident: D1CS00519G/cit292/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01623A
– volume: 32
  start-page: 4282
  year: 2020
  ident: D1CS00519G/cit63/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00975
– volume: 13
  start-page: 53
  year: 2015
  ident: D1CS00519G/cit115/1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-015-0111-7
– volume: 43
  start-page: 2348
  year: 2014
  ident: D1CS00519G/cit183/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60451A
– volume: 363
  start-page: 396
  year: 2019
  ident: D1CS00519G/cit16/1
  publication-title: Science
  doi: 10.1126/science.aav0210
– volume: 223
  start-page: 197
  year: 2016
  ident: D1CS00519G/cit54/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2015.12.051
– volume: 24
  start-page: 6277
  year: 2012
  ident: D1CS00519G/cit315/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202733
– volume: 7
  start-page: 355
  year: 2017
  ident: D1CS00519G/cit165/1
  publication-title: Crystals
  doi: 10.3390/cryst7120355
– volume: 9
  start-page: 1226
  year: 2007
  ident: D1CS00519G/cit369/1
  publication-title: CrystEngComm
  doi: 10.1039/b710895h
– volume: 42
  start-page: 2350
  year: 2003
  ident: D1CS00519G/cit181/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200200562
– volume: 7
  start-page: 19142
  year: 2019
  ident: D1CS00519G/cit25/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05128
– volume: 30
  start-page: 2000003
  year: 2020
  ident: D1CS00519G/cit371/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000003
– volume: 41
  start-page: 1111
  year: 2012
  ident: D1CS00519G/cit301/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15106A
– volume: 3
  start-page: 966
  year: 2012
  ident: D1CS00519G/cit312/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1970
– volume: 59
  start-page: 1798
  year: 2020
  ident: D1CS00519G/cit94/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903662
– start-page: 186
  year: 2000
  ident: D1CS00519G/cit295/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2000.186
– volume: 6
  start-page: 46
  year: 2021
  ident: D1CS00519G/cit11/1
  publication-title: Biomimetics
  doi: 10.3390/biomimetics6030046
– volume: 56
  start-page: 15299
  year: 2021
  ident: D1CS00519G/cit413/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06204-6
– volume: 3
  start-page: 16681
  year: 2018
  ident: D1CS00519G/cit82/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02445
– volume: 11
  start-page: 421
  year: 2013
  ident: D1CS00519G/cit151/1
  publication-title: Particuology
  doi: 10.1016/j.partic.2012.07.009
– volume: 608
  start-page: 125583
  year: 2021
  ident: D1CS00519G/cit342/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2020.125583
– volume: 114
  start-page: 632
  year: 2014
  ident: D1CS00519G/cit354/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.10.029
– volume: 20
  start-page: 35
  year: 2018
  ident: D1CS00519G/cit61/1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01693J
– volume: 32
  start-page: 2004647
  year: 2020
  ident: D1CS00519G/cit270/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004647
– volume: 16
  start-page: 4
  year: 2015
  ident: D1CS00519G/cit21/1
  publication-title: Geochem. Trans.
  doi: 10.1186/s12932-015-0019-z
– volume: 411
  start-page: 775
  year: 2001
  ident: D1CS00519G/cit172/1
  publication-title: Nature
  doi: 10.1038/35081034
– volume: 132
  start-page: 13208
  year: 2010
  ident: D1CS00519G/cit391/1
  publication-title: J. Am. Ceram. Soc.
– volume: 5
  start-page: 80216
  year: 2015
  ident: D1CS00519G/cit112/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA15382D
– volume: 7
  start-page: 7362
  year: 2019
  ident: D1CS00519G/cit335/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00563
– volume: 7
  start-page: 5370
  year: 2017
  ident: D1CS00519G/cit263/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05395-w
– volume: 108
  start-page: 4551
  year: 2008
  ident: D1CS00519G/cit59/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr800443h
– volume: 7
  start-page: 8832
  year: 2019
  ident: D1CS00519G/cit345/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10822F
– volume: 50
  start-page: 7908
  year: 2015
  ident: D1CS00519G/cit195/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9327-z
– volume: 52
  start-page: 7036
  year: 2016
  ident: D1CS00519G/cit395/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC03010F
– volume: 7
  start-page: 3403
  year: 2019
  ident: D1CS00519G/cit231/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB00237E
– volume: 21
  start-page: 414
  year: 2020
  ident: D1CS00519G/cit372/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01245
– volume: 32
  start-page: 1657
  year: 2011
  ident: D1CS00519G/cit416/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.10.035
– volume: 15
  start-page: 1194
  year: 2015
  ident: D1CS00519G/cit158/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg5015847
– volume: 10
  start-page: 118
  year: 2020
  ident: D1CS00519G/cit237/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56023-8
– volume: 8
  start-page: 3002
  year: 2013
  ident: D1CS00519G/cit387/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201300745
– volume: 5
  start-page: 7194
  year: 2017
  ident: D1CS00519G/cit286/1
  publication-title: J. Mat. Chem. B
  doi: 10.1039/C7TB01635B
– volume: 9
  start-page: 35785
  year: 2017
  ident: D1CS00519G/cit326/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09304
– volume: 6
  start-page: 3665
  year: 2010
  ident: D1CS00519G/cit238/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.03.034
– volume: 209–210
  start-page: 467
  year: 2012
  ident: D1CS00519G/cit325/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.01.054
– volume: 10
  start-page: 3207
  year: 2014
  ident: D1CS00519G/cit375/1
  publication-title: Small
  doi: 10.1002/smll.201400559
– volume: 322
  start-page: 1819
  year: 2008
  ident: D1CS00519G/cit80/1
  publication-title: Science
  doi: 10.1126/science.1164271
– volume: 7
  start-page: 45113
  year: 2017
  ident: D1CS00519G/cit397/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07169H
– volume: 118
  start-page: 111
  year: 2014
  ident: D1CS00519G/cit285/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2014.03.007
– volume: 1
  start-page: 321
  year: 2014
  ident: D1CS00519G/cit410/1
  publication-title: Mater. Horiz.
  doi: 10.1039/c3mh00134b
– volume: 6
  start-page: 5967
  year: 2015
  ident: D1CS00519G/cit310/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6967
– volume: 98
  start-page: 13
  year: 2015
  ident: D1CS00519G/cit113/1
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2015.10.003
– volume: 117
  start-page: 23450
  year: 2020
  ident: D1CS00519G/cit8/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2009531117
– volume: 8
  start-page: 8261
  year: 2020
  ident: D1CS00519G/cit420/1
  publication-title: J. Mat. Chem. B
  doi: 10.1039/D0TB01453B
– volume: 170
  start-page: 31
  year: 2006
  ident: D1CS00519G/cit149/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2006.08.016
– volume: 108
  start-page: 4499
  year: 2008
  ident: D1CS00519G/cit28/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr078259o
– volume: 4
  start-page: 1510
  year: 2015
  ident: D1CS00519G/cit278/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201500170
– volume: 613
  start-page: 126084
  year: 2021
  ident: D1CS00519G/cit333/1
  publication-title: Colloid Surf., A
  doi: 10.1016/j.colsurfa.2020.126084
– volume: 9
  start-page: 223
  year: 2019
  ident: D1CS00519G/cit103/1
  publication-title: Crystals
  doi: 10.3390/cryst9040223
– volume: 8
  start-page: 15933
  year: 2017
  ident: D1CS00519G/cit399/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15933
– volume: 4
  start-page: 8482
  year: 2019
  ident: D1CS00519G/cit353/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201901436
– volume: 26
  start-page: 12567
  year: 2010
  ident: D1CS00519G/cit213/1
  publication-title: Langmuir
  doi: 10.1021/la1016559
– volume: 378
  start-page: 320
  year: 2016
  ident: D1CS00519G/cit204/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.205
– volume: 4
  start-page: 60
  year: 2015
  ident: D1CS00519G/cit145/1
  publication-title: Beni-Suef Univ. J. Basic Appl. Sci.
– volume: 11
  start-page: 120
  year: 2016
  ident: D1CS00519G/cit85/1
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1338-4
– volume: 5
  start-page: 1
  year: 2003
  ident: D1CS00519G/cit276/1
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/152091503763816409
– volume: 338
  start-page: 272
  year: 2012
  ident: D1CS00519G/cit324/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2011.11.016
– volume: 5
  start-page: 2068
  year: 2017
  ident: D1CS00519G/cit418/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB02826H
– volume: 48
  start-page: 622
  year: 2013
  ident: D1CS00519G/cit163/1
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.201300178
– volume: 3
  start-page: 6050
  year: 2018
  ident: D1CS00519G/cit2/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201800444
– volume: 11
  start-page: 324
  year: 1999
  ident: D1CS00519G/cit159/1
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199903)11:4<324::AID-ADMA324>3.0.CO;2-A
– volume: 28
  start-page: 3796
  year: 2016
  ident: D1CS00519G/cit293/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00769
– volume: 108
  start-page: 694
  year: 2020
  ident: D1CS00519G/cit252/1
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.36849
– volume: 203
  start-page: 441
  year: 2018
  ident: D1CS00519G/cit363/1
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2018.06.041
– volume: 249
  start-page: 126227
  year: 2020
  ident: D1CS00519G/cit209/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126227
– volume: 17
  start-page: 4768
  year: 2015
  ident: D1CS00519G/cit49/1
  publication-title: CrystEngComm
  doi: 10.1039/C5CE00708A
– volume: 1
  start-page: e1500379
  year: 2015
  ident: D1CS00519G/cit258/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500379
– volume: 42
  start-page: 101333
  year: 2020
  ident: D1CS00519G/cit191/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101333
– volume: 19
  start-page: 242
  year: 2018
  ident: D1CS00519G/cit110/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b01314
– volume: 23
  start-page: 3033
  year: 2021
  ident: D1CS00519G/cit74/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01854F
– volume: 16
  start-page: 1181
  year: 1995
  ident: D1CS00519G/cit235/1
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(95)93584-Z
– volume: 28
  start-page: 598
  year: 2018
  ident: D1CS00519G/cit47/1
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2018.09.004
– volume: 264
  start-page: 461
  year: 1997
  ident: D1CS00519G/cit407/1
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.1997.0066
– volume: 28
  start-page: 1704956
  year: 2018
  ident: D1CS00519G/cit338/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704956
– volume: 378
  start-page: 120707
  year: 2019
  ident: D1CS00519G/cit322/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.05.100
– volume: 3
  start-page: 12722
  year: 2018
  ident: D1CS00519G/cit411/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02014
– volume: 36
  start-page: 330
  year: 2015
  ident: D1CS00519G/cit71/1
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22947
– volume: 6
  start-page: 2008732
  year: 2020
  ident: D1CS00519G/cit73/1
  publication-title: Sci. Adv.
– volume: 10
  start-page: 2129
  year: 2010
  ident: D1CS00519G/cit96/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg9012813
– volume: 1
  start-page: 1
  year: 2018
  ident: D1CS00519G/cit321/1
  publication-title: npj Clean Water
  doi: 10.1038/s41545-018-0001-2
– volume: 72
  start-page: 78
  year: 2012
  ident: D1CS00519G/cit148/1
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2012.08.004
– volume: 159
  start-page: 1763
  year: 2011
  ident: D1CS00519G/cit329/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.04.017
– volume: 15
  start-page: 8288
  year: 2013
  ident: D1CS00519G/cit281/1
  publication-title: CrystEngComm
  doi: 10.1039/c3ce41275j
– volume: 47
  start-page: 357
  year: 2018
  ident: D1CS00519G/cit261/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00746E
– volume: 114
  start-page: E7882
  year: 2017
  ident: D1CS00519G/cit91/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1700342114
– volume: 12
  start-page: 247
  year: 2010
  ident: D1CS00519G/cit251/1
  publication-title: Cell Tissue Bank.
  doi: 10.1007/s10561-010-9208-2
– volume: 20
  start-page: 794
  year: 2015
  ident: D1CS00519G/cit203/1
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-014-0898-3
SSID ssj0011762
Score 2.6917343
SecondaryResourceType review_article
Snippet Calcium carbonate (CaCO 3 ) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking,...
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking,...
Calcium carbonate (CaCO₃) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking,...
SourceID hal
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7883
SubjectTerms Additives
Amorphous materials
biocompatible materials
Biomedical materials
biomineralization
Building materials
Calcium carbonate
Calcium ions
Carbonation
Chemical Sciences
Construction materials
Cosmetics
Crystallization
drugs
Emulsions
energy
Energy storage
Hydrogels
Inorganic chemistry
Magnetic properties
magnetism
Material chemistry
medicine
Nanocomposites
Nanostructure
Nanostructured materials
Nucleation
Optical properties
Papermaking
remediation
Stabilization
Surface reactions
Synthesis
Textiles
Title Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials
URI https://www.proquest.com/docview/2715665357
https://www.proquest.com/docview/2705398574
https://www.proquest.com/docview/2723110516
https://hal.science/hal-03760034
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELba3QNcVrxWFBYUHhfEBuLGsVNuVWkpqBShbaXegp3YUKmborZBKr-Cn8w4dpysqFbAJapcK3U9nz0z9sw3CD0nKsi4EoFPBIl8QmPqx10FAgkZWKecqaCsEvFxSsdz8mERLVqtX42opWInXqU_D-aV_I9UoQ3kqrNk_0Gy7qXQAJ9BvvAECcPzr2Q84Kt0WVxqemmhT8HLPHMbfL4CS3K7z8G-2xoagW2xURxWsdZk5gDQpmBWAZw5z9eGTrbQQelgypr_0LRfHb9AFe1p2Uzd5lH4nw0rwXRZuOicJffHhUnDrlv7e5inpc1D3G_qUI-RVhZlpamXF4AkU967OpkAp1Zf1gQOS-b8oxpOGVxiS9g19rhQH2gENpJamj2YUIAOM7SQ1SZtWWktGOPGlgs-fNhQ35rw7qBqCELNrJrhdFuarV9rBVhd-k8_JaP5ZJLMhotZGx13wfGAnfO4P5y9n7ibKcyovZkyA68ob8Pe6_rdV4yc9jcdYtvwX9qbqrhMacTMbqET6314fQOl26gl8zvohpuxu-iLhZTnIPXGqwHlOUCdexZO3h9wOvcATN5VMHkOTPfQfDScDca-LcLhpyQOd36kl3KsRIaZ5DKmIuWCMgpegsI0jkDsYBDziHczliqJuQxED-vUIEG50vx6p-goX-fyPvKEwpJkOOwqmhEO_SiPAyaIBBcX1ErUQS-qWUtSy1CvC6WskjJSIuwlb_Hgopzhdx30zPX9bnhZDvZ6CpPvOmgq9XF_kui2QEeDBSH5gTvorJJNYhf3NukyfbARhRHroCfuaxCGvk_juVwXug9osF4cMXJdH3CgwIfBtINOQe5uLDVYHlz_-w_RzXpxnaEjEJ18BIbwTjy22PwNnzi3fw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+carbonate%3A+controlled+synthesis%2C+surface+functionalization%2C+and+nanostructured+materials&rft.jtitle=Chemical+Society+reviews&rft.au=Yu-Qin%2C+Niu&rft.au=Jia-Hui%2C+Liu&rft.au=Aymonier%2C+Cyril&rft.au=Fermani%2C+Simona&rft.date=2022-09-20&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=18&rft.spage=7883&rft.epage=7943&rft_id=info:doi/10.1039%2Fd1cs00519g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon