Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies
This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datase...
Saved in:
Published in | Earth system science data Vol. 10; no. 4; pp. 2015 - 2031 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
13.11.2018
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1866-3516 1866-3508 1866-3516 |
DOI | 10.5194/essd-10-2015-2018 |
Cover
Loading…
Abstract | This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer
(MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly
data, thus providing the highest spatial resolution (approx. 250 m) among
the existing global BA datasets. The product includes the full times series
(2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based
on monthly composites of daily images, using temporal and spatial distance
to active fires. The algorithm has two steps, the first one aiming to reduce
commission errors by selecting the most clearly burned pixels (seeds), and
the second one targeting to reduce omission errors by applying contextual
analysis around the seed pixels. This product was developed within the
European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the
Fire Disturbance project (Fire_cci). The final output
includes two types of BA files: monthly full-resolution continental tiles
and biweekly global grid files at a degraded resolution of 0.25∘.
Each set of products includes several auxiliary variables that were defined
by the climate users to facilitate the ingestion of the product into global
dynamic vegetation and atmospheric emission models. Average annual burned
area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2)
and minimum in 2013 (3.24 Mkm2). The validation was based on
a stratified random sample of 1200 pairs of Landsat images, covering the
whole globe from 2003 to 2014. The validation indicates an overall accuracy
of 0.9972, with much higher errors for the burned than the unburned category
(global omission error of BA was estimated as 0.7090 and global commission
as 0.5123). These error values are similar to other global BA products, but
slightly higher than the NASA BA product (named MCD64A1, which is produced
at 500 m resolution). However, commission and omission errors are better
compensated in our product, with a tendency towards BA underestimation
(relative bias −0.4033), as most existing global BA products. To understand
the value of this product in detecting small fire patches (<100 ha),
an additional validation sample of 52 Sentinel-2 scenes was generated
specifically over Africa. Analysis of these results indicates a better
detection accuracy of this product for small fire patches (<100 ha)
than the equivalent 500 m MCD64A1 product, although both have high errors for
these small fires. Examples of potential applications of this dataset to
fire modelling based on burned patches analysis are included in this paper.
The datasets are freely downloadable from the Fire_cci
website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at
full resolution: https://doi.org/cpk7, and grid: https://doi.org/gcx9gf). |
---|---|
AbstractList | This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25∘. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias -0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches (<100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches (<100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at full resolution: cpk7, and grid: gcx9gf). This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25∘. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias −0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches (<100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches (<100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at full resolution: https://doi.org/cpk7, and grid: https://doi.org/gcx9gf). This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25°. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias −0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches ( < 100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches ( < 100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website ( https://www.esa-fire-cci.org/ , last access: 10 November 2018) and their repositories (pixel at full resolution: https://doi.org/cpk7 , and grid: https://doi.org/gcx9gf ). This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001-2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25∘. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias -0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches (<100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches (<100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at full resolution: https://doi.org/cpk7, and grid: https://doi.org/gcx9gf). |
Author | Lizundia-Loiola, Joshua Ramo, Ruben Chuvieco, Emilio Heil, Angelika Pettinari, Maria Lucrecia Plummer, Stephen Padilla, Marc Mouillot, Florent Laurent, Pierre Storm, Thomas Tansey, Kevin |
Author_xml | – sequence: 1 givenname: Emilio orcidid: 0000-0001-5618-4759 surname: Chuvieco fullname: Chuvieco, Emilio – sequence: 2 givenname: Joshua orcidid: 0000-0002-6662-9165 surname: Lizundia-Loiola fullname: Lizundia-Loiola, Joshua – sequence: 3 givenname: Maria Lucrecia surname: Pettinari fullname: Pettinari, Maria Lucrecia – sequence: 4 givenname: Ruben surname: Ramo fullname: Ramo, Ruben – sequence: 5 givenname: Marc surname: Padilla fullname: Padilla, Marc – sequence: 6 givenname: Kevin surname: Tansey fullname: Tansey, Kevin – sequence: 7 givenname: Florent orcidid: 0000-0002-6548-4830 surname: Mouillot fullname: Mouillot, Florent – sequence: 8 givenname: Pierre surname: Laurent fullname: Laurent, Pierre – sequence: 9 givenname: Thomas surname: Storm fullname: Storm, Thomas – sequence: 10 givenname: Angelika orcidid: 0000-0002-8768-5027 surname: Heil fullname: Heil, Angelika – sequence: 11 givenname: Stephen orcidid: 0000-0002-7033-9865 surname: Plummer fullname: Plummer, Stephen |
BackLink | https://insu.hal.science/insu-03660289$$DView record in HAL |
BookMark | eNp1UcFu1DAQjVCRaAsfwM0SN6SAHceOc6wKbVda1ANwtsb2pM0qaxc7S9WeuPKbfAmTXZAAiYPHnvF7T_Z7J9VRTBGr6qXgb5To27dYSqgFrxsu1FLMk-pYGK1rqYQ--uP8rDopZcO5bkWnjqvHS4yYYR5TZBADLZgeylhYGhiwiPfsZkoOJuZ2OSLdZwR2l1PY-Zk5KDQi5ofrd6uPrFH8x7fvW5ZxmNDPED0SJIayV55vMW9JCGKibcTyvHo6wFTwxa_9tPp88f7T-VW9vr5cnZ-ta98aOdfKN0Kp1jTtoLkPnXGuU1y7PoiAXuAAXlAzDNgrjaptCRS0dBCMNLIHeVqtDrohwcbe5XEL-cEmGO1-kPKNhTyPfkLbNdqLwfUyOGw7F8C5RraBdIcgyDLSen3QuoXpL6mrs7UdY9lZLrXmjem_CgK_OoDJry87LLPdJHKR_mobIRvRd53RhOoOKJ9TKeSd9eO8D2TOME5WcLskbJeEl2ZJeCmGmOIf5u8X_Z_zE5R2rQY |
CitedBy_id | crossref_primary_10_1080_01431161_2023_2221801 crossref_primary_10_1080_17538947_2019_1597187 crossref_primary_10_1007_s11356_023_31575_5 crossref_primary_10_5327_Z2176_94781303 crossref_primary_10_1002_wat2_1424 crossref_primary_10_5194_bg_21_3339_2024 crossref_primary_10_3390_rs14030602 crossref_primary_10_3390_rs13071345 crossref_primary_10_1109_LGRS_2022_3188259 crossref_primary_10_3390_fire4040074 crossref_primary_10_1088_1748_9326_abb62c crossref_primary_10_3390_rs14194714 crossref_primary_10_3390_rs15133260 crossref_primary_10_1016_j_rse_2018_08_005 crossref_primary_10_1016_j_oneear_2024_01_021 crossref_primary_10_5194_bg_16_3147_2019 crossref_primary_10_1016_S2542_5196_23_00134_1 crossref_primary_10_3390_fire8030113 crossref_primary_10_1016_j_rsase_2020_100324 crossref_primary_10_1088_1748_9326_ac8be4 crossref_primary_10_3390_rs13214295 crossref_primary_10_3389_ffgc_2022_925480 crossref_primary_10_1080_01431161_2022_2027544 crossref_primary_10_1016_j_foreco_2024_122349 crossref_primary_10_1016_j_jag_2023_103350 crossref_primary_10_1029_2021GL095452 crossref_primary_10_3390_rs11222616 crossref_primary_10_12845_sft_63_1_2024_3 crossref_primary_10_1080_01431161_2024_2421942 crossref_primary_10_5194_gmd_13_3299_2020 crossref_primary_10_1016_j_scitotenv_2024_169929 crossref_primary_10_1111_gcb_15160 crossref_primary_10_24011_barofd_837507 crossref_primary_10_5194_essd_13_1925_2021 crossref_primary_10_1109_TGRS_2019_2943901 crossref_primary_10_1038_s41597_022_01572_3 crossref_primary_10_3390_rs12213498 crossref_primary_10_3389_feart_2019_00097 crossref_primary_10_1186_s13021_022_00214_w crossref_primary_10_1007_s10661_022_10045_4 crossref_primary_10_3390_rs13214298 crossref_primary_10_1016_j_isprsjprs_2022_07_015 crossref_primary_10_1109_TGRS_2021_3110280 crossref_primary_10_3390_rs16010042 crossref_primary_10_3390_s20185423 crossref_primary_10_5194_bg_16_3883_2019 crossref_primary_10_3390_rs13071287 crossref_primary_10_1016_j_oneear_2021_03_002 crossref_primary_10_1186_s42408_023_00212_4 crossref_primary_10_1088_1755_1315_932_1_012001 crossref_primary_10_3390_rs11222669 crossref_primary_10_3390_rs13040816 crossref_primary_10_3390_f13020347 crossref_primary_10_3390_rs11050489 crossref_primary_10_3390_rs12010151 crossref_primary_10_3390_rs15123115 crossref_primary_10_1029_2023MS003749 crossref_primary_10_1016_j_scitotenv_2021_148718 crossref_primary_10_1038_s43247_023_00800_x crossref_primary_10_3390_rs13204145 crossref_primary_10_1088_1748_9326_ac5f94 crossref_primary_10_1016_j_rse_2019_111288 crossref_primary_10_1080_01431161_2021_1999529 crossref_primary_10_1080_15481603_2021_1879495 crossref_primary_10_3390_fire6050192 crossref_primary_10_1029_2020RG000726 crossref_primary_10_1016_j_scitotenv_2022_157322 crossref_primary_10_1038_s41561_024_01637_5 crossref_primary_10_3390_fire7120487 crossref_primary_10_1109_JSTARS_2020_2988324 crossref_primary_10_1016_j_rse_2022_112991 crossref_primary_10_1016_j_rse_2021_112863 crossref_primary_10_1016_j_scitotenv_2024_171037 crossref_primary_10_1080_19475705_2024_2361132 crossref_primary_10_1007_s10661_022_10704_6 crossref_primary_10_3390_rs14030736 crossref_primary_10_1029_2022MS003480 crossref_primary_10_3389_ffgc_2022_1052299 crossref_primary_10_5194_nhess_21_73_2021 crossref_primary_10_5194_bg_16_57_2019 crossref_primary_10_15243_jdmlm_2024_121_6491 crossref_primary_10_1186_s42408_024_00289_5 crossref_primary_10_1016_j_accre_2024_11_001 crossref_primary_10_1029_2024EF005051 crossref_primary_10_3390_rs12020334 crossref_primary_10_3390_rs13101914 crossref_primary_10_1007_s40725_020_00116_5 crossref_primary_10_1016_j_rse_2022_113298 crossref_primary_10_1016_j_rse_2023_113753 crossref_primary_10_1029_2019GB006393 crossref_primary_10_1016_j_engappai_2024_108280 crossref_primary_10_1016_j_rse_2022_113214 crossref_primary_10_1007_s10712_024_09863_7 crossref_primary_10_1016_j_nanoen_2022_107630 crossref_primary_10_1016_j_scitotenv_2021_147372 crossref_primary_10_1088_2515_7620_ab25d2 crossref_primary_10_3390_fire7040144 crossref_primary_10_3390_rs11060622 crossref_primary_10_1016_j_apgeog_2023_102970 crossref_primary_10_1016_j_jag_2021_102473 crossref_primary_10_3390_fire6020043 crossref_primary_10_1038_s41561_023_01137_y crossref_primary_10_1029_2022GL099920 crossref_primary_10_1073_pnas_2101186119 crossref_primary_10_3390_f14040663 crossref_primary_10_1007_s11027_023_10087_0 crossref_primary_10_5194_bg_20_1313_2023 crossref_primary_10_3390_fire7030067 crossref_primary_10_3390_rs16132500 crossref_primary_10_1029_2020EF001960 crossref_primary_10_1016_j_rse_2020_111801 crossref_primary_10_1016_j_rsase_2025_101513 crossref_primary_10_1016_j_atmosenv_2022_118954 crossref_primary_10_1016_j_rse_2021_112575 crossref_primary_10_3390_rs12162576 crossref_primary_10_1016_j_isprsjprs_2019_12_014 crossref_primary_10_1016_j_envint_2023_108102 crossref_primary_10_1016_j_scitotenv_2024_176823 crossref_primary_10_3390_rs16010030 crossref_primary_10_5194_essd_12_3229_2020 crossref_primary_10_1080_10095020_2024_2336599 crossref_primary_10_1007_s10021_023_00872_y crossref_primary_10_1016_j_scitotenv_2022_155386 crossref_primary_10_3390_rs13245131 crossref_primary_10_3390_app12010009 crossref_primary_10_1016_j_foreco_2021_119255 crossref_primary_10_1016_j_accre_2021_07_001 crossref_primary_10_1038_s41598_019_55187_7 crossref_primary_10_5194_essd_14_3599_2022 crossref_primary_10_1007_s40641_019_00128_9 crossref_primary_10_1016_j_atmosenv_2023_119871 crossref_primary_10_3390_rs12050858 crossref_primary_10_1016_j_envpol_2022_119790 crossref_primary_10_1016_j_gloplacha_2023_104076 crossref_primary_10_1016_j_rse_2020_111897 crossref_primary_10_1371_journal_pone_0316472 crossref_primary_10_3390_fire2030039 crossref_primary_10_5194_gmd_17_7141_2024 crossref_primary_10_1088_2633_1357_abd8e2 crossref_primary_10_1016_j_rse_2020_112115 crossref_primary_10_3390_rs16173306 crossref_primary_10_1016_j_jag_2021_102296 crossref_primary_10_5194_gmd_16_4249_2023 crossref_primary_10_1088_1748_9326_ac39be crossref_primary_10_48123_rsgis_1410382 crossref_primary_10_3390_rs12233972 crossref_primary_10_1038_s41612_024_00781_4 crossref_primary_10_3390_f10050363 crossref_primary_10_1016_j_scitotenv_2022_156550 crossref_primary_10_3390_rs16071166 crossref_primary_10_1016_j_agrformet_2024_110108 crossref_primary_10_3390_rs14112655 crossref_primary_10_5194_gmd_14_2371_2021 crossref_primary_10_1080_10106049_2021_1980118 crossref_primary_10_1111_1365_2435_14432 crossref_primary_10_3389_fenvs_2022_891752 crossref_primary_10_1038_s41598_020_67530_4 crossref_primary_10_1016_j_apgeog_2022_102867 crossref_primary_10_3390_rs13091608 crossref_primary_10_3390_fire6070277 crossref_primary_10_1007_s41324_022_00457_2 crossref_primary_10_1016_j_rse_2021_112823 crossref_primary_10_1088_1748_9326_abd3d1 crossref_primary_10_3390_rs11182079 crossref_primary_10_1088_1755_1315_428_1_012078 crossref_primary_10_1016_j_jag_2021_102443 crossref_primary_10_1073_pnas_2011160118 crossref_primary_10_3390_rs14122901 crossref_primary_10_1016_j_tfp_2024_100700 crossref_primary_10_1038_s41467_020_15852_2 crossref_primary_10_3390_rs12233864 crossref_primary_10_1016_j_geosus_2020_03_002 crossref_primary_10_1080_10106049_2023_2285345 crossref_primary_10_1016_j_srs_2024_100165 crossref_primary_10_1016_j_rse_2023_113798 |
Cites_doi | 10.1111/geb.12440 10.1111/geb.12246 10.1289/ehp.1409277 10.1038/s41559-016-0058 10.1007/s10021-009-9234-8 10.1016/j.jag.2013.05.014 10.3390/rs8110888 10.1016/j.rse.2015.01.005 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.3390/rs9010007 10.1109/36.739156 10.1023/A:1010933404324 10.1016/j.rse.2018.08.005 10.1175/BAMS-D-11-00254.1 10.1177/2053019615588790 10.1038/nature13946 10.5194/bg-13-267-2016 10.1016/j.rse.2017.07.014 10.5194/essd-9-697-2017 10.1071/WF12052 10.3390/rs6010815 10.1007/s10980-005-7302-9 10.1126/science.aal4108 10.5194/gmd-10-4443-2017 10.1016/S0034-4257(99)00026-7 10.1098/rstb.2015.0469 10.1016/j.rse.2016.02.054 10.1038/nclimate1658 10.2307/2532039 10.1016/j.rse.2008.10.006 10.1016/j.rse.2017.06.041 10.1016/j.rse.2015.03.011 10.1007/s11027-006-1012-8 10.1016/j.gloplacha.2016.12.017 10.1029/2007GL031567 10.1016/S0034-4257(98)00016-9 10.1016/j.rse.2004.11.006 10.1016/j.foreco.2009.03.041 10.1201/9781420048568 10.1016/j.rse.2010.07.008 10.1016/j.rse.2008.05.013 10.1016/j.rse.2010.07.010 10.1080/01431160210153129 10.3390/rs9111193 10.1007/BF00031911 10.1002/2013MS000284 10.3390/rs61212360 10.1038/sdata.2018.132 10.1016/j.rse.2010.12.005 10.2307/2532625 10.1016/j.rse.2015.01.022 10.1016/j.rse.2005.04.007 10.1016/S0304-3800(00)00368-9 10.1016/j.rse.2007.11.007 10.1016/j.rse.2018.12.011 10.1038/srep06112 |
ContentType | Journal Article |
Copyright | 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 1XC VOOES DOA |
DOI | 10.5194/essd-10-2015-2018 |
DatabaseName | CrossRef Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1866-3516 |
EndPage | 2031 |
ExternalDocumentID | oai_doaj_org_article_726c1fb93dbe47bdabb234d56efd1064 oai_HAL_insu_03660289v1 10_5194_essd_10_2015_2018 |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS IPNFZ ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RIG RKB RNS TR2 TUS ZBA 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI 1XC BBORY C1A VOOES PUEGO |
ID | FETCH-LOGICAL-c483t-5c21554824f60cd78bb7506b9d1dec1efac1b9dffe956e5440cdd63bad83839a3 |
IEDL.DBID | DOA |
ISSN | 1866-3516 1866-3508 |
IngestDate | Wed Aug 27 01:29:21 EDT 2025 Fri Jun 13 07:03:17 EDT 2025 Fri Jul 25 19:04:56 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 02:14:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-5c21554824f60cd78bb7506b9d1dec1efac1b9dffe956e5440cdd63bad83839a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7033-9865 0000-0002-6662-9165 0000-0002-8768-5027 0000-0001-5618-4759 0000-0002-6548-4830 |
OpenAccessLink | https://doaj.org/article/726c1fb93dbe47bdabb234d56efd1064 |
PQID | 2132197786 |
PQPubID | 105729 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_726c1fb93dbe47bdabb234d56efd1064 hal_primary_oai_HAL_insu_03660289v1 proquest_journals_2132197786 crossref_citationtrail_10_5194_essd_10_2015_2018 crossref_primary_10_5194_essd_10_2015_2018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-13 |
PublicationDateYYYYMMDD | 2018-11-13 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2018 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref17 doi: 10.1111/geb.12440 – ident: ref32 doi: 10.1111/geb.12246 – ident: ref57 doi: 10.1289/ehp.1409277 – ident: ref10 doi: 10.1038/s41559-016-0058 – ident: ref5 – ident: ref63 doi: 10.1007/s10021-009-9234-8 – ident: ref46 doi: 10.1016/j.jag.2013.05.014 – ident: ref66 doi: 10.3390/rs8110888 – ident: ref49 doi: 10.1016/j.rse.2015.01.005 – ident: ref43 – ident: ref48 doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – ident: ref47 doi: 10.3390/rs9010007 – ident: ref36 – ident: ref52 doi: 10.1109/36.739156 – ident: ref11 doi: 10.1023/A:1010933404324 – ident: ref31 doi: 10.1016/j.rse.2018.08.005 – ident: ref34 doi: 10.1175/BAMS-D-11-00254.1 – ident: ref41 doi: 10.1177/2053019615588790 – ident: ref45 doi: 10.1038/nature13946 – ident: ref38 doi: 10.5194/bg-13-267-2016 – ident: ref54 doi: 10.1016/j.rse.2017.07.014 – ident: ref65 doi: 10.5194/essd-9-697-2017 – ident: ref16 doi: 10.1071/WF12052 – ident: ref44 doi: 10.3390/rs6010815 – ident: ref12 doi: 10.1007/s10980-005-7302-9 – ident: ref2 doi: 10.1126/science.aal4108 – ident: ref26 doi: 10.5194/gmd-10-4443-2017 – ident: ref4 doi: 10.1016/S0034-4257(99)00026-7 – ident: ref59 doi: 10.1098/rstb.2015.0469 – ident: ref30 doi: 10.1016/j.rse.2016.02.054 – ident: ref42 doi: 10.1038/nclimate1658 – ident: ref25 – ident: ref51 – ident: ref20 doi: 10.2307/2532039 – ident: ref29 doi: 10.1016/j.rse.2008.10.006 – ident: ref50 doi: 10.1016/j.rse.2017.06.041 – ident: ref1 doi: 10.1016/j.rse.2015.03.011 – ident: ref55 doi: 10.1007/s11027-006-1012-8 – ident: ref19 – ident: ref37 doi: 10.1016/j.gloplacha.2016.12.017 – ident: ref64 doi: 10.1029/2007GL031567 – ident: ref3 doi: 10.1016/S0034-4257(98)00016-9 – ident: ref14 doi: 10.1016/j.rse.2004.11.006 – ident: ref58 doi: 10.1016/j.foreco.2009.03.041 – ident: ref23 doi: 10.1201/9781420048568 – ident: ref35 doi: 10.1016/j.rse.2010.07.008 – ident: ref62 doi: 10.1016/j.rse.2008.05.013 – ident: ref22 doi: 10.1016/j.rse.2010.07.010 – ident: ref13 doi: 10.1080/01431160210153129 – ident: ref28 – ident: ref56 doi: 10.3390/rs9111193 – ident: ref21 – ident: ref53 doi: 10.1007/BF00031911 – ident: ref39 doi: 10.1002/2013MS000284 – ident: ref7 doi: 10.3390/rs61212360 – ident: ref40 doi: 10.1038/sdata.2018.132 – ident: ref6 doi: 10.1016/j.rse.2010.12.005 – ident: ref24 doi: 10.2307/2532625 – ident: ref8 – ident: ref9 doi: 10.1016/j.rse.2015.01.022 – ident: ref18 – ident: ref61 doi: 10.1016/j.rse.2005.04.007 – ident: ref33 doi: 10.1016/S0304-3800(00)00368-9 – ident: ref15 doi: 10.1016/j.rse.2007.11.007 – ident: ref60 doi: 10.1016/j.rse.2018.12.011 – ident: ref27 doi: 10.1038/srep06112 |
SSID | ssj0064175 |
Score | 2.5346835 |
Snippet | This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer
(MODIS) red (R) and near-infrared... This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared... |
SourceID | doaj hal proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2015 |
SubjectTerms | Accuracy Algorithms Anomalies Archives & records Area Atmospheric models Burning Climate change Datasets Detection Errors Fires Image detection Imaging techniques Ingestion Landsat Landsat satellites Mathematical models Modelling MODIS Patches (structures) Pixels Products Reflectance Remote sensing Repositories Resolution Satellite imagery Sciences of the Universe Seeds Spatial discrimination Spatial resolution Spectroradiometers |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9UwFG4UYuKLAX_Ei0ia6JPJwrp2XfdEQMCrETQqCW_N-mP6ANuVeyXw3_OdrReCDzxsy7a22c7pzvlOu36Hsfde176GbrO8qGlJjpeZa5zJTKho1ipv9ZCL4OhYT0_Ul9PyNA24zdNvlUubOBjq0HsaI98uEDaJmtjOdmZ_M8oaRbOrKYXGY7YKE2zQw1f3Do6__1jaYq3EQLVLrG6ZBBYZ5zWBWtQ2DEkgIwQPWNLO3PNMA4E__M0f-j3yPys9uJ7DNfYsYUa-Oyp5nT2K3XP25NOQk_f6BbsaqaNJwrzpAraRZ4T3LW84YDMfWT-4o_FL3AdO5LOR6ZWTFwscNY--7X_-yQFV-DnHs9FoPnUIFOjCfGiXoOI5mmm6HgdE2C_ZyeHBr4_TLCVUyLwycpGVviD4YArV6tyHyjgHwKBdHUSIXsS28QInbRsRNcVSKRQKWromGASydSNfsZWu7-JrxitANe9KD28fgcEq56WvnRLeiyIIk09YvhSm9YltnJJenFlEHSR_S_KnE5I_7cyEfbitMhupNh4qvEcaui1ILNnDhf7it00fna0K7UXrahlcVJULjXOFVAHv1gaEwmrC3kG_99qY7n61tArAwrNrmoW9FBO2udS_TR_43N51x42Hb79hT-l5afmikJtsZXHxL74Fjlm4rdRZbwDVwO9s priority: 102 providerName: ProQuest |
Title | Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies |
URI | https://www.proquest.com/docview/2132197786 https://insu.hal.science/insu-03660289 https://doaj.org/article/726c1fb93dbe47bdabb234d56efd1064 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgCIlLxadYKCtLcEKKGseO4xx3abcLogUBlXqz4o-IA81WdIsEJ678TX4Jb-xsRTnAhUMcJbEtxzPxvIntN4w987r1LWRblFVLW3K8LFznTGFCQ7NWZa9TLILDI708Vq9O6pPfQn3RmrBMD5w7breptBe9a2VwUTUudM5VUoVaxz7AnUlMoLB5G2cqj8FaiUSxS2xuhQQGyfOZQCtqFwNIoMEHlq-mxFyxSIm4H3bmIy2L_GN0TiZncZttj1iRz3Ib77BrcbjLbh6kWLxf77FvmTKaepZ3Q8CR-UX4qucdB1zmme2DO_pviefAh_wsM7xysl6Bo-Thm72X7zkgys_vP045Wkf_8UkVkGUI56lmAomnqKgbVjjBt77Pjhf7H14sizGUQuGVkeui9hUBB1OpXpc-NMY5QAXt2iBC9CL2nRe46PsIfynWSiFT0NJ1wcCFbTv5gG0NqyE-ZLwBSPOu9rDzEeircV761inhvaiCMOWElZvutH7kGadwF58s_A2SgCUJ0AVJgBIzYc8vi5xlko2_ZZ6TjC4zEj92ugGtsaPW2H9pzYQ9hYSv1LGcvba0_t_Cpmuaf_0iJmxnowF2_LTPbQX_XbREu_fof7TkMbtFb0XbG4XcYVvrzxfxCXDO2k3ZdbM4mLIbs_nefIHzfP_o7btpUvRftSH9Zw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VrRBceCMWClgCLkhp40cS58ChpSy7dLcI0YreTPwIIGhSdbdA-Sv8FX4cM3kUtYfeKnFIomwca-N8nvkmtr8BeOrS3OX4bqNY5LQkx8nIFlZH2mc0ahWXaZOLYLadjnfVm71kbwl-92thaFplbxMbQ-1rR9_I1wSGTTwntbNuBuVWOP6B8dn8xWQTX-YzIUavdl6Ooy6FQOSUlosocYIcphaqTGPnM20tusjU5p774HgoC8fxpCwDxgkhUQoL-VTawmsM3fJCYr2XYFmTHx7A8sZo9u5Db-hTxRsdX5KMiyQSnXbQFCmRWkMr5cnCoXtNaKdPub0mOwA6s8809_KMC2j82ug6_OlbpJ3O8nX1aGFX3a8zYpH_aZPdgGsdn2brbQe4CUuhugWXXzf5io9vw89WVpvQx4rK49ZqsLC6ZAXDkIK1iijM0rddvI4cmh20KriMPLxneOfs7ebkPUMax_YZNi2NdFBnwQKVnzf1Eo3ex2qKqsbDlzC_A7sX8th3YVDVVbgHLEMa62zikAkF5KeZddLlVnHnuPBcx0OIeywY1ymxU0KQbwYjMoKPIfjQCcGHdnoIz09uOWhlSM4rvEEAOylICuLND_XhJ9MZJJOJ1PHS5tLboDLrC2uFVB6frfQcsT2EJwjPU3WM16eGVkgYZD0pjVB_50NY6aFnOuM3N_9wd__8y4_hynhnNjXTyfbWA7hK_52WeXK5AoPF4VF4iHxvYR91_Y7Bx4vG7V-NAGJY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFNsKWAJuCBFG8eO4xwQKizbXfoACSr15sYvOLTJ0l0e_Wv8OmbyKCqH3nrYrLJxrOyMPfNNxv4G4IVTpStRt0malbQlx4nEVlYn2heUtUqjamsR7O2r2YH8cJgfrsGfYS8MLascbGJrqH3j6B35OMOwiZfEdjaO_bKIT5Ppm8X3hCpIUaZ1KKfRDZGdcPYLw7fl6_kEdf0yy6bvv7ybJX2FgcRJLVZJ7jLypzqTUaXOF9pa9KDKlp774HiIleN4EmPAMCLkUmIjr4StvMbIrqwE9nsNrhdCp1Q9QU-3By-gJG9JfolPLhGIgrqMKuIlOUYT5sn8oe_N6aAv-MS2dAB6um-0MPM__9A6vekduN2jVbbVDa-7sBbqe3Bju60GfHYffnek1aRbVtUePx3DCWsiqxgCdtbxjTBLb07xOiJUtug4Zhn5T8_wzr2Pk_lnhiCJnTB8Nsoj0FDEBrVftv0SSD3Bbqq6wS-M7R_AwZUI-iGs100dHgErECQ6mzvEGQHRX2GdcKWV3Dmeea7TEaSDMI3rec6p3MaxwXiH5G9I_nRC8qeDHsGr81sWHcnHZY3fkobOGxI_d_tDc_rV9NPdFJlyPNpSeBtkYX1lbSakx_8WPQbhcgTPUb8X-pht7Rraf2AQUyjK__7kI9gc9G9607I0_ybCxuWXn8FNnCFmd76_8xhu0aPTHkouNmF9dfojPEEwtbJP21HL4Oiqp8lfFkYwhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+and+analysis+of+a+new+global+burned+area+product+based+on+MODIS+250%E2%80%89m+reflectance+bands+and+thermal+anomalies&rft.jtitle=Earth+system+science+data&rft.au=E.+Chuvieco&rft.au=J.+Lizundia-Loiola&rft.au=M.+L.+Pettinari&rft.au=R.+Ramo&rft.date=2018-11-13&rft.pub=Copernicus+Publications&rft.issn=1866-3508&rft.eissn=1866-3516&rft.volume=10&rft.spage=2015&rft.epage=2031&rft_id=info:doi/10.5194%2Fessd-10-2015-2018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_726c1fb93dbe47bdabb234d56efd1064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |