Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies

This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datase...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 10; no. 4; pp. 2015 - 2031
Main Authors Chuvieco, Emilio, Lizundia-Loiola, Joshua, Pettinari, Maria Lucrecia, Ramo, Ruben, Padilla, Marc, Tansey, Kevin, Mouillot, Florent, Laurent, Pierre, Storm, Thomas, Heil, Angelika, Plummer, Stephen
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 13.11.2018
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1866-3516
1866-3508
1866-3516
DOI10.5194/essd-10-2015-2018

Cover

Loading…
Abstract This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25∘. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias −0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches (<100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches (<100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at full resolution: https://doi.org/cpk7, and grid: https://doi.org/gcx9gf).
AbstractList This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25∘. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias -0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches (<100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches (<100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at full resolution: cpk7, and grid: gcx9gf).
This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25∘. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias −0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches (<100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches (<100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at full resolution: https://doi.org/cpk7, and grid: https://doi.org/gcx9gf).
This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001–2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25°. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias −0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches ( < 100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches ( < 100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website ( https://www.esa-fire-cci.org/ , last access: 10 November 2018) and their repositories (pixel at full resolution: https://doi.org/cpk7 , and grid: https://doi.org/gcx9gf ).
This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest spatial resolution (approx. 250 m) among the existing global BA datasets. The product includes the full times series (2001-2016) of the Terra-MODIS archive. The BA detection algorithm was based on monthly composites of daily images, using temporal and spatial distance to active fires. The algorithm has two steps, the first one aiming to reduce commission errors by selecting the most clearly burned pixels (seeds), and the second one targeting to reduce omission errors by applying contextual analysis around the seed pixels. This product was developed within the European Space Agency's (ESA) Climate Change Initiative (CCI) programme, under the Fire Disturbance project (Fire_cci). The final output includes two types of BA files: monthly full-resolution continental tiles and biweekly global grid files at a degraded resolution of 0.25∘. Each set of products includes several auxiliary variables that were defined by the climate users to facilitate the ingestion of the product into global dynamic vegetation and atmospheric emission models. Average annual burned area from this product was 3.81 Mkm2, with maximum burning in 2011 (4.1 Mkm2) and minimum in 2013 (3.24 Mkm2). The validation was based on a stratified random sample of 1200 pairs of Landsat images, covering the whole globe from 2003 to 2014. The validation indicates an overall accuracy of 0.9972, with much higher errors for the burned than the unburned category (global omission error of BA was estimated as 0.7090 and global commission as 0.5123). These error values are similar to other global BA products, but slightly higher than the NASA BA product (named MCD64A1, which is produced at 500 m resolution). However, commission and omission errors are better compensated in our product, with a tendency towards BA underestimation (relative bias -0.4033), as most existing global BA products. To understand the value of this product in detecting small fire patches (<100 ha), an additional validation sample of 52 Sentinel-2 scenes was generated specifically over Africa. Analysis of these results indicates a better detection accuracy of this product for small fire patches (<100 ha) than the equivalent 500 m MCD64A1 product, although both have high errors for these small fires. Examples of potential applications of this dataset to fire modelling based on burned patches analysis are included in this paper. The datasets are freely downloadable from the Fire_cci website (https://www.esa-fire-cci.org/, last access: 10 November 2018) and their repositories (pixel at full resolution: https://doi.org/cpk7, and grid: https://doi.org/gcx9gf).
Author Lizundia-Loiola, Joshua
Ramo, Ruben
Chuvieco, Emilio
Heil, Angelika
Pettinari, Maria Lucrecia
Plummer, Stephen
Padilla, Marc
Mouillot, Florent
Laurent, Pierre
Storm, Thomas
Tansey, Kevin
Author_xml – sequence: 1
  givenname: Emilio
  orcidid: 0000-0001-5618-4759
  surname: Chuvieco
  fullname: Chuvieco, Emilio
– sequence: 2
  givenname: Joshua
  orcidid: 0000-0002-6662-9165
  surname: Lizundia-Loiola
  fullname: Lizundia-Loiola, Joshua
– sequence: 3
  givenname: Maria Lucrecia
  surname: Pettinari
  fullname: Pettinari, Maria Lucrecia
– sequence: 4
  givenname: Ruben
  surname: Ramo
  fullname: Ramo, Ruben
– sequence: 5
  givenname: Marc
  surname: Padilla
  fullname: Padilla, Marc
– sequence: 6
  givenname: Kevin
  surname: Tansey
  fullname: Tansey, Kevin
– sequence: 7
  givenname: Florent
  orcidid: 0000-0002-6548-4830
  surname: Mouillot
  fullname: Mouillot, Florent
– sequence: 8
  givenname: Pierre
  surname: Laurent
  fullname: Laurent, Pierre
– sequence: 9
  givenname: Thomas
  surname: Storm
  fullname: Storm, Thomas
– sequence: 10
  givenname: Angelika
  orcidid: 0000-0002-8768-5027
  surname: Heil
  fullname: Heil, Angelika
– sequence: 11
  givenname: Stephen
  orcidid: 0000-0002-7033-9865
  surname: Plummer
  fullname: Plummer, Stephen
BackLink https://insu.hal.science/insu-03660289$$DView record in HAL
BookMark eNp1UcFu1DAQjVCRaAsfwM0SN6SAHceOc6wKbVda1ANwtsb2pM0qaxc7S9WeuPKbfAmTXZAAiYPHnvF7T_Z7J9VRTBGr6qXgb5To27dYSqgFrxsu1FLMk-pYGK1rqYQ--uP8rDopZcO5bkWnjqvHS4yYYR5TZBADLZgeylhYGhiwiPfsZkoOJuZ2OSLdZwR2l1PY-Zk5KDQi5ofrd6uPrFH8x7fvW5ZxmNDPED0SJIayV55vMW9JCGKibcTyvHo6wFTwxa_9tPp88f7T-VW9vr5cnZ-ta98aOdfKN0Kp1jTtoLkPnXGuU1y7PoiAXuAAXlAzDNgrjaptCRS0dBCMNLIHeVqtDrohwcbe5XEL-cEmGO1-kPKNhTyPfkLbNdqLwfUyOGw7F8C5RraBdIcgyDLSen3QuoXpL6mrs7UdY9lZLrXmjem_CgK_OoDJry87LLPdJHKR_mobIRvRd53RhOoOKJ9TKeSd9eO8D2TOME5WcLskbJeEl2ZJeCmGmOIf5u8X_Z_zE5R2rQY
CitedBy_id crossref_primary_10_1080_01431161_2023_2221801
crossref_primary_10_1080_17538947_2019_1597187
crossref_primary_10_1007_s11356_023_31575_5
crossref_primary_10_5327_Z2176_94781303
crossref_primary_10_1002_wat2_1424
crossref_primary_10_5194_bg_21_3339_2024
crossref_primary_10_3390_rs14030602
crossref_primary_10_3390_rs13071345
crossref_primary_10_1109_LGRS_2022_3188259
crossref_primary_10_3390_fire4040074
crossref_primary_10_1088_1748_9326_abb62c
crossref_primary_10_3390_rs14194714
crossref_primary_10_3390_rs15133260
crossref_primary_10_1016_j_rse_2018_08_005
crossref_primary_10_1016_j_oneear_2024_01_021
crossref_primary_10_5194_bg_16_3147_2019
crossref_primary_10_1016_S2542_5196_23_00134_1
crossref_primary_10_3390_fire8030113
crossref_primary_10_1016_j_rsase_2020_100324
crossref_primary_10_1088_1748_9326_ac8be4
crossref_primary_10_3390_rs13214295
crossref_primary_10_3389_ffgc_2022_925480
crossref_primary_10_1080_01431161_2022_2027544
crossref_primary_10_1016_j_foreco_2024_122349
crossref_primary_10_1016_j_jag_2023_103350
crossref_primary_10_1029_2021GL095452
crossref_primary_10_3390_rs11222616
crossref_primary_10_12845_sft_63_1_2024_3
crossref_primary_10_1080_01431161_2024_2421942
crossref_primary_10_5194_gmd_13_3299_2020
crossref_primary_10_1016_j_scitotenv_2024_169929
crossref_primary_10_1111_gcb_15160
crossref_primary_10_24011_barofd_837507
crossref_primary_10_5194_essd_13_1925_2021
crossref_primary_10_1109_TGRS_2019_2943901
crossref_primary_10_1038_s41597_022_01572_3
crossref_primary_10_3390_rs12213498
crossref_primary_10_3389_feart_2019_00097
crossref_primary_10_1186_s13021_022_00214_w
crossref_primary_10_1007_s10661_022_10045_4
crossref_primary_10_3390_rs13214298
crossref_primary_10_1016_j_isprsjprs_2022_07_015
crossref_primary_10_1109_TGRS_2021_3110280
crossref_primary_10_3390_rs16010042
crossref_primary_10_3390_s20185423
crossref_primary_10_5194_bg_16_3883_2019
crossref_primary_10_3390_rs13071287
crossref_primary_10_1016_j_oneear_2021_03_002
crossref_primary_10_1186_s42408_023_00212_4
crossref_primary_10_1088_1755_1315_932_1_012001
crossref_primary_10_3390_rs11222669
crossref_primary_10_3390_rs13040816
crossref_primary_10_3390_f13020347
crossref_primary_10_3390_rs11050489
crossref_primary_10_3390_rs12010151
crossref_primary_10_3390_rs15123115
crossref_primary_10_1029_2023MS003749
crossref_primary_10_1016_j_scitotenv_2021_148718
crossref_primary_10_1038_s43247_023_00800_x
crossref_primary_10_3390_rs13204145
crossref_primary_10_1088_1748_9326_ac5f94
crossref_primary_10_1016_j_rse_2019_111288
crossref_primary_10_1080_01431161_2021_1999529
crossref_primary_10_1080_15481603_2021_1879495
crossref_primary_10_3390_fire6050192
crossref_primary_10_1029_2020RG000726
crossref_primary_10_1016_j_scitotenv_2022_157322
crossref_primary_10_1038_s41561_024_01637_5
crossref_primary_10_3390_fire7120487
crossref_primary_10_1109_JSTARS_2020_2988324
crossref_primary_10_1016_j_rse_2022_112991
crossref_primary_10_1016_j_rse_2021_112863
crossref_primary_10_1016_j_scitotenv_2024_171037
crossref_primary_10_1080_19475705_2024_2361132
crossref_primary_10_1007_s10661_022_10704_6
crossref_primary_10_3390_rs14030736
crossref_primary_10_1029_2022MS003480
crossref_primary_10_3389_ffgc_2022_1052299
crossref_primary_10_5194_nhess_21_73_2021
crossref_primary_10_5194_bg_16_57_2019
crossref_primary_10_15243_jdmlm_2024_121_6491
crossref_primary_10_1186_s42408_024_00289_5
crossref_primary_10_1016_j_accre_2024_11_001
crossref_primary_10_1029_2024EF005051
crossref_primary_10_3390_rs12020334
crossref_primary_10_3390_rs13101914
crossref_primary_10_1007_s40725_020_00116_5
crossref_primary_10_1016_j_rse_2022_113298
crossref_primary_10_1016_j_rse_2023_113753
crossref_primary_10_1029_2019GB006393
crossref_primary_10_1016_j_engappai_2024_108280
crossref_primary_10_1016_j_rse_2022_113214
crossref_primary_10_1007_s10712_024_09863_7
crossref_primary_10_1016_j_nanoen_2022_107630
crossref_primary_10_1016_j_scitotenv_2021_147372
crossref_primary_10_1088_2515_7620_ab25d2
crossref_primary_10_3390_fire7040144
crossref_primary_10_3390_rs11060622
crossref_primary_10_1016_j_apgeog_2023_102970
crossref_primary_10_1016_j_jag_2021_102473
crossref_primary_10_3390_fire6020043
crossref_primary_10_1038_s41561_023_01137_y
crossref_primary_10_1029_2022GL099920
crossref_primary_10_1073_pnas_2101186119
crossref_primary_10_3390_f14040663
crossref_primary_10_1007_s11027_023_10087_0
crossref_primary_10_5194_bg_20_1313_2023
crossref_primary_10_3390_fire7030067
crossref_primary_10_3390_rs16132500
crossref_primary_10_1029_2020EF001960
crossref_primary_10_1016_j_rse_2020_111801
crossref_primary_10_1016_j_rsase_2025_101513
crossref_primary_10_1016_j_atmosenv_2022_118954
crossref_primary_10_1016_j_rse_2021_112575
crossref_primary_10_3390_rs12162576
crossref_primary_10_1016_j_isprsjprs_2019_12_014
crossref_primary_10_1016_j_envint_2023_108102
crossref_primary_10_1016_j_scitotenv_2024_176823
crossref_primary_10_3390_rs16010030
crossref_primary_10_5194_essd_12_3229_2020
crossref_primary_10_1080_10095020_2024_2336599
crossref_primary_10_1007_s10021_023_00872_y
crossref_primary_10_1016_j_scitotenv_2022_155386
crossref_primary_10_3390_rs13245131
crossref_primary_10_3390_app12010009
crossref_primary_10_1016_j_foreco_2021_119255
crossref_primary_10_1016_j_accre_2021_07_001
crossref_primary_10_1038_s41598_019_55187_7
crossref_primary_10_5194_essd_14_3599_2022
crossref_primary_10_1007_s40641_019_00128_9
crossref_primary_10_1016_j_atmosenv_2023_119871
crossref_primary_10_3390_rs12050858
crossref_primary_10_1016_j_envpol_2022_119790
crossref_primary_10_1016_j_gloplacha_2023_104076
crossref_primary_10_1016_j_rse_2020_111897
crossref_primary_10_1371_journal_pone_0316472
crossref_primary_10_3390_fire2030039
crossref_primary_10_5194_gmd_17_7141_2024
crossref_primary_10_1088_2633_1357_abd8e2
crossref_primary_10_1016_j_rse_2020_112115
crossref_primary_10_3390_rs16173306
crossref_primary_10_1016_j_jag_2021_102296
crossref_primary_10_5194_gmd_16_4249_2023
crossref_primary_10_1088_1748_9326_ac39be
crossref_primary_10_48123_rsgis_1410382
crossref_primary_10_3390_rs12233972
crossref_primary_10_1038_s41612_024_00781_4
crossref_primary_10_3390_f10050363
crossref_primary_10_1016_j_scitotenv_2022_156550
crossref_primary_10_3390_rs16071166
crossref_primary_10_1016_j_agrformet_2024_110108
crossref_primary_10_3390_rs14112655
crossref_primary_10_5194_gmd_14_2371_2021
crossref_primary_10_1080_10106049_2021_1980118
crossref_primary_10_1111_1365_2435_14432
crossref_primary_10_3389_fenvs_2022_891752
crossref_primary_10_1038_s41598_020_67530_4
crossref_primary_10_1016_j_apgeog_2022_102867
crossref_primary_10_3390_rs13091608
crossref_primary_10_3390_fire6070277
crossref_primary_10_1007_s41324_022_00457_2
crossref_primary_10_1016_j_rse_2021_112823
crossref_primary_10_1088_1748_9326_abd3d1
crossref_primary_10_3390_rs11182079
crossref_primary_10_1088_1755_1315_428_1_012078
crossref_primary_10_1016_j_jag_2021_102443
crossref_primary_10_1073_pnas_2011160118
crossref_primary_10_3390_rs14122901
crossref_primary_10_1016_j_tfp_2024_100700
crossref_primary_10_1038_s41467_020_15852_2
crossref_primary_10_3390_rs12233864
crossref_primary_10_1016_j_geosus_2020_03_002
crossref_primary_10_1080_10106049_2023_2285345
crossref_primary_10_1016_j_srs_2024_100165
crossref_primary_10_1016_j_rse_2023_113798
Cites_doi 10.1111/geb.12440
10.1111/geb.12246
10.1289/ehp.1409277
10.1038/s41559-016-0058
10.1007/s10021-009-9234-8
10.1016/j.jag.2013.05.014
10.3390/rs8110888
10.1016/j.rse.2015.01.005
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.3390/rs9010007
10.1109/36.739156
10.1023/A:1010933404324
10.1016/j.rse.2018.08.005
10.1175/BAMS-D-11-00254.1
10.1177/2053019615588790
10.1038/nature13946
10.5194/bg-13-267-2016
10.1016/j.rse.2017.07.014
10.5194/essd-9-697-2017
10.1071/WF12052
10.3390/rs6010815
10.1007/s10980-005-7302-9
10.1126/science.aal4108
10.5194/gmd-10-4443-2017
10.1016/S0034-4257(99)00026-7
10.1098/rstb.2015.0469
10.1016/j.rse.2016.02.054
10.1038/nclimate1658
10.2307/2532039
10.1016/j.rse.2008.10.006
10.1016/j.rse.2017.06.041
10.1016/j.rse.2015.03.011
10.1007/s11027-006-1012-8
10.1016/j.gloplacha.2016.12.017
10.1029/2007GL031567
10.1016/S0034-4257(98)00016-9
10.1016/j.rse.2004.11.006
10.1016/j.foreco.2009.03.041
10.1201/9781420048568
10.1016/j.rse.2010.07.008
10.1016/j.rse.2008.05.013
10.1016/j.rse.2010.07.010
10.1080/01431160210153129
10.3390/rs9111193
10.1007/BF00031911
10.1002/2013MS000284
10.3390/rs61212360
10.1038/sdata.2018.132
10.1016/j.rse.2010.12.005
10.2307/2532625
10.1016/j.rse.2015.01.022
10.1016/j.rse.2005.04.007
10.1016/S0304-3800(00)00368-9
10.1016/j.rse.2007.11.007
10.1016/j.rse.2018.12.011
10.1038/srep06112
ContentType Journal Article
Copyright 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
1XC
VOOES
DOA
DOI 10.5194/essd-10-2015-2018
DatabaseName CrossRef
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-3516
EndPage 2031
ExternalDocumentID oai_doaj_org_article_726c1fb93dbe47bdabb234d56efd1064
oai_HAL_insu_03660289v1
10_5194_essd_10_2015_2018
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
IPNFZ
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RIG
RKB
RNS
TR2
TUS
ZBA
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
1XC
BBORY
C1A
VOOES
PUEGO
ID FETCH-LOGICAL-c483t-5c21554824f60cd78bb7506b9d1dec1efac1b9dffe956e5440cdd63bad83839a3
IEDL.DBID DOA
ISSN 1866-3516
1866-3508
IngestDate Wed Aug 27 01:29:21 EDT 2025
Fri Jun 13 07:03:17 EDT 2025
Fri Jul 25 19:04:56 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 02:14:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-5c21554824f60cd78bb7506b9d1dec1efac1b9dffe956e5440cdd63bad83839a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7033-9865
0000-0002-6662-9165
0000-0002-8768-5027
0000-0001-5618-4759
0000-0002-6548-4830
OpenAccessLink https://doaj.org/article/726c1fb93dbe47bdabb234d56efd1064
PQID 2132197786
PQPubID 105729
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_726c1fb93dbe47bdabb234d56efd1064
hal_primary_oai_HAL_insu_03660289v1
proquest_journals_2132197786
crossref_citationtrail_10_5194_essd_10_2015_2018
crossref_primary_10_5194_essd_10_2015_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-13
PublicationDateYYYYMMDD 2018-11-13
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-13
  day: 13
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2018
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref17
  doi: 10.1111/geb.12440
– ident: ref32
  doi: 10.1111/geb.12246
– ident: ref57
  doi: 10.1289/ehp.1409277
– ident: ref10
  doi: 10.1038/s41559-016-0058
– ident: ref5
– ident: ref63
  doi: 10.1007/s10021-009-9234-8
– ident: ref46
  doi: 10.1016/j.jag.2013.05.014
– ident: ref66
  doi: 10.3390/rs8110888
– ident: ref49
  doi: 10.1016/j.rse.2015.01.005
– ident: ref43
– ident: ref48
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– ident: ref47
  doi: 10.3390/rs9010007
– ident: ref36
– ident: ref52
  doi: 10.1109/36.739156
– ident: ref11
  doi: 10.1023/A:1010933404324
– ident: ref31
  doi: 10.1016/j.rse.2018.08.005
– ident: ref34
  doi: 10.1175/BAMS-D-11-00254.1
– ident: ref41
  doi: 10.1177/2053019615588790
– ident: ref45
  doi: 10.1038/nature13946
– ident: ref38
  doi: 10.5194/bg-13-267-2016
– ident: ref54
  doi: 10.1016/j.rse.2017.07.014
– ident: ref65
  doi: 10.5194/essd-9-697-2017
– ident: ref16
  doi: 10.1071/WF12052
– ident: ref44
  doi: 10.3390/rs6010815
– ident: ref12
  doi: 10.1007/s10980-005-7302-9
– ident: ref2
  doi: 10.1126/science.aal4108
– ident: ref26
  doi: 10.5194/gmd-10-4443-2017
– ident: ref4
  doi: 10.1016/S0034-4257(99)00026-7
– ident: ref59
  doi: 10.1098/rstb.2015.0469
– ident: ref30
  doi: 10.1016/j.rse.2016.02.054
– ident: ref42
  doi: 10.1038/nclimate1658
– ident: ref25
– ident: ref51
– ident: ref20
  doi: 10.2307/2532039
– ident: ref29
  doi: 10.1016/j.rse.2008.10.006
– ident: ref50
  doi: 10.1016/j.rse.2017.06.041
– ident: ref1
  doi: 10.1016/j.rse.2015.03.011
– ident: ref55
  doi: 10.1007/s11027-006-1012-8
– ident: ref19
– ident: ref37
  doi: 10.1016/j.gloplacha.2016.12.017
– ident: ref64
  doi: 10.1029/2007GL031567
– ident: ref3
  doi: 10.1016/S0034-4257(98)00016-9
– ident: ref14
  doi: 10.1016/j.rse.2004.11.006
– ident: ref58
  doi: 10.1016/j.foreco.2009.03.041
– ident: ref23
  doi: 10.1201/9781420048568
– ident: ref35
  doi: 10.1016/j.rse.2010.07.008
– ident: ref62
  doi: 10.1016/j.rse.2008.05.013
– ident: ref22
  doi: 10.1016/j.rse.2010.07.010
– ident: ref13
  doi: 10.1080/01431160210153129
– ident: ref28
– ident: ref56
  doi: 10.3390/rs9111193
– ident: ref21
– ident: ref53
  doi: 10.1007/BF00031911
– ident: ref39
  doi: 10.1002/2013MS000284
– ident: ref7
  doi: 10.3390/rs61212360
– ident: ref40
  doi: 10.1038/sdata.2018.132
– ident: ref6
  doi: 10.1016/j.rse.2010.12.005
– ident: ref24
  doi: 10.2307/2532625
– ident: ref8
– ident: ref9
  doi: 10.1016/j.rse.2015.01.022
– ident: ref18
– ident: ref61
  doi: 10.1016/j.rse.2005.04.007
– ident: ref33
  doi: 10.1016/S0304-3800(00)00368-9
– ident: ref15
  doi: 10.1016/j.rse.2007.11.007
– ident: ref60
  doi: 10.1016/j.rse.2018.12.011
– ident: ref27
  doi: 10.1038/srep06112
SSID ssj0064175
Score 2.5346835
Snippet This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared...
This paper presents a new global burned area (BA) product, generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) red (R) and near-infrared...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2015
SubjectTerms Accuracy
Algorithms
Anomalies
Archives & records
Area
Atmospheric models
Burning
Climate change
Datasets
Detection
Errors
Fires
Image detection
Imaging techniques
Ingestion
Landsat
Landsat satellites
Mathematical models
Modelling
MODIS
Patches (structures)
Pixels
Products
Reflectance
Remote sensing
Repositories
Resolution
Satellite imagery
Sciences of the Universe
Seeds
Spatial discrimination
Spatial resolution
Spectroradiometers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9UwFG4UYuKLAX_Ei0ia6JPJwrp2XfdEQMCrETQqCW_N-mP6ANuVeyXw3_OdrReCDzxsy7a22c7pzvlOu36Hsfde176GbrO8qGlJjpeZa5zJTKho1ipv9ZCL4OhYT0_Ul9PyNA24zdNvlUubOBjq0HsaI98uEDaJmtjOdmZ_M8oaRbOrKYXGY7YKE2zQw1f3Do6__1jaYq3EQLVLrG6ZBBYZ5zWBWtQ2DEkgIwQPWNLO3PNMA4E__M0f-j3yPys9uJ7DNfYsYUa-Oyp5nT2K3XP25NOQk_f6BbsaqaNJwrzpAraRZ4T3LW84YDMfWT-4o_FL3AdO5LOR6ZWTFwscNY--7X_-yQFV-DnHs9FoPnUIFOjCfGiXoOI5mmm6HgdE2C_ZyeHBr4_TLCVUyLwycpGVviD4YArV6tyHyjgHwKBdHUSIXsS28QInbRsRNcVSKRQKWromGASydSNfsZWu7-JrxitANe9KD28fgcEq56WvnRLeiyIIk09YvhSm9YltnJJenFlEHSR_S_KnE5I_7cyEfbitMhupNh4qvEcaui1ILNnDhf7it00fna0K7UXrahlcVJULjXOFVAHv1gaEwmrC3kG_99qY7n61tArAwrNrmoW9FBO2udS_TR_43N51x42Hb79hT-l5afmikJtsZXHxL74Fjlm4rdRZbwDVwO9s
  priority: 102
  providerName: ProQuest
Title Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies
URI https://www.proquest.com/docview/2132197786
https://insu.hal.science/insu-03660289
https://doaj.org/article/726c1fb93dbe47bdabb234d56efd1064
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgCIlLxadYKCtLcEKKGseO4xx3abcLogUBlXqz4o-IA81WdIsEJ678TX4Jb-xsRTnAhUMcJbEtxzPxvIntN4w987r1LWRblFVLW3K8LFznTGFCQ7NWZa9TLILDI708Vq9O6pPfQn3RmrBMD5w7breptBe9a2VwUTUudM5VUoVaxz7AnUlMoLB5G2cqj8FaiUSxS2xuhQQGyfOZQCtqFwNIoMEHlq-mxFyxSIm4H3bmIy2L_GN0TiZncZttj1iRz3Ib77BrcbjLbh6kWLxf77FvmTKaepZ3Q8CR-UX4qucdB1zmme2DO_pviefAh_wsM7xysl6Bo-Thm72X7zkgys_vP045Wkf_8UkVkGUI56lmAomnqKgbVjjBt77Pjhf7H14sizGUQuGVkeui9hUBB1OpXpc-NMY5QAXt2iBC9CL2nRe46PsIfynWSiFT0NJ1wcCFbTv5gG0NqyE-ZLwBSPOu9rDzEeircV761inhvaiCMOWElZvutH7kGadwF58s_A2SgCUJ0AVJgBIzYc8vi5xlko2_ZZ6TjC4zEj92ugGtsaPW2H9pzYQ9hYSv1LGcvba0_t_Cpmuaf_0iJmxnowF2_LTPbQX_XbREu_fof7TkMbtFb0XbG4XcYVvrzxfxCXDO2k3ZdbM4mLIbs_nefIHzfP_o7btpUvRftSH9Zw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VrRBceCMWClgCLkhp40cS58ChpSy7dLcI0YreTPwIIGhSdbdA-Sv8FX4cM3kUtYfeKnFIomwca-N8nvkmtr8BeOrS3OX4bqNY5LQkx8nIFlZH2mc0ahWXaZOLYLadjnfVm71kbwl-92thaFplbxMbQ-1rR9_I1wSGTTwntbNuBuVWOP6B8dn8xWQTX-YzIUavdl6Ooy6FQOSUlosocYIcphaqTGPnM20tusjU5p774HgoC8fxpCwDxgkhUQoL-VTawmsM3fJCYr2XYFmTHx7A8sZo9u5Db-hTxRsdX5KMiyQSnXbQFCmRWkMr5cnCoXtNaKdPub0mOwA6s8809_KMC2j82ug6_OlbpJ3O8nX1aGFX3a8zYpH_aZPdgGsdn2brbQe4CUuhugWXXzf5io9vw89WVpvQx4rK49ZqsLC6ZAXDkIK1iijM0rddvI4cmh20KriMPLxneOfs7ebkPUMax_YZNi2NdFBnwQKVnzf1Eo3ex2qKqsbDlzC_A7sX8th3YVDVVbgHLEMa62zikAkF5KeZddLlVnHnuPBcx0OIeywY1ymxU0KQbwYjMoKPIfjQCcGHdnoIz09uOWhlSM4rvEEAOylICuLND_XhJ9MZJJOJ1PHS5tLboDLrC2uFVB6frfQcsT2EJwjPU3WM16eGVkgYZD0pjVB_50NY6aFnOuM3N_9wd__8y4_hynhnNjXTyfbWA7hK_52WeXK5AoPF4VF4iHxvYR91_Y7Bx4vG7V-NAGJY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFNsKWAJuCBFG8eO4xwQKizbXfoACSr15sYvOLTJ0l0e_Wv8OmbyKCqH3nrYrLJxrOyMPfNNxv4G4IVTpStRt0malbQlx4nEVlYn2heUtUqjamsR7O2r2YH8cJgfrsGfYS8MLascbGJrqH3j6B35OMOwiZfEdjaO_bKIT5Ppm8X3hCpIUaZ1KKfRDZGdcPYLw7fl6_kEdf0yy6bvv7ybJX2FgcRJLVZJ7jLypzqTUaXOF9pa9KDKlp774HiIleN4EmPAMCLkUmIjr4StvMbIrqwE9nsNrhdCp1Q9QU-3By-gJG9JfolPLhGIgrqMKuIlOUYT5sn8oe_N6aAv-MS2dAB6um-0MPM__9A6vekduN2jVbbVDa-7sBbqe3Bju60GfHYffnek1aRbVtUePx3DCWsiqxgCdtbxjTBLb07xOiJUtug4Zhn5T8_wzr2Pk_lnhiCJnTB8Nsoj0FDEBrVftv0SSD3Bbqq6wS-M7R_AwZUI-iGs100dHgErECQ6mzvEGQHRX2GdcKWV3Dmeea7TEaSDMI3rec6p3MaxwXiH5G9I_nRC8qeDHsGr81sWHcnHZY3fkobOGxI_d_tDc_rV9NPdFJlyPNpSeBtkYX1lbSakx_8WPQbhcgTPUb8X-pht7Rraf2AQUyjK__7kI9gc9G9607I0_ybCxuWXn8FNnCFmd76_8xhu0aPTHkouNmF9dfojPEEwtbJP21HL4Oiqp8lfFkYwhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+and+analysis+of+a+new+global+burned+area+product+based+on+MODIS+250%E2%80%89m+reflectance+bands+and+thermal+anomalies&rft.jtitle=Earth+system+science+data&rft.au=E.+Chuvieco&rft.au=J.+Lizundia-Loiola&rft.au=M.+L.+Pettinari&rft.au=R.+Ramo&rft.date=2018-11-13&rft.pub=Copernicus+Publications&rft.issn=1866-3508&rft.eissn=1866-3516&rft.volume=10&rft.spage=2015&rft.epage=2031&rft_id=info:doi/10.5194%2Fessd-10-2015-2018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_726c1fb93dbe47bdabb234d56efd1064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon