Reconciliation of quantum local master equations with thermodynamics

The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 20; no. 11; pp. 113024 - 113039
Main Authors De Chiara, Gabriele, Landi, Gabriel, Hewgill, Adam, Reid, Brendan, Ferraro, Alessandro, Roncaglia, Augusto J, Antezza, Mauro
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 16.11.2018
Institute of Physics: Open Access Journals
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
AbstractList The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
Author De Chiara, Gabriele
Roncaglia, Augusto J
Antezza, Mauro
Hewgill, Adam
Reid, Brendan
Ferraro, Alessandro
Landi, Gabriel
Author_xml – sequence: 1
  givenname: Gabriele
  orcidid: 0000-0003-3265-9021
  surname: De Chiara
  fullname: De Chiara, Gabriele
  email: g.dechiara@qub.ac.uk
  organization: University of California Kavli Institute of Theoretical Physics (KITP), Santa Barbara CA 93106-4030, United States of America
– sequence: 2
  givenname: Gabriel
  surname: Landi
  fullname: Landi, Gabriel
  organization: Instituto de Física da Universidade de São Paulo , 05314-970 São Paulo, Brazil
– sequence: 3
  givenname: Adam
  surname: Hewgill
  fullname: Hewgill, Adam
  organization: Queen's University Belfast Centre for Theoretical Atomic, Molecular and Optical Physics, Belfast BT7 1NN, United Kingdom
– sequence: 4
  givenname: Brendan
  surname: Reid
  fullname: Reid, Brendan
  organization: Queen's University Belfast Centre for Theoretical Atomic, Molecular and Optical Physics, Belfast BT7 1NN, United Kingdom
– sequence: 5
  givenname: Alessandro
  surname: Ferraro
  fullname: Ferraro, Alessandro
  organization: Queen's University Belfast Centre for Theoretical Atomic, Molecular and Optical Physics, Belfast BT7 1NN, United Kingdom
– sequence: 6
  givenname: Augusto J
  surname: Roncaglia
  fullname: Roncaglia, Augusto J
  organization: Ciudad Universitaria Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires, Argentina
– sequence: 7
  givenname: Mauro
  orcidid: 0000-0003-4540-5864
  surname: Antezza
  fullname: Antezza, Mauro
  organization: Institut Universitaire de France , 1 rue Descartes, F-75231 Paris Cedex 05, France
BackLink https://hal.science/hal-01925150$$DView record in HAL
BookMark eNp9UU1r3DAUFCWFJtvcezTk0kC30YdlW8eQtE1goVDas3iWn7JabMuRtAn595XjfqSlDQhJDDPzRpojcjD6EQl5w-h7RpvmjImqXvNK0DMANIgvyOEv6ODJ_RU5inFHKWMN54fk8gsaPxrXO0jOj4W3xe0exrQfit4b6IsBYsJQYEZnQizuXdoWaYth8N3DCIMz8TV5aaGPePzjXJFvHz98vbhabz5_ur4436xN2Yi0llCpTkglLFhgDBpTli2TirU1VBIpx7ZuTSclSCwtNjkutspmrRXKCCVW5Hrx7Tzs9BTcAOFBe3D6EfDhRkNIzvSoWytNngCVkXWpVANWsK5ETlndcYTZ63Tx2kL_h9XV-UbPGGWKSybpHcvck4U7BX-7x5j0zu_DmJ-quWBcipLnbUWqhWWCjzGg1calx09LAVyvGdVzU3quQs9V6KWpLKR_CX_meUbydpE4P_0OM-4mzbOE5SUoL_XU2Ux99w_qf52_A9YrtLs
CODEN NJOPFM
CitedBy_id crossref_primary_10_1016_j_physa_2025_130469
crossref_primary_10_1103_PhysRevA_102_022207
crossref_primary_10_3390_e24050644
crossref_primary_10_1103_PhysRevResearch_5_043041
crossref_primary_10_1063_1_5119195
crossref_primary_10_1016_j_physleta_2020_126576
crossref_primary_10_1103_PhysRevA_103_022202
crossref_primary_10_1103_PhysRevA_105_L020401
crossref_primary_10_1103_PhysRevA_106_032410
crossref_primary_10_1103_PhysRevA_109_033508
crossref_primary_10_1103_PRXQuantum_3_010303
crossref_primary_10_1103_PRXQuantum_3_010304
crossref_primary_10_3390_e24121808
crossref_primary_10_1088_1751_8121_ac0c8f
crossref_primary_10_1103_PhysRevA_107_012405
crossref_primary_10_1103_PhysRevE_102_022114
crossref_primary_10_1103_PhysRevA_104_052426
crossref_primary_10_1140_epjqt_s40507_022_00148_9
crossref_primary_10_1209_0295_5075_129_10001
crossref_primary_10_1088_1367_2630_abfe20
crossref_primary_10_1103_PhysRevA_105_022213
crossref_primary_10_1103_RevModPhys_93_035008
crossref_primary_10_1103_PhysRevA_101_012123
crossref_primary_10_1103_PhysRevA_101_012122
crossref_primary_10_1103_PhysRevLett_132_220403
crossref_primary_10_1103_PhysRevA_105_022214
crossref_primary_10_3390_e23040471
crossref_primary_10_1016_j_optcom_2020_126233
crossref_primary_10_1088_1674_1056_ac728b
crossref_primary_10_1088_1742_5468_ad5c5b
crossref_primary_10_1103_PhysRevA_104_042208
crossref_primary_10_1103_PhysRevA_106_022616
crossref_primary_10_1103_PhysRevA_108_022219
crossref_primary_10_1088_1367_2630_ab9983
crossref_primary_10_1016_j_physleta_2020_126864
crossref_primary_10_1103_PhysRevA_106_062218
crossref_primary_10_1103_PhysRevE_107_054115
crossref_primary_10_1103_PhysRevLett_123_090604
crossref_primary_10_1088_2058_9565_adaee0
crossref_primary_10_1103_PhysRevE_111_014115
crossref_primary_10_1103_PhysRevLett_124_170602
crossref_primary_10_1126_sciadv_abl7740
crossref_primary_10_1103_PhysRevX_12_011026
crossref_primary_10_1103_PhysRevA_102_042219
crossref_primary_10_1209_0295_5075_133_60001
crossref_primary_10_22331_qv_2022_09_26_68
crossref_primary_10_1103_PhysRevA_102_042217
crossref_primary_10_1103_PhysRevA_104_062209
crossref_primary_10_1103_PhysRevA_111_022222
crossref_primary_10_1103_PhysRevA_98_062104
crossref_primary_10_1016_j_physleta_2024_129570
crossref_primary_10_1088_1751_8121_ab93fd
crossref_primary_10_1103_PhysRevE_101_062107
crossref_primary_10_1103_PhysRevE_102_062146
crossref_primary_10_1103_PhysRevResearch_4_013171
crossref_primary_10_22331_q_2022_03_22_672
crossref_primary_10_1088_1751_8121_aba3de
crossref_primary_10_1103_PhysRevE_99_042103
crossref_primary_10_1103_PhysRevResearch_4_043066
crossref_primary_10_1103_PhysRevA_99_052104
crossref_primary_10_1103_PhysRevA_109_052207
crossref_primary_10_1103_PhysRevE_103_032138
crossref_primary_10_1103_PhysRevLett_126_130403
crossref_primary_10_1142_S1230161222500159
crossref_primary_10_1103_PhysRevA_100_012107
crossref_primary_10_3390_e25030430
crossref_primary_10_1088_1367_2630_ac5131
crossref_primary_10_1103_PhysRevA_107_042202
crossref_primary_10_1088_1367_2630_ad202a
crossref_primary_10_1103_PhysRevLett_123_140601
crossref_primary_10_1103_PhysRevX_10_031040
crossref_primary_10_1088_1361_648X_ac8bbe
crossref_primary_10_1103_RevModPhys_94_045003
crossref_primary_10_1103_RevModPhys_93_041001
crossref_primary_10_1103_PhysRevLett_123_200603
crossref_primary_10_3390_e22111255
crossref_primary_10_1002_qute_202300029
crossref_primary_10_1103_PhysRevE_106_054114
crossref_primary_10_1103_PhysRevE_105_034101
crossref_primary_10_1088_2058_9565_ad9cbb
crossref_primary_10_1103_PhysRevA_104_012217
crossref_primary_10_1103_PhysRevE_103_012133
crossref_primary_10_1002_andp_202000134
crossref_primary_10_1063_5_0040753
crossref_primary_10_1103_PhysRevB_104_115139
crossref_primary_10_1103_PhysRevResearch_2_013198
crossref_primary_10_1103_PhysRevA_109_042411
crossref_primary_10_3390_e21121182
crossref_primary_10_1088_1367_2630_ac0f19
crossref_primary_10_1103_PhysRevB_104_035425
crossref_primary_10_1103_PhysRevA_106_022209
crossref_primary_10_1103_PhysRevA_110_042216
crossref_primary_10_1016_j_physrep_2022_01_001
crossref_primary_10_1088_1751_8121_ac13de
crossref_primary_10_1038_s42005_024_01843_y
crossref_primary_10_1088_1367_2630_ac3b2f
crossref_primary_10_1103_PhysRevA_105_012208
crossref_primary_10_1103_PhysRevE_101_012109
crossref_primary_10_1103_PhysRevA_102_032207
crossref_primary_10_1103_PhysRevA_108_032619
crossref_primary_10_1103_PhysRevResearch_6_043128
crossref_primary_10_1140_epjp_s13360_021_01305_2
crossref_primary_10_1103_PhysRevA_109_012207
crossref_primary_10_1103_PhysRevLett_123_180602
crossref_primary_10_1103_PhysRevA_104_032217
crossref_primary_10_1088_1367_2630_ab60f5
crossref_primary_10_1103_PhysRevE_105_064111
crossref_primary_10_3390_e23091179
crossref_primary_10_1088_1367_2630_ad7c74
crossref_primary_10_1088_1674_1056_ab84d0
crossref_primary_10_1103_PhysRevA_103_032211
crossref_primary_10_1103_PhysRevB_103_214308
crossref_primary_10_1103_PRXQuantum_2_030344
crossref_primary_10_1103_PhysRevE_107_044102
crossref_primary_10_1002_andp_202200502
crossref_primary_10_1116_5_0072067
crossref_primary_10_1103_PhysRevLett_123_180604
crossref_primary_10_1103_PhysRevResearch_2_033315
crossref_primary_10_1103_PhysRevResearch_6_043091
crossref_primary_10_1016_j_physleta_2023_128826
crossref_primary_10_1088_1367_2630_aca49b
crossref_primary_10_1103_RevModPhys_94_045006
crossref_primary_10_1063_5_0245668
crossref_primary_10_1088_1367_2630_abbd6e
crossref_primary_10_1103_PhysRevLett_125_080601
crossref_primary_10_1103_PhysRevA_107_032602
crossref_primary_10_1103_PhysRevE_103_012111
crossref_primary_10_1103_PhysRevA_102_052208
crossref_primary_10_1140_epjp_s13360_023_03665_3
crossref_primary_10_1088_1367_2630_ac6a01
crossref_primary_10_1002_aelm_202201305
crossref_primary_10_1080_00107514_2019_1631555
crossref_primary_10_1007_s11128_019_2275_9
crossref_primary_10_1063_5_0045308
crossref_primary_10_1103_PhysRevLett_130_110401
crossref_primary_10_1103_PhysRevLett_122_210601
crossref_primary_10_1088_1361_6455_abb4b2
crossref_primary_10_1103_PhysRevA_108_023516
crossref_primary_10_1007_s11128_019_2366_7
crossref_primary_10_1103_PhysRevA_111_022209
crossref_primary_10_1142_S0219749921500404
crossref_primary_10_1103_PRXQuantum_4_010324
crossref_primary_10_1103_PhysRevResearch_3_023252
crossref_primary_10_1007_s11128_024_04447_1
crossref_primary_10_1103_PhysRevA_105_062203
crossref_primary_10_3390_e24060824
crossref_primary_10_1103_PhysRevA_105_012429
crossref_primary_10_1088_1367_2630_ab54ac
crossref_primary_10_1103_PhysRevB_104_045417
crossref_primary_10_1103_PhysRevE_110_014125
crossref_primary_10_3390_e24060820
crossref_primary_10_1103_PhysRevE_107_014108
crossref_primary_10_1088_1361_6455_abade1
crossref_primary_10_1088_2058_9565_ad3f42
crossref_primary_10_1364_JOSAB_37_000138
crossref_primary_10_1103_PhysRevA_108_042201
crossref_primary_10_1016_j_physleta_2024_129389
crossref_primary_10_1103_PhysRevE_109_054122
crossref_primary_10_1103_PhysRevResearch_3_013165
crossref_primary_10_1364_OE_417294
crossref_primary_10_1088_2058_9565_ad26b3
crossref_primary_10_22331_q_2021_05_01_451
crossref_primary_10_1103_PhysRevA_99_042106
crossref_primary_10_1016_j_physleta_2022_128410
crossref_primary_10_22331_q_2022_09_08_801
crossref_primary_10_1103_PhysRevResearch_2_043070
crossref_primary_10_1063_1_5096173
crossref_primary_10_1016_j_physa_2023_129342
crossref_primary_10_3390_e25111528
crossref_primary_10_3390_e23121627
crossref_primary_10_1103_PhysRevA_104_042203
crossref_primary_10_1103_PhysRevA_103_052209
crossref_primary_10_1103_RevModPhys_96_031001
crossref_primary_10_1103_PhysRevA_110_032219
crossref_primary_10_1088_1367_2630_ad3573
crossref_primary_10_1088_1361_6633_acb06b
crossref_primary_10_1103_PhysRevE_105_L042101
crossref_primary_10_1103_PhysRevE_100_032109
crossref_primary_10_1103_PhysRevResearch_3_023006
crossref_primary_10_3390_e22070763
crossref_primary_10_1088_1751_8121_ab9edc
crossref_primary_10_1140_epjs_s11734_023_00835_3
crossref_primary_10_1103_PhysRevA_103_052216
crossref_primary_10_3390_e22050525
crossref_primary_10_1103_PhysRevA_101_062326
crossref_primary_10_3390_e23121634
crossref_primary_10_1103_PhysRevResearch_6_013310
crossref_primary_10_3390_e24091258
crossref_primary_10_1063_1_5114690
crossref_primary_10_1103_PhysRevE_109_024108
crossref_primary_10_22331_q_2024_11_21_1534
Cites_doi 10.1088/0031-8949/91/1/013007
10.1103/PhysRevLett.110.253601
10.3390/e19040136
10.1209/0295-5075/110/40002
10.1103/RevModPhys.59.1
10.1103/PhysRevA.94.052129
10.1103/PhysRevE.94.062143
10.1103/PhysRevE.93.022134
10.1209/0295-5075/120/60006
10.1515/qmetro-2017-0007
10.1103/PhysRevLett.107.137201
10.1093/acprof:oso/9780199213900.001.0001
10.1142/S1230161217400108
10.1088/2058-9565/aaa39f
10.1103/PhysRevLett.121.160604
10.1063/1.3223548
10.1103/PhysRevLett.46.211
10.1209/0295-5075/117/50002
10.1126/science.1242308
10.1103/PhysRevA.91.012117
10.1103/PhysRevE.76.031115
10.1103/PhysRevE.95.062127
10.1103/PhysRevE.94.032139
10.1103/PhysRevLett.105.130401
10.1103/PhysRevE.94.042122
10.1103/PhysRevE.90.012145
10.1103/PhysRevLett.106.217206
10.1103/PhysRevLett.92.230602
10.1103/PhysRevE.93.022122
10.1103/PhysRevLett.111.124101
10.1088/1367-2630/18/12/123018
10.1103/PhysRevA.98.012142
10.1080/00107514.2016.1201896
10.1038/nature11702
10.1017/CBO9781139035439
10.1103/PhysRevA.98.032119
10.1103/PhysRevLett.102.207207
10.1209/0295-5075/113/60002
10.1103/PhysRevB.91.174422
10.1038/srep03949
10.1103/PhysRevE.90.042142
10.1088/1367-2630/aa9f70
10.1088/1367-2630/18/8/083012
10.1103/PhysRevA.91.022121
10.1038/srep14873
10.1209/0295-5075/107/20004
10.1103/PhysRevA.98.042102
10.1038/nature17409
10.1088/1367-2630/aa964f
10.1103/PhysRevLett.110.130406
10.1088/1367-2630/18/1/011002
10.1209/0295-5075/112/40004
10.1103/PhysRevE.95.062131
10.1103/PhysRevA.95.012138
10.1088/1751-8113/49/14/143001
10.1038/srep19730
10.1103/PhysRevLett.88.097905
10.1103/PhysRevB.28.1655
10.1103/PhysRevE.87.042131
10.1088/1367-2630/12/11/113032
10.1103/RevModPhys.83.771
10.1103/PhysRevE.93.052120
10.1103/PhysRevA.89.063805
10.1016/j.optcom.2016.10.017
10.1080/09500349214552211
10.1103/PhysRevLett.108.040401
10.1103/PhysRevLett.115.120403
10.1002/prop.201600067
10.1103/PhysRevLett.119.077701
10.1038/s41586-018-0038-x
10.1103/PhysRevE.65.036145
10.1103/PhysRevB.86.125118
10.1103/PhysRevLett.111.040601
10.1023/A:1023208217925
10.1103/PhysRevLett.78.2690
10.1103/PhysRevX.7.021003
10.1038/nphys4119
10.1103/PhysRevE.98.012131
10.1103/PhysRevA.97.062121
10.1103/PhysRevE.97.022115
10.1103/PhysRevLett.114.220601
10.1209/0295-5075/113/30005
10.1103/PhysRevLett.2.262
10.1038/ncomms2802
10.1103/PhysRevA.93.062114
10.1103/PhysRevA.97.062324
10.1103/PhysRevA.65.042105
10.3390/e18050186
10.1063/1.461951
10.1103/PhysRevA.87.040103
10.1038/nature09801
10.1007/978-3-642-23354-8
10.1103/PhysRevLett.101.105701
10.1103/PhysRevE.76.031105
10.1103/PhysRevA.91.012122
10.1146/annurev-physchem-040513-103724
10.1103/PhysRevLett.90.170604
10.1103/PhysRevLett.110.047201
10.1103/PhysRevX.5.031044
10.1103/PhysRevE.87.012109
10.1103/PhysRevE.91.042116
ContentType Journal Article
Copyright 2018 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2018 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.1088/1367-2630/aaecee
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Reconciliation of quantum local master equations with thermodynamics
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_bf5c1a8a6c574998af31d4e2017d2ea9
oai_HAL_hal_01925150v1
10_1088_1367_2630_aaecee
njpaaecee
GrantInformation_xml – fundername: Consejo Nacional de Investigaciones Científicas y Técnicas
  funderid: https://doi.org/10.13039/501100002923
– fundername: Agencia Nacional de Promoción Científica y Tecnológica
  funderid: https://doi.org/10.13039/501100003074
– fundername: Sao Paulo Research Foundation
  grantid: 2016/08721-7
– fundername: Division of Physics
  grantid: PHY-1748958
  funderid: https://doi.org/10.13039/100000166
– fundername: UBACyT
– fundername: EPSRC project
  grantid: EP/P00282X/1
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
AALHV
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EJD
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M45
M48
M~E
N5L
N9A
NT-
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
PUEGO
ID FETCH-LOGICAL-c483t-5a69d3593fafa11a8c44b1591b7a65e02eb7bcd55a5e4fe8263eb9f483f39c393
IEDL.DBID M48
ISSN 1367-2630
IngestDate Wed Aug 27 01:22:44 EDT 2025
Fri May 09 12:13:16 EDT 2025
Mon Jun 30 04:07:09 EDT 2025
Tue Jul 01 01:30:23 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Wed Aug 21 03:34:11 EDT 2024
Thu Jan 07 13:52:02 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Open quantum systems
Quantum thermodynamics
Master equations
Quantum harmonic oscillators
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-5a69d3593fafa11a8c44b1591b7a65e02eb7bcd55a5e4fe8263eb9f483f39c393
Notes NJP-109321.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3265-9021
0000-0003-4540-5864
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/aaecee
PQID 2312534225
PQPubID 4491272
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_01925150v1
doaj_primary_oai_doaj_org_article_bf5c1a8a6c574998af31d4e2017d2ea9
proquest_journals_2312534225
crossref_primary_10_1088_1367_2630_aaecee
iop_journals_10_1088_1367_2630_aaecee
crossref_citationtrail_10_1088_1367_2630_aaecee
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-16
PublicationDateYYYYMMDD 2018-11-16
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-16
  day: 16
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2018
Publisher IOP Publishing
Institute of Physics: Open Access Journals
Publisher_xml – name: IOP Publishing
– name: Institute of Physics: Open Access Journals
References 88
89
Shammah N (82) 2018
Alicki R (42) 1987
Rivas Á (49) 2010; 12
90
91
92
94
95
96
97
10
Levy A (75) 2014; 107
11
13
14
16
17
18
Trushechkin A S (77) 2016; 113
Abah O (35) 2016; 113
1
2
3
Tasaki H (15) 2000
4
6
7
8
9
20
22
23
24
25
26
27
28
29
Gardiner C (43) 2004
Türkpençe D (71) 2017; 117
Reid B (39) 2017; 120
Leggio B (32) 2015; 112
30
31
33
34
Naseem M T (81) 2018
37
38
Leggio B (5) 2015; 110
40
41
44
45
46
47
48
Goold J (21) 2016; 49
50
Mitchison M T (80) 2018; 20
51
52
54
55
56
57
58
59
Pezzutto M (98) 2016; 18
60
61
62
63
64
65
Buffoni L (93) 2018
66
Pezzutto M (99) 2018
67
Hofer P P (53) 2017; 19
68
69
70
72
73
74
76
78
79
Gross J A (102) 2018; 3
100
101
Niedenzu W (36) 2016; 18
103
104
105
106
Freitas N (12) 2016; 91
107
108
83
84
Millen J (19) 2016; 18
85
86
87
References_xml – volume: 91
  issn: 1402-4896
  year: 2016
  ident: 12
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/91/1/013007
– ident: 107
  doi: 10.1103/PhysRevLett.110.253601
– ident: 37
  doi: 10.3390/e19040136
– volume: 110
  start-page: 40002
  issn: 0295-5075
  year: 2015
  ident: 5
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/110/40002
– ident: 47
  doi: 10.1103/RevModPhys.59.1
– ident: 70
  doi: 10.1103/PhysRevA.94.052129
– ident: 51
  doi: 10.1103/PhysRevE.94.062143
– ident: 34
  doi: 10.1103/PhysRevE.93.022134
– volume: 120
  start-page: 60006
  issn: 0295-5075
  year: 2017
  ident: 39
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/120/60006
– ident: 97
  doi: 10.1515/qmetro-2017-0007
– ident: 63
  doi: 10.1103/PhysRevLett.107.137201
– ident: 44
  doi: 10.1093/acprof:oso/9780199213900.001.0001
– ident: 52
  doi: 10.1142/S1230161217400108
– volume: 3
  issn: 2058-9565
  year: 2018
  ident: 102
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aaa39f
– ident: 8
  doi: 10.1103/PhysRevLett.121.160604
– ident: 3
  doi: 10.1063/1.3223548
– ident: 46
  doi: 10.1103/PhysRevLett.46.211
– volume: 117
  start-page: 50002
  issn: 0295-5075
  year: 2017
  ident: 71
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/117/50002
– ident: 7
  doi: 10.1126/science.1242308
– ident: 31
  doi: 10.1103/PhysRevA.91.012117
– ident: 54
  doi: 10.1103/PhysRevE.76.031115
– ident: 104
  doi: 10.1103/PhysRevE.95.062127
– ident: 61
  doi: 10.1103/PhysRevE.94.032139
– ident: 26
  doi: 10.1103/PhysRevLett.105.130401
– ident: 60
  doi: 10.1103/PhysRevE.94.042122
– ident: 29
  doi: 10.1103/PhysRevE.90.012145
– year: 1987
  ident: 42
  publication-title: Lecture Notes in Physics
– ident: 64
  doi: 10.1103/PhysRevLett.106.217206
– ident: 17
  doi: 10.1103/PhysRevLett.92.230602
– ident: 33
  doi: 10.1103/PhysRevE.93.022122
– ident: 67
  doi: 10.1103/PhysRevLett.111.124101
– volume: 18
  issn: 1367-2630
  year: 2016
  ident: 98
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/12/123018
– ident: 101
  doi: 10.1103/PhysRevA.98.012142
– year: 2018
  ident: 82
– ident: 20
  doi: 10.1080/00107514.2016.1201896
– year: 2018
  ident: 99
– ident: 1
  doi: 10.1038/nature11702
– ident: 48
  doi: 10.1017/CBO9781139035439
– ident: 100
  doi: 10.1103/PhysRevA.98.032119
– ident: 55
  doi: 10.1103/PhysRevLett.102.207207
– volume: 113
  start-page: 60002
  issn: 0295-5075
  year: 2016
  ident: 35
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/113/60002
– ident: 59
  doi: 10.1103/PhysRevB.91.174422
– ident: 28
  doi: 10.1038/srep03949
– ident: 58
  doi: 10.1103/PhysRevE.90.042142
– volume: 20
  issn: 1367-2630
  year: 2018
  ident: 80
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa9f70
– volume: 18
  issn: 1367-2630
  year: 2016
  ident: 36
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/8/083012
– ident: 95
  doi: 10.1103/PhysRevA.91.022121
– ident: 88
  doi: 10.1038/srep14873
– volume: 107
  start-page: 20004
  issn: 0295-5075
  year: 2014
  ident: 75
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/107/20004
– year: 2000
  ident: 15
– ident: 41
  doi: 10.1103/PhysRevA.98.042102
– ident: 9
  doi: 10.1038/nature17409
– volume: 19
  issn: 1367-2630
  year: 2017
  ident: 53
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa964f
– ident: 92
  doi: 10.1103/PhysRevLett.110.130406
– volume: 18
  issn: 1367-2630
  year: 2016
  ident: 19
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/1/011002
– volume: 112
  start-page: 40004
  issn: 0295-5075
  year: 2015
  ident: 32
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/112/40004
– ident: 38
  doi: 10.1103/PhysRevE.95.062131
– year: 2018
  ident: 93
– ident: 6
  doi: 10.1103/PhysRevA.95.012138
– volume: 49
  issn: 1751-8113
  year: 2016
  ident: 21
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/49/14/143001
– ident: 69
  doi: 10.1038/srep19730
– ident: 85
  doi: 10.1103/PhysRevLett.88.097905
– ident: 106
  doi: 10.1103/PhysRevB.28.1655
– ident: 76
  doi: 10.1103/PhysRevE.87.042131
– volume: 12
  issn: 1367-2630
  year: 2010
  ident: 49
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/11/113032
– ident: 18
  doi: 10.1103/RevModPhys.83.771
– ident: 90
  doi: 10.1103/PhysRevE.93.052120
– ident: 108
  doi: 10.1103/PhysRevA.89.063805
– ident: 79
  doi: 10.1016/j.optcom.2016.10.017
– ident: 74
  doi: 10.1080/09500349214552211
– ident: 87
  doi: 10.1103/PhysRevLett.108.040401
– ident: 96
  doi: 10.1103/PhysRevLett.115.120403
– ident: 78
  doi: 10.1002/prop.201600067
– ident: 2
  doi: 10.1103/PhysRevLett.119.077701
– ident: 91
  doi: 10.1038/s41586-018-0038-x
– ident: 24
  doi: 10.1103/PhysRevE.65.036145
– ident: 66
  doi: 10.1103/PhysRevB.86.125118
– ident: 11
  doi: 10.1103/PhysRevLett.111.040601
– ident: 14
  doi: 10.1023/A:1023208217925
– ident: 13
  doi: 10.1103/PhysRevLett.78.2690
– ident: 89
  doi: 10.1103/PhysRevX.7.021003
– ident: 105
  doi: 10.1038/nphys4119
– ident: 84
  doi: 10.1103/PhysRevE.98.012131
– ident: 40
  doi: 10.1103/PhysRevA.97.062121
– ident: 73
  doi: 10.1103/PhysRevE.97.022115
– year: 2004
  ident: 43
  publication-title: Quantum Noise
– ident: 62
  doi: 10.1103/PhysRevLett.114.220601
– volume: 113
  start-page: 30005
  issn: 0295-5075
  year: 2016
  ident: 77
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/113/30005
– ident: 22
  doi: 10.1103/PhysRevLett.2.262
– ident: 4
  doi: 10.1038/ncomms2802
– ident: 50
  doi: 10.1103/PhysRevA.93.062114
– ident: 72
  doi: 10.1103/PhysRevA.97.062324
– ident: 86
  doi: 10.1103/PhysRevA.65.042105
– ident: 83
  doi: 10.3390/e18050186
– ident: 23
  doi: 10.1063/1.461951
– ident: 94
  doi: 10.1103/PhysRevA.87.040103
– ident: 10
  doi: 10.1038/nature09801
– ident: 45
  doi: 10.1007/978-3-642-23354-8
– ident: 65
  doi: 10.1103/PhysRevLett.101.105701
– ident: 25
  doi: 10.1103/PhysRevE.76.031105
– ident: 103
  doi: 10.1103/PhysRevA.91.012122
– ident: 27
  doi: 10.1146/annurev-physchem-040513-103724
– ident: 16
  doi: 10.1103/PhysRevLett.90.170604
– ident: 56
  doi: 10.1103/PhysRevLett.110.047201
– year: 2018
  ident: 81
– ident: 30
  doi: 10.1103/PhysRevX.5.031044
– ident: 57
  doi: 10.1103/PhysRevE.87.012109
– ident: 68
  doi: 10.1103/PhysRevE.91.042116
SSID ssj0011822
Score 2.6554356
Snippet The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when...
SourceID doaj
hal
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113024
SubjectTerms Atomic and Molecular Clusters
Atomic Physics
Collisions
Condensed Matter
Harmonic oscillators
Heat engines
master equations
Mathematical models
open quantum systems
Optics
Physics
Quantum Gases
quantum harmonic oscillators
Quantum Physics
quantum thermodynamics
Subsystems
Thermodynamics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4qCF7EJ9YXUfTgoWybRx9HnyyinhS8hSRNUHG7u-6uv9-ZtKsugl6EHkqYlPabJPNNJ5kh5Ehzxk0uZeyNZ7FwGCQscxMnEpbDioPWQ9G-27us-yCuH-Xjt1JfuCesSQ_cANcxXtpUFzqzMgd2XmjP00o4sFt5xZwOR_fA5k2dqTZ-AKyZtUFJmEYdzEsWs4wnHa0dmIUZIxRy9YNpecKdkPPP_cGPZTnYmqsVstySRHravNwqmXP1GlkMmzXtaJ1coM9Y2-fXBlba93Q4AYQmPRpME-1pTH9A3bDJ4z2i-LeVItXr9aumBP1ogzxcXd6fd-O2GkJsRcHHsdRZCeCV3GuvU4DECmGAjKQm15l0CXMmN7aSUksnvAO3gTtTeujreWl5yTfJQt2v3RahFbC4VLCEawOExJrCaVAN89aAc-OEjUhnCo-ybapwrFjxqkLIuigUAqoQUNUAGpGTzx6DJk3GL7JniPinHCa4Dg2gdtWqXf2l9ogcgr5mntE9vVHYhqQVWFrynkbkGNSp2lk5-uWNDmbk6peBYugcwcWBxKhB5SOyOx0UX4JAjpnkAtbE7f_4qB2yBPcFHnVMs12yMH6buD3gPGOzH4b3B3sy_Lc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tLkLisrxFYEEGwYFD2sSPxBGn5bGqEK8DK-0BybIdW8Bu0y5tOfDrmYnTogJaIaQcqmicxPMlM9_U9meAx1Zw4Wql8ugiz2WgQcKmdnmhMBy2AlHvN-17-66aHMvXJ-pkB55t1sLM5kPoH-HPJBScXDhMiNNjEhnLeSWKsbUBY_wuXBIaEyet3nv_YTOEgMSZD-OSf2u1lYd6uX7MLp9pMuQu3viPyNynm6Or8Gn9oGmWyelotXQj_-M3Dcf_7Mk12B9oKDtMptdhJ3Q34HI_HdQvbsJLqko7_-UsAcdmkZ2vEIPVlPXJj00tCSywcJ6UwheM_s9lRCanszZtcr-4BcdHrz6-mOTDfgu5l1osc2WrBuFpRLTRlqXVXkqHdKd0ta1UKHhwtfOtUlYFGQMWJiK4JmLbKBovGnEb9rpZF-4Aa5EnlpIXwjqkPN7pYBF8Hr3D8ilIn8F47X3jBzFy2hPjzPSD4lob8o0h35jkmwyeblrMkxDHBbbPCdCNHUlo9ycQBDOAYFxUHvtoK69qLPu0jaJsZUBCVLc82CaDR_g6bF1jcvjG0DmixcgDi-9lBk8QXDN894sLnujhll33dW44lV94CKRJZt7GDA7W79wvQ6TfXAmJUffuP97qHlzBPmhaL1lWB7C3_LYK95E4Ld2D_gP5CTI-EtM
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDfrlcFexroPlq0b7tge9hAu8UfiPI12bTnGVsZYoW_Gduyuo5fkmrv9_ZMS35WjcJAnRw6JJEs_WY5EyEfDGbellGmwgaXCY5KwKm2aSTCHNQepD037flwUs0vx7UpexQ23Ph6rXNvEwVDXrcM98ingECa5APX70i1S7BqF2dXYQmOP7IMJVmpC9k_OLn7-2uQRAD2zmJyE5TTF-mQpK3g2NcaDe9hyRkPNfnAxf_BE5N5N2z0wz4PPOX9GnkawSI9H6R6QR755Th4PhzZd_4KcYuzYuJvbkb20DXSxAk6t5nRwUXRusAwC9YuxnndPcdeVIuSbt_XYir5_SS7Pz35_naWxK0LqhOLLVJqiAiZWPJhg8twoJ4QFUJLb0hTSZ8zb0rpaSiO9CB7CB-5tFWBu4JXjFX9FJk3b-NeE1oDmcsEybiwAE2eVNyAiFpyFIMcLl5Dpmj3axZLh2LniVg-pa6U0MlQjQ_XI0IR83szoxnIZO2hPkOMbOix0PQy0d9c6rhttg3TwjaZwsoTgTJnA81p4gC1lzbypEvIB5LX1jNnxd41jCF4BrWX_8oR8AnHquDr7HW90tEXX_O00wyAJLg5gRnd1SMjhWinuCe-V883u22_JE3h1hT8z5sUhmSzvVv4doJqlfR9V9z_SBvUF
  priority: 102
  providerName: ProQuest
Title Reconciliation of quantum local master equations with thermodynamics
URI https://iopscience.iop.org/article/10.1088/1367-2630/aaecee
https://www.proquest.com/docview/2312534225
https://hal.science/hal-01925150
https://doaj.org/article/bf5c1a8a6c574998af31d4e2017d2ea9
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhcUHmJ0LIKCA4cwiZ-5HFAqIVWC6IPIVb0ZtmOXYp2k30i-PeM7WxXK6pKSFEO1sRKvnE833jsGYBXkhKqCs4TqyxJmHFBwqpQScpxOqwpat0X7Ts5zQdD9vmCX6yPR3cAzm907Vw9qeFs9Pb39M97_OHfhR1yZd9lHUtITtO-lAYn_S3YQbtUuHoGJ2wdU0AmTcIprCDdBS1v6mHDSPlc_mh6fridkltX7eSfadvbouNduN-RyPggaP0B3DHNQ7jrN3Pq-SP46HzKRl-NAuxxa-PpEhFcjmNvuuKxdOkRYjMNeb7nsVuNjR0VHLd1KFE_fwzD46NvHwZJVy0h0ayki4TLvEJwK2qllVkmS82YQrKSqULm3KTEqELpmnPJDbMG3QpqVGXxWUsrTSv6BLabtjFPIa6R5WWMpFQqJCxalUai6ojVCp0fw3QE_RU8QnepxF1Fi5HwIe2yFA5Q4QAVAdAI3lw_MQlpNG6RPXSIX8u5BNi-oZ1diu5_Espyjd8oc80LdNpKaWlWM4N0pqiJkVUEL1FfG30MDr4I1-ZILbK49FcWwWtUp1gNulve6MWGXPNzIohznvCiSHLEpLYR7K8GxVoQyTPhlOGc-ew_ANiDe_gdpTvxmOX7sL2YLc1zpD4L1YOdw6PT8689v3SA909n5z0_yvF-Rr__BUfVAfw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKdIKWAQPXCINvEjjwNCLW21pdsVQq3Um7EdG1p1k93uLqh_it_ITB5brZD2VimnZGLFM-OZbzzODCEfNGfcpFKG3ngWCodJwjw1YSTBHBYcpF437TsZJYMz8fVcnm-Qv92_MHissrOJtaEuKot75H3AIUxyAer3eTINsWsUZle7FhqNWhy7mz8Qss0-He2DfHcYOzw4_TII264CoRUZn4dSJzl8RM699jqOdWaFMODUY5PqRLqIOZMaW0ippRPeAfzmzuQe3vU8txyLL4HJ3xQ8iViPbO4djL59X-YtAK2zNhkKy7eP9dBCGCDqa-3AHa04v7pHALi0X3gC895FNfnPHdQ-7vAxedSCU7rbaNMTsuHKp-R-fUjUzp6RfYxVS3tx1YiTVp5OFyCZxZjWLpGONZZdoG7a1A-fUdzlpQgxx1VxU-oxDPOcnN0Jv16QXlmV7iWhBaDHWLCIawNAyJrMaVAJ5q2BoMoJG5B-xx5l2xLl2CnjStWp8ixTyFCFDFUNQwPycfnGpCnPsYZ2Dzm-pMPC2vWN6vqnatepMl5amKNOrEwhGMy053EhHMCktGBO5wF5D_JaGWOwO1R4D8EyoMPodxyQHRCnaq3BbM0XvVuhKy8nimFQBhcH8KQmhQ_IdqcUt4S3i2Fr_eO35MHg9GSohkej41fkIUwjwx8p42Sb9ObXC_caENXcvGnVmJIfd71y_gFb5DKZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIhCXUl5ioRSD6IHDJrt-7OPAoRCilJbSA5V6c22vLR7NJm0SUPlT_BV-EuNdJyiAKi49IOUQrbwb2_Nl5pv1-DPAM8Uo07kQsdOOxtz6RcIy13Ei0B1WDK3eHNr3dj8bHPI3R-JoBb4v9sKMxsH1d_BrKxTcTmEoiCu6XmQsphlLukpZ9PHdceVCVeWuPf-KOdvkxU4PDbxFaf_1-1eDOBwrEBtesGksVFZiL0rmlFNpqgrDucaonupcZcIm1Opcm0oIJSx3Fvk3s7p0eK9jpWFefQl9_lXBMFb7HYPvDhbLFkjWaVgL_VtPl2Jfc0QARrQPvgDzCg72j2jQhLj-Tfgxn5y2suVzZzbVHfPtN93I_2j21mEt0G2y3XbvFqzY-jZca8pezeQO9Hz2XZuPJy1AyciR0xlibTYkTZAnQ-WFJIg9bRXRJ8S_tyaeNA9H1XmthviYu3B4KUO4B6v1qLb3gVTIh1NOE6Y0UjujC6sQ5NQZjWmi5SaC7tzi0gTRdX_2x4lsFv-LQnp7SG8P2dojgueLO8at4MgFbV96EC3aeanw5gIaXgbDS-2EwTGqzIgc09tCOZZW3CLxyytqVRnBU4Tg0jMG23vSX_P0H_lu8iWNYAsBJYN_m1zQoydL7epPY0l9mokfhnRQItoi2Jjj_FdDTDOoYByjy4N__KnHcP2g15d7O_u7D-EGDqfwW0TTbANWp2cz-wi54lRvNv9PAseXDemfcx9zaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconciliation+of+quantum+local+master+equations+with+thermodynamics&rft.jtitle=New+journal+of+physics&rft.au=De+Chiara%2C+Gabriele&rft.au=Landi%2C+Gabriel&rft.au=Hewgill%2C+Adam&rft.au=Reid%2C+Brendan&rft.date=2018-11-16&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=20&rft.issue=11&rft.spage=113024&rft_id=info:doi/10.1088%2F1367-2630%2Faaecee&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_aaecee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon