Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons

Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting s...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 20; no. 19; pp. 11305 - 11327
Main Authors Purohit, Pallav, Höglund-Isaksson, Lena, Dulac, John, Shah, Nihar, Wei, Max, Rafaj, Peter, Schöpp, Wolfgang
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 05.10.2020
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1680-7324
1680-7316
1680-7324
DOI10.5194/acp-20-11305-2020

Cover

Loading…
Abstract Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 Pg CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 ∘C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide (SO2), 8 %–16 % for nitrogen oxides (NOx), and 4 %–9 % for fine particulate matter (PM2.5) emissions compared with a pre-Kigali baseline.
AbstractList Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 Pg CO.sub.2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 .sup." C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %-10 % for sulfur dioxide (SO.sub.2 ), 8 %-16 % for nitrogen oxides (NO.sub.x ), and 4 %-9 % for fine particulate matter (PM.sub.2.5) emissions compared with a pre-Kigali baseline.
Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 PgCO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 ∘C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide (SO2), 8 %–16 % for nitrogen oxides (NOx), and 4 %–9 % for fine particulate matter (PM2.5) emissions compared with a pre-Kigali baseline.
Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 Pg CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 ∘C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide (SO2), 8 %–16 % for nitrogen oxides (NOx), and 4 %–9 % for fine particulate matter (PM2.5) emissions compared with a pre-Kigali baseline.
Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631  Pg CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2  ∘C . Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide ( SO2 ), 8 %–16 % for nitrogen oxides ( NOx ), and 4 %–9 % for fine particulate matter ( PM2.5 ) emissions compared with a pre-Kigali baseline.
Audience Academic
Author Wei, Max
Shah, Nihar
Rafaj, Peter
Dulac, John
Schöpp, Wolfgang
Purohit, Pallav
Höglund-Isaksson, Lena
Author_xml – sequence: 1
  givenname: Pallav
  orcidid: 0000-0002-7265-6960
  surname: Purohit
  fullname: Purohit, Pallav
– sequence: 2
  givenname: Lena
  orcidid: 0000-0001-7514-3135
  surname: Höglund-Isaksson
  fullname: Höglund-Isaksson, Lena
– sequence: 3
  givenname: John
  surname: Dulac
  fullname: Dulac, John
– sequence: 4
  givenname: Nihar
  surname: Shah
  fullname: Shah, Nihar
– sequence: 5
  givenname: Max
  surname: Wei
  fullname: Wei, Max
– sequence: 6
  givenname: Peter
  surname: Rafaj
  fullname: Rafaj, Peter
– sequence: 7
  givenname: Wolfgang
  orcidid: 0000-0001-5990-423X
  surname: Schöpp
  fullname: Schöpp, Wolfgang
BookMark eNp1UttuEzEQXaEi0RY-gDdLPPGwrW8bO49VVSBSpUpcnq1ZXzaONnawd6H5eyYNCIJAluXx6Jwz9sy5aM5STr5pXjN61bGlvAa7azltGRO0w4DTZ805W2jaKsHl2R_xi-ai1g2lvKNMnjfD3ejtVKKN055U-BbTUAkkR4bifVrnuXoyQCV-G2uNOZHi3WwnjCoJJW_JMOYeRrJbQ_Wty98TyYGs967kMM65ZAulR_DL5nmAsfpXP8_L5su7u8-3H9r7h_er25v71kotplZ2Eqhj0Fnae8DfYILqPijfe825hYXoQxDMaSmtdJ5TsaSShqUKWii7FJfN6qjrMmzMrsQtlL3JEM1TIpfBQJmiHb3ptBLUOWd7uZAaK-CdKSVt8L0DaVHrzVFrV_LX2dfJbPJcEj7fcCk1F1oq-hs1AIrGFPJUwGK7rLlZCNVRhRtRV_9A4XLYWYuzDBHzJ4S3JwTETP5xGmCu1aw-fTzFqiPWllxr8cHgOOEwJCwSR8OoOZjEoEkMp-bJJOZgEmSyv5i_WvZ_zg83rsDt
CitedBy_id crossref_primary_10_1039_D4TC03483J
crossref_primary_10_1002_app_54230
crossref_primary_10_5194_acp_21_14833_2021
crossref_primary_10_1016_j_enconman_2024_119422
crossref_primary_10_1016_j_jfluchem_2024_110257
crossref_primary_10_1021_acs_est_3c00166
crossref_primary_10_1038_s41467_022_28229_4
crossref_primary_10_2166_wst_2021_316
crossref_primary_10_1038_s41558_023_01898_9
crossref_primary_10_1073_pnas_2206131119
crossref_primary_10_1016_j_fluid_2023_113833
crossref_primary_10_1007_s11027_022_10021_w
crossref_primary_10_1289_EHP11651
crossref_primary_10_3390_su17010053
crossref_primary_10_1021_acs_jpclett_3c03124
crossref_primary_10_1016_j_molliq_2021_117701
crossref_primary_10_1016_j_seppur_2021_119363
crossref_primary_10_1016_j_chemosphere_2021_131208
crossref_primary_10_1016_j_molliq_2022_120472
crossref_primary_10_3390_catal11091021
crossref_primary_10_1088_1748_9326_ad4e4e
crossref_primary_10_2139_ssrn_4766671
crossref_primary_10_1016_S2542_5196_24_00030_5
crossref_primary_10_1016_j_jenvman_2025_124715
crossref_primary_10_1016_j_molliq_2023_123445
crossref_primary_10_3390_su151410767
crossref_primary_10_5194_acp_22_6087_2022
crossref_primary_10_1016_j_accre_2022_06_003
crossref_primary_10_1016_j_erss_2021_102068
crossref_primary_10_1038_s41558_022_01310_y
Cites_doi 10.1126/science.1216414
10.1016/j.ijrefrig.2014.07.001
10.1080/20430779.2011.579352
10.1088/1748-9326/11/4/044011
10.1088/1748-9326/5/1/014007
10.1016/j.applthermaleng.2019.03.123
10.1016/j.scitotenv.2012.08.092
10.2172/1397235
10.1038/s41598-017-07536-7
10.1007/s12053-011-9116-8
10.1016/j.atmosenv.2015.10.071
10.2172/1136779
10.1007/s12053-019-09807-w
10.1016/j.ijrefrig.2005.08.017
10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2
10.5194/acp-19-9865-2019
10.1002/grl.50967
10.1007/s10584-006-0433-4
10.1007/s13412-014-0215-7
10.1007/s12571-011-0149-9
10.1080/10789669.2007.10390968
10.1088/2515-7620/ab7457
10.1016/S2542-5196(18)30029-9
10.1007/s10584-017-2002-4
10.1038/nclimate2910
10.1021/acs.est.5b04376
10.1021/acs.est.8b01280
10.1016/j.ijrefrig.2015.03.025
10.1038/ncomms14476
10.2172/1559243
10.2172/1326522
10.1080/14693062.2018.1478791
10.1098/rsta.2019.0331
10.1029/2003JD003697
10.5194/acp-17-2795-2017
10.1596/1813-9450-7479
10.1016/j.energy.2011.11.056
10.1016/j.gloenvcha.2018.08.008
10.2172/1171749
10.1088/1748-9326/ab6d7e
10.1073/pnas.0902817106
10.1038/s41467-018-06885-9
10.1016/j.gloenvcha.2016.05.009
10.1038/s41612-019-0086-4
10.1016/j.enpol.2010.11.037
10.1073/pnas.2237157100
10.1016/j.energy.2018.09.097
10.1016/j.ijrefrig.2019.11.012
10.1126/science.359.6380.1084
10.1016/j.envsci.2017.05.006
10.1038/nclimate3322
10.1289/EHP166
10.5194/acp-17-4641-2017
10.1021/acs.est.5b05088
10.1080/1943815X.2020.1768551
10.1016/j.enbuild.2019.01.015
10.1016/j.envint.2019.105147
10.3390/en10050602
10.1016/S0360-5442(01)00023-8
10.1038/nclimate2833
10.1029/2006GL028904
10.1021/acs.est.6b06201
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.5194/acp-20-11305-2020
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Economics
EISSN 1680-7324
EndPage 11327
ExternalDocumentID oai_doaj_org_article_58730dddcb46487eb8731774cfebda4c
A637507750
10_5194_acp_20_11305_2020
GeographicLocations Canada
Montreal Quebec Canada
China
India
GeographicLocations_xml – name: China
– name: Canada
– name: Montreal Quebec Canada
– name: India
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c483t-454a0d1a5c0bea11345408bf7ebe822ca63bff31d844c4de2039040f97f837c93
IEDL.DBID 8FG
ISSN 1680-7324
1680-7316
IngestDate Mon Sep 01 19:39:57 EDT 2025
Sat Jul 26 00:17:31 EDT 2025
Tue Jun 17 21:03:39 EDT 2025
Tue Jun 10 20:24:52 EDT 2025
Fri Jun 27 03:52:56 EDT 2025
Tue Jul 01 02:01:11 EDT 2025
Thu Apr 24 22:50:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-454a0d1a5c0bea11345408bf7ebe822ca63bff31d844c4de2039040f97f837c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7265-6960
0000-0001-5990-423X
0000-0001-7514-3135
OpenAccessLink https://www.proquest.com/docview/2448238470?pq-origsite=%requestingapplication%
PQID 2448238470
PQPubID 105744
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_58730dddcb46487eb8731774cfebda4c
proquest_journals_2448238470
gale_infotracmisc_A637507750
gale_infotracacademiconefile_A637507750
gale_incontextgauss_ISR_A637507750
crossref_citationtrail_10_5194_acp_20_11305_2020
crossref_primary_10_5194_acp_20_11305_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-05
PublicationDateYYYYMMDD 2020-10-05
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-05
  day: 05
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref62
– ident: ref102
  doi: 10.1126/science.1216414
– ident: ref91
– ident: ref84
  doi: 10.1016/j.ijrefrig.2014.07.001
– ident: ref29
  doi: 10.1080/20430779.2011.579352
– ident: ref57
  doi: 10.1088/1748-9326/11/4/044011
– ident: ref27
– ident: ref58
  doi: 10.1088/1748-9326/5/1/014007
– ident: ref5
  doi: 10.1016/j.applthermaleng.2019.03.123
– ident: ref49
  doi: 10.1016/j.scitotenv.2012.08.092
– ident: ref81
  doi: 10.2172/1397235
– ident: ref75
  doi: 10.1038/s41598-017-07536-7
– ident: ref13
– ident: ref55
  doi: 10.1007/s12053-011-9116-8
– ident: ref6
– ident: ref103
  doi: 10.1016/j.atmosenv.2015.10.071
– ident: ref64
  doi: 10.2172/1136779
– ident: ref61
  doi: 10.1007/s12053-019-09807-w
– ident: ref15
  doi: 10.1016/j.ijrefrig.2005.08.017
– ident: ref99
  doi: 10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2
– ident: ref77
  doi: 10.5194/acp-19-9865-2019
– ident: ref47
– ident: ref31
  doi: 10.1002/grl.50967
– ident: ref79
– ident: ref96
– ident: ref16
– ident: ref12
– ident: ref8
  doi: 10.1007/s10584-006-0433-4
– ident: ref107
  doi: 10.1007/s13412-014-0215-7
– ident: ref108
– ident: ref68
– ident: ref41
– ident: ref44
  doi: 10.1007/s12571-011-0149-9
– ident: ref28
  doi: 10.1080/10789669.2007.10390968
– ident: ref36
  doi: 10.1088/2515-7620/ab7457
– ident: ref74
– ident: ref105
– ident: ref97
– ident: ref52
  doi: 10.1016/S2542-5196(18)30029-9
– ident: ref83
  doi: 10.1007/s10584-017-2002-4
– ident: ref38
– ident: ref50
  doi: 10.1038/nclimate2910
– ident: ref88
– ident: ref46
– ident: ref21
  doi: 10.1021/acs.est.5b04376
– ident: ref22
  doi: 10.1021/acs.est.8b01280
– ident: ref9
  doi: 10.1016/j.ijrefrig.2015.03.025
– ident: ref54
  doi: 10.1038/ncomms14476
– ident: ref94
– ident: ref82
  doi: 10.2172/1559243
– ident: ref1
  doi: 10.2172/1326522
– ident: ref10
– ident: ref17
  doi: 10.1080/14693062.2018.1478791
– ident: ref37
– ident: ref3
  doi: 10.1098/rsta.2019.0331
– ident: ref89
– ident: ref20
– ident: ref43
– ident: ref11
  doi: 10.1029/2003JD003697
– ident: ref66
  doi: 10.5194/acp-17-2795-2017
– ident: ref60
  doi: 10.1596/1813-9450-7479
– ident: ref95
– ident: ref78
  doi: 10.1016/j.energy.2011.11.056
– ident: ref70
  doi: 10.1016/j.gloenvcha.2018.08.008
– ident: ref80
  doi: 10.2172/1171749
– ident: ref51
  doi: 10.1088/1748-9326/ab6d7e
– ident: ref34
– ident: ref86
– ident: ref101
  doi: 10.1073/pnas.0902817106
– ident: ref100
  doi: 10.1038/s41467-018-06885-9
– ident: ref40
– ident: ref23
– ident: ref73
  doi: 10.1016/j.gloenvcha.2016.05.009
– ident: ref26
– ident: ref14
  doi: 10.1038/s41612-019-0086-4
– ident: ref18
  doi: 10.1016/j.enpol.2010.11.037
– ident: ref30
  doi: 10.1073/pnas.2237157100
– ident: ref106
– ident: ref92
– ident: ref65
  doi: 10.1016/j.energy.2018.09.097
– ident: ref32
  doi: 10.1016/j.ijrefrig.2019.11.012
– ident: ref72
  doi: 10.1126/science.359.6380.1084
– ident: ref39
– ident: ref7
– ident: ref35
  doi: 10.1016/j.envsci.2017.05.006
– ident: ref87
– ident: ref45
– ident: ref56
  doi: 10.1038/nclimate3322
– ident: ref63
  doi: 10.1289/EHP166
– ident: ref48
– ident: ref19
– ident: ref93
– ident: ref85
  doi: 10.5194/acp-17-4641-2017
– ident: ref33
  doi: 10.1021/acs.est.5b05088
– ident: ref4
– ident: ref90
– ident: ref25
  doi: 10.1080/1943815X.2020.1768551
– ident: ref67
– ident: ref42
– ident: ref53
  doi: 10.1016/j.enbuild.2019.01.015
– ident: ref69
  doi: 10.1016/j.envint.2019.105147
– ident: ref98
– ident: ref24
  doi: 10.3390/en10050602
– ident: ref76
  doi: 10.1016/S0360-5442(01)00023-8
– ident: ref104
– ident: ref59
  doi: 10.1038/nclimate2833
– ident: ref71
  doi: 10.1029/2006GL028904
– ident: ref2
  doi: 10.1021/acs.est.6b06201
SSID ssj0025014
Score 2.4910843
Snippet Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11305
SubjectTerms Air conditioning
Air pollution
Air pollution control
Air temperature
Carbon dioxide
Chlorofluorocarbons
Climate
Climate change
Climate policy
Cooling
Cooling effects
Developing countries
Economics
Efficiency
Electric power generation
Electricity
Electricity consumption
Emissions
Emissions control
Energy
Energy conservation
Energy efficiency
Environmental policy
Foams
Gases
Global temperatures
Global warming
Greenhouse effect
Greenhouse gases
Hydrofluorocarbons
LDCs
Montreal Protocol
Nitrogen compounds
Nitrogen oxides
open climate campaign
Ozone
Ozone depletion
Particulate emissions
Particulate matter
Particulate matter emissions
Photochemicals
Pollutants
Power consumption
Raw materials
Refrigeration
Sulfur
Sulfur dioxide
Sulphur
Sulphur dioxide
Suspended particulate matter
Temperature rise
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUlp15KP1K6bVpECS0Ulmi90lp7TENCEkgPbQO5CX3aAbM2XvvQf9832nWID20vPRi89pi1ZkYzb7TSG8aOnQ6VTSKUqcV0Q8ZwmFIpla1yQseQYlJ0GvnmW3N5K6_v1N2jVl-0J2ygBx4Ud6I0fDCE4J1sAK6jw3UFzOJTdMFKT9EXOW9XTI2lFj0to1Kr0aKk3kzD80ygFXli_QquUVYI3gpvqNH3o4yUifv_FJ5zzrl4zp6NYJGfDn_yBXsSu5esuAHOXa7zcjj_xM8W9wCd-eoVm53nrjb3Htia95YWC3puu8BntL1mjio_8pntOTV5o2Uyvibm1ux6nA6a8IEfhK_mSG5lQIXOl4nPfwVE68UWN_V27SB8yG4vzn-eXZZjK4XSS11viNncClhFeeGixdiJeE-7BH1GQARvm9qlVFdBS-lliBNRt5jeqZ0mVLC-rV-zg27ZxTeM-8pqGNgJa1uguUZHWU1cUEqnVsYkCyZ26jR-5BmndhcLg3qDLGBgATOh2gMWMGSBgn15-MlqINn4m_BXstGDIPFj5w_gNWb0GvMvrynYR7KwIQaMjrbYzOy2783Vj-_mtKmBoqZ4FezzKJSWGIG344kF6IFIs_Ykj_YkYUS___XOkcwYInoDXKWBl-RUvP0fI3rHnpJ28j5DdcQONuttfA-8tHEf8tT4DWUsEoo
  priority: 102
  providerName: Directory of Open Access Journals
Title Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons
URI https://www.proquest.com/docview/2448238470
https://doaj.org/article/58730dddcb46487eb8731774cfebda4c
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgO8AFwQARGJWFEEhI0ZLGSZ0T2qaWgdQJBhO7Wf7ZTqqa0rQH_nu-56aFHtihatO8qoq_5_fL9vcYe2uky3XIXBpqTDd4DIMpFUJalyaT3gUfSjqNPL6sLq7Fl5vypiu4td22yq1NjIbaNZZq5CdwQxLuRQyyj4tfKXWNotXVroXGfXaYw9OQhsvRp13CRWtmlHBVMkupQ9NmVRMxizjRdgEFSXOY8BIfqN33P34p0vf_z0hHzzN6zB51ISM_3WD8hN3z8yP2YHuiuD1iyRiRb7OMBXL-jp_PbhGGxqunbDKMfW5uLaJt3moqH7Rczx2f0IabKfJ-zye65dT2jQpnfElcrlEZOR094RvGEL6Ywt2lDjk7bwKf_naw37M1_tTqpYHwM3Y9Gv44v0i75gqpFbJYEde5zoBTaTPjNcaBqPikCQOgiqDB6qowIRS5k0JY4Xw_K2pM-FAPAnJaWxfP2cG8mfsXjNtcS0BuMq1rxHeV9CLvG1eWMtTCB5GwbDu0ynbM49QAY6aQgRAaCmioPmUjQEMRGgn7sPvJYkO7cZfwGeG1EyTG7PhFs5yobgKqUsKWOeesERWSNG9wnSP2tcEbp4VN2BtCWxEnxpw23Uz0um3V5-9X6rQqEFcN8ErY-04oNHgCq7szDBgHotHakzzekwSIdv_2VqlUZzRa9VfFX959-xV7SM8d9xSWx-xgtVz714iNVqYXJ0CPHZ4NL79e0fto_O1nL1Ya_gClsBEF
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V7aFceBQQgQIrxENCcmvHa2d94NCWRgltKgGt6G3ZZ1IR2VGcqCp_hb_Cj2PGsQNBordKHCLF9kR21t-8dme_AXiphY2UD23gM1Q39BgaVcr7IEt0KJz1zie0G3lwkvbO-Ifz5HwNfjR7YaissrGJlaG2haE58l10QwLdC--EdQXlkbu6xPysfNd_jy_zVbvdPTw96AV1C4HAcBHPiNFbhfg0iQm1U1EUE-Gc0L6Dz46u0ag01t7HkRWcG25dO4wzhLXPOh4zN0NMS2jfNwT54XXY2O8OPn5Z5nO0JEf5XCrCgBpALRZNMSTiu8pMEH8B3jBM8At1E__D7VXdAf7lAyrH1r0DP5shWdSzfNuZz_SO-f4XW-R_OmZ34XYdULO9hQbcgzWXb8Fms9-63ILWAPOCYlotH7DX7GB8gUF6dXQfhodVF6ALg7kIKxVNrpRM5ZYNqRxpVMxLx4aqZNQUj6YV2ZSYbitVZbQxhy34VNhkhMFAYIvLnBWeja4serfxHG9q1FSj8AM4u5ExeAjreZG7R8BMpAQqhA6VyjD6TYXjUVvbJBE-487zFoQNMqSpedmpPchYYn5GYJIIJtmmXA3BJAlMLXi7_MlkQUpynfA-wW0pSHzi1YliOpS1eZKJQEtvrTWap5jCOo3HEWYGxjttFTcteEFglcQYklNJ0lDNy1L2P3-Se2mMUWcHPy14Uwv5Av-BUfUODxwHIhlbkdxekcSXaFYvN3iWtUkt5W8wP77-8nPY7J0OjuVx_-ToCdyiMaiqL5NtWJ9N5-4pRpEz_azWZgZfb1oZfgGt836K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQRcUCkgDAVWiIeEZGVtr531AaHSNjSUVgio1Nt2n0mlyA5xoqp_jV_HzMYO5EBvPViK47Fs77x3d-Yj5LUWNlGe2diXoG7gMTSolPdxmWsmnPXO51iNfHJaHJ3xL-f5-Qb53dXC4LbKziYGQ21rg3PkPXBDAtwL77Oeb7dFfDsYfJz-ihFBCldaOziNpYgcu-srSN-aD8MD4PWbNB0c_tw_iluEgdhwkc2x4bdi8LK5YdqpJMmwH53Qvg-fBp7TqCLT3meJFZwbbl3KshKk3pd9D4mdwUZMYP63-plgiJ4gBp9XyR6u12GyVwgWIzrUckUV4iXeU2YKwhnD41gOPxBq_B-fGKAD_ucggtcbbJP7bbhK95by9YBsuGqH3O2qmZsdEp1A1F3PwuQ8fUv3J5cQAoezh2R0GDB2Lg1E-rRROHXRUFVZOsLNPuN60Tg6Ug1FyDmctKMz7CMbFIFi2Qtddiuh0zG42tjWVxWtPR1fW_AdkwU81KiZBuJH5OxWhv0x2azqyj0h1CRKgLhpplQJsWUhHE9SbfNc-JI7zyPCuqGVpu16juAbEwnZD3JDAjdkipkQcEMiNyLyfnXLdNny4ybiT8ivFSF26w5_1LORbJVf5gLsqLXWaF5Agug0nCcQdxvvtFXcROQVcltiP44KJXukFk0jhz--y70ig5iuD0dE3rVEvoYvMKqtn4BxwBZea5S7a5TARLN-uRMq2RqsRv5Vr6c3X35J7oDeya_D0-Nn5B4OQdjamO-Szfls4Z5DiDbXL4IuUHJx28r3BxGATZM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+savings+and+greenhouse+gas+emission+reductions+from+global+phase-down+of+hydrofluorocarbons&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Purohit%2C+Pallav&rft.au=H%C3%B6glund-Isaksson%2C+Lena&rft.au=Dulac%2C+John&rft.au=Shah%2C+Nihar&rft.date=2020-10-05&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=20&rft.issue=19&rft.spage=11305&rft.epage=11327&rft_id=info:doi/10.5194%2Facp-20-11305-2020&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon