Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons
Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting s...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 20; no. 19; pp. 11305 - 11327 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
05.10.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1680-7324 1680-7316 1680-7324 |
DOI | 10.5194/acp-20-11305-2020 |
Cover
Loading…
Abstract | Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for
ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to
global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC
emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions
in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for
significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy
efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs
phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future
global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined
effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel
mix would prevent between 411 and 631 Pg CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant
contribution towards keeping the global temperature rise below 2 ∘C. Reduced electricity consumption also means lower air pollution
emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide (SO2), 8 %–16 % for nitrogen oxides
(NOx), and 4 %–9 % for fine particulate matter (PM2.5) emissions compared with a pre-Kigali baseline. |
---|---|
AbstractList | Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 Pg CO.sub.2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 .sup." C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %-10 % for sulfur dioxide (SO.sub.2 ), 8 %-16 % for nitrogen oxides (NO.sub.x ), and 4 %-9 % for fine particulate matter (PM.sub.2.5) emissions compared with a pre-Kigali baseline. Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 PgCO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 ∘C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide (SO2), 8 %–16 % for nitrogen oxides (NOx), and 4 %–9 % for fine particulate matter (PM2.5) emissions compared with a pre-Kigali baseline. Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 Pg CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 ∘C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide (SO2), 8 %–16 % for nitrogen oxides (NOx), and 4 %–9 % for fine particulate matter (PM2.5) emissions compared with a pre-Kigali baseline. Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 Pg CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 ∘C . Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide ( SO2 ), 8 %–16 % for nitrogen oxides ( NOx ), and 4 %–9 % for fine particulate matter ( PM2.5 ) emissions compared with a pre-Kigali baseline. |
Audience | Academic |
Author | Wei, Max Shah, Nihar Rafaj, Peter Dulac, John Schöpp, Wolfgang Purohit, Pallav Höglund-Isaksson, Lena |
Author_xml | – sequence: 1 givenname: Pallav orcidid: 0000-0002-7265-6960 surname: Purohit fullname: Purohit, Pallav – sequence: 2 givenname: Lena orcidid: 0000-0001-7514-3135 surname: Höglund-Isaksson fullname: Höglund-Isaksson, Lena – sequence: 3 givenname: John surname: Dulac fullname: Dulac, John – sequence: 4 givenname: Nihar surname: Shah fullname: Shah, Nihar – sequence: 5 givenname: Max surname: Wei fullname: Wei, Max – sequence: 6 givenname: Peter surname: Rafaj fullname: Rafaj, Peter – sequence: 7 givenname: Wolfgang orcidid: 0000-0001-5990-423X surname: Schöpp fullname: Schöpp, Wolfgang |
BookMark | eNp1UttuEzEQXaEi0RY-gDdLPPGwrW8bO49VVSBSpUpcnq1ZXzaONnawd6H5eyYNCIJAluXx6Jwz9sy5aM5STr5pXjN61bGlvAa7azltGRO0w4DTZ805W2jaKsHl2R_xi-ai1g2lvKNMnjfD3ejtVKKN055U-BbTUAkkR4bifVrnuXoyQCV-G2uNOZHi3WwnjCoJJW_JMOYeRrJbQ_Wty98TyYGs967kMM65ZAulR_DL5nmAsfpXP8_L5su7u8-3H9r7h_er25v71kotplZ2Eqhj0Fnae8DfYILqPijfe825hYXoQxDMaSmtdJ5TsaSShqUKWii7FJfN6qjrMmzMrsQtlL3JEM1TIpfBQJmiHb3ptBLUOWd7uZAaK-CdKSVt8L0DaVHrzVFrV_LX2dfJbPJcEj7fcCk1F1oq-hs1AIrGFPJUwGK7rLlZCNVRhRtRV_9A4XLYWYuzDBHzJ4S3JwTETP5xGmCu1aw-fTzFqiPWllxr8cHgOOEwJCwSR8OoOZjEoEkMp-bJJOZgEmSyv5i_WvZ_zg83rsDt |
CitedBy_id | crossref_primary_10_1039_D4TC03483J crossref_primary_10_1002_app_54230 crossref_primary_10_5194_acp_21_14833_2021 crossref_primary_10_1016_j_enconman_2024_119422 crossref_primary_10_1016_j_jfluchem_2024_110257 crossref_primary_10_1021_acs_est_3c00166 crossref_primary_10_1038_s41467_022_28229_4 crossref_primary_10_2166_wst_2021_316 crossref_primary_10_1038_s41558_023_01898_9 crossref_primary_10_1073_pnas_2206131119 crossref_primary_10_1016_j_fluid_2023_113833 crossref_primary_10_1007_s11027_022_10021_w crossref_primary_10_1289_EHP11651 crossref_primary_10_3390_su17010053 crossref_primary_10_1021_acs_jpclett_3c03124 crossref_primary_10_1016_j_molliq_2021_117701 crossref_primary_10_1016_j_seppur_2021_119363 crossref_primary_10_1016_j_chemosphere_2021_131208 crossref_primary_10_1016_j_molliq_2022_120472 crossref_primary_10_3390_catal11091021 crossref_primary_10_1088_1748_9326_ad4e4e crossref_primary_10_2139_ssrn_4766671 crossref_primary_10_1016_S2542_5196_24_00030_5 crossref_primary_10_1016_j_jenvman_2025_124715 crossref_primary_10_1016_j_molliq_2023_123445 crossref_primary_10_3390_su151410767 crossref_primary_10_5194_acp_22_6087_2022 crossref_primary_10_1016_j_accre_2022_06_003 crossref_primary_10_1016_j_erss_2021_102068 crossref_primary_10_1038_s41558_022_01310_y |
Cites_doi | 10.1126/science.1216414 10.1016/j.ijrefrig.2014.07.001 10.1080/20430779.2011.579352 10.1088/1748-9326/11/4/044011 10.1088/1748-9326/5/1/014007 10.1016/j.applthermaleng.2019.03.123 10.1016/j.scitotenv.2012.08.092 10.2172/1397235 10.1038/s41598-017-07536-7 10.1007/s12053-011-9116-8 10.1016/j.atmosenv.2015.10.071 10.2172/1136779 10.1007/s12053-019-09807-w 10.1016/j.ijrefrig.2005.08.017 10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2 10.5194/acp-19-9865-2019 10.1002/grl.50967 10.1007/s10584-006-0433-4 10.1007/s13412-014-0215-7 10.1007/s12571-011-0149-9 10.1080/10789669.2007.10390968 10.1088/2515-7620/ab7457 10.1016/S2542-5196(18)30029-9 10.1007/s10584-017-2002-4 10.1038/nclimate2910 10.1021/acs.est.5b04376 10.1021/acs.est.8b01280 10.1016/j.ijrefrig.2015.03.025 10.1038/ncomms14476 10.2172/1559243 10.2172/1326522 10.1080/14693062.2018.1478791 10.1098/rsta.2019.0331 10.1029/2003JD003697 10.5194/acp-17-2795-2017 10.1596/1813-9450-7479 10.1016/j.energy.2011.11.056 10.1016/j.gloenvcha.2018.08.008 10.2172/1171749 10.1088/1748-9326/ab6d7e 10.1073/pnas.0902817106 10.1038/s41467-018-06885-9 10.1016/j.gloenvcha.2016.05.009 10.1038/s41612-019-0086-4 10.1016/j.enpol.2010.11.037 10.1073/pnas.2237157100 10.1016/j.energy.2018.09.097 10.1016/j.ijrefrig.2019.11.012 10.1126/science.359.6380.1084 10.1016/j.envsci.2017.05.006 10.1038/nclimate3322 10.1289/EHP166 10.5194/acp-17-4641-2017 10.1021/acs.est.5b05088 10.1080/1943815X.2020.1768551 10.1016/j.enbuild.2019.01.015 10.1016/j.envint.2019.105147 10.3390/en10050602 10.1016/S0360-5442(01)00023-8 10.1038/nclimate2833 10.1029/2006GL028904 10.1021/acs.est.6b06201 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
DOI | 10.5194/acp-20-11305-2020 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Economics |
EISSN | 1680-7324 |
EndPage | 11327 |
ExternalDocumentID | oai_doaj_org_article_58730dddcb46487eb8731774cfebda4c A637507750 10_5194_acp_20_11305_2020 |
GeographicLocations | Canada Montreal Quebec Canada China India |
GeographicLocations_xml | – name: China – name: Canada – name: Montreal Quebec Canada – name: India |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PUEGO |
ID | FETCH-LOGICAL-c483t-454a0d1a5c0bea11345408bf7ebe822ca63bff31d844c4de2039040f97f837c93 |
IEDL.DBID | 8FG |
ISSN | 1680-7324 1680-7316 |
IngestDate | Mon Sep 01 19:39:57 EDT 2025 Sat Jul 26 00:17:31 EDT 2025 Tue Jun 17 21:03:39 EDT 2025 Tue Jun 10 20:24:52 EDT 2025 Fri Jun 27 03:52:56 EDT 2025 Tue Jul 01 02:01:11 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-454a0d1a5c0bea11345408bf7ebe822ca63bff31d844c4de2039040f97f837c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7265-6960 0000-0001-5990-423X 0000-0001-7514-3135 |
OpenAccessLink | https://www.proquest.com/docview/2448238470?pq-origsite=%requestingapplication% |
PQID | 2448238470 |
PQPubID | 105744 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58730dddcb46487eb8731774cfebda4c proquest_journals_2448238470 gale_infotracmisc_A637507750 gale_infotracacademiconefile_A637507750 gale_incontextgauss_ISR_A637507750 crossref_citationtrail_10_5194_acp_20_11305_2020 crossref_primary_10_5194_acp_20_11305_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-05 |
PublicationDateYYYYMMDD | 2020-10-05 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref62 – ident: ref102 doi: 10.1126/science.1216414 – ident: ref91 – ident: ref84 doi: 10.1016/j.ijrefrig.2014.07.001 – ident: ref29 doi: 10.1080/20430779.2011.579352 – ident: ref57 doi: 10.1088/1748-9326/11/4/044011 – ident: ref27 – ident: ref58 doi: 10.1088/1748-9326/5/1/014007 – ident: ref5 doi: 10.1016/j.applthermaleng.2019.03.123 – ident: ref49 doi: 10.1016/j.scitotenv.2012.08.092 – ident: ref81 doi: 10.2172/1397235 – ident: ref75 doi: 10.1038/s41598-017-07536-7 – ident: ref13 – ident: ref55 doi: 10.1007/s12053-011-9116-8 – ident: ref6 – ident: ref103 doi: 10.1016/j.atmosenv.2015.10.071 – ident: ref64 doi: 10.2172/1136779 – ident: ref61 doi: 10.1007/s12053-019-09807-w – ident: ref15 doi: 10.1016/j.ijrefrig.2005.08.017 – ident: ref99 doi: 10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2 – ident: ref77 doi: 10.5194/acp-19-9865-2019 – ident: ref47 – ident: ref31 doi: 10.1002/grl.50967 – ident: ref79 – ident: ref96 – ident: ref16 – ident: ref12 – ident: ref8 doi: 10.1007/s10584-006-0433-4 – ident: ref107 doi: 10.1007/s13412-014-0215-7 – ident: ref108 – ident: ref68 – ident: ref41 – ident: ref44 doi: 10.1007/s12571-011-0149-9 – ident: ref28 doi: 10.1080/10789669.2007.10390968 – ident: ref36 doi: 10.1088/2515-7620/ab7457 – ident: ref74 – ident: ref105 – ident: ref97 – ident: ref52 doi: 10.1016/S2542-5196(18)30029-9 – ident: ref83 doi: 10.1007/s10584-017-2002-4 – ident: ref38 – ident: ref50 doi: 10.1038/nclimate2910 – ident: ref88 – ident: ref46 – ident: ref21 doi: 10.1021/acs.est.5b04376 – ident: ref22 doi: 10.1021/acs.est.8b01280 – ident: ref9 doi: 10.1016/j.ijrefrig.2015.03.025 – ident: ref54 doi: 10.1038/ncomms14476 – ident: ref94 – ident: ref82 doi: 10.2172/1559243 – ident: ref1 doi: 10.2172/1326522 – ident: ref10 – ident: ref17 doi: 10.1080/14693062.2018.1478791 – ident: ref37 – ident: ref3 doi: 10.1098/rsta.2019.0331 – ident: ref89 – ident: ref20 – ident: ref43 – ident: ref11 doi: 10.1029/2003JD003697 – ident: ref66 doi: 10.5194/acp-17-2795-2017 – ident: ref60 doi: 10.1596/1813-9450-7479 – ident: ref95 – ident: ref78 doi: 10.1016/j.energy.2011.11.056 – ident: ref70 doi: 10.1016/j.gloenvcha.2018.08.008 – ident: ref80 doi: 10.2172/1171749 – ident: ref51 doi: 10.1088/1748-9326/ab6d7e – ident: ref34 – ident: ref86 – ident: ref101 doi: 10.1073/pnas.0902817106 – ident: ref100 doi: 10.1038/s41467-018-06885-9 – ident: ref40 – ident: ref23 – ident: ref73 doi: 10.1016/j.gloenvcha.2016.05.009 – ident: ref26 – ident: ref14 doi: 10.1038/s41612-019-0086-4 – ident: ref18 doi: 10.1016/j.enpol.2010.11.037 – ident: ref30 doi: 10.1073/pnas.2237157100 – ident: ref106 – ident: ref92 – ident: ref65 doi: 10.1016/j.energy.2018.09.097 – ident: ref32 doi: 10.1016/j.ijrefrig.2019.11.012 – ident: ref72 doi: 10.1126/science.359.6380.1084 – ident: ref39 – ident: ref7 – ident: ref35 doi: 10.1016/j.envsci.2017.05.006 – ident: ref87 – ident: ref45 – ident: ref56 doi: 10.1038/nclimate3322 – ident: ref63 doi: 10.1289/EHP166 – ident: ref48 – ident: ref19 – ident: ref93 – ident: ref85 doi: 10.5194/acp-17-4641-2017 – ident: ref33 doi: 10.1021/acs.est.5b05088 – ident: ref4 – ident: ref90 – ident: ref25 doi: 10.1080/1943815X.2020.1768551 – ident: ref67 – ident: ref42 – ident: ref53 doi: 10.1016/j.enbuild.2019.01.015 – ident: ref69 doi: 10.1016/j.envint.2019.105147 – ident: ref98 – ident: ref24 doi: 10.3390/en10050602 – ident: ref76 doi: 10.1016/S0360-5442(01)00023-8 – ident: ref104 – ident: ref59 doi: 10.1038/nclimate2833 – ident: ref71 doi: 10.1029/2006GL028904 – ident: ref2 doi: 10.1021/acs.est.6b06201 |
SSID | ssj0025014 |
Score | 2.4910843 |
Snippet | Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 11305 |
SubjectTerms | Air conditioning Air pollution Air pollution control Air temperature Carbon dioxide Chlorofluorocarbons Climate Climate change Climate policy Cooling Cooling effects Developing countries Economics Efficiency Electric power generation Electricity Electricity consumption Emissions Emissions control Energy Energy conservation Energy efficiency Environmental policy Foams Gases Global temperatures Global warming Greenhouse effect Greenhouse gases Hydrofluorocarbons LDCs Montreal Protocol Nitrogen compounds Nitrogen oxides open climate campaign Ozone Ozone depletion Particulate emissions Particulate matter Particulate matter emissions Photochemicals Pollutants Power consumption Raw materials Refrigeration Sulfur Sulfur dioxide Sulphur Sulphur dioxide Suspended particulate matter Temperature rise |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUlp15KP1K6bVpECS0Ulmi90lp7TENCEkgPbQO5CX3aAbM2XvvQf9832nWID20vPRi89pi1ZkYzb7TSG8aOnQ6VTSKUqcV0Q8ZwmFIpla1yQseQYlJ0GvnmW3N5K6_v1N2jVl-0J2ygBx4Ud6I0fDCE4J1sAK6jw3UFzOJTdMFKT9EXOW9XTI2lFj0to1Kr0aKk3kzD80ygFXli_QquUVYI3gpvqNH3o4yUifv_FJ5zzrl4zp6NYJGfDn_yBXsSu5esuAHOXa7zcjj_xM8W9wCd-eoVm53nrjb3Htia95YWC3puu8BntL1mjio_8pntOTV5o2Uyvibm1ux6nA6a8IEfhK_mSG5lQIXOl4nPfwVE68UWN_V27SB8yG4vzn-eXZZjK4XSS11viNncClhFeeGixdiJeE-7BH1GQARvm9qlVFdBS-lliBNRt5jeqZ0mVLC-rV-zg27ZxTeM-8pqGNgJa1uguUZHWU1cUEqnVsYkCyZ26jR-5BmndhcLg3qDLGBgATOh2gMWMGSBgn15-MlqINn4m_BXstGDIPFj5w_gNWb0GvMvrynYR7KwIQaMjrbYzOy2783Vj-_mtKmBoqZ4FezzKJSWGIG344kF6IFIs_Ykj_YkYUS___XOkcwYInoDXKWBl-RUvP0fI3rHnpJ28j5DdcQONuttfA-8tHEf8tT4DWUsEoo priority: 102 providerName: Directory of Open Access Journals |
Title | Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons |
URI | https://www.proquest.com/docview/2448238470 https://doaj.org/article/58730dddcb46487eb8731774cfebda4c |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgO8AFwQARGJWFEEhI0ZLGSZ0T2qaWgdQJBhO7Wf7ZTqqa0rQH_nu-56aFHtihatO8qoq_5_fL9vcYe2uky3XIXBpqTDd4DIMpFUJalyaT3gUfSjqNPL6sLq7Fl5vypiu4td22yq1NjIbaNZZq5CdwQxLuRQyyj4tfKXWNotXVroXGfXaYw9OQhsvRp13CRWtmlHBVMkupQ9NmVRMxizjRdgEFSXOY8BIfqN33P34p0vf_z0hHzzN6zB51ISM_3WD8hN3z8yP2YHuiuD1iyRiRb7OMBXL-jp_PbhGGxqunbDKMfW5uLaJt3moqH7Rczx2f0IabKfJ-zye65dT2jQpnfElcrlEZOR094RvGEL6Ywt2lDjk7bwKf_naw37M1_tTqpYHwM3Y9Gv44v0i75gqpFbJYEde5zoBTaTPjNcaBqPikCQOgiqDB6qowIRS5k0JY4Xw_K2pM-FAPAnJaWxfP2cG8mfsXjNtcS0BuMq1rxHeV9CLvG1eWMtTCB5GwbDu0ynbM49QAY6aQgRAaCmioPmUjQEMRGgn7sPvJYkO7cZfwGeG1EyTG7PhFs5yobgKqUsKWOeesERWSNG9wnSP2tcEbp4VN2BtCWxEnxpw23Uz0um3V5-9X6rQqEFcN8ErY-04oNHgCq7szDBgHotHakzzekwSIdv_2VqlUZzRa9VfFX959-xV7SM8d9xSWx-xgtVz714iNVqYXJ0CPHZ4NL79e0fto_O1nL1Ya_gClsBEF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V7aFceBQQgQIrxENCcmvHa2d94NCWRgltKgGt6G3ZZ1IR2VGcqCp_hb_Cj2PGsQNBordKHCLF9kR21t-8dme_AXiphY2UD23gM1Q39BgaVcr7IEt0KJz1zie0G3lwkvbO-Ifz5HwNfjR7YaissrGJlaG2haE58l10QwLdC--EdQXlkbu6xPysfNd_jy_zVbvdPTw96AV1C4HAcBHPiNFbhfg0iQm1U1EUE-Gc0L6Dz46u0ag01t7HkRWcG25dO4wzhLXPOh4zN0NMS2jfNwT54XXY2O8OPn5Z5nO0JEf5XCrCgBpALRZNMSTiu8pMEH8B3jBM8At1E__D7VXdAf7lAyrH1r0DP5shWdSzfNuZz_SO-f4XW-R_OmZ34XYdULO9hQbcgzWXb8Fms9-63ILWAPOCYlotH7DX7GB8gUF6dXQfhodVF6ALg7kIKxVNrpRM5ZYNqRxpVMxLx4aqZNQUj6YV2ZSYbitVZbQxhy34VNhkhMFAYIvLnBWeja4serfxHG9q1FSj8AM4u5ExeAjreZG7R8BMpAQqhA6VyjD6TYXjUVvbJBE-487zFoQNMqSpedmpPchYYn5GYJIIJtmmXA3BJAlMLXi7_MlkQUpynfA-wW0pSHzi1YliOpS1eZKJQEtvrTWap5jCOo3HEWYGxjttFTcteEFglcQYklNJ0lDNy1L2P3-Se2mMUWcHPy14Uwv5Av-BUfUODxwHIhlbkdxekcSXaFYvN3iWtUkt5W8wP77-8nPY7J0OjuVx_-ToCdyiMaiqL5NtWJ9N5-4pRpEz_azWZgZfb1oZfgGt836K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQRcUCkgDAVWiIeEZGVtr531AaHSNjSUVgio1Nt2n0mlyA5xoqp_jV_HzMYO5EBvPViK47Fs77x3d-Yj5LUWNlGe2diXoG7gMTSolPdxmWsmnPXO51iNfHJaHJ3xL-f5-Qb53dXC4LbKziYGQ21rg3PkPXBDAtwL77Oeb7dFfDsYfJz-ihFBCldaOziNpYgcu-srSN-aD8MD4PWbNB0c_tw_iluEgdhwkc2x4bdi8LK5YdqpJMmwH53Qvg-fBp7TqCLT3meJFZwbbl3KshKk3pd9D4mdwUZMYP63-plgiJ4gBp9XyR6u12GyVwgWIzrUckUV4iXeU2YKwhnD41gOPxBq_B-fGKAD_ucggtcbbJP7bbhK95by9YBsuGqH3O2qmZsdEp1A1F3PwuQ8fUv3J5cQAoezh2R0GDB2Lg1E-rRROHXRUFVZOsLNPuN60Tg6Ug1FyDmctKMz7CMbFIFi2Qtddiuh0zG42tjWVxWtPR1fW_AdkwU81KiZBuJH5OxWhv0x2azqyj0h1CRKgLhpplQJsWUhHE9SbfNc-JI7zyPCuqGVpu16juAbEwnZD3JDAjdkipkQcEMiNyLyfnXLdNny4ybiT8ivFSF26w5_1LORbJVf5gLsqLXWaF5Agug0nCcQdxvvtFXcROQVcltiP44KJXukFk0jhz--y70ig5iuD0dE3rVEvoYvMKqtn4BxwBZea5S7a5TARLN-uRMq2RqsRv5Vr6c3X35J7oDeya_D0-Nn5B4OQdjamO-Szfls4Z5DiDbXL4IuUHJx28r3BxGATZM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+savings+and+greenhouse+gas+emission+reductions+from+global+phase-down+of+hydrofluorocarbons&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Purohit%2C+Pallav&rft.au=H%C3%B6glund-Isaksson%2C+Lena&rft.au=Dulac%2C+John&rft.au=Shah%2C+Nihar&rft.date=2020-10-05&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=20&rft.issue=19&rft.spage=11305&rft.epage=11327&rft_id=info:doi/10.5194%2Facp-20-11305-2020&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |