Evaporation enhancement drives the European water-budget deficit during multi-year droughts

In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological droughts, the decline in annual runoff may be proportionally larger than the corresponding decline in precipitation. Reasons behind this exacerba...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 26; no. 6; pp. 1527 - 1543
Main Authors Massari, Christian, Avanzi, Francesco, Bruno, Giulia, Gabellani, Simone, Penna, Daniele, Camici, Stefania
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 22.03.2022
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological droughts, the decline in annual runoff may be proportionally larger than the corresponding decline in precipitation. Reasons behind this exacerbation of runoff deficit during dry periods remain largely unknown, and this challenges the predictability of when this exacerbation will occur in the future and how intense it will be. In this work, we tested the hypothesis that runoff deficit exacerbation during droughts is a common feature across climates, driven by evaporation enhancement. We relied on multidecadal records of streamflow and precipitation for more than 200 catchment areas across various European climates, which distinctively show the emergence of similar periods of exacerbated runoff deficit identified in previous studies, i.e. runoff deficit on the order of -20 % to -40 % less than what expected from precipitation deficits. The magnitude of this exacerbation is two to three times larger for basins located in dry regions than for basins in wet regions, and is qualitatively correlated with an increase in annual evaporation during droughts, in the order of +11 % and +33 % over basins characterized by energy-limited and water-limited evaporation regimes, respectively. Thus, enhanced atmospheric and vegetation demand for moisture during dry periods induces a nonlinear precipitation-runoff relationship for low-flow regimes, which results in an unexpectedly large decrease in runoff during periods of already low water availability. Forecasting onset, magnitude, and duration of these drops in runoff have paramount societal and ecological implications, especially in a warming climate, given their supporting role for safeguarding water, food, and energy. The outcome that water basins are prone to this exacerbation of runoff deficit for various climates and evaporation regimes makes further understanding of its patterns of predictability an urgent priority for water-resource planning and management in a warming and drier climate.
AbstractList In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological droughts, the decline in annual runoff may be proportionally larger than the corresponding decline in precipitation. Reasons behind this exacerbation of runoff deficit during dry periods remain largely unknown, and this challenges the predictability of when this exacerbation will occur in the future and how intense it will be. In this work, we tested the hypothesis that runoff deficit exacerbation during droughts is a common feature across climates, driven by evaporation enhancement. We relied on multidecadal records of streamflow and precipitation for more than 200 catchment areas across various European climates, which distinctively show the emergence of similar periods of exacerbated runoff deficit identified in previous studies, i.e. runoff deficit on the order of -20 % to -40 % less than what expected from precipitation deficits. The magnitude of this exacerbation is two to three times larger for basins located in dry regions than for basins in wet regions, and is qualitatively correlated with an increase in annual evaporation during droughts, in the order of +11 % and +33 % over basins characterized by energy-limited and water-limited evaporation regimes, respectively. Thus, enhanced atmospheric and vegetation demand for moisture during dry periods induces a nonlinear precipitation-runoff relationship for low-flow regimes, which results in an unexpectedly large decrease in runoff during periods of already low water availability. Forecasting onset, magnitude, and duration of these drops in runoff have paramount societal and ecological implications, especially in a warming climate, given their supporting role for safeguarding water, food, and energy. The outcome that water basins are prone to this exacerbation of runoff deficit for various climates and evaporation regimes makes further understanding of its patterns of predictability an urgent priority for water-resource planning and management in a warming and drier climate.
In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological droughts, the decline in annual runoff may be proportionally larger than the corresponding decline in precipitation. Reasons behind this exacerbation of runoff deficit during dry periods remain largely unknown, and this challenges the predictability of when this exacerbation will occur in the future and how intense it will be. In this work, we tested the hypothesis that runoff deficit exacerbation during droughts is a common feature across climates, driven by evaporation enhancement. We relied on multidecadal records of streamflow and precipitation for more than 200 catchment areas across various European climates, which distinctively show the emergence of similar periods of exacerbated runoff deficit identified in previous studies, i.e. runoff deficit on the order of −20 % to −40 % less than what expected from precipitation deficits. The magnitude of this exacerbation is two to three times larger for basins located in dry regions than for basins in wet regions, and is qualitatively correlated with an increase in annual evaporation during droughts, in the order of +11 % and +33 % over basins characterized by energy-limited and water-limited evaporation regimes, respectively. Thus, enhanced atmospheric and vegetation demand for moisture during dry periods induces a nonlinear precipitation-runoff relationship for low-flow regimes, which results in an unexpectedly large decrease in runoff during periods of already low water availability. Forecasting onset, magnitude, and duration of these drops in runoff have paramount societal and ecological implications, especially in a warming climate, given their supporting role for safeguarding water, food, and energy. The outcome that water basins are prone to this exacerbation of runoff deficit for various climates and evaporation regimes makes further understanding of its patterns of predictability an urgent priority for water-resource planning and management in a warming and drier climate.
In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological droughts, the decline in annual runoff may be proportionally larger than the corresponding decline in precipitation. Reasons behind this exacerbation of runoff deficit during dry periods remain largely unknown, and this challenges the predictability of when this exacerbation will occur in the future and how intense it will be. In this work, we tested the hypothesis that runoff deficit exacerbation during droughts is a common feature across climates, driven by evaporation enhancement. We relied on multidecadal records of streamflow and precipitation for more than 200 catchment areas across various European climates, which distinctively show the emergence of similar periods of exacerbated runoff deficit identified in previous studies, i.e. runoff deficit on the order of −20  % to −40  % less than what expected from precipitation deficits. The magnitude of this exacerbation is two to three times larger for basins located in dry regions than for basins in wet regions, and is qualitatively correlated with an increase in annual evaporation during droughts, in the order of +11  % and +33  % over basins characterized by energy-limited and water-limited evaporation regimes, respectively. Thus, enhanced atmospheric and vegetation demand for moisture during dry periods induces a nonlinear precipitation-runoff relationship for low-flow regimes, which results in an unexpectedly large decrease in runoff during periods of already low water availability. Forecasting onset, magnitude, and duration of these drops in runoff have paramount societal and ecological implications, especially in a warming climate, given their supporting role for safeguarding water, food, and energy. The outcome that water basins are prone to this exacerbation of runoff deficit for various climates and evaporation regimes makes further understanding of its patterns of predictability an urgent priority for water-resource planning and management in a warming and drier climate.
Audience Academic
Author Camici, Stefania
Penna, Daniele
Massari, Christian
Gabellani, Simone
Bruno, Giulia
Avanzi, Francesco
Author_xml – sequence: 1
  fullname: Massari, Christian
– sequence: 2
  fullname: Avanzi, Francesco
– sequence: 3
  fullname: Bruno, Giulia
– sequence: 4
  fullname: Gabellani, Simone
– sequence: 5
  fullname: Penna, Daniele
– sequence: 6
  fullname: Camici, Stefania
BookMark eNptklFrHCEQx6Wk0OTaD9C3hT71YVN1XV0fQ7imB4FCkzzlQVx33PO41au6afPt4_ZK24MiODL8_jOj_i_QmQ8eEHpP8GVLJPu0hZRqymvSUlFTTOkrdE44FrWQTXf2z_kNukhphzHtOk7P0eP6SR9C1NkFX4Hfam9gAp-rIbonSFXeQrWeYziA9tUPnSHW_TyMUACwzrgS5-j8WE3zPrv6GXQs0jCP25zeotdW7xO8-x1X6OHz-v76S3379WZzfXVbG9Y1uW4Y7o0VXBjMTaebQfaSM0PLLnQnRGu0xmJJi4GQviVMYEwYKwosMcfNCm2OdYegd-oQ3aTjswraqV-JEEelY3ZmD6ojVNAOl9ewwKzk0nLRNFaafgAwpcsKfTjWOsTwfYaU1S7M0ZfxFeWMNJxhyv5Soy5FnbchR20ml4y64lJ0jMq2LdTlf6iyBpicKf9nXcmfCD6eCAqT4Wce9ZyS2tx9O2XJkTUxpBTB_rk4wWqxhFosUYZWiyXUYonmBXIGqV8
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_130105
crossref_primary_10_1029_2021WR031845
crossref_primary_10_5194_hess_26_6073_2022
crossref_primary_10_1016_j_jhydrol_2024_130707
crossref_primary_10_1016_j_jhydrol_2023_130210
crossref_primary_10_1038_s43247_024_01222_z
crossref_primary_10_5194_hess_27_1151_2023
crossref_primary_10_1016_j_atmosres_2023_106856
crossref_primary_10_1016_j_jhydrol_2024_131642
crossref_primary_10_17721_2306_5680_2023_4_2
crossref_primary_10_1029_2022WR033449
crossref_primary_10_1016_j_advwatres_2022_104305
crossref_primary_10_1029_2022WR033538
crossref_primary_10_1016_j_agwat_2024_108735
crossref_primary_10_1016_j_agwat_2024_108878
crossref_primary_10_1029_2022GL100505
crossref_primary_10_1016_j_jhydrol_2024_131023
crossref_primary_10_1029_2022WR032871
crossref_primary_10_1016_j_scitotenv_2024_170249
crossref_primary_10_3390_rs14236091
Cites_doi 10.1029/2020EF001502
10.1002/2015WR017032
10.1016/j.jhydrol.2005.08.004
10.1038/s41558-018-0138-5
10.1016/j.jhydrol.2018.11.026
10.1016/j.ejrh.2015.01.001
10.5194/hess-14-2367-2010
10.1038/s41561-019-0388-5
10.1256/wea.73.04
10.3832/ifor2317-010
10.1016/j.earscirev.2011.01.006
10.5194/gmd-13-4159-2020
10.1080/02626667.2019.1659509
10.1002/2015WR018068
10.1016/j.scitotenv.2019.134332
10.1029/2020GL090391
10.1007/s10584-015-1570-4
10.1038/s41467-020-19924-1
10.1016/j.jhydrol.2018.08.015
10.1038/s41586-018-0240-x
10.1038/nclimate2246
10.5194/hess-26-589-2022
10.2166/nh.2012.024
10.1029/2019GL083294
10.1038/s41467-018-06013-7
10.1111/fwb.12789
10.5194/bg-12-7503-2015
10.1029/2020JD034163
10.1073/pnas.1800141115
10.5194/hess-24-581-2020
10.1038/s41598-017-09643-x
10.1038/nature08238
10.1029/2020MS002214
10.1029/2019GL085653
10.1029/2008JD010201
10.5194/hess-24-2687-2020
10.1002/2014WR015348
10.5194/hess-24-4317-2020
10.1029/2019GL084084
10.1111/j.1469-8137.2008.02436.x
10.1007/s00267-012-9928-0
10.1002/eco.2177
10.1175/JHM-D-13-0188.1
10.1002/hyp.8113
10.1002/wrcr.20123
10.1016/j.jhydrol.2014.10.059
10.1029/2017JD028200
10.5194/hess-20-823-2016
10.1002/2014GL062433
10.1016/j.ancene.2021.100309
10.1016/j.earscirev.2010.02.004
10.1016/j.scitotenv.2020.138172
10.1029/2017WR022412
10.1007/s00382-007-0340-z
10.1073/pnas.1712381114
10.3389/fevo.2019.00225
10.5194/hess-21-6307-2017
10.1007/s11160-018-09545-9
10.1038/s41598-018-27464-4
10.1111/j.1749-8198.2010.00341.x
10.3390/w13050669
10.1029/2018MS001500
10.1002/qj.3803
10.1002/2013WR014994
10.1007/s11258-017-0710-5
10.1002/wat2.1523
10.1016/j.geoderma.2016.11.032
10.1111/j.2517-6161.1964.tb00553.x
10.5194/hess-25-429-2021
10.1038/s41561-018-0294-2
10.1038/s41598-017-19007-0
10.1111/nyas.13912
10.1016/j.gloplacha.2016.06.011
10.1002/hyp.13322
10.3354/cr01177
10.1111/nph.15341
10.1002/grl.50495
10.1088/1748-9326/9/4/044001
10.1093/treephys/tps013
10.1038/s41558-019-0676-5
10.5194/hess-23-3631-2019
10.1002/2016WR019525
10.1038/s41586-020-1941-5
10.1016/S0022-1694(01)00421-8
10.1623/hysj.49.1.7.53993
10.1029/2019WR025286
10.1080/02626667.2013.782407
10.1002/wat2.1277
10.1007/s11600-018-0116-3
10.1002/joc.6126
10.1175/2011JHM1351.1
10.1126/science.abd5085
10.1175/JCLI-D-20-0011.1
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/hess-26-1527-2022
DatabaseName CrossRef
Science In Context
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 1543
ExternalDocumentID oai_doaj_org_article_8127280160fe4f969f6733f9cbdeec07
A697842955
10_5194_hess_26_1527_2022
GeographicLocations Alps
Europe
GeographicLocations_xml – name: Alps
– name: Europe
GroupedDBID 29I
2WC
3V.
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
OK1
P2P
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
~KM
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c483t-340bcf767c06c8a3d9b964c2b967a8775caa073d9b7d11b514700144767090603
IEDL.DBID DOA
ISSN 1607-7938
1027-5606
IngestDate Fri Oct 04 13:14:33 EDT 2024
Thu Oct 10 20:04:35 EDT 2024
Thu Feb 22 23:31:45 EST 2024
Sat Dec 16 00:27:14 EST 2023
Thu Aug 01 20:30:22 EDT 2024
Fri Aug 23 01:50:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-340bcf767c06c8a3d9b964c2b967a8775caa073d9b7d11b514700144767090603
ORCID 0000-0001-6915-0697
0000-0003-4235-2373
0000-0003-0983-1276
OpenAccessLink https://doaj.org/article/8127280160fe4f969f6733f9cbdeec07
PQID 2641364024
PQPubID 105724
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_8127280160fe4f969f6733f9cbdeec07
proquest_journals_2641364024
gale_infotracmisc_A697842955
gale_infotracacademiconefile_A697842955
gale_incontextgauss_ISR_A697842955
crossref_primary_10_5194_hess_26_1527_2022
PublicationCentury 2000
PublicationDate 2022-03-22
PublicationDateYYYYMMDD 2022-03-22
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-22
  day: 22
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref40
  doi: 10.1029/2020EF001502
– ident: ref62
– ident: ref100
  doi: 10.1002/2015WR017032
– ident: ref73
  doi: 10.1016/j.jhydrol.2005.08.004
– ident: ref84
  doi: 10.1038/s41558-018-0138-5
– ident: ref72
  doi: 10.1016/j.jhydrol.2018.11.026
– ident: ref92
  doi: 10.1016/j.ejrh.2015.01.001
– ident: ref93
  doi: 10.5194/hess-14-2367-2010
– ident: ref35
  doi: 10.1038/s41561-019-0388-5
– ident: ref28
  doi: 10.1256/wea.73.04
– ident: ref34
  doi: 10.3832/ifor2317-010
– ident: ref32
  doi: 10.1016/j.earscirev.2011.01.006
– ident: ref56
  doi: 10.5194/gmd-13-4159-2020
– ident: ref18
  doi: 10.1080/02626667.2019.1659509
– ident: ref13
– ident: ref31
  doi: 10.1002/2015WR018068
– ident: ref14
  doi: 10.1016/j.scitotenv.2019.134332
– ident: ref24
  doi: 10.1029/2020GL090391
– ident: ref79
  doi: 10.1007/s10584-015-1570-4
– ident: ref87
  doi: 10.1038/s41467-020-19924-1
– ident: ref44
– ident: ref97
  doi: 10.1016/j.jhydrol.2018.08.015
– ident: ref15
  doi: 10.1038/s41586-018-0240-x
– ident: ref8
  doi: 10.1038/nclimate2246
– ident: ref50
– ident: ref59
  doi: 10.5194/hess-26-589-2022
– ident: ref70
  doi: 10.2166/nh.2012.024
– ident: ref39
  doi: 10.1029/2019GL083294
– ident: ref68
  doi: 10.1038/s41467-018-06013-7
– ident: ref19
  doi: 10.1111/fwb.12789
– ident: ref20
  doi: 10.5194/bg-12-7503-2015
– ident: ref67
  doi: 10.1029/2020JD034163
– ident: ref77
  doi: 10.1073/pnas.1800141115
– ident: ref16
– ident: ref76
  doi: 10.5194/hess-24-581-2020
– ident: ref7
  doi: 10.1038/s41598-017-09643-x
– ident: ref78
  doi: 10.1038/nature08238
– ident: ref53
  doi: 10.1029/2020MS002214
– ident: ref27
  doi: 10.1029/2019GL085653
– ident: ref42
  doi: 10.1029/2008JD010201
– ident: ref57
  doi: 10.5194/hess-24-2687-2020
– ident: ref82
  doi: 10.1002/2014WR015348
– ident: ref5
  doi: 10.5194/hess-24-4317-2020
– ident: ref104
  doi: 10.1029/2019GL084084
– ident: ref60
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: ref4
  doi: 10.1007/s00267-012-9928-0
– ident: ref3
  doi: 10.1002/eco.2177
– ident: ref69
  doi: 10.1175/JHM-D-13-0188.1
– ident: ref63
  doi: 10.1002/hyp.8113
– ident: ref21
  doi: 10.1002/wrcr.20123
– ident: ref55
– ident: ref102
  doi: 10.1016/j.jhydrol.2014.10.059
– ident: ref17
  doi: 10.1029/2017JD028200
– ident: ref64
  doi: 10.5194/hess-20-823-2016
– ident: ref38
  doi: 10.1002/2014GL062433
– ident: ref71
  doi: 10.1016/j.ancene.2021.100309
– ident: ref86
  doi: 10.1016/j.earscirev.2010.02.004
– ident: ref98
  doi: 10.1016/j.scitotenv.2020.138172
– ident: ref99
  doi: 10.1029/2017WR022412
– ident: ref88
  doi: 10.1007/s00382-007-0340-z
– ident: ref26
  doi: 10.1073/pnas.1712381114
– ident: ref1
  doi: 10.3389/fevo.2019.00225
– ident: ref33
  doi: 10.5194/hess-21-6307-2017
– ident: ref46
– ident: ref52
  doi: 10.1007/s11160-018-09545-9
– ident: ref41
  doi: 10.1038/s41598-018-27464-4
– ident: ref91
  doi: 10.1111/j.1749-8198.2010.00341.x
– ident: ref45
  doi: 10.3390/w13050669
– ident: ref48
  doi: 10.1029/2018MS001500
– ident: ref43
  doi: 10.1002/qj.3803
– ident: ref10
  doi: 10.1002/2013WR014994
– ident: ref37
– ident: ref89
– ident: ref47
  doi: 10.1007/s11258-017-0710-5
– ident: ref29
  doi: 10.1002/wat2.1523
– ident: ref81
  doi: 10.1016/j.geoderma.2016.11.032
– ident: ref12
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– ident: ref2
  doi: 10.5194/hess-25-429-2021
– ident: ref11
  doi: 10.1038/s41561-018-0294-2
– ident: ref6
  doi: 10.1038/s41598-017-19007-0
– ident: ref65
  doi: 10.1111/nyas.13912
– ident: ref36
  doi: 10.1016/j.gloplacha.2016.06.011
– ident: ref80
  doi: 10.1002/hyp.13322
– ident: ref54
  doi: 10.3354/cr01177
– ident: ref61
  doi: 10.1111/nph.15341
– ident: ref95
  doi: 10.1002/grl.50495
– ident: ref103
  doi: 10.1088/1748-9326/9/4/044001
– ident: ref22
  doi: 10.1093/treephys/tps013
– ident: ref58
  doi: 10.1038/s41558-019-0676-5
– ident: ref96
  doi: 10.5194/hess-23-3631-2019
– ident: ref83
  doi: 10.1002/2016WR019525
– ident: ref94
  doi: 10.1038/s41586-020-1941-5
– ident: ref9
  doi: 10.1016/S0022-1694(01)00421-8
– ident: ref51
  doi: 10.1623/hysj.49.1.7.53993
– ident: ref25
– ident: ref101
– ident: ref30
  doi: 10.1029/2019WR025286
– ident: ref66
  doi: 10.1080/02626667.2013.782407
– ident: ref49
  doi: 10.1002/wat2.1277
– ident: ref90
– ident: ref75
  doi: 10.1007/s11600-018-0116-3
– ident: ref23
  doi: 10.1002/joc.6126
– ident: ref105
  doi: 10.1175/2011JHM1351.1
– ident: ref74
  doi: 10.1126/science.abd5085
– ident: ref85
  doi: 10.1175/JCLI-D-20-0011.1
SSID ssj0028862
Score 2.514405
Snippet In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological...
In a warming climate, periods with lower than average precipitation will increase in frequency and intensity. During such periods, known as meteorological...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 1527
SubjectTerms Annual runoff
Basins
Budget deficits
Catchment area
Catchment areas
Climate
Drought
Droughts
Dry periods
Energy limitation
Evaporation
Global warming
Hydrology
Low flow
Precipitation
Precipitation (Meteorology)
Rainfall-runoff relationships
Runoff
Stream discharge
Stream flow
Streamflow
Vegetation
Water
Water availability
Water resources
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA-tPtgX0Vbp1Q8WKRQKwWw2m-w-iSeKCpViKwg-hHzePe1d1z3k_ntn9rLCPdSXXUhmWTKTzPwmk8wQ8j0EbhyTjkZhGBXgQVALyIBWwYrSxQhOB94d_nUnrx_E7WP5mDbcntOxykEn9orazxzukZ-C4c4LCd6OOJv_o1g1CqOrqYTGR7LJc4Fh2s3x5d3v-zeXq6rkKt7JFQXbLldxTUAt4nQKmoRySbGuK8wVztcsU5_A_39qurc9VztkO4HG7Hwl5V3yITSfyVaqXz5dfiFPAIjnSZhZaKYoStz2y3yLaWUzQHnZsO-evQC8bKld-EkAgoApJODdX1fM-vOFdAnTHz7FAj7d8x55uLr8e3FNU9kE6kRVdLQQzLqopEIZVKbwta2lcByeylRKlc4YWNjQrHyeW0BMGHsWQmEqNyZZsU82mlkTvpKMBdAI3ue-MFEwZ63jKvq6NLI0JloxIj8Hlun5KjuGBq8C-auRv5pLjfzVyN8RGSNT3wgxsXXfMGsnOq0TDXgDC2blksUgYi3rKFVRxNpZH4JjakROUCQaU1c0eDZmYhbwn5s_9_pcgkcM5rUsR-RHIoqzrjXOpKsGMCjMdrVGebhGCWvLrXcPktdpbeOYhpn47f3uA_IJx40n1jg_JBtduwhHAGE6e5zm6SslnO7v
  priority: 102
  providerName: ProQuest
Title Evaporation enhancement drives the European water-budget deficit during multi-year droughts
URI https://www.proquest.com/docview/2641364024
https://doaj.org/article/8127280160fe4f969f6733f9cbdeec07
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEB9ae7CXUm2lr9pHEKFQWEw2m93kqMXnByjWVhQ8LPvpO0V55iH-984k-0rfQXrxkoVkQrK_2d2Z2Y_fAOyEwI3LpWNRmJwJjCCYRc-A1cGKysWIQQedHT49k0eX4uS6uv4n1RftCRvogQfgdtEAUQalQuYxiNjIJkpVlrFx1ofg0jnyoloEUynUqms5rHNyxdCmy2E9E70VsTvFEYRxySifK7YRzpcsUk_c_9Lw3NucyUf4kJzFbG_4yTV4E9p1WE15y6dPn-AGHeH7pMQstFNSIU33ZX5GdLIZenfZYr49e0S3csbs3N8GFAhEHYFlf0wx6_cVsids9vgqJe7pHj7D5eTgz88jltIlMCfqsmOlyK2LSirCvjalb2wjheN4VaZWqnLGYIfG28oXhUVPidachVBE4ZbLvNyAlfauDV8gywOOBN4XvjRR5M5ax1X0TWVkZUy0YgQ_FpDp-4EVQ2M0QfhqwldzqQlfTfiOYJ9A_StIhNb9DVSzTmrW_1PzCLZJJZooK1raE3Nr5vid498Xek9iJIxmtapG8D0JxbtuZpxJRwywUsRytSS5tSSJfcotP15oXqc-TXVCgy8x3hZfX6NGm_Ce0KH9bJxvwUo3m4dv6OB0dgxv68nhGN7tH5ydX1A5Of11Ne5b-DOHR_of
link.rule.ids 315,786,790,870,2115,12792,21416,27955,27956,33406,33777,43633,43838,74390,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtekguoU-6adqaUigURGRJluxTSUu3mzbJoU0g0IPQc_fk3TpeQv59ZrxyYA_pxQZpjNHMaOYbPWYI-Rgjt54pT5O0jEqIIKgDZEDr6GTlU4KgA-8On52r2aX8eVVd5QW363yscrSJg6EOS49r5EfguEuhINqRX1b_KFaNwt3VXELjMXkihRKo5_X0x33AVddqs9vJNQXPrja7moBZ5NEC7AjlimJVV9AUzrf80pC-_yEjPXie6VOynyFjcbyR8TPyKLbPyW6uXr64fUH-AhxeZVEWsV2gIHHRrwgdJpUtAOMV46p7cQPgsqNuHeYRCCImkID3cFmxGE4X0ltQfvgUy_f01y_J5fT7xbcZzUUTqJe16KmQzPmklUYJ1FaExjVKeg5PbWutK28tTGto1qEsHeAl3HmWUmMiN6aYeEV22mUbX5OCRbAHIZRB2CSZd85znUJTWVVZm5yckM8jy8xqkxvDQEyB_DXIX8OVQf4a5O-EfEWm3hNiWuuhYdnNTZ4lBtAGlssqFUtRpkY1SWkhUuNdiNEzPSEfUCQGE1e0eDJmbtfwn5M_v82xgngYnGtVTcinTJSWfWe9zRcNYFCY62qL8nCLEmaW3-4eJW_yzMYxjXp48P_u92R3dnF2ak5Pzn-9IXvIAzy7xvkh2em7dXwLYKZ37waNvQNyWvB2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEF-qhdqXYr_w1GooQqGw3Gaz2U2eilWv2lopbQWhD8t-3j3lrjFH8b_vTG4j3IO-5CCZI2Q-f7M7O0PIUQjcOCYdjcIwKiCDoBaQAa2CFaWLEZIOPDv8_UqeX4uvN-VNqn-6TWWVg0_sHbWfO1wjH0PgzgsJ2Y4Yx1QW8eN08mnxl-IEKdxpTeM0NshTBNk4xqGafLlPvqpKrnY-uaIQ5eVqhxPwixjPwKdQLilOeAWt4XwtRvWt_B9y2H0UmmyTFwk-Zscreb8kT0LzimylSeazu9fkD0DjRRJrFpoZChUXADPfYoPZDPBeNqzAZ_8AaLbULv00AEHAZhLw2x9czPpKQ3oHhgB_xVE-3e0bcj05-31yTtMABepEVXS0EMy6qKRCaVSm8LWtpXAcrspUSpXOGDBxuK18nlvATrgLLYTCpm5MsuIt2WzmTdghGQvgG7zPfWGiYM5ax1X0dWlkaUy0YkQ-DizTi1WfDA35BfJXI381lxr5q5G_I_IZmXpPiC2u-xvzdqqTxWhAHjg6K5csBhFrWUepiiLWzvoQHFMj8h5ForGJRYPqMDVLeM_Fr5_6WEJuDIG2LEfkQyKK8641zqRDB_BR2PdqjXJ_jRKszK0_HiSvk5XjNw06ufv440PyDJRVX15cfdsjz5EFWMbG-T7Z7NpleAe4prMHvcL-B8m_9Ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaporation+enhancement+drives+the+European+water-budget+deficit+during+multi-year+droughts&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Massari%2C+Christian&rft.au=Avanzi%2C+Francesco&rft.au=Bruno%2C+Giulia&rft.au=Gabellani%2C+Simone&rft.date=2022-03-22&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=26&rft.issue=6&rft.spage=1527&rft_id=info:doi/10.5194%2Fhess-26-1527-2022&rft.externalDocID=A697842955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon