Loss of Tifab , a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling
TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered my...
Saved in:
Published in | The Journal of experimental medicine Vol. 212; no. 11; pp. 1967 - 1985 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Rockefeller University Press
19.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML. |
---|---|
AbstractList | Varney et al. report that that deletion of the TRAF-interacting protein TIFAB contributes to an MDS-like phenotype in mice by up-regulating TRAF6 and contributing to hematopoietic dysfunction. TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML. Varney et al. report that that deletion of the TRAF-interacting protein TIFAB contributes to an MDS-like phenotype in mice by up-regulating TRAF6 and contributing to hematopoietic dysfunction. TRAF-interacting protein with forkhead-associated domain B ( TIFAB ) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML. TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML. TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML. |
Author | Fang, Jing Meetei, Ruhikanta A. Starczynowski, Daniel T. Inoue, Jun-ichiro Gohda, Jin Miller, David Konno, Hiroyasu Yoshida, Nobuaki Varney, Melinda E. Niederkorn, Madeline Jerez, Andres Christie, Susanne Karsan, Aly Akiyama, Taishin Maciejewski, Jaroslaw P. Matsumura, Takayuki |
AuthorAffiliation | 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45267 3 Division of Cellular and Molecular Biology, Department of Cancer Biology and 4 Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan 5 Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 1 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 8 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 6 Michael Smith Genome Sciences Centre and 7 Department of Pathology and Laboratory Medicine, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada |
AuthorAffiliation_xml | – name: 8 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 – name: 3 Division of Cellular and Molecular Biology, Department of Cancer Biology and 4 Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan – name: 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45267 – name: 6 Michael Smith Genome Sciences Centre and 7 Department of Pathology and Laboratory Medicine, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada – name: 5 Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH – name: 1 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 |
Author_xml | – sequence: 1 givenname: Melinda E. surname: Varney fullname: Varney, Melinda E. – sequence: 2 givenname: Madeline surname: Niederkorn fullname: Niederkorn, Madeline – sequence: 3 givenname: Hiroyasu surname: Konno fullname: Konno, Hiroyasu – sequence: 4 givenname: Takayuki surname: Matsumura fullname: Matsumura, Takayuki – sequence: 5 givenname: Jin surname: Gohda fullname: Gohda, Jin – sequence: 6 givenname: Nobuaki surname: Yoshida fullname: Yoshida, Nobuaki – sequence: 7 givenname: Taishin surname: Akiyama fullname: Akiyama, Taishin – sequence: 8 givenname: Susanne surname: Christie fullname: Christie, Susanne – sequence: 9 givenname: Jing surname: Fang fullname: Fang, Jing – sequence: 10 givenname: David surname: Miller fullname: Miller, David – sequence: 11 givenname: Andres surname: Jerez fullname: Jerez, Andres – sequence: 12 givenname: Aly surname: Karsan fullname: Karsan, Aly – sequence: 13 givenname: Jaroslaw P. surname: Maciejewski fullname: Maciejewski, Jaroslaw P. – sequence: 14 givenname: Ruhikanta A. surname: Meetei fullname: Meetei, Ruhikanta A. – sequence: 15 givenname: Jun-ichiro surname: Inoue fullname: Inoue, Jun-ichiro – sequence: 16 givenname: Daniel T. surname: Starczynowski fullname: Starczynowski, Daniel T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26458771$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7G1151qyrNBpk0wyk9kIpbYqXCnodR0ymTNzUzOTaZIR3PU_-A_9JaafqAiuAsmTl_ecZw_tTH4ChF5SckSJ5MeXMB4xQjmVjXyCVlRwUjSilDtoRQhjBSWk3kV7MV6STHFRPUO7rOJC1jVdoWXtY8S-xxvb6xYfYo07cAfi6jX--PYzHmCCfOcShIi3MOrkZ28h2ojTNvhl2GY8wBwgRuun2yDvXOHsV8ABDMzJh5_XPzafTs4rHO0waWen4Tl62msX4cX9uY--nJ9tTt8X64t3H05P1oXhskxFWequB1oZVraadXXNDCFSMEmloZ1pKbRNWdFOdo2sKTPQtj2VLSd9Y0Qv2nIfvbnLnZd2hM7AlIJ2ag521OG78tqqP18mu1WD_6Z4RRmRTQ44uA8I_mqBmNRoowHn9AR-iYpKIivO8l7_j9ZMECaammX01e-1Hvs8aMnA4R1gQtYToH9EKFE31lW2rh6sZ5z9hRubdMpC8lDW_fvTL0RcsWs |
CitedBy_id | crossref_primary_10_3390_diagnostics12071659 crossref_primary_10_1016_j_exphem_2020_07_001 crossref_primary_10_1155_2018_4319369 crossref_primary_10_3390_biomedicines11102613 crossref_primary_10_1016_j_jbior_2024_101055 crossref_primary_10_1016_j_ccell_2018_07_003 crossref_primary_10_1053_j_seminhematol_2020_05_003 crossref_primary_10_1152_physiolgenomics_00133_2016 crossref_primary_10_3389_fimmu_2016_00390 crossref_primary_10_1182_bloodadvances_2024013446 crossref_primary_10_1016_j_celrep_2020_01_093 crossref_primary_10_3390_diseases10020033 crossref_primary_10_1158_0008_5472_CAN_17_0202 crossref_primary_10_1038_s41385_020_00336_9 crossref_primary_10_1073_pnas_1706833114 crossref_primary_10_1182_blood_2018_10_844654 crossref_primary_10_2183_pjab_97_009 crossref_primary_10_1002_advs_202303555 crossref_primary_10_1016_j_stem_2021_12_007 crossref_primary_10_1182_blood_2015_09_671040 crossref_primary_10_1038_nrc_2017_60 crossref_primary_10_5483_BMBRep_2016_49_6_056 crossref_primary_10_1038_s41556_019_0314_5 crossref_primary_10_1182_blood_2017_08_801944 crossref_primary_10_1182_blood_2016_10_697698 crossref_primary_10_1097_HS9_0000000000000217 crossref_primary_10_1016_j_isci_2021_103425 crossref_primary_10_1016_j_it_2020_05_007 crossref_primary_10_3324_haematol_2019_234542 crossref_primary_10_3390_ijms19020460 crossref_primary_10_1016_j_cellimm_2016_07_005 crossref_primary_10_1038_s41375_022_01605_1 crossref_primary_10_1111_ejh_13092 crossref_primary_10_1182_bloodadvances_2020003055 crossref_primary_10_3892_br_2017_836 crossref_primary_10_3390_jcm11164908 crossref_primary_10_1016_j_apsb_2024_09_008 crossref_primary_10_3389_fimmu_2023_1239082 crossref_primary_10_1038_s41598_019_47412_0 crossref_primary_10_1016_j_isci_2023_106297 crossref_primary_10_3324_haematol_2022_282349 crossref_primary_10_3389_fonc_2022_1048746 crossref_primary_10_1158_0008_5472_CAN_19_3428 crossref_primary_10_1016_j_trsl_2022_11_004 crossref_primary_10_1182_bloodadvances_2018024166 crossref_primary_10_1016_j_celrep_2018_01_013 crossref_primary_10_1111_ejh_13207 crossref_primary_10_3389_fimmu_2020_536442 crossref_primary_10_3389_fonc_2017_00265 crossref_primary_10_1073_pnas_2318794121 crossref_primary_10_1038_leu_2016_276 crossref_primary_10_1371_journal_pone_0170470 crossref_primary_10_3389_fimmu_2020_01236 crossref_primary_10_1038_nrc_2016_112 crossref_primary_10_1186_s13045_019_0734_5 crossref_primary_10_1007_s00246_018_1992_7 crossref_primary_10_1038_s41375_021_01394_z crossref_primary_10_1084_jem_20201544 crossref_primary_10_1016_j_bone_2023_116758 crossref_primary_10_1016_j_stem_2017_06_013 crossref_primary_10_3390_ncrna3030022 crossref_primary_10_1038_leu_2017_326 crossref_primary_10_1097_MOH_0000000000000693 crossref_primary_10_1038_ni_3654 crossref_primary_10_1080_17474086_2018_1503049 crossref_primary_10_11569_wcjd_v27_i18_1155 crossref_primary_10_1080_15384101_2018_1429082 crossref_primary_10_1139_bcb_2022_0374 crossref_primary_10_18632_oncotarget_26266 crossref_primary_10_3390_cells11121865 crossref_primary_10_1182_blood_2019000170 crossref_primary_10_1186_s10020_021_00382_4 crossref_primary_10_1089_cbr_2021_0344 crossref_primary_10_53446_actamednicomedia_1096246 crossref_primary_10_1016_j_exphem_2020_08_010 crossref_primary_10_2174_1871529X18666180522073855 crossref_primary_10_1126_sciadv_adi7375 crossref_primary_10_3389_fimmu_2020_582915 crossref_primary_10_1038_s41590_020_0663_z crossref_primary_10_1038_s41375_020_0771_7 crossref_primary_10_1126_scitranslmed_abb7695 crossref_primary_10_1182_blood_2018_03_784116 crossref_primary_10_1038_s41375_018_0350_3 crossref_primary_10_1172_JCI152673 crossref_primary_10_1189_jlb_5RI0317_083R crossref_primary_10_1146_annurev_micro_020518_120221 crossref_primary_10_1002_stem_2523 |
Cites_doi | 10.1006/geno.1997.4899 10.1006/geno.1994.1090 10.1182/blood-2012-02-407999 10.1182/blood-2007-05-092304 10.1016/j.ccr.2014.08.001 10.1006/bbrc.2001.6315 10.1002/bies.10352 10.1182/blood-2012-01-404699 10.1038/leu.2013.372 10.1073/pnas.0506580102 10.1038/nm.2054 10.1016/j.cbi.2009.11.025 10.1172/JCI67580 10.1084/jem.20101823 10.1016/j.exphem.2013.09.008 10.1074/jbc.M300720200 10.1200/JCO.2011.34.8540 10.1016/j.exphem.2010.09.011 10.1073/pnas.90.12.5484 10.1182/blood.V114.22.947.947 10.1038/nm1512 10.1182/blood-2007-03-082404 10.1101/gad.9.22.2736 10.1073/pnas.94.13.6948 10.1016/j.bbrc.2004.03.030 10.1182/blood-2007-01-068809 10.1007/s00018-011-0819-y 10.1007/s00277-008-0483-y 10.1182/blood-2005-12-4769 10.1016/S1097-2765(00)80399-8 10.1158/1078-0432.CCR-05-1437 10.1016/j.immuni.2005.02.009 10.1016/j.ccr.2013.05.006 10.1073/pnas.0404132101 10.1038/nm.2063 10.1182/blood.V99.12.4638 10.1093/jb/mvp080 10.1016/j.celrep.2014.07.062 10.1006/bbrc.1997.7111 10.1126/scisignal.151re12 10.1002/(SICI)1098-2264(199807)22:3<251::AID-GCC11>3.0.CO;2-R 10.1038/nature06494 10.1073/pnas.1105398108 10.1006/geno.2000.6193 10.1101/gad.1725108 10.1126/science.8438156 10.1016/j.cell.2010.08.012 10.1517/14728222.2010.522570 10.1111/j.1365-2141.2007.06833.x 10.1016/j.hoc.2010.02.005 |
ContentType | Journal Article |
Copyright | 2015 Varney et al. 2015 Varney et al. 2015 |
Copyright_xml | – notice: 2015 Varney et al. – notice: 2015 Varney et al. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1084/jem.20141898 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Genetics Abstracts Immunology Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | TIFAB in MDS and immunity |
EISSN | 1540-9538 |
EndPage | 1985 |
ExternalDocumentID | PMC4612089 26458771 10_1084_jem_20141898 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK102759 – fundername: NHLBI NIH HHS grantid: R01HL111103 – fundername: NCI NIH HHS grantid: T32 CA117846 – fundername: NHLBI NIH HHS grantid: R01 HL111103 – fundername: NIEHS NIH HHS grantid: T32 ES007250 – fundername: NHLBI NIH HHS grantid: R01 HL114582 – fundername: NIEHS NIH HHS grantid: 5T32ES007250-25 – fundername: Canadian Institutes of Health Research grantid: MOP 133455 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 7T5 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c483t-33adfe16c23ba2d772c00852818c1dcb1eb9361d8d98712cebbf18b40f9c5f5b3 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 14:29:08 EDT 2025 Fri Jul 11 01:06:15 EDT 2025 Fri Jul 11 02:58:06 EDT 2025 Thu Apr 03 07:05:23 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Tue Jul 01 00:41:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2015 Varney et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c483t-33adfe16c23ba2d772c00852818c1dcb1eb9361d8d98712cebbf18b40f9c5f5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4612089 |
PMID | 26458771 |
PQID | 1725025972 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4612089 proquest_miscellaneous_1808642144 proquest_miscellaneous_1725025972 pubmed_primary_26458771 crossref_primary_10_1084_jem_20141898 crossref_citationtrail_10_1084_jem_20141898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-19 |
PublicationDateYYYYMMDD | 2015-10-19 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2015 |
Publisher | The Rockefeller University Press |
Publisher_xml | – name: The Rockefeller University Press |
References | Wu (2023072602362501100_bib50) 2003; 25 Le Beau (2023072602362501100_bib27) 1989; 73 Inomata (2023072602362501100_bib21) 2012; 69 Rhyasen (2023072602362501100_bib37) 2013; 41 Mahajan (2023072602362501100_bib31) 2008; 1 Barreyro (2023072602362501100_bib2) 2012; 120 Beg (2023072602362501100_bib3) 1995; 9 Kumar (2023072602362501100_bib26) 2009 Kanamori (2023072602362501100_bib24) 2002; 290 Kristinsson (2023072602362501100_bib25) 2011; 29 Wei (2023072602362501100_bib48) 2012 Zhao (2023072602362501100_bib52) 2011; 108 Rhyasen (2023072602362501100_bib38) 2014; 28 Rupec (2023072602362501100_bib39) 2005; 22 Boultwood (2023072602362501100_bib9) 2007; 139 Starczynowski (2023072602362501100_bib44) 2011; 39 Willman (2023072602362501100_bib49) 1993; 259 Starczynowski (2023072602362501100_bib43) 2010; 16 Sakai (2023072602362501100_bib40) 1997; 237 Le Beau (2023072602362501100_bib28) 1993; 90 Lu (2023072602362501100_bib30) 2010; 142 Boldin (2023072602362501100_bib4) 2011; 208 Zhao (2023072602362501100_bib51) 1997; 94 Jaju (2023072602362501100_bib22) 1998; 22 Haase (2023072602362501100_bib20) 2007; 110 Giagounidis (2023072602362501100_bib17) 2006; 12 Joslin (2023072602362501100_bib23) 2007; 110 Matsumura (2023072602362501100_bib33) 2009; 146 Ea (2023072602362501100_bib13) 2004; 101 Cazzola (2023072602362501100_bib11) 2010; 24 Takatsuna (2023072602362501100_bib46) 2003; 278 Boultwood (2023072602362501100_bib8) 2002; 99 Gondek (2023072602362501100_bib18) 2008; 111 Singh (2023072602362501100_bib42) 2008; 22 Fang (2023072602362501100_bib15) 2012; 120 Liu (2023072602362501100_bib29) 2007; 13 Boultwood (2023072602362501100_bib6) 1997; 45 Matsumura (2023072602362501100_bib32) 2004; 317 Qian (2023072602362501100_bib35) 2010; 184 Subramanian (2023072602362501100_bib45) 2005; 102 Chen (2023072602362501100_bib12) 2013; 123 Ebert (2023072602362501100_bib14) 2008; 451 Rhyasen (2023072602362501100_bib36) 2013; 24 Haase (2023072602362501100_bib19) 2008; 87 Fang (2023072602362501100_bib16) 2014; 8 Boultwood (2023072602362501100_bib7) 2000; 66 Pellagatti (2023072602362501100_bib34) 2006; 108 Barlow (2023072602362501100_bib1) 2010; 16 Boultwood (2023072602362501100_bib5) 1994; 19 Breccia (2023072602362501100_bib10) 2010; 14 Schneider (2023072602362501100_bib41) 2014; 26 Tominaga (2023072602362501100_bib47) 2000; 5 20858024 - Expert Opin Ther Targets. 2010 Nov;14(11):1157-76 22685174 - Blood. 2012 Jul 26;120(4):858-67 17420284 - Blood. 2007 Jul 15;110(2):719-26 10678165 - Mol Cell. 2000 Jan;5(1):13-25 19109241 - Sci Signal. 2008;1(51):re12 15845452 - Immunity. 2005 Apr;22(4):479-91 18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68 10843801 - Genomics. 2000 May 15;66(1):26-34 11798190 - Biochem Biophys Res Commun. 2002 Jan 25;290(3):1108-13 24084080 - Exp Hematol. 2013 Dec;41(12):1005-7 21555486 - J Exp Med. 2011 Jun 6;208(6):1189-201 21690473 - J Clin Oncol. 2011 Jul 20;29(21):2897-903 18414863 - Ann Hematol. 2008 Jul;87(7):515-26 19898489 - Nat Med. 2010 Jan;16(1):49-58 8438156 - Science. 1993 Feb 12;259(5097):968-71 8188284 - Genomics. 1994 Feb;19(3):425-32 21576471 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9184-9 17954704 - Blood. 2008 Feb 1;111(3):1534-42 9192672 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6948-53 20933052 - Exp Hematol. 2011 Feb;39(2):167-178.e4 7590249 - Genes Dev. 1995 Nov 15;9(22):2736-46 17726160 - Blood. 2007 Dec 15;110(13):4385-95 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 17159988 - Nat Med. 2007 Jan;13(1):78-83 19958752 - Chem Biol Interact. 2010 Mar 19;184(1-2):50-7 14579250 - Bioessays. 2003 Nov;25(11):1096-105 20850013 - Cell. 2010 Sep 17;142(6):914-29 21964925 - Cell Mol Life Sci. 2012 Mar;69(6):963-79 20359637 - Hematol Oncol Clin North Am. 2010 Apr;24(2):459-68 8516290 - Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5484-8 19470519 - J Biochem. 2009 Sep;146(3):375-81 22723552 - Blood. 2012 Aug 9;120(6):1290-8 25199827 - Cell Rep. 2014 Sep 11;8(5):1328-38 23845443 - Cancer Cell. 2013 Jul 8;24(1):90-104 9268708 - Biochem Biophys Res Commun. 1997 Aug 18;237(2):318-24 2783863 - Blood. 1989 Feb 15;73(3):647-50 15492226 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15318-23 12566447 - J Biol Chem. 2003 Apr 4;278(14):12144-50 9339364 - Genomics. 1997 Oct 1;45(1):88-96 19966810 - Nat Med. 2010 Jan;16(1):59-66 17916100 - Br J Haematol. 2007 Nov;139(4):578-89 12036901 - Blood. 2002 Jun 15;99(12):4638-41 24216507 - J Clin Invest. 2013 Nov;123(11):4595-611 25242043 - Cancer Cell. 2014 Oct 13;26(4):509-20 9624537 - Genes Chromosomes Cancer. 1998 Jul;22(3):251-6 15047173 - Biochem Biophys Res Commun. 2004 Apr 23;317(1):230-4 16527891 - Blood. 2006 Jul 1;108(1):337-45 18202658 - Nature. 2008 Jan 17;451(7176):335-9 24326684 - Leukemia. 2014 May;28(5):1142-5 16397017 - Clin Cancer Res. 2006 Jan 1;12(1):5-10 |
References_xml | – volume: 45 start-page: 88 year: 1997 ident: 2023072602362501100_bib6 article-title: Novel genes mapping to the critical region of the 5q- syndrome publication-title: Genomics. doi: 10.1006/geno.1997.4899 – volume: 19 start-page: 425 year: 1994 ident: 2023072602362501100_bib5 article-title: Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q- syndrome: delineation of the critical region on 5q and identification of a 5q- breakpoint publication-title: Genomics. doi: 10.1006/geno.1994.1090 – volume: 120 start-page: 858 year: 2012 ident: 2023072602362501100_bib15 article-title: Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1 publication-title: Blood. doi: 10.1182/blood-2012-02-407999 – volume: 111 start-page: 1534 year: 2008 ident: 2023072602362501100_bib18 article-title: Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML publication-title: Blood. doi: 10.1182/blood-2007-05-092304 – volume: 26 start-page: 509 year: 2014 ident: 2023072602362501100_bib41 article-title: Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS publication-title: Cancer Cell. doi: 10.1016/j.ccr.2014.08.001 – volume: 290 start-page: 1108 year: 2002 ident: 2023072602362501100_bib24 article-title: T2BP, a novel TRAF2 binding protein, can activate NF-kappaB and AP-1 without TNF stimulation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.6315 – volume: 25 start-page: 1096 year: 2003 ident: 2023072602362501100_bib50 article-title: TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology publication-title: BioEssays. doi: 10.1002/bies.10352 – volume: 120 start-page: 1290 year: 2012 ident: 2023072602362501100_bib2 article-title: Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS publication-title: Blood. doi: 10.1182/blood-2012-01-404699 – volume: 28 start-page: 1142 year: 2014 ident: 2023072602362501100_bib38 article-title: An MDS xenograft model utilizing a patient-derived cell line publication-title: Leukemia. doi: 10.1038/leu.2013.372 – volume: 102 start-page: 15545 year: 2005 ident: 2023072602362501100_bib45 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0506580102 – volume: 16 start-page: 49 year: 2010 ident: 2023072602362501100_bib43 article-title: Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype publication-title: Nat. Med. doi: 10.1038/nm.2054 – volume: 184 start-page: 50 year: 2010 ident: 2023072602362501100_bib35 article-title: Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2009.11.025 – volume: 123 start-page: 4595 year: 2013 ident: 2023072602362501100_bib12 article-title: Induction of myelodysplasia by myeloid-derived suppressor cells publication-title: J. Clin. Invest. doi: 10.1172/JCI67580 – volume: 208 start-page: 1189 year: 2011 ident: 2023072602362501100_bib4 article-title: miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice publication-title: J. Exp. Med. doi: 10.1084/jem.20101823 – volume: 41 start-page: 1005 year: 2013 ident: 2023072602362501100_bib37 article-title: Differential IRAK signaling in hematologic malignancies publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2013.09.008 – volume: 278 start-page: 12144 year: 2003 ident: 2023072602362501100_bib46 article-title: Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300720200 – volume: 29 start-page: 2897 year: 2011 ident: 2023072602362501100_bib25 article-title: Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2011.34.8540 – volume: 39 start-page: 167 year: 2011 ident: 2023072602362501100_bib44 article-title: MicroRNA-146a disrupts hematopoietic differentiation and survival publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2010.09.011 – volume: 90 start-page: 5484 year: 1993 ident: 2023072602362501100_bib28 article-title: Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.90.12.5484 – year: 2009 ident: 2023072602362501100_bib26 article-title: Coordinate Loss of a MicroRNA Mir 145 and a Protein-Coding Gene RPS14 Cooperate in the Pathogenesis of 5q- Syndrome doi: 10.1182/blood.V114.22.947.947 – volume: 13 start-page: 78 year: 2007 ident: 2023072602362501100_bib29 article-title: Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation publication-title: Nat. Med. doi: 10.1038/nm1512 – volume: 110 start-page: 4385 year: 2007 ident: 2023072602362501100_bib20 article-title: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients publication-title: Blood. doi: 10.1182/blood-2007-03-082404 – volume: 9 start-page: 2736 year: 1995 ident: 2023072602362501100_bib3 article-title: Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice publication-title: Genes Dev. doi: 10.1101/gad.9.22.2736 – volume: 94 start-page: 6948 year: 1997 ident: 2023072602362501100_bib51 article-title: Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1-1.5 Mb and preparation of a PAC-based physical map publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.94.13.6948 – volume: 317 start-page: 230 year: 2004 ident: 2023072602362501100_bib32 article-title: TIFAB inhibits TIFA, TRAF-interacting protein with a forkhead-associated domain publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.03.030 – volume: 110 start-page: 719 year: 2007 ident: 2023072602362501100_bib23 article-title: Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders publication-title: Blood. doi: 10.1182/blood-2007-01-068809 – volume: 69 start-page: 963 year: 2012 ident: 2023072602362501100_bib21 article-title: Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-011-0819-y – volume: 87 start-page: 515 year: 2008 ident: 2023072602362501100_bib19 article-title: Cytogenetic features in myelodysplastic syndromes publication-title: Ann. Hematol. doi: 10.1007/s00277-008-0483-y – volume: 108 start-page: 337 year: 2006 ident: 2023072602362501100_bib34 article-title: Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype publication-title: Blood. doi: 10.1182/blood-2005-12-4769 – volume: 5 start-page: 13 year: 2000 ident: 2023072602362501100_bib47 article-title: Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling publication-title: Mol. Cell. doi: 10.1016/S1097-2765(00)80399-8 – volume: 12 start-page: 5 year: 2006 ident: 2023072602362501100_bib17 article-title: Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-05-1437 – volume: 22 start-page: 479 year: 2005 ident: 2023072602362501100_bib39 article-title: Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha publication-title: Immunity. doi: 10.1016/j.immuni.2005.02.009 – volume: 24 start-page: 90 year: 2013 ident: 2023072602362501100_bib36 article-title: Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome publication-title: Cancer Cell. doi: 10.1016/j.ccr.2013.05.006 – volume: 73 start-page: 647 year: 1989 ident: 2023072602362501100_bib27 article-title: Interleukin-4 and interleukin-5 map to human chromosome 5 in a region encoding growth factors and receptors and are deleted in myeloid leukemias with a del(5q) publication-title: Blood. – volume: 101 start-page: 15318 year: 2004 ident: 2023072602362501100_bib13 article-title: TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0404132101 – volume: 16 start-page: 59 year: 2010 ident: 2023072602362501100_bib1 article-title: A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome publication-title: Nat. Med. doi: 10.1038/nm.2063 – volume: 99 start-page: 4638 year: 2002 ident: 2023072602362501100_bib8 article-title: Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome publication-title: Blood. doi: 10.1182/blood.V99.12.4638 – volume: 146 start-page: 375 year: 2009 ident: 2023072602362501100_bib33 article-title: TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is a negative regulator of the TRAF6-induced cellular functions publication-title: J. Biochem. doi: 10.1093/jb/mvp080 – volume: 8 start-page: 1328 year: 2014 ident: 2023072602362501100_bib16 article-title: Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network publication-title: Cell Reports. doi: 10.1016/j.celrep.2014.07.062 – volume: 237 start-page: 318 year: 1997 ident: 2023072602362501100_bib40 article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.7111 – volume: 1 start-page: re12 year: 2008 ident: 2023072602362501100_bib31 article-title: Structure and function of the phosphothreonine-specific FHA domain publication-title: Sci. Signal. doi: 10.1126/scisignal.151re12 – volume: 22 start-page: 251 year: 1998 ident: 2023072602362501100_bib22 article-title: Molecular cytogenetic delineation of the critical deleted region in the 5q- syndrome publication-title: Genes Chromosomes Cancer. doi: 10.1002/(SICI)1098-2264(199807)22:3<251::AID-GCC11>3.0.CO;2-R – volume: 451 start-page: 335 year: 2008 ident: 2023072602362501100_bib14 article-title: Identification of RPS14 as a 5q- syndrome gene by RNA interference screen publication-title: Nature. doi: 10.1038/nature06494 – volume: 108 start-page: 9184 year: 2011 ident: 2023072602362501100_bib52 article-title: NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1105398108 – volume: 66 start-page: 26 year: 2000 ident: 2023072602362501100_bib7 article-title: Transcription mapping of the 5q- syndrome critical region: cloning of two novel genes and sequencing, expression, and mapping of a further six novel cDNAs publication-title: Genomics. doi: 10.1006/geno.2000.6193 – volume: 22 start-page: 2856 year: 2008 ident: 2023072602362501100_bib42 article-title: BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome publication-title: Genes Dev. doi: 10.1101/gad.1725108 – volume: 259 start-page: 968 year: 1993 ident: 2023072602362501100_bib49 article-title: Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia publication-title: Science. doi: 10.1126/science.8438156 – volume: 142 start-page: 914 year: 2010 ident: 2023072602362501100_bib30 article-title: Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses publication-title: Cell. doi: 10.1016/j.cell.2010.08.012 – volume: 14 start-page: 1157 year: 2010 ident: 2023072602362501100_bib10 article-title: NF-κB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia publication-title: Expert Opin. Ther. Targets. doi: 10.1517/14728222.2010.522570 – volume: 139 start-page: 578 year: 2007 ident: 2023072602362501100_bib9 article-title: Gene expression profiling of CD34+ cells in patients with the 5q- syndrome publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2007.06833.x – volume: 24 start-page: 459 year: 2010 ident: 2023072602362501100_bib11 article-title: Prognostic classification and risk assessment in myelodysplastic syndromes publication-title: Hematol. Oncol. Clin. North Am. doi: 10.1016/j.hoc.2010.02.005 – volume-title: Myelodysplastic Syndromes (MDS). year: 2012 ident: 2023072602362501100_bib48 article-title: Deregulation of TLR2-JMJD3 Innate Immunity Signaling, Including a Rare TLR2 SNP As a Potential Somatic Mutation – reference: 20359637 - Hematol Oncol Clin North Am. 2010 Apr;24(2):459-68 – reference: 18202658 - Nature. 2008 Jan 17;451(7176):335-9 – reference: 9339364 - Genomics. 1997 Oct 1;45(1):88-96 – reference: 15845452 - Immunity. 2005 Apr;22(4):479-91 – reference: 15047173 - Biochem Biophys Res Commun. 2004 Apr 23;317(1):230-4 – reference: 17420284 - Blood. 2007 Jul 15;110(2):719-26 – reference: 20850013 - Cell. 2010 Sep 17;142(6):914-29 – reference: 17726160 - Blood. 2007 Dec 15;110(13):4385-95 – reference: 8516290 - Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5484-8 – reference: 25242043 - Cancer Cell. 2014 Oct 13;26(4):509-20 – reference: 12036901 - Blood. 2002 Jun 15;99(12):4638-41 – reference: 22685174 - Blood. 2012 Jul 26;120(4):858-67 – reference: 18414863 - Ann Hematol. 2008 Jul;87(7):515-26 – reference: 16397017 - Clin Cancer Res. 2006 Jan 1;12(1):5-10 – reference: 15492226 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15318-23 – reference: 16527891 - Blood. 2006 Jul 1;108(1):337-45 – reference: 2783863 - Blood. 1989 Feb 15;73(3):647-50 – reference: 10843801 - Genomics. 2000 May 15;66(1):26-34 – reference: 12566447 - J Biol Chem. 2003 Apr 4;278(14):12144-50 – reference: 19470519 - J Biochem. 2009 Sep;146(3):375-81 – reference: 21576471 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9184-9 – reference: 19898489 - Nat Med. 2010 Jan;16(1):49-58 – reference: 17954704 - Blood. 2008 Feb 1;111(3):1534-42 – reference: 21555486 - J Exp Med. 2011 Jun 6;208(6):1189-201 – reference: 19966810 - Nat Med. 2010 Jan;16(1):59-66 – reference: 10678165 - Mol Cell. 2000 Jan;5(1):13-25 – reference: 9192672 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6948-53 – reference: 21690473 - J Clin Oncol. 2011 Jul 20;29(21):2897-903 – reference: 24084080 - Exp Hematol. 2013 Dec;41(12):1005-7 – reference: 24326684 - Leukemia. 2014 May;28(5):1142-5 – reference: 8188284 - Genomics. 1994 Feb;19(3):425-32 – reference: 19109241 - Sci Signal. 2008;1(51):re12 – reference: 20858024 - Expert Opin Ther Targets. 2010 Nov;14(11):1157-76 – reference: 14579250 - Bioessays. 2003 Nov;25(11):1096-105 – reference: 9624537 - Genes Chromosomes Cancer. 1998 Jul;22(3):251-6 – reference: 7590249 - Genes Dev. 1995 Nov 15;9(22):2736-46 – reference: 11798190 - Biochem Biophys Res Commun. 2002 Jan 25;290(3):1108-13 – reference: 19958752 - Chem Biol Interact. 2010 Mar 19;184(1-2):50-7 – reference: 25199827 - Cell Rep. 2014 Sep 11;8(5):1328-38 – reference: 24216507 - J Clin Invest. 2013 Nov;123(11):4595-611 – reference: 8438156 - Science. 1993 Feb 12;259(5097):968-71 – reference: 23845443 - Cancer Cell. 2013 Jul 8;24(1):90-104 – reference: 18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68 – reference: 22723552 - Blood. 2012 Aug 9;120(6):1290-8 – reference: 21964925 - Cell Mol Life Sci. 2012 Mar;69(6):963-79 – reference: 20933052 - Exp Hematol. 2011 Feb;39(2):167-178.e4 – reference: 9268708 - Biochem Biophys Res Commun. 1997 Aug 18;237(2):318-24 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 17159988 - Nat Med. 2007 Jan;13(1):78-83 – reference: 17916100 - Br J Haematol. 2007 Nov;139(4):578-89 |
SSID | ssj0014456 |
Score | 2.4807382 |
Snippet | TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab... Varney et al. report that that deletion of the TRAF-interacting protein TIFAB contributes to an MDS-like phenotype in mice by up-regulating TRAF6 and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1967 |
SubjectTerms | Animals Apoptosis Bone Marrow Transplantation Cell Differentiation Chromosomes, Human, Pair 5 Hematopoiesis Humans Male Mice Mice, Inbred C57BL MicroRNAs - physiology NF-kappa B - antagonists & inhibitors NF-kappa B - physiology Proteins - genetics Proteins - physiology Signal Transduction - physiology TNF Receptor-Associated Factor 6 - physiology Toll-Like Receptors - physiology |
Title | Loss of Tifab , a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26458771 https://www.proquest.com/docview/1725025972 https://www.proquest.com/docview/1808642144 https://pubmed.ncbi.nlm.nih.gov/PMC4612089 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiFeEDflkpFAApUsceIkzuMKtqygLRKkqG-RnTgitGp2ezwsf4M_zIxzNFkKWniJKtd1Is_X8Uzm-Ah5ngahrX2tLOYmqcXdgFvC96SlHXB9tM9DZSrkxhP_ZMo_zLxZr_ezlbW03ajD5MfeupL_kSqMgVyxSvYfJNssCgPwGeQLV5AwXC8l4xGccGjtRXkmTVxFDlKMugvvDL398bsvyJBcsrpjVHw9MC1ai9MC_ON83ZD0IGFnlRBrrMcIwGEt8jlSqmDaS7Gyos9HQ3-A2R5yUZ9233dIa9m1Hc6Ai6H7r3JVpZeNsRA-lbtKiEmOfS3mRZVdjO0rWz_8iLTY5pzMV8W5LOlaylfpG9jyraFLGkRyLs-387z9LoOZHqiVxqzUL7cxoFxqZL1nrNLZDnPa4GQtFQwqJdh7NtiC49mgsf8A40yEYncG1nH_yad4OB2N4uh4Fl0hVx3wPZAW4_2syRsCB9RQAjePVVVTwOpv2mt37ZzfnJeLObgtoya6SW5UUqNHJbRukZ5e3ibXxpXQ7pAVIowWGTUIe00lBam89M5eUcAWRWzBmEEW7SCLVsiibWSZdWpk0S6yaIOsu2Q6PI7enlgVS4eVcOFuLNeVaaaZnziukk4KO5agHY9dxhKWJoppFbo-S0UagnPuJFqpjAnF7SxMvMxT7j1ysCyW-gGhyktcz03dDDkVJCzs-7DDju9Irh0Ryj4Z1HsaJ1ULe2RSWcQmlULwGCQQ1xLokxfN7NOydcsf5j2rxRODbsWAmVzqYruOwbj3wCcIA-cvc4QtsFic8z65X4q0uRs4G54IAtYnQUfYzQTs7d79Zpl_Mz3eOXgetggfXuLZHpHru__SY3KwWW31E7CUN-qpQe4vmzXBbA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+Tifab%2C+a+del%285q%29+MDS+gene%2C+alters+hematopoiesis+through+derepression+of+Toll-like+receptor-TRAF6+signaling&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Varney%2C+Melinda+E&rft.au=Niederkorn%2C+Madeline&rft.au=Konno%2C+Hiroyasu&rft.au=Matsumura%2C+Takayuki&rft.date=2015-10-19&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=212&rft.issue=11&rft.spage=1967&rft_id=info:doi/10.1084%2Fjem.20141898&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |