Loss of Tifab , a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling

TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered my...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 212; no. 11; pp. 1967 - 1985
Main Authors Varney, Melinda E., Niederkorn, Madeline, Konno, Hiroyasu, Matsumura, Takayuki, Gohda, Jin, Yoshida, Nobuaki, Akiyama, Taishin, Christie, Susanne, Fang, Jing, Miller, David, Jerez, Andres, Karsan, Aly, Maciejewski, Jaroslaw P., Meetei, Ruhikanta A., Inoue, Jun-ichiro, Starczynowski, Daniel T.
Format Journal Article
LanguageEnglish
Published United States The Rockefeller University Press 19.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.
AbstractList Varney et al. report that that deletion of the TRAF-interacting protein TIFAB contributes to an MDS-like phenotype in mice by up-regulating TRAF6 and contributing to hematopoietic dysfunction. TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.
Varney et al. report that that deletion of the TRAF-interacting protein TIFAB contributes to an MDS-like phenotype in mice by up-regulating TRAF6 and contributing to hematopoietic dysfunction. TRAF-interacting protein with forkhead-associated domain B ( TIFAB ) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.
TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.
TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cell (HSPC) proportions and altered myeloid differentiation. A subset of mice transplanted with Tifab knockout (KO) HSPCs develop a BM failure with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPCs are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic defect. Gene expression analysis of Tifab KO HSPCs identified dysregulation of immune-related signatures, and hypersensitivity to TLR4 stimulation. TIFAB forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction. Re-expression of TIFAB in del(5q) MDS/AML cells results in attenuated TLR4 signaling and reduced viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPCs by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.
Author Fang, Jing
Meetei, Ruhikanta A.
Starczynowski, Daniel T.
Inoue, Jun-ichiro
Gohda, Jin
Miller, David
Konno, Hiroyasu
Yoshida, Nobuaki
Varney, Melinda E.
Niederkorn, Madeline
Jerez, Andres
Christie, Susanne
Karsan, Aly
Akiyama, Taishin
Maciejewski, Jaroslaw P.
Matsumura, Takayuki
AuthorAffiliation 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45267
3 Division of Cellular and Molecular Biology, Department of Cancer Biology and 4 Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
5 Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
1 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
8 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
6 Michael Smith Genome Sciences Centre and 7 Department of Pathology and Laboratory Medicine, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
AuthorAffiliation_xml – name: 8 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
– name: 3 Division of Cellular and Molecular Biology, Department of Cancer Biology and 4 Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
– name: 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45267
– name: 6 Michael Smith Genome Sciences Centre and 7 Department of Pathology and Laboratory Medicine, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
– name: 5 Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
– name: 1 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
Author_xml – sequence: 1
  givenname: Melinda E.
  surname: Varney
  fullname: Varney, Melinda E.
– sequence: 2
  givenname: Madeline
  surname: Niederkorn
  fullname: Niederkorn, Madeline
– sequence: 3
  givenname: Hiroyasu
  surname: Konno
  fullname: Konno, Hiroyasu
– sequence: 4
  givenname: Takayuki
  surname: Matsumura
  fullname: Matsumura, Takayuki
– sequence: 5
  givenname: Jin
  surname: Gohda
  fullname: Gohda, Jin
– sequence: 6
  givenname: Nobuaki
  surname: Yoshida
  fullname: Yoshida, Nobuaki
– sequence: 7
  givenname: Taishin
  surname: Akiyama
  fullname: Akiyama, Taishin
– sequence: 8
  givenname: Susanne
  surname: Christie
  fullname: Christie, Susanne
– sequence: 9
  givenname: Jing
  surname: Fang
  fullname: Fang, Jing
– sequence: 10
  givenname: David
  surname: Miller
  fullname: Miller, David
– sequence: 11
  givenname: Andres
  surname: Jerez
  fullname: Jerez, Andres
– sequence: 12
  givenname: Aly
  surname: Karsan
  fullname: Karsan, Aly
– sequence: 13
  givenname: Jaroslaw P.
  surname: Maciejewski
  fullname: Maciejewski, Jaroslaw P.
– sequence: 14
  givenname: Ruhikanta A.
  surname: Meetei
  fullname: Meetei, Ruhikanta A.
– sequence: 15
  givenname: Jun-ichiro
  surname: Inoue
  fullname: Inoue, Jun-ichiro
– sequence: 16
  givenname: Daniel T.
  surname: Starczynowski
  fullname: Starczynowski, Daniel T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26458771$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G1151qyrNBpk0wyk9kIpbYqXCnodR0ymTNzUzOTaZIR3PU_-A_9JaafqAiuAsmTl_ecZw_tTH4ChF5SckSJ5MeXMB4xQjmVjXyCVlRwUjSilDtoRQhjBSWk3kV7MV6STHFRPUO7rOJC1jVdoWXtY8S-xxvb6xYfYo07cAfi6jX--PYzHmCCfOcShIi3MOrkZ28h2ojTNvhl2GY8wBwgRuun2yDvXOHsV8ABDMzJh5_XPzafTs4rHO0waWen4Tl62msX4cX9uY--nJ9tTt8X64t3H05P1oXhskxFWequB1oZVraadXXNDCFSMEmloZ1pKbRNWdFOdo2sKTPQtj2VLSd9Y0Qv2nIfvbnLnZd2hM7AlIJ2ag521OG78tqqP18mu1WD_6Z4RRmRTQ44uA8I_mqBmNRoowHn9AR-iYpKIivO8l7_j9ZMECaammX01e-1Hvs8aMnA4R1gQtYToH9EKFE31lW2rh6sZ5z9hRubdMpC8lDW_fvTL0RcsWs
CitedBy_id crossref_primary_10_3390_diagnostics12071659
crossref_primary_10_1016_j_exphem_2020_07_001
crossref_primary_10_1155_2018_4319369
crossref_primary_10_3390_biomedicines11102613
crossref_primary_10_1016_j_jbior_2024_101055
crossref_primary_10_1016_j_ccell_2018_07_003
crossref_primary_10_1053_j_seminhematol_2020_05_003
crossref_primary_10_1152_physiolgenomics_00133_2016
crossref_primary_10_3389_fimmu_2016_00390
crossref_primary_10_1182_bloodadvances_2024013446
crossref_primary_10_1016_j_celrep_2020_01_093
crossref_primary_10_3390_diseases10020033
crossref_primary_10_1158_0008_5472_CAN_17_0202
crossref_primary_10_1038_s41385_020_00336_9
crossref_primary_10_1073_pnas_1706833114
crossref_primary_10_1182_blood_2018_10_844654
crossref_primary_10_2183_pjab_97_009
crossref_primary_10_1002_advs_202303555
crossref_primary_10_1016_j_stem_2021_12_007
crossref_primary_10_1182_blood_2015_09_671040
crossref_primary_10_1038_nrc_2017_60
crossref_primary_10_5483_BMBRep_2016_49_6_056
crossref_primary_10_1038_s41556_019_0314_5
crossref_primary_10_1182_blood_2017_08_801944
crossref_primary_10_1182_blood_2016_10_697698
crossref_primary_10_1097_HS9_0000000000000217
crossref_primary_10_1016_j_isci_2021_103425
crossref_primary_10_1016_j_it_2020_05_007
crossref_primary_10_3324_haematol_2019_234542
crossref_primary_10_3390_ijms19020460
crossref_primary_10_1016_j_cellimm_2016_07_005
crossref_primary_10_1038_s41375_022_01605_1
crossref_primary_10_1111_ejh_13092
crossref_primary_10_1182_bloodadvances_2020003055
crossref_primary_10_3892_br_2017_836
crossref_primary_10_3390_jcm11164908
crossref_primary_10_1016_j_apsb_2024_09_008
crossref_primary_10_3389_fimmu_2023_1239082
crossref_primary_10_1038_s41598_019_47412_0
crossref_primary_10_1016_j_isci_2023_106297
crossref_primary_10_3324_haematol_2022_282349
crossref_primary_10_3389_fonc_2022_1048746
crossref_primary_10_1158_0008_5472_CAN_19_3428
crossref_primary_10_1016_j_trsl_2022_11_004
crossref_primary_10_1182_bloodadvances_2018024166
crossref_primary_10_1016_j_celrep_2018_01_013
crossref_primary_10_1111_ejh_13207
crossref_primary_10_3389_fimmu_2020_536442
crossref_primary_10_3389_fonc_2017_00265
crossref_primary_10_1073_pnas_2318794121
crossref_primary_10_1038_leu_2016_276
crossref_primary_10_1371_journal_pone_0170470
crossref_primary_10_3389_fimmu_2020_01236
crossref_primary_10_1038_nrc_2016_112
crossref_primary_10_1186_s13045_019_0734_5
crossref_primary_10_1007_s00246_018_1992_7
crossref_primary_10_1038_s41375_021_01394_z
crossref_primary_10_1084_jem_20201544
crossref_primary_10_1016_j_bone_2023_116758
crossref_primary_10_1016_j_stem_2017_06_013
crossref_primary_10_3390_ncrna3030022
crossref_primary_10_1038_leu_2017_326
crossref_primary_10_1097_MOH_0000000000000693
crossref_primary_10_1038_ni_3654
crossref_primary_10_1080_17474086_2018_1503049
crossref_primary_10_11569_wcjd_v27_i18_1155
crossref_primary_10_1080_15384101_2018_1429082
crossref_primary_10_1139_bcb_2022_0374
crossref_primary_10_18632_oncotarget_26266
crossref_primary_10_3390_cells11121865
crossref_primary_10_1182_blood_2019000170
crossref_primary_10_1186_s10020_021_00382_4
crossref_primary_10_1089_cbr_2021_0344
crossref_primary_10_53446_actamednicomedia_1096246
crossref_primary_10_1016_j_exphem_2020_08_010
crossref_primary_10_2174_1871529X18666180522073855
crossref_primary_10_1126_sciadv_adi7375
crossref_primary_10_3389_fimmu_2020_582915
crossref_primary_10_1038_s41590_020_0663_z
crossref_primary_10_1038_s41375_020_0771_7
crossref_primary_10_1126_scitranslmed_abb7695
crossref_primary_10_1182_blood_2018_03_784116
crossref_primary_10_1038_s41375_018_0350_3
crossref_primary_10_1172_JCI152673
crossref_primary_10_1189_jlb_5RI0317_083R
crossref_primary_10_1146_annurev_micro_020518_120221
crossref_primary_10_1002_stem_2523
Cites_doi 10.1006/geno.1997.4899
10.1006/geno.1994.1090
10.1182/blood-2012-02-407999
10.1182/blood-2007-05-092304
10.1016/j.ccr.2014.08.001
10.1006/bbrc.2001.6315
10.1002/bies.10352
10.1182/blood-2012-01-404699
10.1038/leu.2013.372
10.1073/pnas.0506580102
10.1038/nm.2054
10.1016/j.cbi.2009.11.025
10.1172/JCI67580
10.1084/jem.20101823
10.1016/j.exphem.2013.09.008
10.1074/jbc.M300720200
10.1200/JCO.2011.34.8540
10.1016/j.exphem.2010.09.011
10.1073/pnas.90.12.5484
10.1182/blood.V114.22.947.947
10.1038/nm1512
10.1182/blood-2007-03-082404
10.1101/gad.9.22.2736
10.1073/pnas.94.13.6948
10.1016/j.bbrc.2004.03.030
10.1182/blood-2007-01-068809
10.1007/s00018-011-0819-y
10.1007/s00277-008-0483-y
10.1182/blood-2005-12-4769
10.1016/S1097-2765(00)80399-8
10.1158/1078-0432.CCR-05-1437
10.1016/j.immuni.2005.02.009
10.1016/j.ccr.2013.05.006
10.1073/pnas.0404132101
10.1038/nm.2063
10.1182/blood.V99.12.4638
10.1093/jb/mvp080
10.1016/j.celrep.2014.07.062
10.1006/bbrc.1997.7111
10.1126/scisignal.151re12
10.1002/(SICI)1098-2264(199807)22:3<251::AID-GCC11>3.0.CO;2-R
10.1038/nature06494
10.1073/pnas.1105398108
10.1006/geno.2000.6193
10.1101/gad.1725108
10.1126/science.8438156
10.1016/j.cell.2010.08.012
10.1517/14728222.2010.522570
10.1111/j.1365-2141.2007.06833.x
10.1016/j.hoc.2010.02.005
ContentType Journal Article
Copyright 2015 Varney et al.
2015 Varney et al. 2015
Copyright_xml – notice: 2015 Varney et al.
– notice: 2015 Varney et al. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1084/jem.20141898
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Genetics Abstracts
Immunology Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate TIFAB in MDS and immunity
EISSN 1540-9538
EndPage 1985
ExternalDocumentID PMC4612089
26458771
10_1084_jem_20141898
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK102759
– fundername: NHLBI NIH HHS
  grantid: R01HL111103
– fundername: NCI NIH HHS
  grantid: T32 CA117846
– fundername: NHLBI NIH HHS
  grantid: R01 HL111103
– fundername: NIEHS NIH HHS
  grantid: T32 ES007250
– fundername: NHLBI NIH HHS
  grantid: R01 HL114582
– fundername: NIEHS NIH HHS
  grantid: 5T32ES007250-25
– fundername: Canadian Institutes of Health Research
  grantid: MOP 133455
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HYE
IH2
K-O
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c483t-33adfe16c23ba2d772c00852818c1dcb1eb9361d8d98712cebbf18b40f9c5f5b3
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 14:29:08 EDT 2025
Fri Jul 11 01:06:15 EDT 2025
Fri Jul 11 02:58:06 EDT 2025
Thu Apr 03 07:05:23 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Tue Jul 01 00:41:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2015 Varney et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-33adfe16c23ba2d772c00852818c1dcb1eb9361d8d98712cebbf18b40f9c5f5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4612089
PMID 26458771
PQID 1725025972
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4612089
proquest_miscellaneous_1808642144
proquest_miscellaneous_1725025972
pubmed_primary_26458771
crossref_primary_10_1084_jem_20141898
crossref_citationtrail_10_1084_jem_20141898
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-19
PublicationDateYYYYMMDD 2015-10-19
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2015
Publisher The Rockefeller University Press
Publisher_xml – name: The Rockefeller University Press
References Wu (2023072602362501100_bib50) 2003; 25
Le Beau (2023072602362501100_bib27) 1989; 73
Inomata (2023072602362501100_bib21) 2012; 69
Rhyasen (2023072602362501100_bib37) 2013; 41
Mahajan (2023072602362501100_bib31) 2008; 1
Barreyro (2023072602362501100_bib2) 2012; 120
Beg (2023072602362501100_bib3) 1995; 9
Kumar (2023072602362501100_bib26) 2009
Kanamori (2023072602362501100_bib24) 2002; 290
Kristinsson (2023072602362501100_bib25) 2011; 29
Wei (2023072602362501100_bib48) 2012
Zhao (2023072602362501100_bib52) 2011; 108
Rhyasen (2023072602362501100_bib38) 2014; 28
Rupec (2023072602362501100_bib39) 2005; 22
Boultwood (2023072602362501100_bib9) 2007; 139
Starczynowski (2023072602362501100_bib44) 2011; 39
Willman (2023072602362501100_bib49) 1993; 259
Starczynowski (2023072602362501100_bib43) 2010; 16
Sakai (2023072602362501100_bib40) 1997; 237
Le Beau (2023072602362501100_bib28) 1993; 90
Lu (2023072602362501100_bib30) 2010; 142
Boldin (2023072602362501100_bib4) 2011; 208
Zhao (2023072602362501100_bib51) 1997; 94
Jaju (2023072602362501100_bib22) 1998; 22
Haase (2023072602362501100_bib20) 2007; 110
Giagounidis (2023072602362501100_bib17) 2006; 12
Joslin (2023072602362501100_bib23) 2007; 110
Matsumura (2023072602362501100_bib33) 2009; 146
Ea (2023072602362501100_bib13) 2004; 101
Cazzola (2023072602362501100_bib11) 2010; 24
Takatsuna (2023072602362501100_bib46) 2003; 278
Boultwood (2023072602362501100_bib8) 2002; 99
Gondek (2023072602362501100_bib18) 2008; 111
Singh (2023072602362501100_bib42) 2008; 22
Fang (2023072602362501100_bib15) 2012; 120
Liu (2023072602362501100_bib29) 2007; 13
Boultwood (2023072602362501100_bib6) 1997; 45
Matsumura (2023072602362501100_bib32) 2004; 317
Qian (2023072602362501100_bib35) 2010; 184
Subramanian (2023072602362501100_bib45) 2005; 102
Chen (2023072602362501100_bib12) 2013; 123
Ebert (2023072602362501100_bib14) 2008; 451
Rhyasen (2023072602362501100_bib36) 2013; 24
Haase (2023072602362501100_bib19) 2008; 87
Fang (2023072602362501100_bib16) 2014; 8
Boultwood (2023072602362501100_bib7) 2000; 66
Pellagatti (2023072602362501100_bib34) 2006; 108
Barlow (2023072602362501100_bib1) 2010; 16
Boultwood (2023072602362501100_bib5) 1994; 19
Breccia (2023072602362501100_bib10) 2010; 14
Schneider (2023072602362501100_bib41) 2014; 26
Tominaga (2023072602362501100_bib47) 2000; 5
20858024 - Expert Opin Ther Targets. 2010 Nov;14(11):1157-76
22685174 - Blood. 2012 Jul 26;120(4):858-67
17420284 - Blood. 2007 Jul 15;110(2):719-26
10678165 - Mol Cell. 2000 Jan;5(1):13-25
19109241 - Sci Signal. 2008;1(51):re12
15845452 - Immunity. 2005 Apr;22(4):479-91
18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68
10843801 - Genomics. 2000 May 15;66(1):26-34
11798190 - Biochem Biophys Res Commun. 2002 Jan 25;290(3):1108-13
24084080 - Exp Hematol. 2013 Dec;41(12):1005-7
21555486 - J Exp Med. 2011 Jun 6;208(6):1189-201
21690473 - J Clin Oncol. 2011 Jul 20;29(21):2897-903
18414863 - Ann Hematol. 2008 Jul;87(7):515-26
19898489 - Nat Med. 2010 Jan;16(1):49-58
8438156 - Science. 1993 Feb 12;259(5097):968-71
8188284 - Genomics. 1994 Feb;19(3):425-32
21576471 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9184-9
17954704 - Blood. 2008 Feb 1;111(3):1534-42
9192672 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6948-53
20933052 - Exp Hematol. 2011 Feb;39(2):167-178.e4
7590249 - Genes Dev. 1995 Nov 15;9(22):2736-46
17726160 - Blood. 2007 Dec 15;110(13):4385-95
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
17159988 - Nat Med. 2007 Jan;13(1):78-83
19958752 - Chem Biol Interact. 2010 Mar 19;184(1-2):50-7
14579250 - Bioessays. 2003 Nov;25(11):1096-105
20850013 - Cell. 2010 Sep 17;142(6):914-29
21964925 - Cell Mol Life Sci. 2012 Mar;69(6):963-79
20359637 - Hematol Oncol Clin North Am. 2010 Apr;24(2):459-68
8516290 - Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5484-8
19470519 - J Biochem. 2009 Sep;146(3):375-81
22723552 - Blood. 2012 Aug 9;120(6):1290-8
25199827 - Cell Rep. 2014 Sep 11;8(5):1328-38
23845443 - Cancer Cell. 2013 Jul 8;24(1):90-104
9268708 - Biochem Biophys Res Commun. 1997 Aug 18;237(2):318-24
2783863 - Blood. 1989 Feb 15;73(3):647-50
15492226 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15318-23
12566447 - J Biol Chem. 2003 Apr 4;278(14):12144-50
9339364 - Genomics. 1997 Oct 1;45(1):88-96
19966810 - Nat Med. 2010 Jan;16(1):59-66
17916100 - Br J Haematol. 2007 Nov;139(4):578-89
12036901 - Blood. 2002 Jun 15;99(12):4638-41
24216507 - J Clin Invest. 2013 Nov;123(11):4595-611
25242043 - Cancer Cell. 2014 Oct 13;26(4):509-20
9624537 - Genes Chromosomes Cancer. 1998 Jul;22(3):251-6
15047173 - Biochem Biophys Res Commun. 2004 Apr 23;317(1):230-4
16527891 - Blood. 2006 Jul 1;108(1):337-45
18202658 - Nature. 2008 Jan 17;451(7176):335-9
24326684 - Leukemia. 2014 May;28(5):1142-5
16397017 - Clin Cancer Res. 2006 Jan 1;12(1):5-10
References_xml – volume: 45
  start-page: 88
  year: 1997
  ident: 2023072602362501100_bib6
  article-title: Novel genes mapping to the critical region of the 5q- syndrome
  publication-title: Genomics.
  doi: 10.1006/geno.1997.4899
– volume: 19
  start-page: 425
  year: 1994
  ident: 2023072602362501100_bib5
  article-title: Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q- syndrome: delineation of the critical region on 5q and identification of a 5q- breakpoint
  publication-title: Genomics.
  doi: 10.1006/geno.1994.1090
– volume: 120
  start-page: 858
  year: 2012
  ident: 2023072602362501100_bib15
  article-title: Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1
  publication-title: Blood.
  doi: 10.1182/blood-2012-02-407999
– volume: 111
  start-page: 1534
  year: 2008
  ident: 2023072602362501100_bib18
  article-title: Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML
  publication-title: Blood.
  doi: 10.1182/blood-2007-05-092304
– volume: 26
  start-page: 509
  year: 2014
  ident: 2023072602362501100_bib41
  article-title: Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2014.08.001
– volume: 290
  start-page: 1108
  year: 2002
  ident: 2023072602362501100_bib24
  article-title: T2BP, a novel TRAF2 binding protein, can activate NF-kappaB and AP-1 without TNF stimulation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.6315
– volume: 25
  start-page: 1096
  year: 2003
  ident: 2023072602362501100_bib50
  article-title: TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology
  publication-title: BioEssays.
  doi: 10.1002/bies.10352
– volume: 120
  start-page: 1290
  year: 2012
  ident: 2023072602362501100_bib2
  article-title: Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS
  publication-title: Blood.
  doi: 10.1182/blood-2012-01-404699
– volume: 28
  start-page: 1142
  year: 2014
  ident: 2023072602362501100_bib38
  article-title: An MDS xenograft model utilizing a patient-derived cell line
  publication-title: Leukemia.
  doi: 10.1038/leu.2013.372
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2023072602362501100_bib45
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0506580102
– volume: 16
  start-page: 49
  year: 2010
  ident: 2023072602362501100_bib43
  article-title: Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype
  publication-title: Nat. Med.
  doi: 10.1038/nm.2054
– volume: 184
  start-page: 50
  year: 2010
  ident: 2023072602362501100_bib35
  article-title: Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2009.11.025
– volume: 123
  start-page: 4595
  year: 2013
  ident: 2023072602362501100_bib12
  article-title: Induction of myelodysplasia by myeloid-derived suppressor cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI67580
– volume: 208
  start-page: 1189
  year: 2011
  ident: 2023072602362501100_bib4
  article-title: miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101823
– volume: 41
  start-page: 1005
  year: 2013
  ident: 2023072602362501100_bib37
  article-title: Differential IRAK signaling in hematologic malignancies
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2013.09.008
– volume: 278
  start-page: 12144
  year: 2003
  ident: 2023072602362501100_bib46
  article-title: Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M300720200
– volume: 29
  start-page: 2897
  year: 2011
  ident: 2023072602362501100_bib25
  article-title: Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2011.34.8540
– volume: 39
  start-page: 167
  year: 2011
  ident: 2023072602362501100_bib44
  article-title: MicroRNA-146a disrupts hematopoietic differentiation and survival
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2010.09.011
– volume: 90
  start-page: 5484
  year: 1993
  ident: 2023072602362501100_bib28
  article-title: Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.90.12.5484
– year: 2009
  ident: 2023072602362501100_bib26
  article-title: Coordinate Loss of a MicroRNA Mir 145 and a Protein-Coding Gene RPS14 Cooperate in the Pathogenesis of 5q- Syndrome
  doi: 10.1182/blood.V114.22.947.947
– volume: 13
  start-page: 78
  year: 2007
  ident: 2023072602362501100_bib29
  article-title: Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation
  publication-title: Nat. Med.
  doi: 10.1038/nm1512
– volume: 110
  start-page: 4385
  year: 2007
  ident: 2023072602362501100_bib20
  article-title: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients
  publication-title: Blood.
  doi: 10.1182/blood-2007-03-082404
– volume: 9
  start-page: 2736
  year: 1995
  ident: 2023072602362501100_bib3
  article-title: Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.22.2736
– volume: 94
  start-page: 6948
  year: 1997
  ident: 2023072602362501100_bib51
  article-title: Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1-1.5 Mb and preparation of a PAC-based physical map
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.94.13.6948
– volume: 317
  start-page: 230
  year: 2004
  ident: 2023072602362501100_bib32
  article-title: TIFAB inhibits TIFA, TRAF-interacting protein with a forkhead-associated domain
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.03.030
– volume: 110
  start-page: 719
  year: 2007
  ident: 2023072602362501100_bib23
  article-title: Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders
  publication-title: Blood.
  doi: 10.1182/blood-2007-01-068809
– volume: 69
  start-page: 963
  year: 2012
  ident: 2023072602362501100_bib21
  article-title: Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-011-0819-y
– volume: 87
  start-page: 515
  year: 2008
  ident: 2023072602362501100_bib19
  article-title: Cytogenetic features in myelodysplastic syndromes
  publication-title: Ann. Hematol.
  doi: 10.1007/s00277-008-0483-y
– volume: 108
  start-page: 337
  year: 2006
  ident: 2023072602362501100_bib34
  article-title: Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype
  publication-title: Blood.
  doi: 10.1182/blood-2005-12-4769
– volume: 5
  start-page: 13
  year: 2000
  ident: 2023072602362501100_bib47
  article-title: Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(00)80399-8
– volume: 12
  start-page: 5
  year: 2006
  ident: 2023072602362501100_bib17
  article-title: Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-1437
– volume: 22
  start-page: 479
  year: 2005
  ident: 2023072602362501100_bib39
  article-title: Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2005.02.009
– volume: 24
  start-page: 90
  year: 2013
  ident: 2023072602362501100_bib36
  article-title: Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2013.05.006
– volume: 73
  start-page: 647
  year: 1989
  ident: 2023072602362501100_bib27
  article-title: Interleukin-4 and interleukin-5 map to human chromosome 5 in a region encoding growth factors and receptors and are deleted in myeloid leukemias with a del(5q)
  publication-title: Blood.
– volume: 101
  start-page: 15318
  year: 2004
  ident: 2023072602362501100_bib13
  article-title: TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0404132101
– volume: 16
  start-page: 59
  year: 2010
  ident: 2023072602362501100_bib1
  article-title: A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome
  publication-title: Nat. Med.
  doi: 10.1038/nm.2063
– volume: 99
  start-page: 4638
  year: 2002
  ident: 2023072602362501100_bib8
  article-title: Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome
  publication-title: Blood.
  doi: 10.1182/blood.V99.12.4638
– volume: 146
  start-page: 375
  year: 2009
  ident: 2023072602362501100_bib33
  article-title: TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is a negative regulator of the TRAF6-induced cellular functions
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvp080
– volume: 8
  start-page: 1328
  year: 2014
  ident: 2023072602362501100_bib16
  article-title: Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network
  publication-title: Cell Reports.
  doi: 10.1016/j.celrep.2014.07.062
– volume: 237
  start-page: 318
  year: 1997
  ident: 2023072602362501100_bib40
  article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.7111
– volume: 1
  start-page: re12
  year: 2008
  ident: 2023072602362501100_bib31
  article-title: Structure and function of the phosphothreonine-specific FHA domain
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.151re12
– volume: 22
  start-page: 251
  year: 1998
  ident: 2023072602362501100_bib22
  article-title: Molecular cytogenetic delineation of the critical deleted region in the 5q- syndrome
  publication-title: Genes Chromosomes Cancer.
  doi: 10.1002/(SICI)1098-2264(199807)22:3<251::AID-GCC11>3.0.CO;2-R
– volume: 451
  start-page: 335
  year: 2008
  ident: 2023072602362501100_bib14
  article-title: Identification of RPS14 as a 5q- syndrome gene by RNA interference screen
  publication-title: Nature.
  doi: 10.1038/nature06494
– volume: 108
  start-page: 9184
  year: 2011
  ident: 2023072602362501100_bib52
  article-title: NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1105398108
– volume: 66
  start-page: 26
  year: 2000
  ident: 2023072602362501100_bib7
  article-title: Transcription mapping of the 5q- syndrome critical region: cloning of two novel genes and sequencing, expression, and mapping of a further six novel cDNAs
  publication-title: Genomics.
  doi: 10.1006/geno.2000.6193
– volume: 22
  start-page: 2856
  year: 2008
  ident: 2023072602362501100_bib42
  article-title: BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome
  publication-title: Genes Dev.
  doi: 10.1101/gad.1725108
– volume: 259
  start-page: 968
  year: 1993
  ident: 2023072602362501100_bib49
  article-title: Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia
  publication-title: Science.
  doi: 10.1126/science.8438156
– volume: 142
  start-page: 914
  year: 2010
  ident: 2023072602362501100_bib30
  article-title: Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.08.012
– volume: 14
  start-page: 1157
  year: 2010
  ident: 2023072602362501100_bib10
  article-title: NF-κB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia
  publication-title: Expert Opin. Ther. Targets.
  doi: 10.1517/14728222.2010.522570
– volume: 139
  start-page: 578
  year: 2007
  ident: 2023072602362501100_bib9
  article-title: Gene expression profiling of CD34+ cells in patients with the 5q- syndrome
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.2007.06833.x
– volume: 24
  start-page: 459
  year: 2010
  ident: 2023072602362501100_bib11
  article-title: Prognostic classification and risk assessment in myelodysplastic syndromes
  publication-title: Hematol. Oncol. Clin. North Am.
  doi: 10.1016/j.hoc.2010.02.005
– volume-title: Myelodysplastic Syndromes (MDS).
  year: 2012
  ident: 2023072602362501100_bib48
  article-title: Deregulation of TLR2-JMJD3 Innate Immunity Signaling, Including a Rare TLR2 SNP As a Potential Somatic Mutation
– reference: 20359637 - Hematol Oncol Clin North Am. 2010 Apr;24(2):459-68
– reference: 18202658 - Nature. 2008 Jan 17;451(7176):335-9
– reference: 9339364 - Genomics. 1997 Oct 1;45(1):88-96
– reference: 15845452 - Immunity. 2005 Apr;22(4):479-91
– reference: 15047173 - Biochem Biophys Res Commun. 2004 Apr 23;317(1):230-4
– reference: 17420284 - Blood. 2007 Jul 15;110(2):719-26
– reference: 20850013 - Cell. 2010 Sep 17;142(6):914-29
– reference: 17726160 - Blood. 2007 Dec 15;110(13):4385-95
– reference: 8516290 - Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5484-8
– reference: 25242043 - Cancer Cell. 2014 Oct 13;26(4):509-20
– reference: 12036901 - Blood. 2002 Jun 15;99(12):4638-41
– reference: 22685174 - Blood. 2012 Jul 26;120(4):858-67
– reference: 18414863 - Ann Hematol. 2008 Jul;87(7):515-26
– reference: 16397017 - Clin Cancer Res. 2006 Jan 1;12(1):5-10
– reference: 15492226 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15318-23
– reference: 16527891 - Blood. 2006 Jul 1;108(1):337-45
– reference: 2783863 - Blood. 1989 Feb 15;73(3):647-50
– reference: 10843801 - Genomics. 2000 May 15;66(1):26-34
– reference: 12566447 - J Biol Chem. 2003 Apr 4;278(14):12144-50
– reference: 19470519 - J Biochem. 2009 Sep;146(3):375-81
– reference: 21576471 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9184-9
– reference: 19898489 - Nat Med. 2010 Jan;16(1):49-58
– reference: 17954704 - Blood. 2008 Feb 1;111(3):1534-42
– reference: 21555486 - J Exp Med. 2011 Jun 6;208(6):1189-201
– reference: 19966810 - Nat Med. 2010 Jan;16(1):59-66
– reference: 10678165 - Mol Cell. 2000 Jan;5(1):13-25
– reference: 9192672 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6948-53
– reference: 21690473 - J Clin Oncol. 2011 Jul 20;29(21):2897-903
– reference: 24084080 - Exp Hematol. 2013 Dec;41(12):1005-7
– reference: 24326684 - Leukemia. 2014 May;28(5):1142-5
– reference: 8188284 - Genomics. 1994 Feb;19(3):425-32
– reference: 19109241 - Sci Signal. 2008;1(51):re12
– reference: 20858024 - Expert Opin Ther Targets. 2010 Nov;14(11):1157-76
– reference: 14579250 - Bioessays. 2003 Nov;25(11):1096-105
– reference: 9624537 - Genes Chromosomes Cancer. 1998 Jul;22(3):251-6
– reference: 7590249 - Genes Dev. 1995 Nov 15;9(22):2736-46
– reference: 11798190 - Biochem Biophys Res Commun. 2002 Jan 25;290(3):1108-13
– reference: 19958752 - Chem Biol Interact. 2010 Mar 19;184(1-2):50-7
– reference: 25199827 - Cell Rep. 2014 Sep 11;8(5):1328-38
– reference: 24216507 - J Clin Invest. 2013 Nov;123(11):4595-611
– reference: 8438156 - Science. 1993 Feb 12;259(5097):968-71
– reference: 23845443 - Cancer Cell. 2013 Jul 8;24(1):90-104
– reference: 18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68
– reference: 22723552 - Blood. 2012 Aug 9;120(6):1290-8
– reference: 21964925 - Cell Mol Life Sci. 2012 Mar;69(6):963-79
– reference: 20933052 - Exp Hematol. 2011 Feb;39(2):167-178.e4
– reference: 9268708 - Biochem Biophys Res Commun. 1997 Aug 18;237(2):318-24
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 17159988 - Nat Med. 2007 Jan;13(1):78-83
– reference: 17916100 - Br J Haematol. 2007 Nov;139(4):578-89
SSID ssj0014456
Score 2.4807382
Snippet TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) myelodysplastic syndrome (MDS). Deletion of Tifab...
Varney et al. report that that deletion of the TRAF-interacting protein TIFAB contributes to an MDS-like phenotype in mice by up-regulating TRAF6 and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1967
SubjectTerms Animals
Apoptosis
Bone Marrow Transplantation
Cell Differentiation
Chromosomes, Human, Pair 5
Hematopoiesis
Humans
Male
Mice
Mice, Inbred C57BL
MicroRNAs - physiology
NF-kappa B - antagonists & inhibitors
NF-kappa B - physiology
Proteins - genetics
Proteins - physiology
Signal Transduction - physiology
TNF Receptor-Associated Factor 6 - physiology
Toll-Like Receptors - physiology
Title Loss of Tifab , a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling
URI https://www.ncbi.nlm.nih.gov/pubmed/26458771
https://www.proquest.com/docview/1725025972
https://www.proquest.com/docview/1808642144
https://pubmed.ncbi.nlm.nih.gov/PMC4612089
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiFeEDflkpFAApUsceIkzuMKtqygLRKkqG-RnTgitGp2ezwsf4M_zIxzNFkKWniJKtd1Is_X8Uzm-Ah5ngahrX2tLOYmqcXdgFvC96SlHXB9tM9DZSrkxhP_ZMo_zLxZr_ezlbW03ajD5MfeupL_kSqMgVyxSvYfJNssCgPwGeQLV5AwXC8l4xGccGjtRXkmTVxFDlKMugvvDL398bsvyJBcsrpjVHw9MC1ai9MC_ON83ZD0IGFnlRBrrMcIwGEt8jlSqmDaS7Gyos9HQ3-A2R5yUZ9233dIa9m1Hc6Ai6H7r3JVpZeNsRA-lbtKiEmOfS3mRZVdjO0rWz_8iLTY5pzMV8W5LOlaylfpG9jyraFLGkRyLs-387z9LoOZHqiVxqzUL7cxoFxqZL1nrNLZDnPa4GQtFQwqJdh7NtiC49mgsf8A40yEYncG1nH_yad4OB2N4uh4Fl0hVx3wPZAW4_2syRsCB9RQAjePVVVTwOpv2mt37ZzfnJeLObgtoya6SW5UUqNHJbRukZ5e3ibXxpXQ7pAVIowWGTUIe00lBam89M5eUcAWRWzBmEEW7SCLVsiibWSZdWpk0S6yaIOsu2Q6PI7enlgVS4eVcOFuLNeVaaaZnziukk4KO5agHY9dxhKWJoppFbo-S0UagnPuJFqpjAnF7SxMvMxT7j1ysCyW-gGhyktcz03dDDkVJCzs-7DDju9Irh0Ryj4Z1HsaJ1ULe2RSWcQmlULwGCQQ1xLokxfN7NOydcsf5j2rxRODbsWAmVzqYruOwbj3wCcIA-cvc4QtsFic8z65X4q0uRs4G54IAtYnQUfYzQTs7d79Zpl_Mz3eOXgetggfXuLZHpHru__SY3KwWW31E7CUN-qpQe4vmzXBbA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+Tifab%2C+a+del%285q%29+MDS+gene%2C+alters+hematopoiesis+through+derepression+of+Toll-like+receptor-TRAF6+signaling&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Varney%2C+Melinda+E&rft.au=Niederkorn%2C+Madeline&rft.au=Konno%2C+Hiroyasu&rft.au=Matsumura%2C+Takayuki&rft.date=2015-10-19&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=212&rft.issue=11&rft.spage=1967&rft_id=info:doi/10.1084%2Fjem.20141898&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon