Learning the Alpha-bits of black holes
A bstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for...
Saved in:
Published in | The journal of high energy physics Vol. 2019; no. 12; pp. 1 - 55 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction
α
of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the
α
-bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving
α
-bit codes. Unintuitively, Hawking radiation always reveals the
α
-bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1
/N
. |
---|---|
AbstractList | Abstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α-bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α-bit codes. Unintuitively, Hawking radiation always reveals the α-bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1/N. When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α-bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α-bit codes. Unintuitively, Hawking radiation always reveals the α-bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1/N. A bstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α -bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α -bit codes. Unintuitively, Hawking radiation always reveals the α -bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1 /N . When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α -bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α -bit codes. Unintuitively, Hawking radiation always reveals the α -bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1 /N . |
ArticleNumber | 7 |
Author | Hayden, Patrick Penington, Geoffrey |
Author_xml | – sequence: 1 givenname: Patrick surname: Hayden fullname: Hayden, Patrick organization: Stanford Institute for Theoretical Physics, Stanford University – sequence: 2 givenname: Geoffrey orcidid: 0000-0002-8627-5237 surname: Penington fullname: Penington, Geoffrey email: geoffp@stanford.edu organization: Stanford Institute for Theoretical Physics, Stanford University |
BookMark | eNp9kMtLxDAQxoMo-Dx7LQiih-pkkm6bo4hPFvSg5zBN0t2utVmT7sH_3mhFRdDTPJjfNzPfNlvvfe8Y2-dwwgHK09vri3uORwhcHad6jW1xQJVXslTrP_JNth3jAoAXXMEWO5w6Cn3bz7Jh7rKzbjmnvG6HmPkmqzsyT9ncdy7uso2Guuj2PuMOe7y8eDi_zqd3VzfnZ9PcyEoMuQBjkbA0aOuU1yQmViHUaGUNrppg4aQlYwVVCA0VVtmJqKVyRnCoUIoddjPqWk8LvQztM4VX7anVHw0fZprC0JrOaaASFU6UbbCRnKQyrgaV3hS2JIkiaR2MWsvgX1YuDnrhV6FP52sUiFCUAJCmTscpE3yMwTVfWznod2P1aKx-N1anOhHFL8K0Aw2t74dAbfcPByMX04Z-5sL3PX8hbztBikY |
CitedBy_id | crossref_primary_10_1016_j_physrep_2021_10_001 crossref_primary_10_1103_PhysRevResearch_6_L022021 crossref_primary_10_1103_PhysRevA_104_012408 crossref_primary_10_1007_JHEP05_2020_013 crossref_primary_10_1007_JHEP10_2023_040 crossref_primary_10_1038_s41467_023_42743_z crossref_primary_10_1007_JHEP06_2024_155 crossref_primary_10_1007_JHEP08_2020_132 crossref_primary_10_1007_JHEP08_2022_189 crossref_primary_10_21468_SciPostPhys_16_6_144 crossref_primary_10_1007_JHEP01_2022_170 crossref_primary_10_1007_JHEP05_2021_127 crossref_primary_10_1007_JHEP07_2024_123 crossref_primary_10_1007_JHEP02_2023_195 crossref_primary_10_1007_JHEP06_2020_031 crossref_primary_10_1007_JHEP12_2021_013 crossref_primary_10_1140_epjc_s10052_022_10382_1 crossref_primary_10_1007_JHEP04_2021_175 crossref_primary_10_21468_SciPostPhys_16_1_024 crossref_primary_10_1007_s00220_024_05053_z crossref_primary_10_1103_PhysRevD_108_046007 crossref_primary_10_1103_PhysRevD_111_026012 crossref_primary_10_22331_q_2022_02_16_655 crossref_primary_10_1007_JHEP03_2023_026 crossref_primary_10_1140_epjc_s10052_022_10376_z crossref_primary_10_1007_JHEP07_2023_189 crossref_primary_10_1103_PhysRevD_110_086002 crossref_primary_10_1007_JHEP01_2025_086 crossref_primary_10_1007_JHEP10_2021_047 crossref_primary_10_1007_JHEP08_2020_121 crossref_primary_10_1007_s10773_021_04901_1 crossref_primary_10_22331_q_2023_02_21_928 crossref_primary_10_1007_JHEP07_2024_138 crossref_primary_10_1007_JHEP10_2020_052 crossref_primary_10_1007_JHEP03_2022_110 crossref_primary_10_1103_PhysRevD_103_066011 crossref_primary_10_1007_JHEP11_2021_177 crossref_primary_10_1103_PhysRevD_102_086021 crossref_primary_10_1103_PhysRevD_107_086002 crossref_primary_10_1007_JHEP11_2021_192 crossref_primary_10_1007_JHEP01_2024_033 crossref_primary_10_1109_TIT_2020_3021289 crossref_primary_10_1007_JHEP11_2024_164 crossref_primary_10_1007_JHEP09_2020_002 crossref_primary_10_1007_JHEP07_2023_025 crossref_primary_10_1007_JHEP11_2022_153 crossref_primary_10_1007_JHEP04_2021_062 crossref_primary_10_1088_1751_8121_acef7d crossref_primary_10_1103_PhysRevD_102_086017 crossref_primary_10_21468_SciPostPhys_17_5_133 crossref_primary_10_1007_JHEP01_2023_064 crossref_primary_10_1007_JHEP08_2020_032 crossref_primary_10_1103_PhysRevD_102_066008 crossref_primary_10_1038_s42254_020_0225_1 crossref_primary_10_1103_PhysRevD_105_086010 crossref_primary_10_1103_PhysRevD_109_086011 crossref_primary_10_1007_JHEP03_2022_205 crossref_primary_10_1103_PhysRevD_105_086012 crossref_primary_10_1103_PhysRevD_106_105007 crossref_primary_10_1007_JHEP01_2020_168 crossref_primary_10_1007_JHEP02_2024_079 crossref_primary_10_1007_JHEP03_2020_191 crossref_primary_10_1007_JHEP07_2021_011 crossref_primary_10_21468_SciPostPhys_12_5_157 crossref_primary_10_1103_PhysRevD_105_026018 crossref_primary_10_21468_SciPostPhysCore_7_4_070 crossref_primary_10_22331_q_2024_02_21_1261 crossref_primary_10_1007_JHEP05_2023_109 crossref_primary_10_1007_JHEP07_2023_043 crossref_primary_10_1007_JHEP11_2020_111 crossref_primary_10_1103_PhysRevD_107_026016 crossref_primary_10_1007_JHEP01_2022_085 crossref_primary_10_1007_JHEP03_2020_149 crossref_primary_10_1007_JHEP02_2025_150 crossref_primary_10_1007_JHEP08_2020_140 crossref_primary_10_22331_q_2025_03_20_1664 crossref_primary_10_1007_s10773_023_05439_0 crossref_primary_10_1103_PhysRevD_102_086001 |
Cites_doi | 10.1088/0264-9381/29/15/155009 10.1007/JHEP06(2015)149 10.1007/JHEP06(2016)004 10.1103/PhysRevD.89.086010 10.1088/1367-2630/6/1/026 10.1007/JHEP12(2014)162 10.1103/PhysRevD.96.066017 10.1007/JHEP08(2013)090 10.1007/JHEP11(2014)055 10.1088/1126-6708/2007/09/120 10.1103/PhysRevLett.104.120501 10.1007/BF02787889 10.1103/PhysRevLett.111.171301 10.1002/prop.201300020 10.1103/PhysRevD.86.065007 10.1007/JHEP05(2019)010 10.1103/PhysRevLett.117.021601 10.1088/0264-9381/31/22/225007 10.1143/JPSJ.12.570 10.1103/PhysRevA.43.2046 10.1007/s10714-010-1034-0 10.1109/TIT.2012.2191695 10.1007/BF01646342 10.1103/PhysRevLett.96.181602 10.1007/978-3-642-10698-9_7 10.1007/JHEP07(2016)100 10.1007/JHEP11(2016)009 10.1088/1475-7516/2013/09/028 10.1007/JHEP03(2014)067 10.21468/SciPostPhys.2.3.016 10.1007/JHEP04(2015)163 10.1007/JHEP03(2017)153 10.1088/1126-6708/2007/07/062 10.1145/2518131 10.1007/s00220-017-2904-z 10.1038/nphys444 10.1007/JHEP01(2018)081 10.1063/1.3463451 10.1007/s00023-018-0716-0 10.1007/JHEP01(2015)073 10.1007/JHEP11(2013)074 10.1088/1126-6708/2007/02/042 10.1007/JHEP10(2013)212 10.1007/JHEP08(2014)126 10.1103/PhysRevLett.98.100502 10.1103/PhysRevX.9.031011 10.1088/1126-6708/2008/10/065 10.1007/JHEP10(2013)107 10.1142/9789812794208_0030 10.1007/JHEP07(2017)151 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP12(2019)007 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 55 |
ExternalDocumentID | oai_doaj_org_article_0a729269df2f41a49ceb090293d7a423 10_1007_JHEP12_2019_007 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c483t-30cd2a27c2db30cba36d920b2d4b0e8625e4dacd3a820fa5d9d63b49ec3108243 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:31:16 EDT 2025 Mon Jul 14 07:21:33 EDT 2025 Tue Jul 01 03:54:53 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Fri Feb 21 02:34:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | AdS-CFT Correspondence Gauge-gravity correspondence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-30cd2a27c2db30cba36d920b2d4b0e8625e4dacd3a820fa5d9d63b49ec3108243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8627-5237 |
OpenAccessLink | https://www.proquest.com/docview/2322057000?pq-origsite=%requestingapplication% |
PQID | 2322057000 |
PQPubID | 2034718 |
PageCount | 55 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a729269df2f41a49ceb090293d7a423 proquest_journals_2322057000 crossref_primary_10_1007_JHEP12_2019_007 crossref_citationtrail_10_1007_JHEP12_2019_007 springer_journals_10_1007_JHEP12_2019_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jap.12 (1957) 570 [INSPIRE]. HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP20161100910.1007/JHEP11(2016)0092016JHEP...11..009H35844421390.83344[arXiv:1601.01694]; [INSPIRE] VerlindeEPEmergent Gravity and the Dark UniverseSciPost Phys.2017201610.21468/SciPostPhys.2.3.0162017ScPP....2...16V[arXiv:1611.02269]; [INSPIRE] FawziOHaydenPSenPFrom low-distortion norm embeddings to explicit uncertainty relations and efficient information lockingJ. ACM2013604410.1145/25181311281.81028 HaydenPPreskillJBlack holes as mirrors: Quantum information in random subsystemsJHEP20070912010.1088/1126-6708/2007/09/1202007JHEP...09..120H2342311[arXiv:0708.4025]; [INSPIRE] SekinoYSusskindLFast ScramblersJHEP20081006510.1088/1126-6708/2008/10/0652008JHEP...10..065S[arXiv:0808.2096]; [INSPIRE] BényCKempfAKribsDWGeneralization of quantum error correction via the Heisenberg picturePhys. Rev. Lett.20079810050210.1103/PhysRevLett.98.1005022007PhRvL..98j0502B T.J. Osborne and D.E. Stiegemann, Dynamics for holographic codes, arXiv:1706.08823 [INSPIRE]. BényCOreshkovOGeneral conditions for approximate quantum error correction and near-optimal recovery channelsPhys. Rev. Lett.201010412050110.1103/PhysRevLett.104.1205012010PhRvL.104l0501B K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev.D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE]. JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP20160600410.1007/JHEP06(2016)0042016JHEP...06..004J35381651388.83268[arXiv:1512.06431]; [INSPIRE] LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP20130809010.1007/JHEP08(2013)0902013JHEP...08..090L31063481342.83185[arXiv:1304.4926]; [INSPIRE] DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.201611702160110.1103/PhysRevLett.117.0216012016PhRvL.117b1601D3626959[arXiv:1601.05416]; [INSPIRE] ReehHSchliederSBemerkungen zur Unit¨ar¨aquivalenz von Lorentzinvarianten FeldernNuovo Cim.196122105110.1007/BF027878891961NCim...22.1051R[INSPIRE] BényCConditions for the approximate correction of algebras, in proceedings of the Theory of quantum computation, communication and cryptography: 4th workshop, TQC 2009, Waterloo, Canada, 11–13 May 2009, SpringerLect. Notes Comput. Sci.200959066610.1007/978-3-642-10698-9_7 J. Tyson, Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates, J. Math. Phys.51 (2010) 092204 [arXiv:0907.3386]. WallACMaximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.20143122500710.1088/0264-9381/31/22/2250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494]; [INSPIRE] AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP20150416310.1007/JHEP04(2015)1632015JHEP...04..163A33512061388.81095[arXiv:1411.7041]; [INSPIRE] LloydSPreskillJUnitarity of black hole evaporation in final-state projection modelsJHEP20140812610.1007/JHEP08(2014)1262014JHEP...08..126L[arXiv:1308.4209]; [INSPIRE] HarlowDAspects of the Papadodimas-Raju Proposal for the Black Hole InteriorJHEP20141105510.1007/JHEP11(2014)0552014JHEP...11..055H32907931333.83091[arXiv:1405.1995]; [INSPIRE] HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP20141216210.1007/JHEP12(2014)1622014JHEP...12..162H[arXiv:1408.6300]; [INSPIRE] FaulknerTLewkowyczABulk locality from modular flowJHEP20170715110.1007/JHEP07(2017)1512017JHEP...07..151F36866471380.81313[arXiv:1704.05464]; [INSPIRE] VerlindeEVerlindeHBlack Hole Entanglement and Quantum Error CorrectionJHEP20131010710.1007/JHEP10(2013)1072013JHEP...10..107V31177261342.83211[arXiv:1211.6913]; [INSPIRE] F. Hiai, M. Ohya and M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras, in Selected Papers of M. Ohya , World Scientific (2008), pp. 420–430. Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.201042232310.1007/s10714-010-1034-02010GReGr..42.2323V27216671200.83052[arXiv:1005.3035]; [INSPIRE] PageDNTime Dependence of Hawking Radiation EntropyJCAP20130902810.1088/1475-7516/2013/09/0282013JCAP...09..028P3127201[arXiv:1301.4995]; [INSPIRE] HaydenPWinterAWeak decoupling duality and quantum identificationIEEE Trans. Inf. Theory201258491410.1109/TIT.2012.219169529498621365.81027 HaagRHugenholtzNMWinninkMOn the Equilibrium states in quantum statistical mechanicsCommun. Math. Phys.1967521510.1007/BF016463421967CMaPh...5..215H2192830171.47102[INSPIRE] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2gravity, arXiv:1707.02325 [INSPIRE]. PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP20150614910.1007/JHEP06(2015)1492015JHEP...06..149P33701861388.81094[arXiv:1503.06237]; [INSPIRE] PopescuSShortAJWinterAEntanglement and the foundations of statistical mechanicsNat. Phys.2006275410.1038/nphys444 KretschmannDWernerRFTema con variazioni: quantum channel capacityNew J. Phys.200462610.1088/1367-2630/6/1/0262004NJPh....6...26K M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Ann. Henri Poincaŕe19 (2018) 2955 [arXiv:1509.07127] [INSPIRE]. N. Bao and H. Ooguri, Distinguishability of black hole microstates, Phys. Rev.D 96 (2017) 066017 [arXiv:1705.07943] [INSPIRE]. A. Winter, Quantum and classical message identification via quantum channels, in Festschrift “A.S. Holevo 60”, O. Hirota ed., Rinton Press (2004), pp. 171–188, reprinted in Quant. Inf. Comput.4 (2004) 563 [quant-ph/0401060]. DongXLewkowyczAEntropy, Extremality, Euclidean Variations and the Equations of MotionJHEP20180108110.1007/JHEP01(2018)0812018JHEP...01..081D37625651384.81097[arXiv:1705.08453]; [INSPIRE] MarolfDPolchinskiJGauge/Gravity Duality and the Black Hole InteriorPhys. Rev. Lett.201311117130110.1103/PhysRevLett.111.1713012013PhRvL.111q1301M[arXiv:1307.4706]; [INSPIRE] HirataTTakayanagiTAdS/CFT and strong subadditivity of entanglement entropyJHEP20070204210.1088/1126-6708/2007/02/0422007JHEP...02..042H2318012[hep-th/0608213]; [INSPIRE] SrednickiMChaos and quantum thermalizationPhys. Rev.1994E 508881994PhRvE..50..888S B. Swingle, Entanglement Renormalization and Holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE]. KellyWRBulk Locality and Entanglement Swapping in AdS/CFTJHEP20170315310.1007/JHEP03(2017)1532017JHEP...03..153K36506641377.81176[arXiv:1610.00669]; [INSPIRE] ShenkerSHStanfordDBlack holes and the butterfly effectJHEP20140306710.1007/JHEP03(2014)0672014JHEP...03..067S31909791333.83111[arXiv:1306.0622]; [INSPIRE] CzechBLamprouLMcCandlishSSullyJTensor Networks from Kinematic SpaceJHEP20160710010.1007/JHEP07(2016)1002016JHEP...07..100C35473761390.83102[arXiv:1512.01548]; [INSPIRE] B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE]. DeutschJMQuantum statistical mechanics in a closed systemPhys. Rev.1991A 43204610.1103/PhysRevA.43.20461991PhRvA..43.2046D MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.20136178110.1002/prop.2013000202013ForPh..61..781M31044581338.83057[arXiv:1306.0533]; [INSPIRE] PapadodimasKRajuSAn Infalling Observer in AdS/CFTJHEP20131021210.1007/JHEP10(2013)2122013JHEP...10..212P[arXiv:1211.6767]; [INSPIRE] de BoerJvan BreukelenRLokhandeSFPapadodimasKVerlindeEOn the interior geometry of a typical black hole microstateJHEP20190501010.1007/JHEP05(2019)01039788241416.83047[arXiv:1804.10580]; [INSPIRE] RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.20069618160210.1103/PhysRevLett.96.1816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001]; [INSPIRE] HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP20070706210.1088/1126-6708/2007/07/0622007JHEP...07..062H2326725[arXiv:0705.0016]; [INSPIRE] FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP20131107410.1007/JHEP11(2013)0742013JHEP...11..074F1392.81021[arXiv:1307.2892]; [INSPIRE] D. Kretschmann, D. Schlingemann and R.F. Werner, The information-disturbance tradeoff and the continuity of Stinespring’s representation, quant-ph/0605009. HarlowDThe Ryu-Takayanagi Formula from Quantum Error CorrectionCommun. Math. Phys.201735486510.1007/s00220-017-2904-z2017CMaPh.354..865H36686121377.81040[arXiv:1607.03901]; [INSPIRE] J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys. Rev.X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE]. EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP20150107310.1007/JHEP01(2015)0732015JHEP...01..073E[arXiv:1408.3203]; [INSPIRE] P. Hayden and G. Penington, Approximate quantum error correction revisited: Introducing the alpha-bit, arXiv:1706.09434. CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.20122915500910.1088/0264-9381/29/15/1550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330]; [INSPIRE] C. Bény, Z. Zimborás and F. Pastawski, Approximate recovery with locality and symmetry constraints, arXiv:1806.10324 [INSPIRE]. J Maldacena (11902_CR48) 2013; 61 M Headrick (11902_CR27) 2014; 12 M Van Raamsdonk (11902_CR4) 2010; 42 DL Jafferis (11902_CR29) 2016; 06 D Marolf (11902_CR42) 2013; 111 11902_CR50 O Fawzi (11902_CR54) 2013; 60 11902_CR7 11902_CR11 C Bény (11902_CR15) 2009; 5906 11902_CR53 11902_CR58 11902_CR12 11902_CR56 11902_CR19 P Hayden (11902_CR21) 2016; 11 11902_CR16 T Faulkner (11902_CR52) 2017; 07 DN Page (11902_CR20) 2013; 09 P Hayden (11902_CR14) 2007; 09 VE Hubeny (11902_CR25) 2007; 07 X Dong (11902_CR24) 2018; 01 WR Kelly (11902_CR45) 2017; 03 C Bény (11902_CR57) 2010; 104 EP Verlinde (11902_CR37) 2017; 2 R Haag (11902_CR43) 1967; 5 11902_CR44 JM Deutsch (11902_CR40) 1991; A 43 J de Boer (11902_CR51) 2019; 05 E Verlinde (11902_CR5) 2013; 10 P Hayden (11902_CR17) 2012; 58 AC Wall (11902_CR28) 2014; 31 S Popescu (11902_CR39) 2006; 2 Y Sekino (11902_CR34) 2008; 10 F Pastawski (11902_CR8) 2015; 06 A Almheiri (11902_CR1) 2015; 04 A Lewkowycz (11902_CR47) 2013; 08 X Dong (11902_CR9) 2016; 117 K Papadodimas (11902_CR10) 2013; 10 11902_CR33 11902_CR30 11902_CR31 D Harlow (11902_CR2) 2017; 354 11902_CR35 D Harlow (11902_CR49) 2014; 11 11902_CR38 C Bény (11902_CR55) 2007; 98 T Faulkner (11902_CR23) 2013; 11 S Ryu (11902_CR22) 2006; 96 N Engelhardt (11902_CR13) 2015; 01 B Czech (11902_CR36) 2016; 07 M Srednicki (11902_CR41) 1994; E 50 H Reeh (11902_CR46) 1961; 22 D Kretschmann (11902_CR18) 2004; 6 S Lloyd (11902_CR6) 2014; 08 T Hirata (11902_CR3) 2007; 02 B Czech (11902_CR26) 2012; 29 SH Shenker (11902_CR32) 2014; 03 |
References_xml | – reference: MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.20136178110.1002/prop.2013000202013ForPh..61..781M31044581338.83057[arXiv:1306.0533]; [INSPIRE] – reference: C. Bény, Z. Zimborás and F. Pastawski, Approximate recovery with locality and symmetry constraints, arXiv:1806.10324 [INSPIRE]. – reference: AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP20150416310.1007/JHEP04(2015)1632015JHEP...04..163A33512061388.81095[arXiv:1411.7041]; [INSPIRE] – reference: KellyWRBulk Locality and Entanglement Swapping in AdS/CFTJHEP20170315310.1007/JHEP03(2017)1532017JHEP...03..153K36506641377.81176[arXiv:1610.00669]; [INSPIRE] – reference: HirataTTakayanagiTAdS/CFT and strong subadditivity of entanglement entropyJHEP20070204210.1088/1126-6708/2007/02/0422007JHEP...02..042H2318012[hep-th/0608213]; [INSPIRE] – reference: VerlindeEPEmergent Gravity and the Dark UniverseSciPost Phys.2017201610.21468/SciPostPhys.2.3.0162017ScPP....2...16V[arXiv:1611.02269]; [INSPIRE] – reference: SrednickiMChaos and quantum thermalizationPhys. Rev.1994E 508881994PhRvE..50..888S – reference: HaagRHugenholtzNMWinninkMOn the Equilibrium states in quantum statistical mechanicsCommun. Math. Phys.1967521510.1007/BF016463421967CMaPh...5..215H2192830171.47102[INSPIRE] – reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.20069618160210.1103/PhysRevLett.96.1816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001]; [INSPIRE] – reference: SekinoYSusskindLFast ScramblersJHEP20081006510.1088/1126-6708/2008/10/0652008JHEP...10..065S[arXiv:0808.2096]; [INSPIRE] – reference: CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.20122915500910.1088/0264-9381/29/15/1550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330]; [INSPIRE] – reference: B. Swingle, Entanglement Renormalization and Holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE]. – reference: F. Hiai, M. Ohya and M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras, in Selected Papers of M. Ohya , World Scientific (2008), pp. 420–430. – reference: T.J. Osborne and D.E. Stiegemann, Dynamics for holographic codes, arXiv:1706.08823 [INSPIRE]. – reference: CzechBLamprouLMcCandlishSSullyJTensor Networks from Kinematic SpaceJHEP20160710010.1007/JHEP07(2016)1002016JHEP...07..100C35473761390.83102[arXiv:1512.01548]; [INSPIRE] – reference: P. Hayden and G. Penington, Approximate quantum error correction revisited: Introducing the alpha-bit, arXiv:1706.09434. – reference: HarlowDAspects of the Papadodimas-Raju Proposal for the Black Hole InteriorJHEP20141105510.1007/JHEP11(2014)0552014JHEP...11..055H32907931333.83091[arXiv:1405.1995]; [INSPIRE] – reference: WallACMaximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.20143122500710.1088/0264-9381/31/22/2250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494]; [INSPIRE] – reference: HarlowDThe Ryu-Takayanagi Formula from Quantum Error CorrectionCommun. Math. Phys.201735486510.1007/s00220-017-2904-z2017CMaPh.354..865H36686121377.81040[arXiv:1607.03901]; [INSPIRE] – reference: KretschmannDWernerRFTema con variazioni: quantum channel capacityNew J. Phys.200462610.1088/1367-2630/6/1/0262004NJPh....6...26K – reference: HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP20161100910.1007/JHEP11(2016)0092016JHEP...11..009H35844421390.83344[arXiv:1601.01694]; [INSPIRE] – reference: PageDNTime Dependence of Hawking Radiation EntropyJCAP20130902810.1088/1475-7516/2013/09/0282013JCAP...09..028P3127201[arXiv:1301.4995]; [INSPIRE] – reference: HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP20141216210.1007/JHEP12(2014)1622014JHEP...12..162H[arXiv:1408.6300]; [INSPIRE] – reference: MarolfDPolchinskiJGauge/Gravity Duality and the Black Hole InteriorPhys. Rev. Lett.201311117130110.1103/PhysRevLett.111.1713012013PhRvL.111q1301M[arXiv:1307.4706]; [INSPIRE] – reference: LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP20130809010.1007/JHEP08(2013)0902013JHEP...08..090L31063481342.83185[arXiv:1304.4926]; [INSPIRE] – reference: PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP20150614910.1007/JHEP06(2015)1492015JHEP...06..149P33701861388.81094[arXiv:1503.06237]; [INSPIRE] – reference: HaydenPWinterAWeak decoupling duality and quantum identificationIEEE Trans. Inf. Theory201258491410.1109/TIT.2012.219169529498621365.81027 – reference: ReehHSchliederSBemerkungen zur Unit¨ar¨aquivalenz von Lorentzinvarianten FeldernNuovo Cim.196122105110.1007/BF027878891961NCim...22.1051R[INSPIRE] – reference: Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.201042232310.1007/s10714-010-1034-02010GReGr..42.2323V27216671200.83052[arXiv:1005.3035]; [INSPIRE] – reference: A. Winter, Quantum and classical message identification via quantum channels, in Festschrift “A.S. Holevo 60”, O. Hirota ed., Rinton Press (2004), pp. 171–188, reprinted in Quant. Inf. Comput.4 (2004) 563 [quant-ph/0401060]. – reference: HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP20070706210.1088/1126-6708/2007/07/0622007JHEP...07..062H2326725[arXiv:0705.0016]; [INSPIRE] – reference: JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP20160600410.1007/JHEP06(2016)0042016JHEP...06..004J35381651388.83268[arXiv:1512.06431]; [INSPIRE] – reference: R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jap.12 (1957) 570 [INSPIRE]. – reference: FawziOHaydenPSenPFrom low-distortion norm embeddings to explicit uncertainty relations and efficient information lockingJ. ACM2013604410.1145/25181311281.81028 – reference: LloydSPreskillJUnitarity of black hole evaporation in final-state projection modelsJHEP20140812610.1007/JHEP08(2014)1262014JHEP...08..126L[arXiv:1308.4209]; [INSPIRE] – reference: FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP20131107410.1007/JHEP11(2013)0742013JHEP...11..074F1392.81021[arXiv:1307.2892]; [INSPIRE] – reference: M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Ann. Henri Poincaŕe19 (2018) 2955 [arXiv:1509.07127] [INSPIRE]. – reference: I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2gravity, arXiv:1707.02325 [INSPIRE]. – reference: de BoerJvan BreukelenRLokhandeSFPapadodimasKVerlindeEOn the interior geometry of a typical black hole microstateJHEP20190501010.1007/JHEP05(2019)01039788241416.83047[arXiv:1804.10580]; [INSPIRE] – reference: D. Kretschmann, D. Schlingemann and R.F. Werner, The information-disturbance tradeoff and the continuity of Stinespring’s representation, quant-ph/0605009. – reference: PopescuSShortAJWinterAEntanglement and the foundations of statistical mechanicsNat. Phys.2006275410.1038/nphys444 – reference: ShenkerSHStanfordDBlack holes and the butterfly effectJHEP20140306710.1007/JHEP03(2014)0672014JHEP...03..067S31909791333.83111[arXiv:1306.0622]; [INSPIRE] – reference: N. Bao and H. Ooguri, Distinguishability of black hole microstates, Phys. Rev.D 96 (2017) 066017 [arXiv:1705.07943] [INSPIRE]. – reference: FaulknerTLewkowyczABulk locality from modular flowJHEP20170715110.1007/JHEP07(2017)1512017JHEP...07..151F36866471380.81313[arXiv:1704.05464]; [INSPIRE] – reference: J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys. Rev.X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE]. – reference: DeutschJMQuantum statistical mechanics in a closed systemPhys. Rev.1991A 43204610.1103/PhysRevA.43.20461991PhRvA..43.2046D – reference: K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev.D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE]. – reference: DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.201611702160110.1103/PhysRevLett.117.0216012016PhRvL.117b1601D3626959[arXiv:1601.05416]; [INSPIRE] – reference: PapadodimasKRajuSAn Infalling Observer in AdS/CFTJHEP20131021210.1007/JHEP10(2013)2122013JHEP...10..212P[arXiv:1211.6767]; [INSPIRE] – reference: DongXLewkowyczAEntropy, Extremality, Euclidean Variations and the Equations of MotionJHEP20180108110.1007/JHEP01(2018)0812018JHEP...01..081D37625651384.81097[arXiv:1705.08453]; [INSPIRE] – reference: BényCOreshkovOGeneral conditions for approximate quantum error correction and near-optimal recovery channelsPhys. Rev. Lett.201010412050110.1103/PhysRevLett.104.1205012010PhRvL.104l0501B – reference: B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE]. – reference: VerlindeEVerlindeHBlack Hole Entanglement and Quantum Error CorrectionJHEP20131010710.1007/JHEP10(2013)1072013JHEP...10..107V31177261342.83211[arXiv:1211.6913]; [INSPIRE] – reference: EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP20150107310.1007/JHEP01(2015)0732015JHEP...01..073E[arXiv:1408.3203]; [INSPIRE] – reference: J. Tyson, Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates, J. Math. Phys.51 (2010) 092204 [arXiv:0907.3386]. – reference: HaydenPPreskillJBlack holes as mirrors: Quantum information in random subsystemsJHEP20070912010.1088/1126-6708/2007/09/1202007JHEP...09..120H2342311[arXiv:0708.4025]; [INSPIRE] – reference: BényCConditions for the approximate correction of algebras, in proceedings of the Theory of quantum computation, communication and cryptography: 4th workshop, TQC 2009, Waterloo, Canada, 11–13 May 2009, SpringerLect. Notes Comput. Sci.200959066610.1007/978-3-642-10698-9_7 – reference: BényCKempfAKribsDWGeneralization of quantum error correction via the Heisenberg picturePhys. Rev. Lett.20079810050210.1103/PhysRevLett.98.1005022007PhRvL..98j0502B – volume: 29 start-page: 155009 year: 2012 ident: 11902_CR26 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/15/155009 – volume: 06 start-page: 149 year: 2015 ident: 11902_CR8 publication-title: JHEP doi: 10.1007/JHEP06(2015)149 – volume: 06 start-page: 004 year: 2016 ident: 11902_CR29 publication-title: JHEP doi: 10.1007/JHEP06(2016)004 – ident: 11902_CR11 doi: 10.1103/PhysRevD.89.086010 – volume: 6 start-page: 26 year: 2004 ident: 11902_CR18 publication-title: New J. Phys. doi: 10.1088/1367-2630/6/1/026 – volume: 12 start-page: 162 year: 2014 ident: 11902_CR27 publication-title: JHEP doi: 10.1007/JHEP12(2014)162 – ident: 11902_CR33 doi: 10.1103/PhysRevD.96.066017 – volume: 08 start-page: 090 year: 2013 ident: 11902_CR47 publication-title: JHEP doi: 10.1007/JHEP08(2013)090 – volume: 11 start-page: 055 year: 2014 ident: 11902_CR49 publication-title: JHEP doi: 10.1007/JHEP11(2014)055 – volume: 09 start-page: 120 year: 2007 ident: 11902_CR14 publication-title: JHEP doi: 10.1088/1126-6708/2007/09/120 – volume: 104 start-page: 120501 year: 2010 ident: 11902_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.120501 – volume: 22 start-page: 1051 year: 1961 ident: 11902_CR46 publication-title: Nuovo Cim. doi: 10.1007/BF02787889 – volume: 111 start-page: 171301 year: 2013 ident: 11902_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.171301 – volume: 61 start-page: 781 year: 2013 ident: 11902_CR48 publication-title: Fortsch. Phys. doi: 10.1002/prop.201300020 – ident: 11902_CR35 doi: 10.1103/PhysRevD.86.065007 – volume: 05 start-page: 010 year: 2019 ident: 11902_CR51 publication-title: JHEP doi: 10.1007/JHEP05(2019)010 – volume: 117 start-page: 021601 year: 2016 ident: 11902_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.021601 – ident: 11902_CR12 – volume: 31 start-page: 225007 year: 2014 ident: 11902_CR28 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/22/225007 – ident: 11902_CR44 doi: 10.1143/JPSJ.12.570 – volume: A 43 start-page: 2046 year: 1991 ident: 11902_CR40 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.43.2046 – volume: 42 start-page: 2323 year: 2010 ident: 11902_CR4 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-010-1034-0 – volume: 58 start-page: 4914 year: 2012 ident: 11902_CR17 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2012.2191695 – volume: 5 start-page: 215 year: 1967 ident: 11902_CR43 publication-title: Commun. Math. Phys. doi: 10.1007/BF01646342 – volume: 96 start-page: 181602 year: 2006 ident: 11902_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: 5906 start-page: 66 year: 2009 ident: 11902_CR15 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-10698-9_7 – volume: 07 start-page: 100 year: 2016 ident: 11902_CR36 publication-title: JHEP doi: 10.1007/JHEP07(2016)100 – volume: 11 start-page: 009 year: 2016 ident: 11902_CR21 publication-title: JHEP doi: 10.1007/JHEP11(2016)009 – ident: 11902_CR16 – ident: 11902_CR50 – volume: 09 start-page: 028 year: 2013 ident: 11902_CR20 publication-title: JCAP doi: 10.1088/1475-7516/2013/09/028 – volume: 03 start-page: 067 year: 2014 ident: 11902_CR32 publication-title: JHEP doi: 10.1007/JHEP03(2014)067 – volume: 2 start-page: 016 year: 2017 ident: 11902_CR37 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.2.3.016 – volume: 04 start-page: 163 year: 2015 ident: 11902_CR1 publication-title: JHEP doi: 10.1007/JHEP04(2015)163 – volume: E 50 start-page: 888 year: 1994 ident: 11902_CR41 publication-title: Phys. Rev. – volume: 03 start-page: 153 year: 2017 ident: 11902_CR45 publication-title: JHEP doi: 10.1007/JHEP03(2017)153 – volume: 07 start-page: 062 year: 2007 ident: 11902_CR25 publication-title: JHEP doi: 10.1088/1126-6708/2007/07/062 – volume: 60 start-page: 44 year: 2013 ident: 11902_CR54 publication-title: J. ACM doi: 10.1145/2518131 – volume: 354 start-page: 865 year: 2017 ident: 11902_CR2 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-017-2904-z – volume: 2 start-page: 754 year: 2006 ident: 11902_CR39 publication-title: Nat. Phys. doi: 10.1038/nphys444 – ident: 11902_CR38 – ident: 11902_CR19 – volume: 01 start-page: 081 year: 2018 ident: 11902_CR24 publication-title: JHEP doi: 10.1007/JHEP01(2018)081 – ident: 11902_CR58 doi: 10.1063/1.3463451 – ident: 11902_CR53 doi: 10.1007/s00023-018-0716-0 – ident: 11902_CR7 – volume: 01 start-page: 073 year: 2015 ident: 11902_CR13 publication-title: JHEP doi: 10.1007/JHEP01(2015)073 – volume: 11 start-page: 074 year: 2013 ident: 11902_CR23 publication-title: JHEP doi: 10.1007/JHEP11(2013)074 – volume: 02 start-page: 042 year: 2007 ident: 11902_CR3 publication-title: JHEP doi: 10.1088/1126-6708/2007/02/042 – volume: 10 start-page: 212 year: 2013 ident: 11902_CR10 publication-title: JHEP doi: 10.1007/JHEP10(2013)212 – volume: 08 start-page: 126 year: 2014 ident: 11902_CR6 publication-title: JHEP doi: 10.1007/JHEP08(2014)126 – volume: 98 start-page: 100502 year: 2007 ident: 11902_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.100502 – ident: 11902_CR30 doi: 10.1103/PhysRevX.9.031011 – volume: 10 start-page: 065 year: 2008 ident: 11902_CR34 publication-title: JHEP doi: 10.1088/1126-6708/2008/10/065 – ident: 11902_CR56 – volume: 10 start-page: 107 year: 2013 ident: 11902_CR5 publication-title: JHEP doi: 10.1007/JHEP10(2013)107 – ident: 11902_CR31 doi: 10.1142/9789812794208_0030 – volume: 07 start-page: 151 year: 2017 ident: 11902_CR52 publication-title: JHEP doi: 10.1007/JHEP07(2017)151 |
SSID | ssj0015190 |
Score | 2.612787 |
Snippet | A
bstract
When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if... When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black... Abstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | AdS-CFT Correspondence Black holes Classical and Quantum Gravitation Codes Dependence Elementary Particles Error correction Error correction & detection Gauge-gravity correspondence Hawking radiation High energy physics Lower bounds Operators Physics Physics and Astronomy Quantum entanglement Quantum Field Theories Quantum Field Theory Quantum phenomena Quantum Physics Radiation Reconstruction Regular Article - Theoretical Physics Relativity Theory String Theory Subspaces Tensors Wedges |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT1ytsgeR9rA2TbKPHKu0lILiwUJvIclkvUgr7vb_O9lHrULx4m0f2WV2ZrPzTWb2G0JuTSy5zsBETnMWCXBppKkzUWYdFc5kkBif0X16TqZzMVvEi61WX74mrKYHrhU3oBrhH0sk5CwXQy2kdcbXEkoOqUYs4L--6PPaYKrJHyAuoS2RD00Hs-n4Zch66Oxkn_rOsVs-qKLq_4Evf6VEK08zOSKHDUQMR7Vox2TPLU_IflWqaYtTctdQor6FiN3Ckf9XFsPbsghXeWj8clzoW94WZ2Q-Gb8-TqOm20FkRcbLiFMLTLPUMjC4bTRPQDJqGAhDHQYesROgLaBqGc11DBISboR0FhFaxgQ_J53laukuSKhdJlOLkYDmGO3p3AAqBOcX5Bi8gU4Cct8-v7INFbjvSPGuWhLjWmHKK0zhfkB6mws-ahaM3UMfvEI3wzx9dXUAjaoao6q_jBqQbmsO1cypQiH2Y9TT8dOA9FsTfZ_eIc_lf8hzRQ78_eoyli7plJ9rd41gpDQ31Xv3Be0V11E priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEbyIT1ytsgeR9rCaJtlHjrW0lILiwUJvIclkvUgr7vr_neyj0koP3rK7E9idScg3OzPfEHJnYsl1BiZymrNIgEsjTZ2JMuuocCaDxPiI7vNLMp2L2SJeNCRJvhZmK37_OJuOXwesh8eU7FdV4_vxgKe-R8MoGa3DBQhDaMvb83fSxpFTMfNvwMmtCGh1sEyOyVGDCMNhbcITsueWp-Sgysy0xRm5bxhQ30OEauHQl8aiN1sW4SoPjf_7FvoOt8U5mU_Gb6Np1DQ3iKzIeBlxaoFplloGBsdG8wQko4aBMNShnxE7AdoCapLRXMcgIeFGSGcRkGVM8AvSWa6W7pKE2mUytQj8NUfnTucGUCG4nSBHXw10EpCH9vuVbZi_fQOKD9VyFtcKU15hCq8D0ltP-KxJL3aLPnmFrsU8W3V1A42omsWvqEYIzxIJOcvFQAtpnfH5oJJDqhHPBaTbmkM1W6hQCPUY9ez7NCD91kS_j3e8z9U_ZK_JoR_WySld0im_vt0NQozS3FbL6wdrPscF priority: 102 providerName: Springer Nature |
Title | Learning the Alpha-bits of black holes |
URI | https://link.springer.com/article/10.1007/JHEP12(2019)007 https://www.proquest.com/docview/2322057000 https://doaj.org/article/0a729269df2f41a49ceb090293d7a423 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED5BK6S9TIOB1q1UeUCIPgSM7Sb201SqlqoSCCEq9S2yfQ4vU8ua7v_fOXXKhgQvVpw4UXL-cd_5Lt8BnNmBFkahTb0RPJXo89Qwb1PlPJPeKsxs8Oje3WfTuZwtBou44VbFsMpmTawXaly5sEd-RZqfs0DGzn6-_E5D1qjgXY0pNPahTUuwUi1o34zvHx53fgTCJ6wh9GH51Ww6frjmF6T0dJ-FDLL_6KKasv8_nPnGNVprnMkX-ByhYjLc9u0h7PnlERzUIZuu-grnkRr1OSEMlwzDP7Nk5m6qZFUmNmzLJSH1bXUM88n4aTRNY9aD1EklNqlgDrnhueNo6dgakaHmzHKUlnkyQAZeonFIIuasNAPUmAkrtXeE1BSX4gRay9XSf4PEeKVzRxaBEWT1mdIiCYTmGZZkxKHJOnDZfH_hIiV4yEzxq2jIjLcCK4LACqp34GJ3w8uWDeP9pjdBoLtmgca6PrFaPxdxVhTMELbnmcaSl_LaSO28DYGiWmBuCOh1oNt0RxHnVlW8joQO9Jsuer38zvt8__hRP-BTaLkNVOlCa7P-408JbmxsD_bV5LYXRxbVRlyGMhv1agOeyjkf_gWtNdUm |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxwxDLYoqGovVelD3QJlDqWCw5SQZGcmB1RRynZ5qgeQuIUkznCpdoHZCvGn-htrz2OhSHDjNo8kShwn_hw7NsBn3zfKFejT6JRMNcY8dSL6tAhR6OgLzDxbdA-PsuGJ3jvtn87A3-4uDLtVdntivVHjOPAZ-TpJfik4GLv4dnGZctYotq52KTQattiPN9ekslWbuz9oflekHOwcbw_TNqtAGnShJqkSAaWTeZDo6dk7laGRwkvUXkQC-P2o0QWkIUhRuj4azJTXJgZCQoXUitp9BnNakSTnm-mDn1OrBaEh0YUPEvn63nDn14ZcJRFr1gTnq70j-eoEAf-h2nuG2Fq-DV7DqxaYJlsNJ83DTBy9gee1g2io3sKXNhDreUKIMdniG7qkVE-qZFwmng8BE060W72DkyehxnuYHY1H8QMkLhYmD6R_OEU6pis9EkFoVWNJKiO6rAdfu_Hb0AYg5zwYv20XOrkhmGWCWXrvweq0wkUTe-Phot-ZoNNiHDS7_jC-OrftGrTCkSYhM4OlLPWG0yZEz26pRmHuCFb2YLGbDtuu5Mre8l0P1ropuv39QH8-Pt7UMrwYHh8e2IPdo_0FeMm1GheZRZidXP2JSwR0Jv5TzV0JnD01O_8D65EM5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuqLxEoIU9AGoPS1zb2V0fKtTSRGkLUYSo1JuxPd5eUFK6QYi_xq_rzD5SQCq33vZhW_Z47PnGM54BeO2HRrkCfRqdkqnGmKdORJ8WIQodfYGZZ4vup2k2OdXHZ8OzNfjd3YVht8puT6w3alwEPiMfkOSXgoOxi0HZukXMDsfvL76nnEGKLa1dOo2GRU7ir5-kvlV7R4c012-kHI--fJikbYaBNOhCLVMlAkon8yDR07N3KkMjhZeovYgE9odRowtIw5GidEM0mCmvTQyEigqpFbV7B9Zz1op6sH4wms4-r2wYhI1EF0xI5IPjyWi2K7dJ4Jodwdlr_5CDdbqAvzDuP2bZWtqNN-BBC1OT_YavHsJanD-Cu7W7aKgew9s2LOt5Qvgx2ef7uqRiL6tkUSaejwQTTrtbPYHTW6HHU-jNF_P4DBIXC5MH0kacIo3TlR6JILTGsSQFEl3Wh3fd-G1ow5FzVoxvtguk3BDMMsEsvfdhe1XhoonEcXPRAyboqhiH0K4_LC7PbbsirXCkV8jMYClLveu0CdGzk6pRmDsCmX3Y7KbDtuu6stdc2Iedboquf9_Qn-f_b-oV3CNWth-Ppicv4D5XavxlNqG3vPwRtwj1LP3Llr0S-HrbHH0FCI8Sdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+Alpha-bits+of+black+holes&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hayden%2C+Patrick&rft.au=Penington%2C+Geoffrey&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2019&rft.issue=12&rft.spage=1&rft.epage=55&rft_id=info:doi/10.1007%2FJHEP12%282019%29007&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |