Learning the Alpha-bits of black holes

A bstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 12; pp. 1 - 55
Main Authors Hayden, Patrick, Penington, Geoffrey
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α -bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α -bit codes. Unintuitively, Hawking radiation always reveals the α -bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1 /N .
AbstractList Abstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α-bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α-bit codes. Unintuitively, Hawking radiation always reveals the α-bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1/N.
When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α-bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α-bit codes. Unintuitively, Hawking radiation always reveals the α-bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1/N.
A bstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α -bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α -bit codes. Unintuitively, Hawking radiation always reveals the α -bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1 /N .
When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black hole microstate is known, an example of state dependence. Reconstructions exist for any microstate, but no reconstruction works for all microstates. We refine this dichotomy, demonstrating that the same boundary operator can often be used for large subspaces of black hole microstates, corresponding to a constant fraction α of the black hole entropy. In the Schrödinger picture, the boundary subregion encodes the α -bits (a concept from quantum information) of a bulk region containing the black hole and bounded by extremal surfaces. These results have important consequences for the structure of AdS/CFT and for quantum information. Firstly, they imply that the bulk reconstruction is necessarily only approximate and allow us to place non-perturbative lower bounds on the error when doing so. Second, they provide a simple and tractable limit in which the entanglement wedge is state dependent, but in a highly controlled way. Although the state dependence of operators comes from ordinary quantum error correction, there are clear connections to the Papadodimas-Raju proposal for understanding operators behind black hole horizons. In tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk operator being ‘pushed’ through the black hole itself. Finally, we show that black holes provide the first ‘explicit’ examples of capacity-achieving α -bit codes. Unintuitively, Hawking radiation always reveals the α -bits of a black hole as soon as possible. In an appendix, we apply a result from the quantum information literature to prove that entanglement wedge reconstruction can be made exact to all orders in 1 /N .
ArticleNumber 7
Author Hayden, Patrick
Penington, Geoffrey
Author_xml – sequence: 1
  givenname: Patrick
  surname: Hayden
  fullname: Hayden, Patrick
  organization: Stanford Institute for Theoretical Physics, Stanford University
– sequence: 2
  givenname: Geoffrey
  orcidid: 0000-0002-8627-5237
  surname: Penington
  fullname: Penington, Geoffrey
  email: geoffp@stanford.edu
  organization: Stanford Institute for Theoretical Physics, Stanford University
BookMark eNp9kMtLxDAQxoMo-Dx7LQiih-pkkm6bo4hPFvSg5zBN0t2utVmT7sH_3mhFRdDTPJjfNzPfNlvvfe8Y2-dwwgHK09vri3uORwhcHad6jW1xQJVXslTrP_JNth3jAoAXXMEWO5w6Cn3bz7Jh7rKzbjmnvG6HmPkmqzsyT9ncdy7uso2Guuj2PuMOe7y8eDi_zqd3VzfnZ9PcyEoMuQBjkbA0aOuU1yQmViHUaGUNrppg4aQlYwVVCA0VVtmJqKVyRnCoUIoddjPqWk8LvQztM4VX7anVHw0fZprC0JrOaaASFU6UbbCRnKQyrgaV3hS2JIkiaR2MWsvgX1YuDnrhV6FP52sUiFCUAJCmTscpE3yMwTVfWznod2P1aKx-N1anOhHFL8K0Aw2t74dAbfcPByMX04Z-5sL3PX8hbztBikY
CitedBy_id crossref_primary_10_1016_j_physrep_2021_10_001
crossref_primary_10_1103_PhysRevResearch_6_L022021
crossref_primary_10_1103_PhysRevA_104_012408
crossref_primary_10_1007_JHEP05_2020_013
crossref_primary_10_1007_JHEP10_2023_040
crossref_primary_10_1038_s41467_023_42743_z
crossref_primary_10_1007_JHEP06_2024_155
crossref_primary_10_1007_JHEP08_2020_132
crossref_primary_10_1007_JHEP08_2022_189
crossref_primary_10_21468_SciPostPhys_16_6_144
crossref_primary_10_1007_JHEP01_2022_170
crossref_primary_10_1007_JHEP05_2021_127
crossref_primary_10_1007_JHEP07_2024_123
crossref_primary_10_1007_JHEP02_2023_195
crossref_primary_10_1007_JHEP06_2020_031
crossref_primary_10_1007_JHEP12_2021_013
crossref_primary_10_1140_epjc_s10052_022_10382_1
crossref_primary_10_1007_JHEP04_2021_175
crossref_primary_10_21468_SciPostPhys_16_1_024
crossref_primary_10_1007_s00220_024_05053_z
crossref_primary_10_1103_PhysRevD_108_046007
crossref_primary_10_1103_PhysRevD_111_026012
crossref_primary_10_22331_q_2022_02_16_655
crossref_primary_10_1007_JHEP03_2023_026
crossref_primary_10_1140_epjc_s10052_022_10376_z
crossref_primary_10_1007_JHEP07_2023_189
crossref_primary_10_1103_PhysRevD_110_086002
crossref_primary_10_1007_JHEP01_2025_086
crossref_primary_10_1007_JHEP10_2021_047
crossref_primary_10_1007_JHEP08_2020_121
crossref_primary_10_1007_s10773_021_04901_1
crossref_primary_10_22331_q_2023_02_21_928
crossref_primary_10_1007_JHEP07_2024_138
crossref_primary_10_1007_JHEP10_2020_052
crossref_primary_10_1007_JHEP03_2022_110
crossref_primary_10_1103_PhysRevD_103_066011
crossref_primary_10_1007_JHEP11_2021_177
crossref_primary_10_1103_PhysRevD_102_086021
crossref_primary_10_1103_PhysRevD_107_086002
crossref_primary_10_1007_JHEP11_2021_192
crossref_primary_10_1007_JHEP01_2024_033
crossref_primary_10_1109_TIT_2020_3021289
crossref_primary_10_1007_JHEP11_2024_164
crossref_primary_10_1007_JHEP09_2020_002
crossref_primary_10_1007_JHEP07_2023_025
crossref_primary_10_1007_JHEP11_2022_153
crossref_primary_10_1007_JHEP04_2021_062
crossref_primary_10_1088_1751_8121_acef7d
crossref_primary_10_1103_PhysRevD_102_086017
crossref_primary_10_21468_SciPostPhys_17_5_133
crossref_primary_10_1007_JHEP01_2023_064
crossref_primary_10_1007_JHEP08_2020_032
crossref_primary_10_1103_PhysRevD_102_066008
crossref_primary_10_1038_s42254_020_0225_1
crossref_primary_10_1103_PhysRevD_105_086010
crossref_primary_10_1103_PhysRevD_109_086011
crossref_primary_10_1007_JHEP03_2022_205
crossref_primary_10_1103_PhysRevD_105_086012
crossref_primary_10_1103_PhysRevD_106_105007
crossref_primary_10_1007_JHEP01_2020_168
crossref_primary_10_1007_JHEP02_2024_079
crossref_primary_10_1007_JHEP03_2020_191
crossref_primary_10_1007_JHEP07_2021_011
crossref_primary_10_21468_SciPostPhys_12_5_157
crossref_primary_10_1103_PhysRevD_105_026018
crossref_primary_10_21468_SciPostPhysCore_7_4_070
crossref_primary_10_22331_q_2024_02_21_1261
crossref_primary_10_1007_JHEP05_2023_109
crossref_primary_10_1007_JHEP07_2023_043
crossref_primary_10_1007_JHEP11_2020_111
crossref_primary_10_1103_PhysRevD_107_026016
crossref_primary_10_1007_JHEP01_2022_085
crossref_primary_10_1007_JHEP03_2020_149
crossref_primary_10_1007_JHEP02_2025_150
crossref_primary_10_1007_JHEP08_2020_140
crossref_primary_10_22331_q_2025_03_20_1664
crossref_primary_10_1007_s10773_023_05439_0
crossref_primary_10_1103_PhysRevD_102_086001
Cites_doi 10.1088/0264-9381/29/15/155009
10.1007/JHEP06(2015)149
10.1007/JHEP06(2016)004
10.1103/PhysRevD.89.086010
10.1088/1367-2630/6/1/026
10.1007/JHEP12(2014)162
10.1103/PhysRevD.96.066017
10.1007/JHEP08(2013)090
10.1007/JHEP11(2014)055
10.1088/1126-6708/2007/09/120
10.1103/PhysRevLett.104.120501
10.1007/BF02787889
10.1103/PhysRevLett.111.171301
10.1002/prop.201300020
10.1103/PhysRevD.86.065007
10.1007/JHEP05(2019)010
10.1103/PhysRevLett.117.021601
10.1088/0264-9381/31/22/225007
10.1143/JPSJ.12.570
10.1103/PhysRevA.43.2046
10.1007/s10714-010-1034-0
10.1109/TIT.2012.2191695
10.1007/BF01646342
10.1103/PhysRevLett.96.181602
10.1007/978-3-642-10698-9_7
10.1007/JHEP07(2016)100
10.1007/JHEP11(2016)009
10.1088/1475-7516/2013/09/028
10.1007/JHEP03(2014)067
10.21468/SciPostPhys.2.3.016
10.1007/JHEP04(2015)163
10.1007/JHEP03(2017)153
10.1088/1126-6708/2007/07/062
10.1145/2518131
10.1007/s00220-017-2904-z
10.1038/nphys444
10.1007/JHEP01(2018)081
10.1063/1.3463451
10.1007/s00023-018-0716-0
10.1007/JHEP01(2015)073
10.1007/JHEP11(2013)074
10.1088/1126-6708/2007/02/042
10.1007/JHEP10(2013)212
10.1007/JHEP08(2014)126
10.1103/PhysRevLett.98.100502
10.1103/PhysRevX.9.031011
10.1088/1126-6708/2008/10/065
10.1007/JHEP10(2013)107
10.1142/9789812794208_0030
10.1007/JHEP07(2017)151
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP12(2019)007
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 55
ExternalDocumentID oai_doaj_org_article_0a729269df2f41a49ceb090293d7a423
10_1007_JHEP12_2019_007
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c483t-30cd2a27c2db30cba36d920b2d4b0e8625e4dacd3a820fa5d9d63b49ec3108243
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:31:16 EDT 2025
Mon Jul 14 07:21:33 EDT 2025
Tue Jul 01 03:54:53 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Fri Feb 21 02:34:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords AdS-CFT Correspondence
Gauge-gravity correspondence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-30cd2a27c2db30cba36d920b2d4b0e8625e4dacd3a820fa5d9d63b49ec3108243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8627-5237
OpenAccessLink https://www.proquest.com/docview/2322057000?pq-origsite=%requestingapplication%
PQID 2322057000
PQPubID 2034718
PageCount 55
ParticipantIDs doaj_primary_oai_doaj_org_article_0a729269df2f41a49ceb090293d7a423
proquest_journals_2322057000
crossref_primary_10_1007_JHEP12_2019_007
crossref_citationtrail_10_1007_JHEP12_2019_007
springer_journals_10_1007_JHEP12_2019_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jap.12 (1957) 570 [INSPIRE].
HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP20161100910.1007/JHEP11(2016)0092016JHEP...11..009H35844421390.83344[arXiv:1601.01694]; [INSPIRE]
VerlindeEPEmergent Gravity and the Dark UniverseSciPost Phys.2017201610.21468/SciPostPhys.2.3.0162017ScPP....2...16V[arXiv:1611.02269]; [INSPIRE]
FawziOHaydenPSenPFrom low-distortion norm embeddings to explicit uncertainty relations and efficient information lockingJ. ACM2013604410.1145/25181311281.81028
HaydenPPreskillJBlack holes as mirrors: Quantum information in random subsystemsJHEP20070912010.1088/1126-6708/2007/09/1202007JHEP...09..120H2342311[arXiv:0708.4025]; [INSPIRE]
SekinoYSusskindLFast ScramblersJHEP20081006510.1088/1126-6708/2008/10/0652008JHEP...10..065S[arXiv:0808.2096]; [INSPIRE]
BényCKempfAKribsDWGeneralization of quantum error correction via the Heisenberg picturePhys. Rev. Lett.20079810050210.1103/PhysRevLett.98.1005022007PhRvL..98j0502B
T.J. Osborne and D.E. Stiegemann, Dynamics for holographic codes, arXiv:1706.08823 [INSPIRE].
BényCOreshkovOGeneral conditions for approximate quantum error correction and near-optimal recovery channelsPhys. Rev. Lett.201010412050110.1103/PhysRevLett.104.1205012010PhRvL.104l0501B
K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev.D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP20160600410.1007/JHEP06(2016)0042016JHEP...06..004J35381651388.83268[arXiv:1512.06431]; [INSPIRE]
LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP20130809010.1007/JHEP08(2013)0902013JHEP...08..090L31063481342.83185[arXiv:1304.4926]; [INSPIRE]
DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.201611702160110.1103/PhysRevLett.117.0216012016PhRvL.117b1601D3626959[arXiv:1601.05416]; [INSPIRE]
ReehHSchliederSBemerkungen zur Unit¨ar¨aquivalenz von Lorentzinvarianten FeldernNuovo Cim.196122105110.1007/BF027878891961NCim...22.1051R[INSPIRE]
BényCConditions for the approximate correction of algebras, in proceedings of the Theory of quantum computation, communication and cryptography: 4th workshop, TQC 2009, Waterloo, Canada, 11–13 May 2009, SpringerLect. Notes Comput. Sci.200959066610.1007/978-3-642-10698-9_7
J. Tyson, Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates, J. Math. Phys.51 (2010) 092204 [arXiv:0907.3386].
WallACMaximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.20143122500710.1088/0264-9381/31/22/2250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494]; [INSPIRE]
AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP20150416310.1007/JHEP04(2015)1632015JHEP...04..163A33512061388.81095[arXiv:1411.7041]; [INSPIRE]
LloydSPreskillJUnitarity of black hole evaporation in final-state projection modelsJHEP20140812610.1007/JHEP08(2014)1262014JHEP...08..126L[arXiv:1308.4209]; [INSPIRE]
HarlowDAspects of the Papadodimas-Raju Proposal for the Black Hole InteriorJHEP20141105510.1007/JHEP11(2014)0552014JHEP...11..055H32907931333.83091[arXiv:1405.1995]; [INSPIRE]
HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP20141216210.1007/JHEP12(2014)1622014JHEP...12..162H[arXiv:1408.6300]; [INSPIRE]
FaulknerTLewkowyczABulk locality from modular flowJHEP20170715110.1007/JHEP07(2017)1512017JHEP...07..151F36866471380.81313[arXiv:1704.05464]; [INSPIRE]
VerlindeEVerlindeHBlack Hole Entanglement and Quantum Error CorrectionJHEP20131010710.1007/JHEP10(2013)1072013JHEP...10..107V31177261342.83211[arXiv:1211.6913]; [INSPIRE]
F. Hiai, M. Ohya and M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras, in Selected Papers of M. Ohya , World Scientific (2008), pp. 420–430.
Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.201042232310.1007/s10714-010-1034-02010GReGr..42.2323V27216671200.83052[arXiv:1005.3035]; [INSPIRE]
PageDNTime Dependence of Hawking Radiation EntropyJCAP20130902810.1088/1475-7516/2013/09/0282013JCAP...09..028P3127201[arXiv:1301.4995]; [INSPIRE]
HaydenPWinterAWeak decoupling duality and quantum identificationIEEE Trans. Inf. Theory201258491410.1109/TIT.2012.219169529498621365.81027
HaagRHugenholtzNMWinninkMOn the Equilibrium states in quantum statistical mechanicsCommun. Math. Phys.1967521510.1007/BF016463421967CMaPh...5..215H2192830171.47102[INSPIRE]
I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2gravity, arXiv:1707.02325 [INSPIRE].
PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP20150614910.1007/JHEP06(2015)1492015JHEP...06..149P33701861388.81094[arXiv:1503.06237]; [INSPIRE]
PopescuSShortAJWinterAEntanglement and the foundations of statistical mechanicsNat. Phys.2006275410.1038/nphys444
KretschmannDWernerRFTema con variazioni: quantum channel capacityNew J. Phys.200462610.1088/1367-2630/6/1/0262004NJPh....6...26K
M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Ann. Henri Poincaŕe19 (2018) 2955 [arXiv:1509.07127] [INSPIRE].
N. Bao and H. Ooguri, Distinguishability of black hole microstates, Phys. Rev.D 96 (2017) 066017 [arXiv:1705.07943] [INSPIRE].
A. Winter, Quantum and classical message identification via quantum channels, in Festschrift “A.S. Holevo 60”, O. Hirota ed., Rinton Press (2004), pp. 171–188, reprinted in Quant. Inf. Comput.4 (2004) 563 [quant-ph/0401060].
DongXLewkowyczAEntropy, Extremality, Euclidean Variations and the Equations of MotionJHEP20180108110.1007/JHEP01(2018)0812018JHEP...01..081D37625651384.81097[arXiv:1705.08453]; [INSPIRE]
MarolfDPolchinskiJGauge/Gravity Duality and the Black Hole InteriorPhys. Rev. Lett.201311117130110.1103/PhysRevLett.111.1713012013PhRvL.111q1301M[arXiv:1307.4706]; [INSPIRE]
HirataTTakayanagiTAdS/CFT and strong subadditivity of entanglement entropyJHEP20070204210.1088/1126-6708/2007/02/0422007JHEP...02..042H2318012[hep-th/0608213]; [INSPIRE]
SrednickiMChaos and quantum thermalizationPhys. Rev.1994E 508881994PhRvE..50..888S
B. Swingle, Entanglement Renormalization and Holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
KellyWRBulk Locality and Entanglement Swapping in AdS/CFTJHEP20170315310.1007/JHEP03(2017)1532017JHEP...03..153K36506641377.81176[arXiv:1610.00669]; [INSPIRE]
ShenkerSHStanfordDBlack holes and the butterfly effectJHEP20140306710.1007/JHEP03(2014)0672014JHEP...03..067S31909791333.83111[arXiv:1306.0622]; [INSPIRE]
CzechBLamprouLMcCandlishSSullyJTensor Networks from Kinematic SpaceJHEP20160710010.1007/JHEP07(2016)1002016JHEP...07..100C35473761390.83102[arXiv:1512.01548]; [INSPIRE]
B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE].
DeutschJMQuantum statistical mechanics in a closed systemPhys. Rev.1991A 43204610.1103/PhysRevA.43.20461991PhRvA..43.2046D
MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.20136178110.1002/prop.2013000202013ForPh..61..781M31044581338.83057[arXiv:1306.0533]; [INSPIRE]
PapadodimasKRajuSAn Infalling Observer in AdS/CFTJHEP20131021210.1007/JHEP10(2013)2122013JHEP...10..212P[arXiv:1211.6767]; [INSPIRE]
de BoerJvan BreukelenRLokhandeSFPapadodimasKVerlindeEOn the interior geometry of a typical black hole microstateJHEP20190501010.1007/JHEP05(2019)01039788241416.83047[arXiv:1804.10580]; [INSPIRE]
RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.20069618160210.1103/PhysRevLett.96.1816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001]; [INSPIRE]
HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP20070706210.1088/1126-6708/2007/07/0622007JHEP...07..062H2326725[arXiv:0705.0016]; [INSPIRE]
FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP20131107410.1007/JHEP11(2013)0742013JHEP...11..074F1392.81021[arXiv:1307.2892]; [INSPIRE]
D. Kretschmann, D. Schlingemann and R.F. Werner, The information-disturbance tradeoff and the continuity of Stinespring’s representation, quant-ph/0605009.
HarlowDThe Ryu-Takayanagi Formula from Quantum Error CorrectionCommun. Math. Phys.201735486510.1007/s00220-017-2904-z2017CMaPh.354..865H36686121377.81040[arXiv:1607.03901]; [INSPIRE]
J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys. Rev.X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].
EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP20150107310.1007/JHEP01(2015)0732015JHEP...01..073E[arXiv:1408.3203]; [INSPIRE]
P. Hayden and G. Penington, Approximate quantum error correction revisited: Introducing the alpha-bit, arXiv:1706.09434.
CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.20122915500910.1088/0264-9381/29/15/1550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330]; [INSPIRE]
C. Bény, Z. Zimborás and F. Pastawski, Approximate recovery with locality and symmetry constraints, arXiv:1806.10324 [INSPIRE].
J Maldacena (11902_CR48) 2013; 61
M Headrick (11902_CR27) 2014; 12
M Van Raamsdonk (11902_CR4) 2010; 42
DL Jafferis (11902_CR29) 2016; 06
D Marolf (11902_CR42) 2013; 111
11902_CR50
O Fawzi (11902_CR54) 2013; 60
11902_CR7
11902_CR11
C Bény (11902_CR15) 2009; 5906
11902_CR53
11902_CR58
11902_CR12
11902_CR56
11902_CR19
P Hayden (11902_CR21) 2016; 11
11902_CR16
T Faulkner (11902_CR52) 2017; 07
DN Page (11902_CR20) 2013; 09
P Hayden (11902_CR14) 2007; 09
VE Hubeny (11902_CR25) 2007; 07
X Dong (11902_CR24) 2018; 01
WR Kelly (11902_CR45) 2017; 03
C Bény (11902_CR57) 2010; 104
EP Verlinde (11902_CR37) 2017; 2
R Haag (11902_CR43) 1967; 5
11902_CR44
JM Deutsch (11902_CR40) 1991; A 43
J de Boer (11902_CR51) 2019; 05
E Verlinde (11902_CR5) 2013; 10
P Hayden (11902_CR17) 2012; 58
AC Wall (11902_CR28) 2014; 31
S Popescu (11902_CR39) 2006; 2
Y Sekino (11902_CR34) 2008; 10
F Pastawski (11902_CR8) 2015; 06
A Almheiri (11902_CR1) 2015; 04
A Lewkowycz (11902_CR47) 2013; 08
X Dong (11902_CR9) 2016; 117
K Papadodimas (11902_CR10) 2013; 10
11902_CR33
11902_CR30
11902_CR31
D Harlow (11902_CR2) 2017; 354
11902_CR35
D Harlow (11902_CR49) 2014; 11
11902_CR38
C Bény (11902_CR55) 2007; 98
T Faulkner (11902_CR23) 2013; 11
S Ryu (11902_CR22) 2006; 96
N Engelhardt (11902_CR13) 2015; 01
B Czech (11902_CR36) 2016; 07
M Srednicki (11902_CR41) 1994; E 50
H Reeh (11902_CR46) 1961; 22
D Kretschmann (11902_CR18) 2004; 6
S Lloyd (11902_CR6) 2014; 08
T Hirata (11902_CR3) 2007; 02
B Czech (11902_CR26) 2012; 29
SH Shenker (11902_CR32) 2014; 03
References_xml – reference: MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.20136178110.1002/prop.2013000202013ForPh..61..781M31044581338.83057[arXiv:1306.0533]; [INSPIRE]
– reference: C. Bény, Z. Zimborás and F. Pastawski, Approximate recovery with locality and symmetry constraints, arXiv:1806.10324 [INSPIRE].
– reference: AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP20150416310.1007/JHEP04(2015)1632015JHEP...04..163A33512061388.81095[arXiv:1411.7041]; [INSPIRE]
– reference: KellyWRBulk Locality and Entanglement Swapping in AdS/CFTJHEP20170315310.1007/JHEP03(2017)1532017JHEP...03..153K36506641377.81176[arXiv:1610.00669]; [INSPIRE]
– reference: HirataTTakayanagiTAdS/CFT and strong subadditivity of entanglement entropyJHEP20070204210.1088/1126-6708/2007/02/0422007JHEP...02..042H2318012[hep-th/0608213]; [INSPIRE]
– reference: VerlindeEPEmergent Gravity and the Dark UniverseSciPost Phys.2017201610.21468/SciPostPhys.2.3.0162017ScPP....2...16V[arXiv:1611.02269]; [INSPIRE]
– reference: SrednickiMChaos and quantum thermalizationPhys. Rev.1994E 508881994PhRvE..50..888S
– reference: HaagRHugenholtzNMWinninkMOn the Equilibrium states in quantum statistical mechanicsCommun. Math. Phys.1967521510.1007/BF016463421967CMaPh...5..215H2192830171.47102[INSPIRE]
– reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.20069618160210.1103/PhysRevLett.96.1816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001]; [INSPIRE]
– reference: SekinoYSusskindLFast ScramblersJHEP20081006510.1088/1126-6708/2008/10/0652008JHEP...10..065S[arXiv:0808.2096]; [INSPIRE]
– reference: CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.20122915500910.1088/0264-9381/29/15/1550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330]; [INSPIRE]
– reference: B. Swingle, Entanglement Renormalization and Holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
– reference: F. Hiai, M. Ohya and M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras, in Selected Papers of M. Ohya , World Scientific (2008), pp. 420–430.
– reference: T.J. Osborne and D.E. Stiegemann, Dynamics for holographic codes, arXiv:1706.08823 [INSPIRE].
– reference: CzechBLamprouLMcCandlishSSullyJTensor Networks from Kinematic SpaceJHEP20160710010.1007/JHEP07(2016)1002016JHEP...07..100C35473761390.83102[arXiv:1512.01548]; [INSPIRE]
– reference: P. Hayden and G. Penington, Approximate quantum error correction revisited: Introducing the alpha-bit, arXiv:1706.09434.
– reference: HarlowDAspects of the Papadodimas-Raju Proposal for the Black Hole InteriorJHEP20141105510.1007/JHEP11(2014)0552014JHEP...11..055H32907931333.83091[arXiv:1405.1995]; [INSPIRE]
– reference: WallACMaximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.20143122500710.1088/0264-9381/31/22/2250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494]; [INSPIRE]
– reference: HarlowDThe Ryu-Takayanagi Formula from Quantum Error CorrectionCommun. Math. Phys.201735486510.1007/s00220-017-2904-z2017CMaPh.354..865H36686121377.81040[arXiv:1607.03901]; [INSPIRE]
– reference: KretschmannDWernerRFTema con variazioni: quantum channel capacityNew J. Phys.200462610.1088/1367-2630/6/1/0262004NJPh....6...26K
– reference: HaydenPNezamiSQiX-LThomasNWalterMYangZHolographic duality from random tensor networksJHEP20161100910.1007/JHEP11(2016)0092016JHEP...11..009H35844421390.83344[arXiv:1601.01694]; [INSPIRE]
– reference: PageDNTime Dependence of Hawking Radiation EntropyJCAP20130902810.1088/1475-7516/2013/09/0282013JCAP...09..028P3127201[arXiv:1301.4995]; [INSPIRE]
– reference: HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP20141216210.1007/JHEP12(2014)1622014JHEP...12..162H[arXiv:1408.6300]; [INSPIRE]
– reference: MarolfDPolchinskiJGauge/Gravity Duality and the Black Hole InteriorPhys. Rev. Lett.201311117130110.1103/PhysRevLett.111.1713012013PhRvL.111q1301M[arXiv:1307.4706]; [INSPIRE]
– reference: LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP20130809010.1007/JHEP08(2013)0902013JHEP...08..090L31063481342.83185[arXiv:1304.4926]; [INSPIRE]
– reference: PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP20150614910.1007/JHEP06(2015)1492015JHEP...06..149P33701861388.81094[arXiv:1503.06237]; [INSPIRE]
– reference: HaydenPWinterAWeak decoupling duality and quantum identificationIEEE Trans. Inf. Theory201258491410.1109/TIT.2012.219169529498621365.81027
– reference: ReehHSchliederSBemerkungen zur Unit¨ar¨aquivalenz von Lorentzinvarianten FeldernNuovo Cim.196122105110.1007/BF027878891961NCim...22.1051R[INSPIRE]
– reference: Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.201042232310.1007/s10714-010-1034-02010GReGr..42.2323V27216671200.83052[arXiv:1005.3035]; [INSPIRE]
– reference: A. Winter, Quantum and classical message identification via quantum channels, in Festschrift “A.S. Holevo 60”, O. Hirota ed., Rinton Press (2004), pp. 171–188, reprinted in Quant. Inf. Comput.4 (2004) 563 [quant-ph/0401060].
– reference: HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP20070706210.1088/1126-6708/2007/07/0622007JHEP...07..062H2326725[arXiv:0705.0016]; [INSPIRE]
– reference: JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP20160600410.1007/JHEP06(2016)0042016JHEP...06..004J35381651388.83268[arXiv:1512.06431]; [INSPIRE]
– reference: R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jap.12 (1957) 570 [INSPIRE].
– reference: FawziOHaydenPSenPFrom low-distortion norm embeddings to explicit uncertainty relations and efficient information lockingJ. ACM2013604410.1145/25181311281.81028
– reference: LloydSPreskillJUnitarity of black hole evaporation in final-state projection modelsJHEP20140812610.1007/JHEP08(2014)1262014JHEP...08..126L[arXiv:1308.4209]; [INSPIRE]
– reference: FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP20131107410.1007/JHEP11(2013)0742013JHEP...11..074F1392.81021[arXiv:1307.2892]; [INSPIRE]
– reference: M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Ann. Henri Poincaŕe19 (2018) 2955 [arXiv:1509.07127] [INSPIRE].
– reference: I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2gravity, arXiv:1707.02325 [INSPIRE].
– reference: de BoerJvan BreukelenRLokhandeSFPapadodimasKVerlindeEOn the interior geometry of a typical black hole microstateJHEP20190501010.1007/JHEP05(2019)01039788241416.83047[arXiv:1804.10580]; [INSPIRE]
– reference: D. Kretschmann, D. Schlingemann and R.F. Werner, The information-disturbance tradeoff and the continuity of Stinespring’s representation, quant-ph/0605009.
– reference: PopescuSShortAJWinterAEntanglement and the foundations of statistical mechanicsNat. Phys.2006275410.1038/nphys444
– reference: ShenkerSHStanfordDBlack holes and the butterfly effectJHEP20140306710.1007/JHEP03(2014)0672014JHEP...03..067S31909791333.83111[arXiv:1306.0622]; [INSPIRE]
– reference: N. Bao and H. Ooguri, Distinguishability of black hole microstates, Phys. Rev.D 96 (2017) 066017 [arXiv:1705.07943] [INSPIRE].
– reference: FaulknerTLewkowyczABulk locality from modular flowJHEP20170715110.1007/JHEP07(2017)1512017JHEP...07..151F36866471380.81313[arXiv:1704.05464]; [INSPIRE]
– reference: J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys. Rev.X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].
– reference: DeutschJMQuantum statistical mechanics in a closed systemPhys. Rev.1991A 43204610.1103/PhysRevA.43.20461991PhRvA..43.2046D
– reference: K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev.D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
– reference: DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.201611702160110.1103/PhysRevLett.117.0216012016PhRvL.117b1601D3626959[arXiv:1601.05416]; [INSPIRE]
– reference: PapadodimasKRajuSAn Infalling Observer in AdS/CFTJHEP20131021210.1007/JHEP10(2013)2122013JHEP...10..212P[arXiv:1211.6767]; [INSPIRE]
– reference: DongXLewkowyczAEntropy, Extremality, Euclidean Variations and the Equations of MotionJHEP20180108110.1007/JHEP01(2018)0812018JHEP...01..081D37625651384.81097[arXiv:1705.08453]; [INSPIRE]
– reference: BényCOreshkovOGeneral conditions for approximate quantum error correction and near-optimal recovery channelsPhys. Rev. Lett.201010412050110.1103/PhysRevLett.104.1205012010PhRvL.104l0501B
– reference: B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE].
– reference: VerlindeEVerlindeHBlack Hole Entanglement and Quantum Error CorrectionJHEP20131010710.1007/JHEP10(2013)1072013JHEP...10..107V31177261342.83211[arXiv:1211.6913]; [INSPIRE]
– reference: EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP20150107310.1007/JHEP01(2015)0732015JHEP...01..073E[arXiv:1408.3203]; [INSPIRE]
– reference: J. Tyson, Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates, J. Math. Phys.51 (2010) 092204 [arXiv:0907.3386].
– reference: HaydenPPreskillJBlack holes as mirrors: Quantum information in random subsystemsJHEP20070912010.1088/1126-6708/2007/09/1202007JHEP...09..120H2342311[arXiv:0708.4025]; [INSPIRE]
– reference: BényCConditions for the approximate correction of algebras, in proceedings of the Theory of quantum computation, communication and cryptography: 4th workshop, TQC 2009, Waterloo, Canada, 11–13 May 2009, SpringerLect. Notes Comput. Sci.200959066610.1007/978-3-642-10698-9_7
– reference: BényCKempfAKribsDWGeneralization of quantum error correction via the Heisenberg picturePhys. Rev. Lett.20079810050210.1103/PhysRevLett.98.1005022007PhRvL..98j0502B
– volume: 29
  start-page: 155009
  year: 2012
  ident: 11902_CR26
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/15/155009
– volume: 06
  start-page: 149
  year: 2015
  ident: 11902_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)149
– volume: 06
  start-page: 004
  year: 2016
  ident: 11902_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)004
– ident: 11902_CR11
  doi: 10.1103/PhysRevD.89.086010
– volume: 6
  start-page: 26
  year: 2004
  ident: 11902_CR18
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/6/1/026
– volume: 12
  start-page: 162
  year: 2014
  ident: 11902_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)162
– ident: 11902_CR33
  doi: 10.1103/PhysRevD.96.066017
– volume: 08
  start-page: 090
  year: 2013
  ident: 11902_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP08(2013)090
– volume: 11
  start-page: 055
  year: 2014
  ident: 11902_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP11(2014)055
– volume: 09
  start-page: 120
  year: 2007
  ident: 11902_CR14
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/09/120
– volume: 104
  start-page: 120501
  year: 2010
  ident: 11902_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.120501
– volume: 22
  start-page: 1051
  year: 1961
  ident: 11902_CR46
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02787889
– volume: 111
  start-page: 171301
  year: 2013
  ident: 11902_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.171301
– volume: 61
  start-page: 781
  year: 2013
  ident: 11902_CR48
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201300020
– ident: 11902_CR35
  doi: 10.1103/PhysRevD.86.065007
– volume: 05
  start-page: 010
  year: 2019
  ident: 11902_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)010
– volume: 117
  start-page: 021601
  year: 2016
  ident: 11902_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.021601
– ident: 11902_CR12
– volume: 31
  start-page: 225007
  year: 2014
  ident: 11902_CR28
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/22/225007
– ident: 11902_CR44
  doi: 10.1143/JPSJ.12.570
– volume: A 43
  start-page: 2046
  year: 1991
  ident: 11902_CR40
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.43.2046
– volume: 42
  start-page: 2323
  year: 2010
  ident: 11902_CR4
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-010-1034-0
– volume: 58
  start-page: 4914
  year: 2012
  ident: 11902_CR17
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2012.2191695
– volume: 5
  start-page: 215
  year: 1967
  ident: 11902_CR43
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01646342
– volume: 96
  start-page: 181602
  year: 2006
  ident: 11902_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: 5906
  start-page: 66
  year: 2009
  ident: 11902_CR15
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-642-10698-9_7
– volume: 07
  start-page: 100
  year: 2016
  ident: 11902_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)100
– volume: 11
  start-page: 009
  year: 2016
  ident: 11902_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)009
– ident: 11902_CR16
– ident: 11902_CR50
– volume: 09
  start-page: 028
  year: 2013
  ident: 11902_CR20
  publication-title: JCAP
  doi: 10.1088/1475-7516/2013/09/028
– volume: 03
  start-page: 067
  year: 2014
  ident: 11902_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)067
– volume: 2
  start-page: 016
  year: 2017
  ident: 11902_CR37
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.2.3.016
– volume: 04
  start-page: 163
  year: 2015
  ident: 11902_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)163
– volume: E 50
  start-page: 888
  year: 1994
  ident: 11902_CR41
  publication-title: Phys. Rev.
– volume: 03
  start-page: 153
  year: 2017
  ident: 11902_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP03(2017)153
– volume: 07
  start-page: 062
  year: 2007
  ident: 11902_CR25
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/07/062
– volume: 60
  start-page: 44
  year: 2013
  ident: 11902_CR54
  publication-title: J. ACM
  doi: 10.1145/2518131
– volume: 354
  start-page: 865
  year: 2017
  ident: 11902_CR2
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-017-2904-z
– volume: 2
  start-page: 754
  year: 2006
  ident: 11902_CR39
  publication-title: Nat. Phys.
  doi: 10.1038/nphys444
– ident: 11902_CR38
– ident: 11902_CR19
– volume: 01
  start-page: 081
  year: 2018
  ident: 11902_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)081
– ident: 11902_CR58
  doi: 10.1063/1.3463451
– ident: 11902_CR53
  doi: 10.1007/s00023-018-0716-0
– ident: 11902_CR7
– volume: 01
  start-page: 073
  year: 2015
  ident: 11902_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP01(2015)073
– volume: 11
  start-page: 074
  year: 2013
  ident: 11902_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)074
– volume: 02
  start-page: 042
  year: 2007
  ident: 11902_CR3
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/02/042
– volume: 10
  start-page: 212
  year: 2013
  ident: 11902_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)212
– volume: 08
  start-page: 126
  year: 2014
  ident: 11902_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP08(2014)126
– volume: 98
  start-page: 100502
  year: 2007
  ident: 11902_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.100502
– ident: 11902_CR30
  doi: 10.1103/PhysRevX.9.031011
– volume: 10
  start-page: 065
  year: 2008
  ident: 11902_CR34
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/10/065
– ident: 11902_CR56
– volume: 10
  start-page: 107
  year: 2013
  ident: 11902_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)107
– ident: 11902_CR31
  doi: 10.1142/9789812794208_0030
– volume: 07
  start-page: 151
  year: 2017
  ident: 11902_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)151
SSID ssj0015190
Score 2.612787
Snippet A bstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if...
When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if the black...
Abstract When the bulk geometry in AdS/CFT contains a black hole, boundary subregions may be sufficient to reconstruct certain bulk operators if and only if...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms AdS-CFT Correspondence
Black holes
Classical and Quantum Gravitation
Codes
Dependence
Elementary Particles
Error correction
Error correction & detection
Gauge-gravity correspondence
Hawking radiation
High energy physics
Lower bounds
Operators
Physics
Physics and Astronomy
Quantum entanglement
Quantum Field Theories
Quantum Field Theory
Quantum phenomena
Quantum Physics
Radiation
Reconstruction
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Subspaces
Tensors
Wedges
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT1ytsgeR9rA2TbKPHKu0lILiwUJvIclkvUgr7vb_O9lHrULx4m0f2WV2ZrPzTWb2G0JuTSy5zsBETnMWCXBppKkzUWYdFc5kkBif0X16TqZzMVvEi61WX74mrKYHrhU3oBrhH0sk5CwXQy2kdcbXEkoOqUYs4L--6PPaYKrJHyAuoS2RD00Hs-n4Zch66Oxkn_rOsVs-qKLq_4Evf6VEK08zOSKHDUQMR7Vox2TPLU_IflWqaYtTctdQor6FiN3Ckf9XFsPbsghXeWj8clzoW94WZ2Q-Gb8-TqOm20FkRcbLiFMLTLPUMjC4bTRPQDJqGAhDHQYesROgLaBqGc11DBISboR0FhFaxgQ_J53laukuSKhdJlOLkYDmGO3p3AAqBOcX5Bi8gU4Cct8-v7INFbjvSPGuWhLjWmHKK0zhfkB6mws-ahaM3UMfvEI3wzx9dXUAjaoao6q_jBqQbmsO1cypQiH2Y9TT8dOA9FsTfZ_eIc_lf8hzRQ78_eoyli7plJ9rd41gpDQ31Xv3Be0V11E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEbyIT1ytsgeR9rCaJtlHjrW0lILiwUJvIclkvUgr7vr_neyj0koP3rK7E9idScg3OzPfEHJnYsl1BiZymrNIgEsjTZ2JMuuocCaDxPiI7vNLMp2L2SJeNCRJvhZmK37_OJuOXwesh8eU7FdV4_vxgKe-R8MoGa3DBQhDaMvb83fSxpFTMfNvwMmtCGh1sEyOyVGDCMNhbcITsueWp-Sgysy0xRm5bxhQ30OEauHQl8aiN1sW4SoPjf_7FvoOt8U5mU_Gb6Np1DQ3iKzIeBlxaoFplloGBsdG8wQko4aBMNShnxE7AdoCapLRXMcgIeFGSGcRkGVM8AvSWa6W7pKE2mUytQj8NUfnTucGUCG4nSBHXw10EpCH9vuVbZi_fQOKD9VyFtcKU15hCq8D0ltP-KxJL3aLPnmFrsU8W3V1A42omsWvqEYIzxIJOcvFQAtpnfH5oJJDqhHPBaTbmkM1W6hQCPUY9ez7NCD91kS_j3e8z9U_ZK_JoR_WySld0im_vt0NQozS3FbL6wdrPscF
  priority: 102
  providerName: Springer Nature
Title Learning the Alpha-bits of black holes
URI https://link.springer.com/article/10.1007/JHEP12(2019)007
https://www.proquest.com/docview/2322057000
https://doaj.org/article/0a729269df2f41a49ceb090293d7a423
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED5BK6S9TIOB1q1UeUCIPgSM7Sb201SqlqoSCCEq9S2yfQ4vU8ua7v_fOXXKhgQvVpw4UXL-cd_5Lt8BnNmBFkahTb0RPJXo89Qwb1PlPJPeKsxs8Oje3WfTuZwtBou44VbFsMpmTawXaly5sEd-RZqfs0DGzn6-_E5D1qjgXY0pNPahTUuwUi1o34zvHx53fgTCJ6wh9GH51Ww6frjmF6T0dJ-FDLL_6KKasv8_nPnGNVprnMkX-ByhYjLc9u0h7PnlERzUIZuu-grnkRr1OSEMlwzDP7Nk5m6qZFUmNmzLJSH1bXUM88n4aTRNY9aD1EklNqlgDrnhueNo6dgakaHmzHKUlnkyQAZeonFIIuasNAPUmAkrtXeE1BSX4gRay9XSf4PEeKVzRxaBEWT1mdIiCYTmGZZkxKHJOnDZfH_hIiV4yEzxq2jIjLcCK4LACqp34GJ3w8uWDeP9pjdBoLtmgca6PrFaPxdxVhTMELbnmcaSl_LaSO28DYGiWmBuCOh1oNt0RxHnVlW8joQO9Jsuer38zvt8__hRP-BTaLkNVOlCa7P-408JbmxsD_bV5LYXRxbVRlyGMhv1agOeyjkf_gWtNdUm
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxwxDLYoqGovVelD3QJlDqWCw5SQZGcmB1RRynZ5qgeQuIUkznCpdoHZCvGn-htrz2OhSHDjNo8kShwn_hw7NsBn3zfKFejT6JRMNcY8dSL6tAhR6OgLzDxbdA-PsuGJ3jvtn87A3-4uDLtVdntivVHjOPAZ-TpJfik4GLv4dnGZctYotq52KTQattiPN9ekslWbuz9oflekHOwcbw_TNqtAGnShJqkSAaWTeZDo6dk7laGRwkvUXkQC-P2o0QWkIUhRuj4azJTXJgZCQoXUitp9BnNakSTnm-mDn1OrBaEh0YUPEvn63nDn14ZcJRFr1gTnq70j-eoEAf-h2nuG2Fq-DV7DqxaYJlsNJ83DTBy9gee1g2io3sKXNhDreUKIMdniG7qkVE-qZFwmng8BE060W72DkyehxnuYHY1H8QMkLhYmD6R_OEU6pis9EkFoVWNJKiO6rAdfu_Hb0AYg5zwYv20XOrkhmGWCWXrvweq0wkUTe-Phot-ZoNNiHDS7_jC-OrftGrTCkSYhM4OlLPWG0yZEz26pRmHuCFb2YLGbDtuu5Mre8l0P1ropuv39QH8-Pt7UMrwYHh8e2IPdo_0FeMm1GheZRZidXP2JSwR0Jv5TzV0JnD01O_8D65EM5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuqLxEoIU9AGoPS1zb2V0fKtTSRGkLUYSo1JuxPd5eUFK6QYi_xq_rzD5SQCq33vZhW_Z47PnGM54BeO2HRrkCfRqdkqnGmKdORJ8WIQodfYGZZ4vup2k2OdXHZ8OzNfjd3YVht8puT6w3alwEPiMfkOSXgoOxi0HZukXMDsfvL76nnEGKLa1dOo2GRU7ir5-kvlV7R4c012-kHI--fJikbYaBNOhCLVMlAkon8yDR07N3KkMjhZeovYgE9odRowtIw5GidEM0mCmvTQyEigqpFbV7B9Zz1op6sH4wms4-r2wYhI1EF0xI5IPjyWi2K7dJ4Jodwdlr_5CDdbqAvzDuP2bZWtqNN-BBC1OT_YavHsJanD-Cu7W7aKgew9s2LOt5Qvgx2ef7uqRiL6tkUSaejwQTTrtbPYHTW6HHU-jNF_P4DBIXC5MH0kacIo3TlR6JILTGsSQFEl3Wh3fd-G1ow5FzVoxvtguk3BDMMsEsvfdhe1XhoonEcXPRAyboqhiH0K4_LC7PbbsirXCkV8jMYClLveu0CdGzk6pRmDsCmX3Y7KbDtuu6stdc2Iedboquf9_Qn-f_b-oV3CNWth-Ppicv4D5XavxlNqG3vPwRtwj1LP3Llr0S-HrbHH0FCI8Sdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+Alpha-bits+of+black+holes&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hayden%2C+Patrick&rft.au=Penington%2C+Geoffrey&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2019&rft.issue=12&rft.spage=1&rft.epage=55&rft_id=info:doi/10.1007%2FJHEP12%282019%29007&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon