Effects of Different Tactile Feedback on Myoelectric Closed-Loop Control for Grasping Based on Electrotactile Stimulation
Closed-loop control is important for amputees to manipulate myoelectric prostheses intuitively and dexterously. Tactile feedback can help amputees improve myoelectric control performance for grasping objects. To investigate the effects of different tactile feedback, we performed experiments on six a...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 24; no. 8; pp. 827 - 836 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2015.2478153 |
Cover
Abstract | Closed-loop control is important for amputees to manipulate myoelectric prostheses intuitively and dexterously. Tactile feedback can help amputees improve myoelectric control performance for grasping objects. To investigate the effects of different tactile feedback, we performed experiments on six amputees and six able-bodied subjects via electrotactile stimulation. Using a virtual environment, six kinds of objects with different weights and stiffnesses were used for grasping tasks. Five feedback conditions (no feedback, pressure feedback, slip feedback, pressure + slip feedback, and vision feedback) were considered. Nine evaluation indexes and three control objectives (rapidity, economy, and stability) were proposed. Under the five feedback conditions, our study investigated four issues: 1) three types of grasping-related failures; 2) four types of grasping-related time measures; 3) average grasping force; 4) standard deviation of the grasping force. Results indicate that: 1) slip feedback is better than pressure feedback; 2) pressure + slip feedback can improve grasping rapidity; 3) slip feedback significantly contributes to grasping economy and stability; and 4) pressure + slip feedback can perform as well as vision feedback. |
---|---|
AbstractList | Closed-loop control is important for amputees to manipulate myoelectric prostheses intuitively and dexterously. Tactile feedback can help amputees improve myoelectric control performance for grasping objects. To investigate the effects of different tactile feedback, we performed experiments on six amputees and six able-bodied subjects via electrotactile stimulation. Using a virtual environment, six kinds of objects with different weights and stiffnesses were used for grasping tasks. Five feedback conditions (no feedback, pressure feedback, slip feedback, pressure [Formula Omitted] slip feedback, and vision feedback) were considered. Nine evaluation indexes and three control objectives (rapidity, economy, and stability) were proposed. Under the five feedback conditions, our study investigated four issues: 1) three types of grasping-related failures; 2) four types of grasping-related time measures; 3) average grasping force; 4) standard deviation of the grasping force. Results indicate that: 1) slip feedback is better than pressure feedback; 2) pressure [Formula Omitted] slip feedback can improve grasping rapidity; 3) slip feedback significantly contributes to grasping economy and stability; and 4) pressure [Formula Omitted] slip feedback can perform as well as vision feedback. Closed-loop control is important for amputees to manipulate myoelectric prostheses intuitively and dexterously. Tactile feedback can help amputees improve myoelectric control performance for grasping objects. To investigate the effects of different tactile feedback, we performed experiments on six amputees and six able-bodied subjects via electrotactile stimulation. Using a virtual environment, six kinds of objects with different weights and stiffnesses were used for grasping tasks. Five feedback conditions (no feedback, pressure feedback, slip feedback, pressure + slip feedback, and vision feedback) were considered. Nine evaluation indexes and three control objectives (rapidity, economy, and stability) were proposed. Under the five feedback conditions, our study investigated four issues: 1) three types of grasping-related failures; 2) four types of grasping-related time measures; 3) average grasping force; 4) standard deviation of the grasping force. Results indicate that: 1) slip feedback is better than pressure feedback; 2) pressure + slip feedback can improve grasping rapidity; 3) slip feedback significantly contributes to grasping economy and stability; and 4) pressure + slip feedback can perform as well as vision feedback. Closed-loop control is important for amputees to manipulate myoelectric prostheses intuitively and dexterously. Tactile feedback can help amputees improve myoelectric control performance for grasping objects. To investigate the effects of different tactile feedback, we performed experiments on six amputees and six able-bodied subjects via electrotactile stimulation. Using a virtual environment, six kinds of objects with different weights and stiffnesses were used for grasping tasks. Five feedback conditions (no feedback, pressure feedback, slip feedback, pressure + slip feedback, and vision feedback) were considered. Nine evaluation indexes and three control objectives (rapidity, economy, and stability) were proposed. Under the five feedback conditions, our study investigated four issues: 1) three types of grasping-related failures; 2) four types of grasping-related time measures; 3) average grasping force; 4) standard deviation of the grasping force. Results indicate that: 1) slip feedback is better than pressure feedback; 2) pressure + slip feedback can improve grasping rapidity; 3) slip feedback significantly contributes to grasping economy and stability; and 4) pressure + slip feedback can perform as well as vision feedback.Closed-loop control is important for amputees to manipulate myoelectric prostheses intuitively and dexterously. Tactile feedback can help amputees improve myoelectric control performance for grasping objects. To investigate the effects of different tactile feedback, we performed experiments on six amputees and six able-bodied subjects via electrotactile stimulation. Using a virtual environment, six kinds of objects with different weights and stiffnesses were used for grasping tasks. Five feedback conditions (no feedback, pressure feedback, slip feedback, pressure + slip feedback, and vision feedback) were considered. Nine evaluation indexes and three control objectives (rapidity, economy, and stability) were proposed. Under the five feedback conditions, our study investigated four issues: 1) three types of grasping-related failures; 2) four types of grasping-related time measures; 3) average grasping force; 4) standard deviation of the grasping force. Results indicate that: 1) slip feedback is better than pressure feedback; 2) pressure + slip feedback can improve grasping rapidity; 3) slip feedback significantly contributes to grasping economy and stability; and 4) pressure + slip feedback can perform as well as vision feedback. |
Author | Xu, Wendong Zhu, Xiangyang Huegel, Joel C. Zhang, Dingguo Xu, Heng |
Author_xml | – sequence: 1 givenname: Heng surname: Xu fullname: Xu, Heng organization: State Key Laboratory of Mechanical System and Vibration, Institute of Robotics, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China – sequence: 2 givenname: Dingguo surname: Zhang fullname: Zhang, Dingguo email: dgzhang@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Institute of Robotics, School of Mechanical Engineering, Shanghai Jiao Tong University, China – sequence: 3 givenname: Joel C. surname: Huegel fullname: Huegel, Joel C. organization: Biomechatronics Research Group, The Tecnológico de Monterrey, 44980 Guadalajara, Mexico – sequence: 4 givenname: Wendong surname: Xu fullname: Xu, Wendong organization: Department of Hand Surgery, Huashan Hospital, Fudan University, 200040 Shanghai, China – sequence: 5 givenname: Xiangyang surname: Zhu fullname: Zhu, Xiangyang organization: State Key Laboratory of Mechanical System and Vibration, Institute of Robotics, School of Mechanical Engineering, Shanghai Jiao Tong University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26372430$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhi1URNuUPwASssSllw3-WK-9RwhpixSo1Kbnle0dI5fNOrW9h_x7dpPQQw-oJ4_k5xlrxu85OulDDwh9oGROKam_rH_d3y3njFAxZ6VUVPA36IwKoQrCKDmZal4WJWfkFJ2n9EgIlZWQ79Apq7hkJSdnaLd0DmxOODj83Y91hD7jtbbZd4CvAFqj7R8cevxzF6Ab0egtXnQhQVusQtjiRehzDB12IeLrqNPW97_xNz3eT9Zyr4R8bHif_WbodPahv0Bvne4SvD-eM_RwtVwvborV7fWPxddVYUvFc8EcKMNd7ZyuBBGuBmm4UrQ13ABjYCVQp1vFtHFUM2htDS2lwjJj2hI4n6HLQ99tDE8DpNxsfLLQdbqHMKSGKi6qknEpXoFSIYmiFXkNSlmtxLjlGfr8An0MQ-zHmSeKCCkZr0bq05EazAbaZhv9Rsdd8--rRoAdABtDShHcM0JJM-Wh2eehmfLQHPMwSuqFZH3erz9H7bv_qx8PqgeA57ckE4qriv8Fxu_DXw |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1007_s42235_022_00246_5 crossref_primary_10_1109_TNSRE_2022_3214866 crossref_primary_10_3389_fresc_2022_806479 crossref_primary_10_1088_1741_2552_aa620a crossref_primary_10_1088_1741_2552_aa81e2 crossref_primary_10_1177_1729881419874962 crossref_primary_10_1186_s12984_019_0545_5 crossref_primary_10_3389_fbioe_2020_00555 crossref_primary_10_1016_j_jneumeth_2019_108450 crossref_primary_10_2478_prolas_2020_0047 crossref_primary_10_1007_s40846_018_0374_1 crossref_primary_10_1109_ACCESS_2018_2791583 crossref_primary_10_3389_fbioe_2018_00179 crossref_primary_10_1109_TNSRE_2018_2851617 crossref_primary_10_1007_s10439_020_02678_8 crossref_primary_10_1186_s12984_018_0422_7 crossref_primary_10_1109_TOH_2019_2961652 crossref_primary_10_1186_s12984_021_00877_5 crossref_primary_10_1152_jn_00087_2021 crossref_primary_10_1080_17434440_2017_1332989 crossref_primary_10_1109_TOH_2022_3189866 crossref_primary_10_1111_aor_14400 crossref_primary_10_1002_admt_202100452 crossref_primary_10_1109_TOH_2022_3170723 crossref_primary_10_1017_S0263574721000023 crossref_primary_10_3389_fnbot_2017_00059 crossref_primary_10_1145_3630254 crossref_primary_10_1088_1741_2552_ab8e8d crossref_primary_10_1109_JSEN_2022_3152185 crossref_primary_10_1109_JSEN_2017_2674965 crossref_primary_10_1186_s12984_022_01038_y crossref_primary_10_1109_TMRB_2020_3045502 crossref_primary_10_1088_2516_1091_acac57 crossref_primary_10_1142_S0219843620500243 crossref_primary_10_1109_TOH_2023_3328256 |
Cites_doi | 10.1109/TNSRE.2011.2162635 10.1109/JSEN.2007.894912 10.1108/02602280210444636 10.1109/ROBOT.1993.292018 10.1586/erd.12.68 10.1109/TNSRE.2002.1031977 10.1007/s00221-014-4024-8 10.1109/IROS.2011.6048751 10.1126/scitranslmed.3006820 10.1109/TNSRE.2013.2267394 10.1109/TBME.2012.2199491 10.1186/1743-0003-8-60 10.1682/JRRD.1992.01.0001 10.1109/TNSRE.2011.2168981 10.1007/s00422-006-0124-2 10.1109/EMBC.2012.6346587 10.1097/00008526-199600810-00003 10.1109/TNSRE.2014.2318431 10.1155/2014/120357 10.1109/TBME.2013.2252174 10.1016/0003-6870(94)00003-H 10.1016/j.mechatronics.2013.10.006 10.1155/2015/846487 10.1109/TMECH.2009.2032686 10.1007/s00221-006-0409-7 10.1109/IROS.2005.1545267 10.1186/1743-0003-8-9 10.1016/0959-4388(92)90139-C 10.1109/TNSRE.2008.925072 10.1109/TOH.2015.2420096 10.1109/TRO.2007.910708 10.1109/JSEN.2013.2252890 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2015.2478153 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE Technology Research Database Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation Economics |
EISSN | 1558-0210 |
EndPage | 836 |
ExternalDocumentID | 4143871611 26372430 10_1109_TNSRE_2015_2478153 7258386 |
Genre | orig-research Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program (973 Program) of China – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: National High Technology Research and Development Program (863 Program) of China – fundername: Natural Science Foundation of Shanghai funderid: 10.13039/100007219 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c483t-2fe8b3f9ffa6505f9e7b3881db3be22ec7e1fad82abf1a2edc9ed115c2bbd4e33 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 09:54:50 EDT 2025 Fri Jul 11 13:14:10 EDT 2025 Fri Jul 11 00:08:57 EDT 2025 Fri Jul 25 08:12:49 EDT 2025 Thu Apr 03 07:05:23 EDT 2025 Tue Jul 01 00:43:14 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-2fe8b3f9ffa6505f9e7b3881db3be22ec7e1fad82abf1a2edc9ed115c2bbd4e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 26372430 |
PQID | 1810577236 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1811298524 ieee_primary_7258386 pubmed_primary_26372430 crossref_primary_10_1109_TNSRE_2015_2478153 proquest_miscellaneous_1815708160 proquest_journals_1810577236 crossref_citationtrail_10_1109_TNSRE_2015_2478153 proquest_miscellaneous_1835642375 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref17 ref16 ref19 ref18 witteveen (ref12) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 kajimoto (ref27) 2004 ref8 ref7 ref9 ref4 ref3 ref6 ref5 mackenzie (ref1) 1994; 104 |
References_xml | – ident: ref2 doi: 10.1109/TNSRE.2011.2162635 – ident: ref35 doi: 10.1109/JSEN.2007.894912 – ident: ref34 doi: 10.1108/02602280210444636 – ident: ref25 doi: 10.1109/ROBOT.1993.292018 – ident: ref19 doi: 10.1586/erd.12.68 – ident: ref31 doi: 10.1109/TNSRE.2002.1031977 – ident: ref17 doi: 10.1007/s00221-014-4024-8 – ident: ref6 doi: 10.1109/IROS.2011.6048751 – volume: 104 year: 1994 ident: ref1 publication-title: The Grasping Hand – ident: ref16 doi: 10.1126/scitranslmed.3006820 – ident: ref3 doi: 10.1109/TNSRE.2013.2267394 – ident: ref15 doi: 10.1109/TBME.2012.2199491 – ident: ref20 doi: 10.1186/1743-0003-8-60 – ident: ref21 doi: 10.1682/JRRD.1992.01.0001 – year: 2004 ident: ref27 article-title: Electro-tactile display with tactile primary color approach publication-title: Graduate School of Information Science and Technology The University of Tokyo – ident: ref18 doi: 10.1109/TNSRE.2011.2168981 – ident: ref24 doi: 10.1007/s00422-006-0124-2 – ident: ref11 doi: 10.1109/EMBC.2012.6346587 – ident: ref5 doi: 10.1097/00008526-199600810-00003 – ident: ref13 doi: 10.1109/TNSRE.2014.2318431 – ident: ref10 doi: 10.1155/2014/120357 – ident: ref14 doi: 10.1109/TBME.2013.2252174 – ident: ref30 doi: 10.1016/0003-6870(94)00003-H – ident: ref7 doi: 10.1016/j.mechatronics.2013.10.006 – ident: ref32 doi: 10.1155/2015/846487 – ident: ref8 doi: 10.1109/TMECH.2009.2032686 – ident: ref9 doi: 10.1007/s00221-006-0409-7 – ident: ref26 doi: 10.1109/IROS.2005.1545267 – ident: ref28 doi: 10.1186/1743-0003-8-9 – ident: ref4 doi: 10.1016/0959-4388(92)90139-C – ident: ref29 doi: 10.1109/TNSRE.2008.925072 – ident: ref22 doi: 10.1109/TOH.2015.2420096 – ident: ref23 doi: 10.1109/TRO.2007.910708 – start-page: 309364614522260 year: 2014 ident: ref12 article-title: Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users publication-title: Prosthetics Orthotics Int – ident: ref33 doi: 10.1109/JSEN.2013.2252890 |
SSID | ssj0017657 |
Score | 2.3657134 |
Snippet | Closed-loop control is important for amputees to manipulate myoelectric prostheses intuitively and dexterously. Tactile feedback can help amputees improve... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 827 |
SubjectTerms | Adult Aged Amputation Stumps - physiopathology Artificial Limbs Closed-loop control Control systems Control theory Economics Electric Stimulation - methods Electromyography Electromyography - methods electrotactile stimulation Feedback Feedback, Sensory Female Force Grasping grasping force Hand - innervation Hand - physiopathology Hand - surgery Hand Strength Humans Indexes Male Middle Aged myoelectric prosthesis Noise measurement pressure feedback Psychomotor Performance Sensory feedback Slip slip feedback Stimulation Studies Tactile sensors Time measurement Touch Young Adult |
Title | Effects of Different Tactile Feedback on Myoelectric Closed-Loop Control for Grasping Based on Electrotactile Stimulation |
URI | https://ieeexplore.ieee.org/document/7258386 https://www.ncbi.nlm.nih.gov/pubmed/26372430 https://www.proquest.com/docview/1810577236 https://www.proquest.com/docview/1811298524 https://www.proquest.com/docview/1815708160 https://www.proquest.com/docview/1835642375 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApTwWWmQk4ALZJn7kcWy3u1SI7aHdSr1FtjOWqi5x1c0eyq_HEydRQbDqLZLHkZOZ0XzJPD5CPqaJMTGXKipMISPBhImUyLESIOcmNonlgN3I87P09FJ8v5JXW-Tr0AsDAG3xGYzxss3lV86s8VfZYcYwyZduk21vZqFXa8gYZGk71dM7sIgEZ3HfIBMXh4uzi_MpVnHJMcPOSonkOSzlGRNY_PwgHrUEK__Hmm3MmT0j8_60odTkZrxu9Nj8-muQ42Mf5zl52oFPehSsZZdsQf2CfHo4aJguwpQB-pme_zHDe4_ch0HHK-osPeloVRq6wMaIJdCZj4JamRvqajq_d4Fd59rQydKtoIp-OHdLJ6EsnnqcTL_dqRW2atFjH0Yr3DUNhDxNd8OL5vpnRy32klzOpovJadQRN0RG5LyJmIVcc1tYqzwAlLaATPPcI2PNNTAGJoPEqipnSttEMahMAZWHpoZpXQng_BXZqV0NbwjNtYTKIpOOsgJkrmPDpDU4Vd4qbrIRSXr1laZ7I0iusSzbr5u4KFvtl6j9stP-iHwZ9tyGmR4bpfdQdYNkp7UR2e-tpOzcflV6uOTxb8a4X_4wLHuHxSyMqsGtWxmPsXLJxEYZmSElSrxJhssUi5rkiLwOVjqcsTfut_8--zvyxD9hGuoY98lOc7eGA4-tGv2-darfwo8guA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VcoALr0JJKbBIwAWc2vvw4wghIUCSQ5tKvVm761mpampXjXMov54dr20VBBE3SztrrT0zms-ex0fI2zgyJuRSBZnJZCCYMIESKVYCpNyEJrIcsBt5voinp-L7mTzbIR_7XhgAaIrPYIiXTS6_qMwGf5UdJQyTfPEdctfFfSF9t1afM0jiZq6nc2ERCM7CrkUmzI6Wi5PjMdZxySHD3kqJ9Dks5gkTWP58KyI1FCv_RptN1Jk8JPPuvL7Y5GK4qfXQ_PxjlOP_PtAj8qCFn_STt5fHZAfKJ-Td7VHDdOnnDND39Pi3Kd575MaPOl7TytIvLbFKTZfYGrECOnFxUCtzQauSzm8qz69zbuhoVa2hCGZVdUVHvjCeOqRMv16rNTZr0c8ukBa4a-wpeer2hif1-WVLLvaUnE7Gy9E0aKkbAiNSXgfMQqq5zaxVDgJKm0GieeqwseYaGAOTQGRVkTKlbaQYFCaDwoFTw7QuBHD-jOyWVQnPCU21hMIil46yAmSqQ8OkNThX3ipukgGJOvXlpn0jSK-xypvvmzDLG-3nqP281f6AfOj3XPmpHlul91B1vWSrtQE57Kwkbx1_nTvA5BBwwrhbftMvO5fFPIwqodo0Mg5lpZKJrTIyQVKUcJsMlzGWNckB2fdW2p-xM-6Dv5_9Nbk3Xc5n-ezb4scLct89beyrGg_Jbn29gZcOadX6VeNgvwD2SCQF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Different+Tactile+Feedback+on+Myoelectric+Closed-Loop+Control+for+Grasping+Based+on+Electrotactile+Stimulation&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Xu%2C+Heng&rft.au=Zhang%2C+Dingguo&rft.au=Huegel%2C+Joel+C&rft.au=Xu%2C+Wendong&rft.date=2016-08-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=24&rft.issue=8&rft.spage=827&rft_id=info:doi/10.1109%2FTNSRE.2015.2478153&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |