A review on integration of lightweight gradient lattice structures in additive manufacturing parts
This review analyses the design, mechanical behaviors, manufacturability, and application of gradient lattice structures manufactured via metallic additive manufacturing technology. By varying the design parameters such as cell size, strut length, and strut diameter of the unit cells in lattice stru...
Saved in:
Published in | Advances in mechanical engineering Vol. 12; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.06.2020
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review analyses the design, mechanical behaviors, manufacturability, and application of gradient lattice structures manufactured via metallic additive manufacturing technology. By varying the design parameters such as cell size, strut length, and strut diameter of the unit cells in lattice structures, a gradient property is obtained to achieve different levels of functionalities and optimize strength-to-weight ratio characteristics. Gradient lattice structures offer variable densification and porosities; and can combine more than one type of unit cells with different topologies which results in different performances in mechanical behavior layer-by-layer compared to non-gradient lattice structures. Additive manufacturing techniques are capable of manufacturing complex lightweight parts such as uniform and gradient lattice structures and hence offer design freedom for engineers. Despite these advantages, additive manufacturing has its own unique drawbacks in manufacturing lattice structures. The rules and strategies in overcoming the constraints are discussed and recommendations for future work were proposed. |
---|---|
AbstractList | This review analyses the design, mechanical behaviors, manufacturability, and application of gradient lattice structures manufactured via metallic additive manufacturing technology. By varying the design parameters such as cell size, strut length, and strut diameter of the unit cells in lattice structures, a gradient property is obtained to achieve different levels of functionalities and optimize strength-to-weight ratio characteristics. Gradient lattice structures offer variable densification and porosities; and can combine more than one type of unit cells with different topologies which results in different performances in mechanical behavior layer-by-layer compared to non-gradient lattice structures. Additive manufacturing techniques are capable of manufacturing complex lightweight parts such as uniform and gradient lattice structures and hence offer design freedom for engineers. Despite these advantages, additive manufacturing has its own unique drawbacks in manufacturing lattice structures. The rules and strategies in overcoming the constraints are discussed and recommendations for future work were proposed. |
Author | Azman, Abdul Hadi Seharing, Asliah Abdullah, Shahrum |
Author_xml | – sequence: 1 givenname: Asliah surname: Seharing fullname: Seharing, Asliah organization: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia – sequence: 2 givenname: Abdul Hadi orcidid: 0000-0001-5349-7768 surname: Azman fullname: Azman, Abdul Hadi email: hadi.azman@ukm.edu.my organization: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia – sequence: 3 givenname: Shahrum surname: Abdullah fullname: Abdullah, Shahrum organization: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia |
BookMark | eNp9kc1r3DAQxUVIIWmSe46Cnt1IsixLx7D0I7DQy97F2Bq5Co61keSE_ve1d9MEAs1FGp7e7_HQfCanU5yQkGvOvnLetjdc6VZzyQQzXJmGn5DzVapW7fR1rsUZuco5dKxhijFlzDnpbmnCp4DPNE40TAWHBCUsc_R0DMPv8ozrSRfZBZwKHaGU0CPNJc19mRPmBaPgXCjhCekDTLOH9SFMA91DKvmSfPIwZrx6uS_I7vu33eZntf31425zu616qetSCa8EIjZ171SrnTRcAorGMOzqVnLOvXDO9BpEqzjT2EjTYA1CAdTGuPqC3B1jXYR7u0_hAdIfGyHYgxDTYJc2oR_Rdh5B865mCCg1NKbtAJV3GpmHTokl68sxa5_i44y52Ps4p2lpb4UURgqpDV9c6ujqU8w5obd9KIffKwnCaDmz63bs--0sIHsH_qv7AVIdkQwDvrX5r_8vgzmg-w |
CitedBy_id | crossref_primary_10_1016_j_prostr_2021_10_079 crossref_primary_10_1016_j_mtcomm_2024_110385 crossref_primary_10_1080_00207543_2023_2298477 crossref_primary_10_1080_00405167_2024_2318182 crossref_primary_10_2139_ssrn_4154056 crossref_primary_10_3390_ma18071397 crossref_primary_10_1002_adem_202200483 crossref_primary_10_1016_j_compstruct_2024_118304 crossref_primary_10_1016_j_euromechsol_2023_105007 crossref_primary_10_3390_app14072788 crossref_primary_10_1007_s40964_022_00339_x crossref_primary_10_3389_fmats_2023_1242480 crossref_primary_10_1080_0305215X_2023_2295353 crossref_primary_10_3390_ma17246152 crossref_primary_10_1007_s00170_021_06817_w crossref_primary_10_3390_mi14111982 crossref_primary_10_1016_j_mechmat_2021_104173 crossref_primary_10_1007_s10409_021_09013_3 crossref_primary_10_1080_15376494_2023_2273372 crossref_primary_10_3390_polym15193896 crossref_primary_10_1016_j_addma_2022_103022 crossref_primary_10_1016_j_matdes_2024_113507 crossref_primary_10_1177_10996362241262948 crossref_primary_10_1007_s12666_022_02780_6 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126325 crossref_primary_10_1088_2053_1591_accd40 crossref_primary_10_3390_app132011187 crossref_primary_10_1016_j_jclepro_2021_126401 crossref_primary_10_1016_j_mtcomm_2021_102346 crossref_primary_10_1108_RPJ_02_2024_0076 crossref_primary_10_1002_adem_202300915 crossref_primary_10_3390_ma16030935 crossref_primary_10_1016_j_jmrt_2023_04_090 crossref_primary_10_3390_app12157386 crossref_primary_10_2464_jilm_72_246 crossref_primary_10_3390_ma16020736 crossref_primary_10_3390_met14090988 crossref_primary_10_3390_met13101666 crossref_primary_10_1002_adem_202402264 crossref_primary_10_3390_ma17061314 crossref_primary_10_1177_1687814020984375 crossref_primary_10_1108_RPJ_02_2023_0051 crossref_primary_10_1088_2053_1591_acaef2 crossref_primary_10_3390_mi15111288 crossref_primary_10_1016_j_addma_2021_102063 crossref_primary_10_1016_j_compositesb_2022_110086 crossref_primary_10_1016_j_compscitech_2023_110308 crossref_primary_10_1016_j_heliyon_2023_e14448 crossref_primary_10_1016_j_polymertesting_2024_108612 crossref_primary_10_1016_j_mechmat_2023_104686 crossref_primary_10_1177_09544062231198781 crossref_primary_10_26701_ems_1287321 crossref_primary_10_1016_j_engstruct_2024_119575 crossref_primary_10_1115_1_4062832 crossref_primary_10_1108_RPJ_04_2024_0151 crossref_primary_10_3390_ma14216521 crossref_primary_10_1088_2631_7990_ac8ef3 crossref_primary_10_1016_j_ijmecsci_2023_108834 crossref_primary_10_1080_26889277_2022_2076617 crossref_primary_10_1007_s11668_021_01304_6 crossref_primary_10_3390_designs5040077 crossref_primary_10_1016_j_tws_2023_111132 crossref_primary_10_2139_ssrn_4013045 crossref_primary_10_1007_s11837_024_06654_8 crossref_primary_10_1038_s41467_024_51757_0 crossref_primary_10_1080_15397734_2022_2107538 crossref_primary_10_1016_j_cma_2024_116862 crossref_primary_10_3390_applmech5010014 crossref_primary_10_3390_biomedicines12010076 crossref_primary_10_1016_j_matdes_2022_110415 crossref_primary_10_1016_j_addma_2022_102739 crossref_primary_10_3390_met12020340 crossref_primary_10_1016_j_tws_2021_108462 crossref_primary_10_1016_j_tsep_2024_102898 crossref_primary_10_32972_dms_2024_001 crossref_primary_10_1007_s12008_022_00962_6 crossref_primary_10_1016_j_matdes_2024_113564 crossref_primary_10_1115_1_4054675 crossref_primary_10_3390_met13030490 crossref_primary_10_1016_j_matdes_2022_110963 crossref_primary_10_1016_j_mattod_2021_03_019 crossref_primary_10_1016_j_addma_2021_102488 crossref_primary_10_1016_j_mtla_2024_102234 crossref_primary_10_3390_app11093845 crossref_primary_10_3390_ma17215339 crossref_primary_10_1016_j_compositesb_2021_109393 crossref_primary_10_46519_ij3dptdi_1256993 crossref_primary_10_1007_s11665_023_08423_1 crossref_primary_10_1007_s11837_023_05735_4 crossref_primary_10_1016_j_mtcomm_2023_106918 crossref_primary_10_1016_j_engfailanal_2021_105302 crossref_primary_10_1080_15376494_2022_2064016 crossref_primary_10_1002_adem_202101760 crossref_primary_10_1016_j_bprint_2023_e00304 crossref_primary_10_1016_j_ijmecsci_2023_108734 crossref_primary_10_1016_j_bprint_2023_e00267 crossref_primary_10_1016_j_jmbbm_2024_106369 crossref_primary_10_3390_en17061468 crossref_primary_10_1016_j_jmbbm_2021_104869 crossref_primary_10_1016_j_engappai_2025_110148 crossref_primary_10_1007_s00170_024_14889_7 crossref_primary_10_1016_j_addma_2023_103507 crossref_primary_10_1007_s00170_023_11630_8 crossref_primary_10_1016_j_mser_2021_100606 crossref_primary_10_1051_matecconf_202338806008 crossref_primary_10_3390_machines12060404 crossref_primary_10_1016_j_jmrt_2025_01_232 crossref_primary_10_1016_j_tws_2021_108760 crossref_primary_10_1016_j_addma_2025_104719 crossref_primary_10_1016_j_mtcomm_2025_112094 crossref_primary_10_1016_j_matt_2022_11_025 crossref_primary_10_3390_en15217994 crossref_primary_10_1002_aisy_202400102 crossref_primary_10_1016_j_rineng_2024_102024 crossref_primary_10_1002_adem_202402108 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_1016_j_matpr_2023_09_199 crossref_primary_10_1007_s40964_025_00982_0 crossref_primary_10_1016_j_ast_2023_108565 crossref_primary_10_1016_j_compstruct_2025_119013 crossref_primary_10_1177_09544089251326260 crossref_primary_10_3390_buildings13122927 crossref_primary_10_3390_met14101165 crossref_primary_10_1002_appl_202200062 crossref_primary_10_1088_2053_1591_acfb60 crossref_primary_10_1016_j_addma_2023_103480 crossref_primary_10_1007_s11465_022_0724_0 crossref_primary_10_1007_s12008_021_00767_z crossref_primary_10_7736_JKSPE_023_005 crossref_primary_10_1007_s00170_024_13572_1 crossref_primary_10_1016_j_mtcomm_2024_109006 crossref_primary_10_1016_j_tws_2022_109778 crossref_primary_10_3390_ma14102599 crossref_primary_10_1002_adem_202301431 crossref_primary_10_3390_aerospace10050400 crossref_primary_10_1038_s41598_023_49846_z crossref_primary_10_1080_17452759_2023_2285392 crossref_primary_10_37349_ebmx_2024_00015 crossref_primary_10_1016_j_precisioneng_2025_03_027 crossref_primary_10_1002_nme_7208 crossref_primary_10_1016_j_matdes_2024_112956 crossref_primary_10_1016_j_mtcomm_2025_112037 crossref_primary_10_1016_j_addma_2021_101943 crossref_primary_10_1002_adma_202300912 crossref_primary_10_1016_j_matdes_2021_110318 crossref_primary_10_1007_s40964_024_00929_x crossref_primary_10_1016_j_bioadv_2024_214170 crossref_primary_10_3390_app10186374 crossref_primary_10_1080_17452759_2023_2224300 crossref_primary_10_2351_7_0001174 crossref_primary_10_1088_1757_899X_1214_1_012010 crossref_primary_10_1007_s00170_023_11051_7 crossref_primary_10_3390_dynamics4040038 crossref_primary_10_1007_s40684_024_00662_4 crossref_primary_10_3390_ma15010378 |
Cites_doi | 10.1016/j.matdes.2018.05.066 10.1016/j.matdes.2018.05.058 10.1016/j.msea.2008.04.002 10.1016/j.jmbbm.2017.01.016 10.1088/1361-665X/26/2/025013 10.1115/1.4033957 10.1016/j.actamat.2016.05.054 10.1016/j.matdes.2018.02.062 10.1016/j.msea.2016.06.013 10.1016/j.ijmecsci.2014.10.012 10.1016/j.matdes.2017.06.006 10.1016/j.matdes.2015.12.058 10.1002/adem.201500086 10.1016/j.msea.2017.11.082 10.1016/j.jmatprotec.2013.01.020 10.1016/j.compstruct.2016.11.007 10.1115/1.4028724 10.3390/met8040200 10.1016/j.compstruct.2018.06.038 10.1016/j.msea.2007.10.082 10.1016/j.matdes.2010.08.029 10.1016/j.jmbbm.2017.08.034 10.1016/j.matdes.2017.01.098 10.1016/j.matdes.2018.01.023 10.1016/j.procir.2017.03.027 10.3390/ma11030374 10.1016/j.jmbbm.2013.05.011 10.1016/j.ast.2008.09.001 10.1016/j.ijmachtools.2012.06.002 10.1002/adem.201700842 10.14419/ijet.v8i1.1.24778 10.1016/j.msea.2018.02.105 10.1016/j.matdes.2009.08.010 10.1016/j.cirp.2017.04.130 10.4028/www.scientific.net/MSF.863.45 10.1016/j.matdes.2016.02.127 10.1016/j.msec.2015.11.054 10.1007/s10853-007-1661-3 10.1016/S0961-9526(09)80012-9 10.1002/pssb.200945513 10.1016/j.jmbbm.2019.05.019 10.1016/j.addma.2019.100947 10.1016/j.compstruct.2011.10.023 10.17576/jkukm-2008-20-11 10.1016/j.jmbbm.2017.11.044 10.1016/j.ijmecsci.2018.07.006 10.1016/S0022-5096(96)00090-7 10.1016/j.powtec.2017.12.058 10.1007/s00170-018-1913-1 10.1016/j.actamat.2018.02.060 10.4028/www.scientific.net/MSF.631-632.253 10.1177/0021955X16639035 10.1016/j.mtcomm.2018.02.002 10.1016/j.matdes.2014.05.064 10.1016/j.msea.2016.05.075 10.1016/j.ijimpeng.2016.10.006 10.1016/j.matdes.2017.10.040 10.1049/mnl.2013.0265 10.1016/j.matdes.2017.02.021 10.3390/met4030401 10.1115/1.4041208 10.1098/rsta.2005.1678 10.1016/j.msea.2015.06.018 10.3390/ma7064803 10.1051/meca/2012003 10.1007/s11340-015-0117-y 10.1088/1054-660X/23/6/066101 10.1177/0954405416668924 10.1016/j.addma.2017.06.012 10.1016/j.actamat.2012.01.052 10.1016/j.pmatsci.2017.10.001 10.1126/sciadv.1603119 10.1016/B978-0-12-812456-7.00013-5 10.1016/j.matpr.2017.12.085 10.1016/j.jmbbm.2009.10.006 10.1016/j.jmbbm.2017.04.011 10.1016/j.matdes.2018.01.059 10.3390/app9183844 10.1016/j.ijheatmasstransfer.2017.12.148 10.1016/j.ijimpeng.2017.09.018 10.1016/j.msea.2015.01.031 10.1016/j.matdes.2013.10.027 10.1016/j.procir.2012.07.108 10.1016/j.msea.2011.03.053 10.1016/j.msec.2016.06.016 10.1016/j.ijmecsci.2012.12.004 10.1016/j.actbio.2011.06.008 10.1016/j.jmatprotec.2015.07.013 10.1016/S0022-5096(01)00010-2 10.1016/j.addma.2017.04.003 10.1016/j.ijheatmasstransfer.2012.01.011 10.1007/s11837-015-1307-x 10.1016/j.jmatprotec.2007.12.055 10.1016/j.ijfatigue.2012.11.011 10.1016/j.matdes.2018.06.010 10.1016/j.actbio.2008.03.013 10.1016/j.jmbbm.2018.01.013 10.1016/j.matdes.2016.05.020 10.1002/adem.200800137 10.1002/bit.25919 10.1016/j.addma.2014.07.002 10.1016/j.cossms.2018.05.002 10.1016/j.rcim.2017.06.006 10.1016/j.addma.2017.11.001 10.1016/j.ijsolstr.2010.10.018 10.1016/j.matdes.2017.08.007 10.3390/ma12050815 10.1016/j.matdes.2014.07.043 10.3390/pr7110802 10.1115/1.2900701 10.3390/ma11101856 10.1146/annurev-matsci-070115-031624 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1177/1687814020916951 |
DatabaseName | Open Access Journals from Sage CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Engineering Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (OA) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_bfea81b30eae48a597bae6fd8e0fab62 10_1177_1687814020916951 10.1177_1687814020916951 |
GrantInformation_xml | – fundername: ministry of higher education, malaysia grantid: FRGS/1/2018/TK03/UKM/03/1 funderid: https://doi.org/10.13039/501100003093 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c483t-2f62eee53cd678d4914ae2590eb374111f2dd9c8a276108e5495e3a26aa399d3 |
IEDL.DBID | DOA |
ISSN | 1687-8132 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Fri Jul 25 12:21:04 EDT 2025 Tue Jul 01 05:22:14 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 Tue Jun 17 22:33:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | lattice structure Additive manufacturing gradient lattice structure mechanical properties mechanical design |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-2f62eee53cd678d4914ae2590eb374111f2dd9c8a276108e5495e3a26aa399d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5349-7768 |
OpenAccessLink | https://doaj.org/article/bfea81b30eae48a597bae6fd8e0fab62 |
PQID | 2429424891 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bfea81b30eae48a597bae6fd8e0fab62 proquest_journals_2429424891 crossref_citationtrail_10_1177_1687814020916951 crossref_primary_10_1177_1687814020916951 sage_journals_10_1177_1687814020916951 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2020 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Choy, Sun, Leong 2017; 16 Schaedler, Carter 2016; 46 Feng, Tang, Liu 2018; 232 Campanelli, Contuzzi, Ludovico 2014; 7 Cansizoglu, Harrysson, Cormier 2008; 492 Cherradi, Kawasaki, Gasik 1994; 4 Rahmani, Antonov, Kollo 2019; 9 Speirs, Van Hooreweder, Van Humbeeck 2017; 70 Calignano 2014; 64 Heinl, Körner, Singer 2008; 10 Gorguluarslan, Choi, Saldana 2017; 71 Kadirgama, Harun, Tarlochan 2018; 97 Maloney, Fink, Schaedler 2012; 55 Onal, Frith, Jurg 2018; 8 Hasib, Harrysson, West 2015; 67 Azman, Vignat, Villeneuve 2018; 80 Stevenson, Rehman, Draper 2016; 113 Wong, Leong 2018; 121 Wang, Wang, Tang 2015; 640 Tahir, Ariffin, Muhamad 2008; 20 Leuders, Thöne, Riemer 2013; 48 Tanlak, De Lange, Van Paepegem 2017; 133 Maskery, Hussey, Panesar 2017; 53 Smith, Guan, Cantwell 2013; 67 Dallago, Fontanari, Torresani 2018; 78 Vayre, Vignat, Villeneuve 2012; 13 Flores, Kretzschmar, Azman 2020; 31 Chung, Das 2008; 487 Al-Saedi, Masood, Faizan-Ur-Rab 2018; 144 Cao, Duan, Liang 2018; 145 Sun, Yang, Wang 2013; 23 Wang, Arabnejad, Tanzer 2018; 140 Sing, Yeong, Wiria 2016; 56 Yánez, Herrera, Martel 2016; 68 Shan, Kadhum, Al-Furjan 2019; 12 Zargarian, Esfahanian, Kadkhodapour 2016; 60 Galati, Iuliano 2018; 19 Sachs, Cima, Williams 1992; 114 Jetté, Brailovski, Dumas 2018; 77 Köhnen, Haase, Bültmann 2018; 145 Neff, Hopkinson, Crane 2018; 22 Yin, Li, Liu 2017; 160 Ashby 2006; 364 Choy, Sun, Leong 2017; 131 Heinl, Müller, Körner 2008; 4 Jamshidinia, Wang, Tong 2015; 226 Babaee, Jahromi, Ajdari 2012; 60 Van Grunsven, Hernandez-Nava, Reilly 2014; 4 Zhu, Knott, Mills 1997; 45 Yin, Chen, Wu 2018; 201 Van Hooreweder, Kruth 2017; 66 Mumtaz, Hopkinson 2007; 42 Mousanezhad, Ghosh, Ajdari 2014; 89 Han, Li, Wang 2018; 80 Tancogne-Dejean, Spierings, Mohr 2016; 116 Zhao, Li, Wang 2018; 150 Nammi, Myler, Edwards 2010; 31 Sing, Wiria, Yeong 2018; 49 Walton, Moztarzadeh 2017; 60 Maskery, Aboulkhair, Aremu 2017; 16 Yan, Hao, Hussein 2014; 55 Yusong, Qianqian, Yan 2013; 8 Liu, Zhang, Zhang 2018; 11 Ajdari, Nayeb-Hashemi, Vaziri 2011; 48 Schwerdtfeger, Heinl, Singer 2010; 247 Kulangara, Rao, Subhash Chandra Bose 2018; 5 Wilts, Apeleo Zubiri, Klatt 2017; 3 Warmuth, Osmanlic, Adler 2017; 26 Li, Zhao, Hou 2016; 18 Vayre, Vignat, Villeneuve 2012; 3 Moon, Tan, Hwang 2014; 1 Zhang, Liu, Li 2018; 20 Xiao, Song 2018; 111 Erdal, Dag, Jande 2009; 631–632 Zhang, Toman, Yu 2015; 137 Khosroshahi, Tsampas, Galvanetto 2018; 14 Pérez-Sánchez, Yánez, Cuadrado 2018; 155 Dumas, Terriault, Brailovski 2017; 121 Chen, Lee, Lee 2016; 863 Bai, Zhang, Chen 2018; 11 Soro, Attar, Brodie 2019; 97 Seharing, Azman, Abdullah 2019; 8 Alsalla, Hao, Smith 2016; 669 Yuan, Shen, Bai 2017; 120 Xiao, Song, Wang 2017; 100 Ju, Summers 2011; 32 Ullah, Brandt, Feih 2016; 92 Geng, Ma, Liu 2018; 712 Tan, Rahbar, Allameh 2011; 7 Sallica-Leva, Jardini, Fogagnolo 2013; 26 DebRoy, Wei, Zuback 2018; 92 Zhang, Leary, Tang 2018; 22 Parthasarathy, Starly, Raman 2010; 3 Yan, Hao, Hussein 2012; 62 Qiu, Yue, Adkins 2015; 628 Maskery, Aboulkhair, Aremu 2016; 670 Rahito, Wahab, Azman 2019; 7 Zhang, Wei, Shi 2008; 206 Vasiliev, Barynin, Razing 2012; 94 Xiao, Yang, Xiao 2018; 143 Eldesouky, Harrysson, West 2017; 17 Challis, Xu, Zhang 2014; 63 Ramirez, Murr, Li 2011; 528 Totaro, Gürdal 2009; 13 Mahshid, Hansen, Højbjerre 2016; 104 Xue, Wang, Wang 2018; 722 Deshpande, Fleck, Ashby 2001; 49 Ataee, Li, Fraser 2018; 137 Beyer, Figueroa 2016; 138 Wauthle, Vrancken, Beynaerts 2014; 5 Harun, Kamariah, Muhamad 2018; 327 Leary, Mazur, Elambasseril 2016; 98 Park, Rosen, Choi 2014; 1–4 Leary, Mazur, Williams 2018; 157 Hussein, Hao, Yan 2013; 213 Maskery, Aremu, Parry 2018; 155 bibr87-1687814020916951 bibr44-1687814020916951 bibr95-1687814020916951 bibr28-1687814020916951 bibr101-1687814020916951 bibr52-1687814020916951 bibr103-1687814020916951 Choy SY (bibr109-1687814020916951) bibr26-1687814020916951 Gibson LJ (bibr7-1687814020916951) 1998 bibr34-1687814020916951 bibr60-1687814020916951 bibr77-1687814020916951 bibr50-1687814020916951 bibr42-1687814020916951 bibr97-1687814020916951 bibr89-1687814020916951 bibr32-1687814020916951 bibr24-1687814020916951 bibr11-1687814020916951 bibr111-1687814020916951 bibr9-1687814020916951 bibr40-1687814020916951 bibr79-1687814020916951 bibr49-1687814020916951 bibr82-1687814020916951 bibr74-1687814020916951 bibr57-1687814020916951 bibr65-1687814020916951 bibr124-1687814020916951 bibr122-1687814020916951 bibr81-1687814020916951 bibr116-1687814020916951 bibr130-1687814020916951 Killi SW. (bibr128-1687814020916951) 2017 bibr99-1687814020916951 bibr125-1687814020916951 bibr117-1687814020916951 bibr121-1687814020916951 bibr108-1687814020916951 bibr90-1687814020916951 bibr12-1687814020916951 Neff C (bibr31-1687814020916951) 2018; 22 bibr93-1687814020916951 bibr85-1687814020916951 bibr113-1687814020916951 bibr46-1687814020916951 bibr105-1687814020916951 bibr2-1687814020916951 Moon SK (bibr68-1687814020916951) 2014; 1 bibr18-1687814020916951 bibr88-1687814020916951 bibr5-1687814020916951 bibr54-1687814020916951 bibr70-1687814020916951 bibr15-1687814020916951 bibr96-1687814020916951 Seharing A (bibr8-1687814020916951) 2019; 8 bibr23-1687814020916951 Magerramova L (bibr73-1687814020916951) bibr62-1687814020916951 Hanzl P (bibr38-1687814020916951) bibr110-1687814020916951 bibr102-1687814020916951 Park S (bibr86-1687814020916951); 1 Nguyen DS (bibr47-1687814020916951) Kumar V (bibr67-1687814020916951) Mazur M (bibr22-1687814020916951) 2016 bibr61-1687814020916951 bibr35-1687814020916951 bibr78-1687814020916951 bibr94-1687814020916951 bibr43-1687814020916951 bibr51-1687814020916951 bibr129-1687814020916951 Aremu AO (bibr20-1687814020916951) Eldesouky I (bibr29-1687814020916951) 2017; 17 bibr100-1687814020916951 bibr104-1687814020916951 Azman AH (bibr6-1687814020916951) 2018; 80 bibr17-1687814020916951 bibr71-1687814020916951 bibr55-1687814020916951 bibr84-1687814020916951 bibr4-1687814020916951 bibr76-1687814020916951 bibr63-1687814020916951 bibr37-1687814020916951 bibr45-1687814020916951 bibr114-1687814020916951 bibr58-1687814020916951 bibr127-1687814020916951 bibr53-1687814020916951 bibr106-1687814020916951 bibr27-1687814020916951 bibr66-1687814020916951 bibr19-1687814020916951 bibr92-1687814020916951 bibr119-1687814020916951 Wauthle R (bibr115-1687814020916951) 2014; 5 bibr1-1687814020916951 bibr123-1687814020916951 bibr14-1687814020916951 bibr91-1687814020916951 bibr48-1687814020916951 bibr107-1687814020916951 bibr30-1687814020916951 bibr16-1687814020916951 bibr13-1687814020916951 bibr56-1687814020916951 bibr3-1687814020916951 bibr64-1687814020916951 bibr21-1687814020916951 bibr25-1687814020916951 bibr80-1687814020916951 bibr98-1687814020916951 bibr126-1687814020916951 bibr112-1687814020916951 bibr72-1687814020916951 bibr118-1687814020916951 bibr59-1687814020916951 bibr39-1687814020916951 bibr33-1687814020916951 Challapalli A (bibr69-1687814020916951) bibr120-1687814020916951 bibr75-1687814020916951 bibr83-1687814020916951 bibr41-1687814020916951 bibr10-1687814020916951 bibr36-1687814020916951 |
References_xml | – volume: 160 start-page: 1147 year: 2017 end-page: 1154 article-title: Honeytubes: hollow lattice truss reinforced honeycombs for crushing protection publication-title: Compos Struct – volume: 48 start-page: 300 year: 2013 end-page: 307 article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int J Fatigue – volume: 137 start-page: 021004 year: 2015 article-title: Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation publication-title: J Manuf Sci E: T ASME – volume: 45 start-page: 319 year: 1997 end-page: 325 article-title: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells publication-title: J Mech Phys Solids – volume: 20 start-page: 115 year: 2008 end-page: 124 article-title: Crack propagation of metal powder compact publication-title: J Kejuruter (J Eng) – volume: 201 start-page: 131 year: 2018 end-page: 140 article-title: Introducing composite lattice core sandwich structure as an alternative proposal for engine hood publication-title: Compos Struct – volume: 120 start-page: 317 year: 2017 end-page: 327 article-title: 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization publication-title: Mater Design – volume: 121 start-page: 46 year: 2018 end-page: 63 article-title: Saturated pool boiling enhancement using porous lattice structures produced by Selective Laser Melting publication-title: Int J Heat Mass Tran – volume: 14 start-page: 312 year: 2018 end-page: 323 article-title: Feasibility study on the use of a hierarchical lattice architecture for helmet liners publication-title: Mater Today: Commun – volume: 1–4 start-page: 12 year: 2014 end-page: 23 article-title: Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing publication-title: Addit Manuf – volume: 3 start-page: 249 year: 2010 end-page: 259 article-title: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM) publication-title: J Mech Behav Biomed – volume: 64 start-page: 203 year: 2014 end-page: 213 article-title: Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting publication-title: Mater Design – volume: 8 start-page: 200 year: 2018 article-title: Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds publication-title: Metals – volume: 5 start-page: 5068 year: 2018 end-page: 5073 article-title: Generation and optimization of lattice structure on a spur gear publication-title: Mater Today: Proc – volume: 364 start-page: 15 year: 2006 end-page: 30 article-title: The properties of foams and lattices publication-title: Philos T Roy Soc A – volume: 528 start-page: 5379 year: 2011 end-page: 5386 article-title: Open-cellular copper structures fabricated by additive manufacturing using electron beam melting publication-title: Mat Sci Eng A: Struct – volume: 98 start-page: 344 year: 2016 end-page: 357 article-title: Selective laser melting (SLM) of AlSi12Mg lattice structures publication-title: Mater Design – volume: 4 start-page: 401 year: 2014 end-page: 409 article-title: Fabrication and mechanical characterisation of titanium lattices with graded porosity publication-title: Metals – volume: 23 start-page: 66 year: 2013 end-page: 101 article-title: Mechanical properties of regular hexahedral lattice structure formed by selective laser melting publication-title: Laser Phys – volume: 19 start-page: 1 year: 2018 end-page: 20 article-title: A literature review of powder-based electron beam melting focusing on numerical simulations publication-title: Addit Manuf – volume: 18 start-page: 34 year: 2016 end-page: 38 article-title: Functionally graded Ti-6Al-4V meshes with high strength and energy absorption publication-title: Adv Eng Mater – volume: 3 start-page: e1603119 year: 2017 article-title: Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development publication-title: Sci Adv – volume: 487 start-page: 251 year: 2008 end-page: 257 article-title: Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering publication-title: Mat Sci Eng A: Struct – volume: 26 start-page: 025013 year: 2017 article-title: Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting publication-title: Smart Mater Struct – volume: 55 start-page: 2486 year: 2012 end-page: 2493 article-title: Multifunctional heat exchangers derived from three-dimensional micro-lattice structures publication-title: Int J Heat Mass Tran – volume: 80 start-page: 119 year: 2018 end-page: 127 article-title: Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants publication-title: J Mech Behav Biomed – volume: 116 start-page: 14 year: 2016 end-page: 28 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Mater – volume: 722 start-page: 255 year: 2018 end-page: 262 article-title: Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting publication-title: Mat Sci Eng A: Struct – volume: 94 start-page: 1117 year: 2012 end-page: 1127 article-title: Anisogrid composite lattice structures—development and aerospace applications publication-title: Compos Struct – volume: 121 start-page: 383 year: 2017 end-page: 392 article-title: Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials publication-title: Mater Design – volume: 67 start-page: 28 year: 2013 end-page: 41 article-title: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique publication-title: Int J Mech Sci – volume: 327 start-page: 128 year: 2018 end-page: 151 article-title: A review of powder additive manufacturing processes for metallic biomaterials publication-title: Powder Technol – volume: 78 start-page: 381 year: 2018 end-page: 394 article-title: Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting publication-title: J Mech Behav Biomed – volume: 92 start-page: 112 year: 2018 end-page: 224 article-title: Additive manufacturing of metallic components—process, structure and properties publication-title: Prog Mater Sci – volume: 143 start-page: 27 year: 2018 end-page: 37 article-title: Evaluation of topology-optimized lattice structures manufactured via selective laser melting publication-title: Mater Design – volume: 100 start-page: 75 year: 2017 end-page: 89 article-title: Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading publication-title: Int J Impact Eng – volume: 640 start-page: 375 year: 2015 end-page: 384 article-title: Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure publication-title: Mat Sci Eng A: Struct – volume: 863 start-page: 45 year: 2016 end-page: 49 article-title: Failure analysis of an additive manufactured porous titanium structure for orthopedic implant applications publication-title: Mater Sci Forum – volume: 49 start-page: 170 year: 2018 end-page: 180 article-title: Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior publication-title: Robot Cim: Int Manuf – volume: 53 start-page: 151 year: 2017 end-page: 165 article-title: An investigation into reinforced and functionally graded lattice structures publication-title: J Cell Plast – volume: 145 start-page: 53 year: 2018 end-page: 63 article-title: Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section publication-title: Int J Mech Sci – volume: 22 start-page: 807 year: 2018 end-page: 816 article-title: Experimental and analytical investigation of mechanical behavior of laser-sintered diamond-lattice structures publication-title: Addit Manuf – volume: 11 start-page: E1856 year: 2018 article-title: Configuration optimization design of Ti6Al4V lattice structure formed by SLM publication-title: Materials – volume: 60 start-page: 205 year: 2017 end-page: 210 article-title: Design and development of an additive manufactured component by topology optimisation publication-title: Proc CIRP – volume: 4 start-page: 1536 year: 2008 end-page: 1544 article-title: Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting publication-title: Acta Biomater – volume: 89 start-page: 413 year: 2014 end-page: 422 article-title: Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening publication-title: Int J Mech Sci – volume: 232 start-page: 1719 year: 2018 end-page: 1730 article-title: An investigation of the mechanical properties of metallic lattice structures fabricated using selective laser melting publication-title: Proc IMechE, Part B: J Engineering Manufacture – volume: 4 start-page: 883 year: 1994 end-page: 894 article-title: Worldwide trends in functional gradient materials research and development publication-title: Compos Eng – volume: 7 start-page: 4803 year: 2014 end-page: 4822 article-title: Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting publication-title: Materials – volume: 12 start-page: 815 year: 2019 article-title: In situ controlled surface microstructure of 3D printed Ti alloy to promote its osteointegration publication-title: Materials – volume: 62 start-page: 32 year: 2012 end-page: 38 article-title: Evaluations of cellular lattice structures manufactured using selective laser melting publication-title: Int J Mach Tool Manu – volume: 67 start-page: 639 year: 2015 end-page: 646 article-title: Powder removal from Ti-6Al-4V cellular structures fabricated via electron beam melting publication-title: Jom: J Min Met Mat S – volume: 80 start-page: 87 year: 2018 end-page: 95 article-title: Cad tools and file format performance evaluation in designing lattice structures for additive manufacturing publication-title: J Teknol – volume: 8 start-page: 36 year: 2019 end-page: 43 article-title: Gradient lattice structure bio mimicry design configurations for additive manufacturing publication-title: Int J Eng Tech – volume: 77 start-page: 58 year: 2018 end-page: 72 article-title: Femoral stem incorporating a diamond cubic lattice structure: design, manufacture and testing publication-title: J Mech Behav Biomed – volume: 111 start-page: 255 year: 2018 end-page: 272 article-title: Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments publication-title: Int J Impact Eng – volume: 8 start-page: 357 year: 2013 end-page: 361 article-title: Fabrication and characterisation of functional gradient hydroxyapatite reinforced poly (ether ether ketone) biocomposites publication-title: Micro Nano Lett – volume: 1 start-page: 223 year: 2014 end-page: 228 article-title: Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures publication-title: Int J Pr Eng Man: GT – volume: 7 start-page: 802 issue: 11 year: 2019 article-title: Additive manufacturing for repair and restoration in remanufacturing: an overview from object design and systems perspectives publication-title: Process – volume: 140 start-page: 111406 year: 2018 article-title: Hip implant design with three-dimensional porous architecture of optimized graded density publication-title: J Mech Des: T ASME – volume: 492 start-page: 468 year: 2008 end-page: 474 article-title: Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting publication-title: Mat Sci Eng A: Struct – volume: 70 start-page: 53 year: 2017 end-page: 59 article-title: Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison publication-title: J Mech Behav Biomed – volume: 55 start-page: 533 year: 2014 end-page: 541 article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting publication-title: Mater Design – volume: 7 start-page: 3796 year: 2011 end-page: 3803 article-title: Mechanical properties of functionally graded hierarchical bamboo structures publication-title: Acta Biomater – volume: 49 start-page: 1747 year: 2001 end-page: 1769 article-title: Effective properties of the octet-truss lattice material publication-title: J Mech Phys Solids – volume: 137 start-page: 345 year: 2018 end-page: 354 article-title: Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications publication-title: Mater Design – volume: 16 start-page: 213 year: 2017 end-page: 224 article-title: Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density publication-title: Addit Manuf – volume: 63 start-page: 783 year: 2014 end-page: 788 article-title: High specific strength and stiffness structures produced using selective laser melting publication-title: Mater Design – volume: 97 start-page: 149 year: 2019 end-page: 158 article-title: Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications publication-title: J Mech Behav Biomed – volume: 114 start-page: 481 year: 1992 end-page: 488 article-title: Three-dimensional printing: rapid tooling and prototypes directly from a CAD model publication-title: J Eng Ind: T ASME – volume: 104 start-page: 276 year: 2016 end-page: 283 article-title: Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications publication-title: Mater Design – volume: 157 start-page: 179 year: 2018 end-page: 199 article-title: Inconel 625 lattice structures manufactured by selective laser melting (SLM): mechanical properties, deformation and failure modes publication-title: Mater Design – volume: 206 start-page: 438 year: 2008 end-page: 444 article-title: Characterization of laser powder deposited Ti–TiC composites and functional gradient materials publication-title: J Mater Process Tech – volume: 213 start-page: 1019 year: 2013 end-page: 1026 article-title: Advanced lattice support structures for metal additive manufacturing publication-title: J Mater Process Tech – volume: 712 start-page: 188 year: 2018 end-page: 198 article-title: A FEM study on mechanical behavior of cellular lattice materials based on combined elements publication-title: Mat Sci Eng A: Struct – volume: 16 start-page: 24 year: 2017 end-page: 29 article-title: Compressive failure modes and energy absorption in additively manufactured double gyroid lattices publication-title: Addit Manuf – volume: 31 start-page: 712 year: 2010 end-page: 722 article-title: Finite element analysis of closed-cell aluminium foam under quasi-static loading publication-title: Mater Design – volume: 670 start-page: 264 year: 2016 end-page: 274 article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting publication-title: Mat Sci Eng A: Struct – volume: 144 start-page: 32 year: 2018 end-page: 44 article-title: Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM publication-title: Mater Design – volume: 150 start-page: 1 year: 2018 end-page: 15 article-title: Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting publication-title: Acta Mater – volume: 46 start-page: 187 year: 2016 end-page: 210 article-title: Architected cellular materials publication-title: Annu Rev Mater Res – volume: 71 start-page: 428 year: 2017 end-page: 440 article-title: Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications publication-title: J Mech Behav Biomed – volume: 17 start-page: 169 year: 2017 end-page: 175 article-title: Electron beam melted scaffolds for orthopedic applications publication-title: Addit Manuf – volume: 22 start-page: 75 year: 2018 end-page: 99 article-title: Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges publication-title: Curr Opin Solid St M – volume: 131 start-page: 112 year: 2017 end-page: 120 article-title: Compressive properties of functionally graded lattice structures manufactured by selective laser melting publication-title: Mater Design – volume: 20 start-page: 1700842 year: 2018 article-title: Additive manufacturing of titanium alloys by electron beam melting: a review publication-title: Adv Eng Mater – volume: 42 start-page: 7647 year: 2007 end-page: 7656 article-title: Laser melting functionally graded composition of Waspaloy and Zirconia powders publication-title: J Mater Sci – volume: 155 start-page: 220 year: 2018 end-page: 232 article-title: Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading publication-title: Mater Design – volume: 133 start-page: 549 year: 2017 end-page: 558 article-title: Numerical prediction of the printable density range of lattice structures for additive manufacturing publication-title: Mater Design – volume: 92 start-page: 937 year: 2016 end-page: 948 article-title: Failure and energy absorption characteristics of advanced 3D truss core structures publication-title: Mater Design – volume: 31 start-page: 100947 year: 2020 article-title: Implications of lattice structures on economics and productivity of metal powder bed fusion – volume: 5 start-page: 77 year: 2014 end-page: 84 article-title: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures publication-title: Addit Manuf – volume: 628 start-page: 188 year: 2015 end-page: 197 article-title: Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting publication-title: Mat Sci Eng A: Struct – volume: 68 start-page: 445 year: 2016 end-page: 448 article-title: Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications publication-title: Mat Sci Eng C: Mater – volume: 60 start-page: 339 year: 2016 end-page: 347 article-title: Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures publication-title: Mat Sci Eng C: Mater – volume: 145 start-page: 205 year: 2018 end-page: 217 article-title: Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel publication-title: Mater Design – volume: 48 start-page: 506 year: 2011 end-page: 516 article-title: Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures publication-title: Int J Solids Struct – volume: 56 start-page: 735 year: 2016 end-page: 748 article-title: Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method publication-title: Exp Mech – volume: 13 start-page: 157 year: 2009 end-page: 164 article-title: Optimal design of composite lattice shell structures for aerospace applications publication-title: Aerosp Sci Technol – volume: 60 start-page: 2873 year: 2012 end-page: 2885 article-title: Mechanical properties of open-cell rhombic dodecahedron cellular structures publication-title: Acta Mater – volume: 669 start-page: 1 year: 2016 end-page: 6 article-title: Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique publication-title: Mat Sci Eng A: Struct – volume: 155 start-page: 106 year: 2018 end-page: 115 article-title: Fatigue behaviour and equivalent diameter of single Ti-6Al-4V struts fabricated by Electron Bean Melting orientated to porous lattice structures publication-title: Mater Design – volume: 10 start-page: 882 year: 2008 end-page: 888 article-title: Selective electron beam melting of cellular titanium: mechanical properties publication-title: Adv Eng Mater – volume: 631–632 start-page: 253 year: 2009 end-page: 258 article-title: Manufacturing of functionally graded porous products by selective laser sintering publication-title: Mater Sci Forum – volume: 113 start-page: 1586 year: 2016 end-page: 1599 article-title: Combining 3D human in vitro methods for a 3Rs evaluation of novel titanium surfaces in orthopaedic applications publication-title: Biotechnol Bioeng – volume: 66 start-page: 221 year: 2017 end-page: 224 article-title: Advanced fatigue analysis of metal lattice structures produced by Selective Laser Melting publication-title: CIRP Ann: Manuf Techn – volume: 97 start-page: 495 year: 2018 end-page: 510 article-title: Statistical and optimize of lattice structures with selective laser melting (SLM) of Ti6AL4V material publication-title: Int J Adv Manuf Tech – volume: 13 start-page: 89 year: 2012 end-page: 96 article-title: Metallic additive manufacturing: state-of-the-art review and prospects publication-title: Mech Ind – volume: 3 start-page: 632 year: 2012 end-page: 637 article-title: Designing for additive manufacturing publication-title: Proc CIRP – volume: 247 start-page: 269 year: 2010 end-page: 272 article-title: Auxetic cellular structures through selective electron-beam melting publication-title: Phys Status Solidi – volume: 32 start-page: 512 year: 2011 end-page: 524 article-title: Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain publication-title: Mater Design – volume: 226 start-page: 255 year: 2015 end-page: 263 article-title: Fatigue properties of a dental implant produced by electron beam melting (EBM) publication-title: J Mater Process Tech – volume: 26 start-page: 98 year: 2013 end-page: 108 article-title: Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting publication-title: J Mech Behav Biomed – volume: 11 start-page: E374 year: 2018 article-title: Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting publication-title: Materials – volume: 138 start-page: 121014 year: 2016 article-title: Design and analysis of lattice structures for additive manufacturing publication-title: J Manuf Sci E: T ASME – volume: 9 start-page: 3844 year: 2019 article-title: Mechanical behavior of Ti6Al4V scaffolds filled with CaSiO for implant applications publication-title: Appl Sci – ident: bibr117-1687814020916951 doi: 10.1016/j.matdes.2018.05.066 – ident: bibr32-1687814020916951 doi: 10.1016/j.matdes.2018.05.058 – ident: bibr82-1687814020916951 doi: 10.1016/j.msea.2008.04.002 – ident: bibr113-1687814020916951 doi: 10.1016/j.jmbbm.2017.01.016 – ident: bibr25-1687814020916951 doi: 10.1088/1361-665X/26/2/025013 – volume: 22 start-page: 807 year: 2018 ident: bibr31-1687814020916951 publication-title: Addit Manuf – start-page: 966 volume-title: Proceedings of the 2016 IEEE international conference on industrial engineering and engineering management ident: bibr47-1687814020916951 – ident: bibr9-1687814020916951 doi: 10.1115/1.4033957 – ident: bibr48-1687814020916951 doi: 10.1016/j.actamat.2016.05.054 – ident: bibr110-1687814020916951 doi: 10.1016/j.matdes.2018.02.062 – ident: bibr103-1687814020916951 doi: 10.1016/j.msea.2016.06.013 – ident: bibr44-1687814020916951 doi: 10.1016/j.ijmecsci.2014.10.012 – ident: bibr91-1687814020916951 doi: 10.1016/j.matdes.2017.06.006 – ident: bibr24-1687814020916951 doi: 10.1016/j.matdes.2015.12.058 – ident: bibr105-1687814020916951 doi: 10.1002/adem.201500086 – ident: bibr92-1687814020916951 doi: 10.1016/j.msea.2017.11.082 – ident: bibr121-1687814020916951 doi: 10.1016/j.jmatprotec.2013.01.020 – ident: bibr111-1687814020916951 doi: 10.1016/j.compstruct.2016.11.007 – ident: bibr43-1687814020916951 doi: 10.1115/1.4028724 – volume-title: Cellular solids: structure & properties year: 1998 ident: bibr7-1687814020916951 – ident: bibr13-1687814020916951 doi: 10.3390/met8040200 – ident: bibr79-1687814020916951 doi: 10.1115/1.4033957 – ident: bibr63-1687814020916951 doi: 10.1016/j.compstruct.2018.06.038 – ident: bibr100-1687814020916951 doi: 10.1016/j.msea.2007.10.082 – ident: bibr41-1687814020916951 doi: 10.1016/j.matdes.2010.08.029 – ident: bibr34-1687814020916951 doi: 10.1016/j.jmbbm.2017.08.034 – ident: bibr26-1687814020916951 doi: 10.1016/j.matdes.2017.01.098 – ident: bibr18-1687814020916951 doi: 10.1016/j.matdes.2018.01.023 – ident: bibr129-1687814020916951 doi: 10.1016/j.procir.2017.03.027 – ident: bibr33-1687814020916951 doi: 10.3390/ma11030374 – volume: 5 start-page: 77 year: 2014 ident: bibr115-1687814020916951 publication-title: Addit Manuf – ident: bibr17-1687814020916951 doi: 10.1016/j.jmbbm.2013.05.011 – ident: bibr107-1687814020916951 doi: 10.1016/j.ast.2008.09.001 – ident: bibr40-1687814020916951 doi: 10.1016/j.ijmachtools.2012.06.002 – start-page: 119 volume-title: Laser additive manufacturing: materials, design, technologies, and applications year: 2016 ident: bibr22-1687814020916951 – ident: bibr130-1687814020916951 doi: 10.1002/adem.201700842 – volume: 8 start-page: 36 year: 2019 ident: bibr8-1687814020916951 publication-title: Int J Eng Tech doi: 10.14419/ijet.v8i1.1.24778 – ident: bibr28-1687814020916951 doi: 10.1016/j.msea.2018.02.105 – ident: bibr55-1687814020916951 doi: 10.1016/j.matdes.2009.08.010 – ident: bibr30-1687814020916951 doi: 10.1016/j.cirp.2017.04.130 – ident: bibr71-1687814020916951 doi: 10.4028/www.scientific.net/MSF.863.45 – ident: bibr19-1687814020916951 doi: 10.1016/j.matdes.2016.02.127 – ident: bibr57-1687814020916951 doi: 10.1016/j.msec.2015.11.054 – start-page: 748 volume-title: Proceedings of the 26th international DAAAM symposium ident: bibr38-1687814020916951 – ident: bibr96-1687814020916951 – volume: 17 start-page: 169 year: 2017 ident: bibr29-1687814020916951 publication-title: Addit Manuf – ident: bibr99-1687814020916951 doi: 10.1007/s10853-007-1661-3 – ident: bibr77-1687814020916951 doi: 10.1016/S0961-9526(09)80012-9 – ident: bibr27-1687814020916951 doi: 10.1002/pssb.200945513 – ident: bibr74-1687814020916951 doi: 10.1016/j.jmbbm.2019.05.019 – ident: bibr3-1687814020916951 doi: 10.1016/j.addma.2019.100947 – ident: bibr5-1687814020916951 doi: 10.1016/j.compstruct.2011.10.023 – ident: bibr112-1687814020916951 doi: 10.17576/jkukm-2008-20-11 – ident: bibr116-1687814020916951 doi: 10.1016/j.jmbbm.2017.11.044 – ident: bibr52-1687814020916951 doi: 10.1016/j.ijmecsci.2018.07.006 – ident: bibr54-1687814020916951 doi: 10.1016/S0022-5096(96)00090-7 – ident: bibr118-1687814020916951 doi: 10.1016/j.powtec.2017.12.058 – ident: bibr94-1687814020916951 doi: 10.1007/s00170-018-1913-1 – ident: bibr106-1687814020916951 doi: 10.1016/j.actamat.2018.02.060 – volume: 1 start-page: 223 year: 2014 ident: bibr68-1687814020916951 publication-title: Int J Pr Eng Man: GT – ident: bibr97-1687814020916951 doi: 10.4028/www.scientific.net/MSF.631-632.253 – ident: bibr12-1687814020916951 doi: 10.1177/0021955X16639035 – ident: bibr104-1687814020916951 doi: 10.1016/j.mtcomm.2018.02.002 – ident: bibr39-1687814020916951 doi: 10.1016/j.matdes.2014.05.064 – volume-title: Proceedings of the 3rd international conference on progress in additive manufacturing (Pro-AM 2018) ident: bibr109-1687814020916951 – ident: bibr89-1687814020916951 doi: 10.1016/j.msea.2016.05.075 – start-page: 1238 volume-title: Proceedings of the 25th annual international solid freeform fabrication symposium ident: bibr20-1687814020916951 – ident: bibr60-1687814020916951 doi: 10.1016/j.ijimpeng.2016.10.006 – ident: bibr35-1687814020916951 doi: 10.1016/j.matdes.2017.10.040 – ident: bibr78-1687814020916951 doi: 10.1049/mnl.2013.0265 – ident: bibr65-1687814020916951 doi: 10.1016/j.matdes.2017.02.021 – ident: bibr102-1687814020916951 doi: 10.3390/met4030401 – ident: bibr53-1687814020916951 doi: 10.1115/1.4041208 – ident: bibr59-1687814020916951 doi: 10.1098/rsta.2005.1678 – ident: bibr51-1687814020916951 doi: 10.1016/j.msea.2015.06.018 – ident: bibr93-1687814020916951 doi: 10.3390/ma7064803 – ident: bibr127-1687814020916951 doi: 10.1051/meca/2012003 – ident: bibr56-1687814020916951 doi: 10.1007/s11340-015-0117-y – volume: 80 start-page: 87 year: 2018 ident: bibr6-1687814020916951 publication-title: J Teknol – ident: bibr85-1687814020916951 doi: 10.1088/1054-660X/23/6/066101 – ident: bibr11-1687814020916951 doi: 10.1177/0954405416668924 – ident: bibr45-1687814020916951 doi: 10.1016/j.addma.2017.06.012 – ident: bibr50-1687814020916951 doi: 10.1016/j.actamat.2012.01.052 – ident: bibr125-1687814020916951 doi: 10.1016/j.pmatsci.2017.10.001 – ident: bibr2-1687814020916951 doi: 10.1126/sciadv.1603119 – ident: bibr114-1687814020916951 doi: 10.1016/B978-0-12-812456-7.00013-5 – ident: bibr64-1687814020916951 doi: 10.1016/j.matpr.2017.12.085 – ident: bibr83-1687814020916951 doi: 10.1016/j.jmbbm.2009.10.006 – ident: bibr72-1687814020916951 doi: 10.1016/j.jmbbm.2017.04.011 – start-page: 1 volume-title: Proceedings of the 31st congress of the international council of the aeronautical sciences ident: bibr73-1687814020916951 – ident: bibr23-1687814020916951 doi: 10.1016/j.matdes.2018.01.059 – volume-title: Additive manufacturing: design, methods, and processes year: 2017 ident: bibr128-1687814020916951 – ident: bibr75-1687814020916951 doi: 10.3390/app9183844 – ident: bibr49-1687814020916951 doi: 10.1016/j.ijheatmasstransfer.2017.12.148 – ident: bibr90-1687814020916951 doi: 10.1016/j.ijimpeng.2017.09.018 – ident: bibr87-1687814020916951 doi: 10.1016/j.msea.2015.01.031 – ident: bibr61-1687814020916951 doi: 10.1016/j.matdes.2013.10.027 – ident: bibr81-1687814020916951 doi: 10.1016/j.procir.2012.07.108 – ident: bibr84-1687814020916951 doi: 10.1016/j.msea.2011.03.053 – ident: bibr37-1687814020916951 doi: 10.1016/j.msec.2016.06.016 – ident: bibr15-1687814020916951 doi: 10.1016/j.ijmecsci.2012.12.004 – ident: bibr1-1687814020916951 doi: 10.1016/j.actbio.2011.06.008 – ident: bibr88-1687814020916951 doi: 10.1016/j.jmatprotec.2015.07.013 – ident: bibr46-1687814020916951 doi: 10.1016/S0022-5096(01)00010-2 – ident: bibr36-1687814020916951 doi: 10.1016/j.addma.2017.04.003 – ident: bibr62-1687814020916951 doi: 10.1016/j.ijheatmasstransfer.2012.01.011 – start-page: 1 volume-title: Proceedings of the ASME 2014 international mechanical engineering congress and exposition ident: bibr69-1687814020916951 – ident: bibr123-1687814020916951 doi: 10.1007/s11837-015-1307-x – ident: bibr101-1687814020916951 doi: 10.1016/j.jmatprotec.2007.12.055 – ident: bibr124-1687814020916951 doi: 10.1016/j.ijfatigue.2012.11.011 – volume: 1 start-page: 1359 volume-title: Proceedings of the 2014 annual international solid freeform fabrication symposium —an additive manufacturing conference ident: bibr86-1687814020916951 – ident: bibr14-1687814020916951 doi: 10.1016/j.matdes.2018.06.010 – ident: bibr66-1687814020916951 doi: 10.1016/j.actbio.2008.03.013 – ident: bibr108-1687814020916951 doi: 10.1016/j.jmbbm.2018.01.013 – ident: bibr58-1687814020916951 doi: 10.1016/j.matdes.2016.05.020 – ident: bibr80-1687814020916951 doi: 10.1002/adem.200800137 – ident: bibr70-1687814020916951 doi: 10.1002/bit.25919 – ident: bibr120-1687814020916951 doi: 10.1016/j.addma.2014.07.002 – ident: bibr21-1687814020916951 doi: 10.1016/j.cossms.2018.05.002 – ident: bibr95-1687814020916951 doi: 10.1016/j.rcim.2017.06.006 – ident: bibr98-1687814020916951 doi: 10.1016/j.addma.2017.11.001 – start-page: 738 volume-title: Proceedings of the 20th annual international solid freeform fabrication symposium (SFF’2009) ident: bibr67-1687814020916951 – ident: bibr42-1687814020916951 doi: 10.1016/j.ijsolstr.2010.10.018 – ident: bibr16-1687814020916951 doi: 10.1016/j.matdes.2017.08.007 – ident: bibr76-1687814020916951 doi: 10.3390/ma12050815 – ident: bibr122-1687814020916951 doi: 10.1016/j.matdes.2014.07.043 – ident: bibr4-1687814020916951 doi: 10.3390/pr7110802 – ident: bibr119-1687814020916951 doi: 10.1115/1.2900701 – ident: bibr10-1687814020916951 doi: 10.3390/ma11101856 – ident: bibr126-1687814020916951 doi: 10.1146/annurev-matsci-070115-031624 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.571956 |
SecondaryResourceType | review_article |
Snippet | This review analyses the design, mechanical behaviors, manufacturability, and application of gradient lattice structures manufactured via metallic additive... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Additive manufacturing Densification Design for manufacturability Design parameters Lightweight Manufacturability Mechanical properties Strength to weight ratio Topology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB21y6U9oEJbdYEiH1ClHqKNHdtxTggqEEICVRWVuEVObPeyTRZ2V_w-M15nd6lUro4TRZnxzHvO-A3ASeUQw1aNzFTwGglKCJlVbZuRVFSjG2l51NK7udVXv-X1vbpPG27zVFY5xMQYqF3f0h75BFNJJYU0FT-dPWTUNYr-rqYWGm9hB0OwMSPYOb-4_flr8ChRlCXfErCTsqSzmmsPJHW9XCdAHmN3gXwhNvXiGlefQa62-bc5oTFSiBKYZHWl-ItcFiX_X-DUrdKwmK0uP8BugpnsbOUXe_DGd_vwfkt88CM0Z2x1boX1HRtUI9BKrA9sSpT9Ke6aMhymqrAFm9oFVcqxleTsEnk63saoIIlCJvtruyUdk4jnHtkMXXL-Ce4uL-5-XGWp40LWSlMsMhG08N6ronWYxJysuLQeCVKOlBuhB-dBOFe1xooSYZfxSC6VL6zQ1iLQccVnGHV9578AI5V4J2iqkdKW0uSGesuoSknX5kGNYTJ8urpNauTUFGNa8yRA_u_HHsP39R2zlRLHK3PPyRrreaShHQf6xz91WpJ1E7xF0F7k3nppLDKrxnodnPF5sI0WYzgabFmnhT2vN244hm9k382l_73MwevPOYR3gjh83Nk5ghHa0H9FoLNojpM3PwNan_Hn priority: 102 providerName: ProQuest – databaseName: Open Access Journals from Sage dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6CchkHtB9MdLDJhwlph9DEsR3nNHXTKjRpOyCmcYuc2ObSphWkmvjvec9xStkE2tV1VMvv2f4--73vAXwsLWLYshaJ9E4hQfE-MbJpEpKKqlUtTBa09H78VOe_xPcrebUD7ZALE2fw9ozCqnBEYbOm1U230ZP4yDjJlA5STRxPO4UY4fO6W1T9bfdQVINa6Hl6vaCX7YbiIe-SIbttF_Z4oSQfwd50dvF7swJ4XhTZluCdEAXldm48ltT4UhUBfNjrc-QXoQgYDSnRyO0e3kL_Geajsy-UCHiEa7dCycLpNnsJBxGWsmnvR69gx7WvYX9LrPAN1FPW57mwZcsGlQm0Klt6NieK_yfcsjJspiiyjs1NR5F1rJeoXSOvx88YBTDRFssWpl1TWkXIk2QrdOHbQ7icfbv8ep7ECg1JI3TeJdwr7pyTeWPx0LOizIRxSKhSpOgIVbLMc2vLRhuc7SzVDsmodLnhyhgERjZ_C6N22bojYKQqbzl11UKYQuhUUy0aWUphm9TLMUyGqauaqF5ORTTmVRYFy_-e7DF82nyx6pU7nun7hayx6Uea26FheXNdxSVc1d4ZBPl56owT2iATq41T3mqXelMrPoaTwZbV4MYVIqBScKFL_I9Tsu_DT08N5t3_djyGF5zYf7gTOoERWtO9R4jU1R-iX98DW3YDyA priority: 102 providerName: SAGE Publications |
Title | A review on integration of lightweight gradient lattice structures in additive manufacturing parts |
URI | https://journals.sagepub.com/doi/full/10.1177/1687814020916951 https://www.proquest.com/docview/2429424891 https://doaj.org/article/bfea81b30eae48a597bae6fd8e0fab62 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86X_RB_MTpHHkQwYeyfiRd8jhlcwgOGRP3VtImeZrdYB3--96l3ewE9cWnQnuh4e6a-116-R0hN1IDhpUp87g1MSQo1nqKZ5mHVFFpnDIVOC6951E8fGVPUz6ttfrCmrCSHrhUXCe1RgG0inyjDBMK8G-qTGy1ML5Vabn6QsyrJVNuDY4A98vaf8lOEAvH7oTCseTBVhxydP1bGLNW1uUizeCIHFYQkfbKqR2THZOfkIMaceApSXu0PHNC5zldMz6Ahunc0hmm2x9ux5PCbazoKuhMFVjlRku62BXk2DCMYjERLnf0XeUrPOLgzizSBWhleUYmg_7kYehV3RK8jImo8EIbh8YYHmUaApBmMmDKQHLjQ7oMsCEIbKi1zIQKuwCZhIHEkJtIhbFSAFJ0dE4a-Tw3F4Qiw7sOUVQwprpM-AL7wnDJmc58y5uks1ZdklVM4tjQYpYEFXn4d2U3yd1mxKJk0fhF9h6tsZFD_mt3A7wiqbwi-csrmqS1tmVSfZTLBNCIZCETEt5xi_b9evTTZC7_YzJXZD_ELN3t3bRIAyxtrgHKFGmb7IrBY5vs9Qbjtwlc7_ujl3Hb-fInAA3y2A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLzEQgs-ABKHaGPH9joHhNrCsqWP0yL1Fjmx3cuSLN2tKn4U_5EZJ9ndItFbr44TRZnxzHyTmW8A3uUOY9i8lIkKXiNACSGxqqoSoooqdSktj1x6p2d68kN-P1fnW_Cn74WhssreJkZD7ZqKcuRDdCW5FNLk_PP8V0JTo-jvaj9Co1WLY__7GiHb4tPRF5TveyHGX6eHk6SbKpBU0mTLRAQtvPcqqxwaaidzLq1HEJAirET3ynkQzuWVsQIRfmo8AijlMyu0tejMXYaPvQf3ZYaOnBrTx9969RXZaMQ32PKkHFFj6Erdicov1V30Hx1FhuAkThDjGo-6QWC4_pE6pDWioxLo0XWu-A3HGecL3AiKN-rQomsc78DjLqZl-60SPoEtXz-FRxtMh8-g3GdtkwxratZTVKBKsCawGeUHrmOKluEylaAt2cwuqSyPtfy2V5d-gbcxqn4i-8x-2vqKejJikyWbo_4vnsP0LgTxArbrpvYvgRElvRO01UhpR9KkhgbZqFxJV6VBDWDYf7qi6qjPaQLHrOAd2_m_H3sAH1d3zFvaj1v2HpA0VvuIsDsuNJcXRXf-izJ4iwghS7310liEcaX1Ojjj02BLLQaw28uy6KzIoljr_AA-kHzXl_73Mq9uf85beDCZnp4UJ0dnx6_hoaDkQUwp7cI2ytPvYYS1LN9EvWZQ3PE5-gtv-iwu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMpLXWiLD4DEIdrYcRzngFBfq5bCqkJF6i1yYpvLkizdrSp-Gv-OGSfZ3SLRW6-OE0WZl7_JzDcAb3OLZ9i8lFHqnUKA4n1k0qqKiCqqVKU0PHDpfZ2ok-_y82V6uQF_-l4YKqvsfWJw1LapKEc-wlCSSyF1zke-K4s4Pxp_mv2KaIIU_Wntx2m0KnLmft8gfJt_PD1CWb8TYnx8cXgSdRMGokrqZBEJr4RzLk0qi07bypxL4xAQxAgxMdRy7oW1eaWNQLQfa4dgKnWJEcoYDOw2wcc-gM2MQNEANg-OJ-ffemUWSZbxNe48KTNqE10qPxH7xarDAiFsJAhVwjwxrtDwNcLE1W_VEa0ROZXA-K7ylN8Ko2HawK0j8lpVWgiU4y140p1w2X6rkk9hw9XP4PEa7-FzKPdZ2zLDmpr1hBWoIKzxbErZgpuQsGW4TAVpCzY1CyrSYy3b7fWVm-NtjGqhyFuzn6a-pg6N0HLJZmgN8xdwcR-ieAmDuqndNjAiqLeCtmopTSZ1rGmsTZqn0laxT4cw6j9dUXVE6DSPY1rwjvv83489hA_LO2YtCcgdew9IGst9RN8dFpqrH0XnDYrSO4N4IYmdcVIbBHWlccpb7WJvSiWGsNPLsuh8yrxYWcAQ3pN8V5f-9zKv7n7OG3iINlR8OZ2cvYZHgjIJIb-0AwMUp9vF49ai3OsUm0Fxz6b0FxQPMcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+integration+of+lightweight+gradient+lattice+structures+in+additive+manufacturing+parts&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Asliah+Seharing&rft.au=Abdul+Hadi+Azman&rft.au=Shahrum+Abdullah&rft.date=2020-06-01&rft.pub=SAGE+Publishing&rft.eissn=1687-8140&rft.volume=12&rft_id=info:doi/10.1177%2F1687814020916951&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bfea81b30eae48a597bae6fd8e0fab62 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |