More on complexity of operators in quantum field theory
A bstract Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous...
Saved in:
Published in | The journal of high energy physics Vol. 2019; no. 3; pp. 1 - 41 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1029-8479 |
DOI | 10.1007/JHEP03(2019)161 |
Cover
Loading…
Abstract | A
bstract
Recently it has been shown that the complexity of SU(
n
) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten
p
-norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as
k
-local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU(
n
) groups. |
---|---|
AbstractList | Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p-norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k-local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU(n) groups. Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p -norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k -local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU( n ) groups. Abstract Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p-norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k-local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU(n) groups. A bstract Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p -norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k -local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU( n ) groups. |
ArticleNumber | 161 |
Author | An, Yu-Sen Zhang, Cheng-Yong Yang, Run-Qiu Kim, Keun-Young Niu, Chao |
Author_xml | – sequence: 1 givenname: Run-Qiu surname: Yang fullname: Yang, Run-Qiu organization: Quantum Universe Center, Korea Institute for Advanced Study – sequence: 2 givenname: Yu-Sen surname: An fullname: An, Yu-Sen organization: Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, School of physical Science, University of Chinese Academy of Science – sequence: 3 givenname: Chao surname: Niu fullname: Niu, Chao organization: Department of Physics and Siyuan Laboratory, Jinan University – sequence: 4 givenname: Cheng-Yong surname: Zhang fullname: Zhang, Cheng-Yong organization: Department of Physics and Center for Field Theory and Particle Physics, Fudan University – sequence: 5 givenname: Keun-Young surname: Kim fullname: Kim, Keun-Young email: fortoe@gist.ac.kr organization: School of Physics and Chemistry, Gwangju Institute of Science and Technology |
BookMark | eNp9kE1LxDAQhoMouK6evRa86GE1SdMmOYr4yYoe9Bym6WTN0m120yy4_95qRUXQ0wzDPO8Mzx7ZbkOLhBwyesoolWd3N5ePND_mlOkTVrItMmKU64kSUm__6HfJXtfNKWUF03RE5H2ImIU2s2GxbPDVp00WXBaWGCGF2GW-zVZraNN6kTmPTZ2lFwxxs092HDQdHnzWMXm-uny6uJlMH65vL86nEytUnia8cE7xXJWYS6XrskLGrZJlCcjBIqO5kk4gE05RnVsLKAuQtaykctphkY_J7ZBbB5ibZfQLiBsTwJuPQYgzAzF526AptUJFQYtKgOCl1hIQRWGB15JVVd5nHQ1ZyxhWa-ySmYd1bPv3DWdaStE70v3W2bBlY-i6iO7rKqPm3bQZTJt306Y33RPFL8L6BMmHNkXwzT8cHbiuv9DOMH7_8xfyBjgQkgU |
CitedBy_id | crossref_primary_10_1007_JHEP10_2022_143 crossref_primary_10_1007_JHEP07_2019_104 crossref_primary_10_1007_JHEP07_2019_163 crossref_primary_10_1103_PhysRevE_111_014104 crossref_primary_10_1103_PhysRevB_107_075122 crossref_primary_10_1007_JHEP10_2024_107 crossref_primary_10_1103_PhysRevResearch_2_013323 crossref_primary_10_1103_PhysRevD_100_066026 crossref_primary_10_1007_JHEP03_2021_275 crossref_primary_10_1142_S0217751X20501523 crossref_primary_10_1007_JHEP04_2019_087 crossref_primary_10_1103_PhysRevD_100_066007 crossref_primary_10_1103_PhysRevD_99_126016 crossref_primary_10_1103_PhysRevE_105_064117 crossref_primary_10_1007_JHEP04_2019_146 crossref_primary_10_1103_PhysRevD_100_086016 crossref_primary_10_1103_PhysRevD_101_026021 crossref_primary_10_1007_JHEP01_2023_105 crossref_primary_10_1103_PhysRevD_102_084010 crossref_primary_10_1140_epjc_s10052_020_7661_z crossref_primary_10_1103_PhysRevD_101_106011 crossref_primary_10_1007_JHEP10_2020_023 crossref_primary_10_1140_epjc_s10052_022_10151_0 crossref_primary_10_1103_PhysRevD_101_046006 crossref_primary_10_1007_JHEP05_2020_045 crossref_primary_10_1007_JHEP08_2020_102 crossref_primary_10_1007_JHEP05_2019_003 crossref_primary_10_1103_PhysRevD_104_084004 crossref_primary_10_1140_epjc_s10052_020_7864_3 crossref_primary_10_1007_JHEP09_2019_094 crossref_primary_10_1007_JHEP10_2019_276 crossref_primary_10_1007_JHEP01_2021_027 crossref_primary_10_1007_JHEP05_2019_086 |
Cites_doi | 10.1007/JHEP10(2018)011 10.1007/JHEP03(2017)118 10.1002/prop.201500093 10.1142/5287 10.1007/JHEP07(2018)034 10.1007/JHEP09(2017)042 10.1007/JHEP10(2017)107 10.1140/epjc/s10052-019-6696-5 10.1007/JHEP03(2019)010 10.1007/978-3-319-16613-1_2 10.1007/JHEP02(2019)145 10.1007/JHEP11(2017)097 10.1007/JHEP10(2018)140 10.1007/JHEP02(2018)082 10.1007/JHEP09(2018)043 10.1007/JHEP11(2016)129 10.1126/science.1121541 10.1007/JHEP09(2018)106 10.1142/S2251158X12000069 10.1007/JHEP11(2017)188 10.1007/978-1-4612-1268-3 10.1002/prop.201500095 10.1007/JHEP06(2018)114 10.1103/PhysRevLett.119.071602 10.1007/JHEP06(2013)085 10.1007/JHEP03(2017)119 10.1088/1361-6382/aab32d 10.1103/PhysRevLett.120.121602 10.1140/epjc/s10052-019-6600-3 10.1088/1361-6382/aa6925 10.1007/JHEP07(2018)139 10.1007/JHEP09(2016)161 10.1007/JHEP01(2017)062 10.1142/3812 10.1007/978-94-009-5329-1 10.1017/9781316848142 10.1007/JHEP12(2018)048 10.1007/JHEP03(2015)051 10.1103/PhysRev.40.749 10.1186/2251-7456-7-37 10.1103/PhysRevLett.122.081601 10.1007/s10711-008-9284-7 10.1142/4619 10.1007/JHEP11(2018)138 10.1103/PhysRevLett.116.191301 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP03(2019)161 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 41 |
ExternalDocumentID | oai_doaj_org_article_698e80a94b4a426997aee45ca2d71bb3 10_1007_JHEP03_2019_161 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c483t-25ff82386e3789d6be12c8766ae2ace10387f4e14f8093ccae75a7d7b78f9fe53 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:30:56 EDT 2025 Sat Jul 26 00:07:49 EDT 2025 Tue Jul 01 03:54:18 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Fri Feb 21 02:34:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-25ff82386e3789d6be12c8766ae2ace10387f4e14f8093ccae75a7d7b78f9fe53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2197740299?pq-origsite=%requestingapplication% |
PQID | 2197740299 |
PQPubID | 2034718 |
PageCount | 41 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_698e80a94b4a426997aee45ca2d71bb3 proquest_journals_2197740299 crossref_primary_10_1007_JHEP03_2019_161 crossref_citationtrail_10_1007_JHEP03_2019_161 springer_journals_10_1007_JHEP03_2019_161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | StanfordDSusskindLComplexity and Shock Wave GeometriesPhys. Rev.2014D 901260072014PhRvD..90l6007S[arXiv:1406.2678] [INSPIRE] AnY-SCaiR-GPengYTime Dependence of Holographic Complexity in Gauss-Bonnet GravityPhys. Rev.2018D 981060132018PhRvD..98j6013A[arXiv:1805.07775] [INSPIRE] FrankelTThe geometry of physics: an introduction2012Cambridge, New YorkCambridge University Press0888.58077 YangR-QNiuCZhangC-YKimK-YComparison of holographic and field theoretic complexities for time dependent thermofield double statesJHEP2018020822018JHEP...02..082Y378517010.1007/JHEP02(2018)0821387.81279[arXiv:1710.00600] [INSPIRE] S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes, arXiv:1607.05256 [INSPIRE]. AgónCAHeadrickMSwingleBSubsystem Complexity and HolographyJHEP2019021452019JHEP...02..145A10.1007/JHEP02(2019)145[arXiv:1804.01561] [INSPIRE] ChenBLiW-MYangR-QZhangC-YZhangS-JHolographic subregion complexity under a thermal quenchJHEP2018070342018JHEP...07..034C386201910.1007/JHEP07(2018)0341395.81207[arXiv:1803.06680] [INSPIRE] LatifiDToomanianMOn the existence of bi-invariant finsler metrics on lie groupsMath. Sci.2013737312883010.1186/2251-7456-7-371296.53146 BrownARRobertsDASusskindLSwingleBZhaoYHolographic Complexity Equals Bulk Action?Phys. Rev. Lett.20161161913012016PhRvL.116s1301B10.1103/PhysRevLett.116.191301[arXiv:1509.07876] [INSPIRE] CaputaPKunduNMiyajiMTakayanagiTWatanabeKLiouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFTJHEP2017110972017JHEP...11..097C374721110.1007/JHEP11(2017)0971383.81189[arXiv:1706.07056] [INSPIRE] ChernSSLectures on differential geometry1999Singapore River Edge, NJWorld Scientific10.1142/38120940.53001 ChapmanSHellerMPMarrochioHPastawskiFToward a Definition of Complexity for Quantum Field Theory StatesPhys. Rev. Lett.20181201216022018PhRvL.120l1602C378729810.1103/PhysRevLett.120.121602[arXiv:1707.08582] [INSPIRE] MahapatraSRoyPOn the time dependence of holographic complexity in a dynamical Einstein-dilaton modelJHEP2018111382018JHEP...11..138M10.1007/JHEP11(2018)1381404.83006[arXiv:1808.09917] [INSPIRE] M. Flory and N. Miekley, Complexity change under conformal transformations in AdS3/CFT2, arXiv:1806.08376 [INSPIRE]. M.M. Alexandrino and R.G. Bettiol, Lie Groups with Bi-invariant Metrics, Springer International Publishing, Cham (2015), pp. 27–47. ReynoldsAPRossSFComplexity of the AdS SolitonClass. Quant. Grav.2018352018CQGra..35i5006R378063410.1088/1361-6382/aab32d1391.83046[arXiv:1712.03732] [INSPIRE] RobertsDAStanfordDSusskindLLocalized shocksJHEP2015030512015JHEP...03..051R334073210.1007/JHEP03(2015)0511388.83694[arXiv:1409.8180] [INSPIRE] LehnerLMyersRCPoissonESorkinRDGravitational action with null boundariesPhys. Rev.2016D 942016PhRvD..94h4046L3734058[arXiv:1609.00207] [INSPIRE] SusskindLComputational Complexity and Black Hole HorizonsFortsch. Phys.201664442016ForPh..64...44S345836010.1002/prop.20150009306598745[arXiv:1403.5695] [INSPIRE] TakayanagiTHolographic Spacetimes as Quantum Circuits of Path-IntegrationsJHEP2018120482018JHEP...12..048T390068410.1007/JHEP12(2018)0481405.83015[arXiv:1808.09072] [INSPIRE] MagánJMBlack holes, complexity and quantum chaosJHEP2018090432018JHEP...09..043M387125610.1007/JHEP09(2018)0431398.83052[arXiv:1805.05839] [INSPIRE] YangR-QComplexity for quantum field theory states and applications to thermofield double statesPhys. Rev.2018D 972018PhRvD..97f6004Y3833137[arXiv:1709.00921] [INSPIRE] CouchJFischlerWNguyenPHNoether charge, black hole volume and complexityJHEP2017031192017JHEP...03..119C365069810.1007/JHEP03(2017)1191377.83039[arXiv:1610.02038] [INSPIRE] R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Complexity between states in quantum field theories, work in progress. WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.1932407491932PhRv...40..749W10.1103/PhysRev.40.74958.0948.07[INSPIRE] CaputaPKunduNMiyajiMTakayanagiTWatanabeKAnti-de Sitter Space from Optimization of Path Integrals in Conformal Field TheoriesPhys. Rev. Lett.20171192017PhRvL.119g1602C371336910.1103/PhysRevLett.119.071602[arXiv:1703.00456] [INSPIRE] LingYLiuYZhangC-YHolographic Subregion Complexity in Einstein-Born-Infeld theoryEur. Phys. J.2019C 791942019EPJC...79..194L10.1140/epjc/s10052-019-6696-5[arXiv:1808.10169] [INSPIRE] JeffersonRMyersRCCircuit complexity in quantum field theoryJHEP2017101072017JHEP...10..107J373110610.1007/JHEP10(2017)1071383.81233[arXiv:1707.08570] [INSPIRE] NagasakiKComplexity growth of rotating black holes with a probe stringPhys. Rev.2018D 981260142018PhRvD..98l6014N[arXiv:1807.01088] [INSPIRE] HacklLMyersRCCircuit complexity for free fermionsJHEP2018071392018JHEP...07..139H385858410.1007/JHEP07(2018)1391395.81225[arXiv:1803.10638] [INSPIRE] HashimotoKIizukaNSugishitaSThoughts on Holographic Complexity and its Basis-dependencePhys. Rev.2018D 982018PhRvD..98d6002H[arXiv:1805.04226] [INSPIRE] YangR-QAnY-SNiuCZhangC-YKimK-YPrinciples and symmetries of complexity in quantum field theoryEur. Phys. J.2019C 791092019EPJC...79..109Y10.1140/epjc/s10052-019-6600-3[arXiv:1803.01797] [INSPIRE] C. Zachos, D. Fairlie and T. Curtright, Quantum Mechanics in Phase Space: An Overview with Selected Papers, World Scientific (2005). ChapmanSMarrochioHMyersRCComplexity of Formation in HolographyJHEP2017010622017JHEP...01..062C362859210.1007/JHEP01(2017)0621373.83052[arXiv:1610.08063] [INSPIRE] CaiR-GRuanS-MWangS-JYangR-QPengR-HAction growth for AdS black holesJHEP2016091612016JHEP...09..161C356219010.1007/JHEP09(2016)1611390.83180[arXiv:1606.08307] [INSPIRE] BrownARSusskindLZhaoYQuantum Complexity and Negative CurvaturePhys. Rev.2017D 952017PhRvD..95d5010B3783902[arXiv:1608.02612] [INSPIRE] CarmiDChapmanSMarrochioHMyersRCSugishitaSOn the Time Dependence of Holographic ComplexityJHEP2017111882017JHEP...11..188C374125110.1007/JHEP11(2017)1881383.81191[arXiv:1709.10184] [INSPIRE] HashimotoKIizukaNSugishitaSTime evolution of complexity in Abelian gauge theoriesPhys. Rev.2017D 961260012017PhRvD..96l6001H3873291[arXiv:1707.03840] [INSPIRE] XiaohuanMAn introduction to Finsler geometry2006Singapore Hackensack, NJWorld Scientific1114.53001 DowlingMRNielsenMAThe geometry of quantum computationQuant. Inf. Comput.2008886125226861158.81313 GuoMHernandezJMyersRCRuanS-MCircuit Complexity for Coherent StatesJHEP2018100112018JHEP...10..011G389108510.1007/JHEP10(2018)0111402.81222[arXiv:1807.07677] [INSPIRE] NielsenMADowlingMRGuMDohertyACQuantum computation as geometryScience200631111332006Sci...311.1133N220518910.1126/science.11215411226.81049 KhanRKrishnanCSharmaSCircuit Complexity in Fermionic Field TheoryPhys. Rev.2018D 981260012018PhRvD..98l6001K[arXiv:1801.07620] [INSPIRE] LatifiDRazaviABi-invariant finsler metrics on lie groupsJ. Basic Appl. Sci.20115607 DengSHouZPositive definite minkowski lie algebras and bi-invariant finsler metrics on lie groupsGeom. Dedicata2008136191244335210.1007/s10711-008-9284-71213.17009 AlishahihaMHolographic ComplexityPhys. Rev.2015D 921260092015PhRvD..92l6009A3465278[arXiv:1509.06614] [INSPIRE] P. Caputa and J.M. Magan, Quantum Computation as Gravity, arXiv:1807.04422 [INSPIRE]. CurtrightTLZachosCKQuantum Mechanics in Phase SpaceAsia Pac. Phys. Newslett.201213710.1142/S2251158X12000069[arXiv:1104.5269] [INSPIRE] SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.20150009506598746[arXiv:1411.0690] [INSPIRE] BrownARSusskindLSecond law of quantum complexityPhys. Rev.2018D 972018PhRvD..97h6015B3846527[arXiv:1701.01107] [INSPIRE] SwingleBWangYHolographic Complexity of Einstein-Maxwell-Dilaton GravityJHEP2018091062018JHEP...09..106S386838110.1007/JHEP09(2018)1061398.83021[arXiv:1712.09826] [INSPIRE] BhattacharyyaAShekarASinhaACircuit complexity in interacting QFTs and RG flowsJHEP2018101402018JHEP...10..140B387974410.1007/JHEP10(2018)1401402.81203[arXiv:1808.03105] [INSPIRE] CarmiDMyersRCRathPComments on Holographic ComplexityJHEP2017031182017JHEP...03..118C365069910.1007/JHEP03(2017)1181377.81160[arXiv:1612.00433] [INSPIRE] ReynoldsARossSFDivergences in Holographic ComplexityClass. Quant. Grav.2017341050042017CQGra..34j5004R364970210.1088/1361-6382/aa69251369.83030[arXiv:1612.05439] [INSPIRE] S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP06 (2018) 114 [arXiv:1805.07262] [INSPIRE]. L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE]. NielsenMAA geometric approach to quantum circuit lower boundsQuant. Inf. Comput.2006621322167381152.81788 BrownARRobertsDASusskindLSwingleBZhaoYComplexity, action and black holesPhys. Rev.2016D 932016PhRvD..93h6006B3550969[arXiv:1512.04993] [INSPIRE] CamargoHACaputaPDasDHellerMPJeffersonRComplexity as a novel probe of quantum quenches: universal scalings and purificationsPhys. Rev. Lett.20191222019PhRvL.122h1601C10.1103/PhysRevLett.122.081601[arXiv:1807.07075] [INSPIRE] Ben-AmiOCarmiDOn Volumes of Subregions in Holography and ComplexityJHEP2016111292016JHEP...11..129B359479210.1007/JHEP11(2016)1291390.83087[arXiv:1609.02514] [INSPIRE] YangR-QNiuCKimK-YSurface Counterterms and Regularized Holographic ComplexityJHEP2017090422017JHEP...09..042Y371414210.1007/JHEP09(2017)0421382.83099[arXiv:1701.03706] [INSPIRE] BaoDChernS-SShenZAn Introduction to Riemann-Finsler Geometry2000New YorkSpringer New York10.1007/978-1-4612-1268-30954.53001 D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP06 (2013) 085 [arXiv:1301.4504] [INSPIRE]. J. Watrous, Theory of quantum information, Cambridge University Press (2018). Z. Shen, Lectures on Finsler geometry, Series on Multivariate Analysis, Wspc (2001). AsanovGSFinsler Geometry, Relativity and Gauge Theories1985DordrechtSpringer Netherlands10.1007/978-94-009-5329-10576.53001 S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE]. YangR-QKimK-YComplexity of operators generated by quantum mechanical HamiltoniansJHEP201903010 O Ben-Ami (10242_CR24) 2016; 11 EP Wigner (10242_CR67) 1932; 40 SS Chern (10242_CR68) 1999 DA Roberts (10242_CR6) 2015; 03 M Alishahiha (10242_CR23) 2015; D 92 D Carmi (10242_CR15) 2017; 11 L Susskind (10242_CR3) 2016; 64 10242_CR29 R-Q Yang (10242_CR16) 2018; 02 MA Nielsen (10242_CR51) 2006; 6 AR Brown (10242_CR7) 2016; 116 Y Ling (10242_CR26) 2019; C 79 CA Agón (10242_CR27) 2019; 02 R Khan (10242_CR34) 2018; D 98 K Hashimoto (10242_CR44) 2018; D 98 J Couch (10242_CR28) 2017; 03 R-Q Yang (10242_CR14) 2017; 09 S Chapman (10242_CR11) 2017; 01 R Jefferson (10242_CR32) 2017; 10 TL Curtright (10242_CR66) 2012; 1 P Caputa (10242_CR41) 2017; 11 10242_CR46 M Xiaohuan (10242_CR56) 2006 L Susskind (10242_CR4) 2016; 64 S Chapman (10242_CR39) 2018; 120 HA Camargo (10242_CR38) 2019; 122 AR Brown (10242_CR8) 2016; D 93 D Bao (10242_CR54) 2000 S Mahapatra (10242_CR22) 2018; 11 AR Brown (10242_CR30) 2017; D 95 JM Magán (10242_CR45) 2018; 09 R-G Cai (10242_CR9) 2016; 09 10242_CR47 D Latifi (10242_CR59) 2011; 5 M Guo (10242_CR36) 2018; 10 L Hackl (10242_CR35) 2018; 07 R-Q Yang (10242_CR60) 2019; 03 10242_CR55 D Latifi (10242_CR58) 2013; 7 10242_CR53 A Reynolds (10242_CR13) 2017; 34 D Carmi (10242_CR12) 2017; 03 Y-S An (10242_CR20) 2018; D 98 P Caputa (10242_CR40) 2017; 119 GS Asanov (10242_CR57) 1985 10242_CR1 B Chen (10242_CR25) 2018; 07 10242_CR2 K Hashimoto (10242_CR43) 2017; D 96 10242_CR18 10242_CR19 AR Brown (10242_CR31) 2018; D 97 L Lehner (10242_CR10) 2016; D 94 R-Q Yang (10242_CR49) 2019; C 79 D Stanford (10242_CR5) 2014; D 90 S Deng (10242_CR62) 2008; 136 K Nagasaki (10242_CR21) 2018; D 98 10242_CR65 A Bhattacharyya (10242_CR37) 2018; 10 T Takayanagi (10242_CR42) 2018; 12 10242_CR64 10242_CR61 MA Nielsen (10242_CR50) 2006; 311 T Frankel (10242_CR63) 2012 AP Reynolds (10242_CR33) 2018; 35 MR Dowling (10242_CR52) 2008; 8 R-Q Yang (10242_CR48) 2018; D 97 B Swingle (10242_CR17) 2018; 09 |
References_xml | – reference: CarmiDMyersRCRathPComments on Holographic ComplexityJHEP2017031182017JHEP...03..118C365069910.1007/JHEP03(2017)1181377.81160[arXiv:1612.00433] [INSPIRE] – reference: S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP06 (2018) 114 [arXiv:1805.07262] [INSPIRE]. – reference: YangR-QKimK-YComplexity of operators generated by quantum mechanical HamiltoniansJHEP2019030102019JHEP...03..010Y10.1007/JHEP03(2019)010[arXiv:1810.09405] [INSPIRE] – reference: R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Complexity between states in quantum field theories, work in progress. – reference: XiaohuanMAn introduction to Finsler geometry2006Singapore Hackensack, NJWorld Scientific1114.53001 – reference: ReynoldsARossSFDivergences in Holographic ComplexityClass. Quant. Grav.2017341050042017CQGra..34j5004R364970210.1088/1361-6382/aa69251369.83030[arXiv:1612.05439] [INSPIRE] – reference: NagasakiKComplexity growth of rotating black holes with a probe stringPhys. Rev.2018D 981260142018PhRvD..98l6014N[arXiv:1807.01088] [INSPIRE] – reference: AgónCAHeadrickMSwingleBSubsystem Complexity and HolographyJHEP2019021452019JHEP...02..145A10.1007/JHEP02(2019)145[arXiv:1804.01561] [INSPIRE] – reference: BrownARRobertsDASusskindLSwingleBZhaoYComplexity, action and black holesPhys. Rev.2016D 932016PhRvD..93h6006B3550969[arXiv:1512.04993] [INSPIRE] – reference: S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE]. – reference: Z. Shen, Lectures on Finsler geometry, Series on Multivariate Analysis, Wspc (2001). – reference: D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP06 (2013) 085 [arXiv:1301.4504] [INSPIRE]. – reference: SusskindLComputational Complexity and Black Hole HorizonsFortsch. Phys.201664442016ForPh..64...44S345836010.1002/prop.20150009306598745[arXiv:1403.5695] [INSPIRE] – reference: L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE]. – reference: NielsenMADowlingMRGuMDohertyACQuantum computation as geometryScience200631111332006Sci...311.1133N220518910.1126/science.11215411226.81049 – reference: S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes, arXiv:1607.05256 [INSPIRE]. – reference: CamargoHACaputaPDasDHellerMPJeffersonRComplexity as a novel probe of quantum quenches: universal scalings and purificationsPhys. Rev. Lett.20191222019PhRvL.122h1601C10.1103/PhysRevLett.122.081601[arXiv:1807.07075] [INSPIRE] – reference: ChernSSLectures on differential geometry1999Singapore River Edge, NJWorld Scientific10.1142/38120940.53001 – reference: CaputaPKunduNMiyajiMTakayanagiTWatanabeKLiouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFTJHEP2017110972017JHEP...11..097C374721110.1007/JHEP11(2017)0971383.81189[arXiv:1706.07056] [INSPIRE] – reference: WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.1932407491932PhRv...40..749W10.1103/PhysRev.40.74958.0948.07[INSPIRE] – reference: C. Zachos, D. Fairlie and T. Curtright, Quantum Mechanics in Phase Space: An Overview with Selected Papers, World Scientific (2005). – reference: ChapmanSMarrochioHMyersRCComplexity of Formation in HolographyJHEP2017010622017JHEP...01..062C362859210.1007/JHEP01(2017)0621373.83052[arXiv:1610.08063] [INSPIRE] – reference: AnY-SCaiR-GPengYTime Dependence of Holographic Complexity in Gauss-Bonnet GravityPhys. Rev.2018D 981060132018PhRvD..98j6013A[arXiv:1805.07775] [INSPIRE] – reference: LatifiDToomanianMOn the existence of bi-invariant finsler metrics on lie groupsMath. Sci.2013737312883010.1186/2251-7456-7-371296.53146 – reference: M.M. Alexandrino and R.G. Bettiol, Lie Groups with Bi-invariant Metrics, Springer International Publishing, Cham (2015), pp. 27–47. – reference: LingYLiuYZhangC-YHolographic Subregion Complexity in Einstein-Born-Infeld theoryEur. Phys. J.2019C 791942019EPJC...79..194L10.1140/epjc/s10052-019-6696-5[arXiv:1808.10169] [INSPIRE] – reference: HacklLMyersRCCircuit complexity for free fermionsJHEP2018071392018JHEP...07..139H385858410.1007/JHEP07(2018)1391395.81225[arXiv:1803.10638] [INSPIRE] – reference: BhattacharyyaAShekarASinhaACircuit complexity in interacting QFTs and RG flowsJHEP2018101402018JHEP...10..140B387974410.1007/JHEP10(2018)1401402.81203[arXiv:1808.03105] [INSPIRE] – reference: CaiR-GRuanS-MWangS-JYangR-QPengR-HAction growth for AdS black holesJHEP2016091612016JHEP...09..161C356219010.1007/JHEP09(2016)1611390.83180[arXiv:1606.08307] [INSPIRE] – reference: LatifiDRazaviABi-invariant finsler metrics on lie groupsJ. Basic Appl. Sci.20115607 – reference: BrownARSusskindLZhaoYQuantum Complexity and Negative CurvaturePhys. Rev.2017D 952017PhRvD..95d5010B3783902[arXiv:1608.02612] [INSPIRE] – reference: HashimotoKIizukaNSugishitaSTime evolution of complexity in Abelian gauge theoriesPhys. Rev.2017D 961260012017PhRvD..96l6001H3873291[arXiv:1707.03840] [INSPIRE] – reference: HashimotoKIizukaNSugishitaSThoughts on Holographic Complexity and its Basis-dependencePhys. Rev.2018D 982018PhRvD..98d6002H[arXiv:1805.04226] [INSPIRE] – reference: AlishahihaMHolographic ComplexityPhys. Rev.2015D 921260092015PhRvD..92l6009A3465278[arXiv:1509.06614] [INSPIRE] – reference: SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.20150009506598746[arXiv:1411.0690] [INSPIRE] – reference: TakayanagiTHolographic Spacetimes as Quantum Circuits of Path-IntegrationsJHEP2018120482018JHEP...12..048T390068410.1007/JHEP12(2018)0481405.83015[arXiv:1808.09072] [INSPIRE] – reference: YangR-QComplexity for quantum field theory states and applications to thermofield double statesPhys. Rev.2018D 972018PhRvD..97f6004Y3833137[arXiv:1709.00921] [INSPIRE] – reference: YangR-QAnY-SNiuCZhangC-YKimK-YPrinciples and symmetries of complexity in quantum field theoryEur. Phys. J.2019C 791092019EPJC...79..109Y10.1140/epjc/s10052-019-6600-3[arXiv:1803.01797] [INSPIRE] – reference: YangR-QNiuCZhangC-YKimK-YComparison of holographic and field theoretic complexities for time dependent thermofield double statesJHEP2018020822018JHEP...02..082Y378517010.1007/JHEP02(2018)0821387.81279[arXiv:1710.00600] [INSPIRE] – reference: M. Flory and N. Miekley, Complexity change under conformal transformations in AdS3/CFT2, arXiv:1806.08376 [INSPIRE]. – reference: GuoMHernandezJMyersRCRuanS-MCircuit Complexity for Coherent StatesJHEP2018100112018JHEP...10..011G389108510.1007/JHEP10(2018)0111402.81222[arXiv:1807.07677] [INSPIRE] – reference: JeffersonRMyersRCCircuit complexity in quantum field theoryJHEP2017101072017JHEP...10..107J373110610.1007/JHEP10(2017)1071383.81233[arXiv:1707.08570] [INSPIRE] – reference: P. Caputa and J.M. Magan, Quantum Computation as Gravity, arXiv:1807.04422 [INSPIRE]. – reference: ReynoldsAPRossSFComplexity of the AdS SolitonClass. Quant. Grav.2018352018CQGra..35i5006R378063410.1088/1361-6382/aab32d1391.83046[arXiv:1712.03732] [INSPIRE] – reference: YangR-QNiuCKimK-YSurface Counterterms and Regularized Holographic ComplexityJHEP2017090422017JHEP...09..042Y371414210.1007/JHEP09(2017)0421382.83099[arXiv:1701.03706] [INSPIRE] – reference: CarmiDChapmanSMarrochioHMyersRCSugishitaSOn the Time Dependence of Holographic ComplexityJHEP2017111882017JHEP...11..188C374125110.1007/JHEP11(2017)1881383.81191[arXiv:1709.10184] [INSPIRE] – reference: DengSHouZPositive definite minkowski lie algebras and bi-invariant finsler metrics on lie groupsGeom. Dedicata2008136191244335210.1007/s10711-008-9284-71213.17009 – reference: BrownARRobertsDASusskindLSwingleBZhaoYHolographic Complexity Equals Bulk Action?Phys. Rev. Lett.20161161913012016PhRvL.116s1301B10.1103/PhysRevLett.116.191301[arXiv:1509.07876] [INSPIRE] – reference: KhanRKrishnanCSharmaSCircuit Complexity in Fermionic Field TheoryPhys. Rev.2018D 981260012018PhRvD..98l6001K[arXiv:1801.07620] [INSPIRE] – reference: CouchJFischlerWNguyenPHNoether charge, black hole volume and complexityJHEP2017031192017JHEP...03..119C365069810.1007/JHEP03(2017)1191377.83039[arXiv:1610.02038] [INSPIRE] – reference: FrankelTThe geometry of physics: an introduction2012Cambridge, New YorkCambridge University Press0888.58077 – reference: ChenBLiW-MYangR-QZhangC-YZhangS-JHolographic subregion complexity under a thermal quenchJHEP2018070342018JHEP...07..034C386201910.1007/JHEP07(2018)0341395.81207[arXiv:1803.06680] [INSPIRE] – reference: AsanovGSFinsler Geometry, Relativity and Gauge Theories1985DordrechtSpringer Netherlands10.1007/978-94-009-5329-10576.53001 – reference: LehnerLMyersRCPoissonESorkinRDGravitational action with null boundariesPhys. Rev.2016D 942016PhRvD..94h4046L3734058[arXiv:1609.00207] [INSPIRE] – reference: J. Watrous, Theory of quantum information, Cambridge University Press (2018). – reference: Ben-AmiOCarmiDOn Volumes of Subregions in Holography and ComplexityJHEP2016111292016JHEP...11..129B359479210.1007/JHEP11(2016)1291390.83087[arXiv:1609.02514] [INSPIRE] – reference: MagánJMBlack holes, complexity and quantum chaosJHEP2018090432018JHEP...09..043M387125610.1007/JHEP09(2018)0431398.83052[arXiv:1805.05839] [INSPIRE] – reference: StanfordDSusskindLComplexity and Shock Wave GeometriesPhys. Rev.2014D 901260072014PhRvD..90l6007S[arXiv:1406.2678] [INSPIRE] – reference: CurtrightTLZachosCKQuantum Mechanics in Phase SpaceAsia Pac. Phys. Newslett.201213710.1142/S2251158X12000069[arXiv:1104.5269] [INSPIRE] – reference: BrownARSusskindLSecond law of quantum complexityPhys. Rev.2018D 972018PhRvD..97h6015B3846527[arXiv:1701.01107] [INSPIRE] – reference: RobertsDAStanfordDSusskindLLocalized shocksJHEP2015030512015JHEP...03..051R334073210.1007/JHEP03(2015)0511388.83694[arXiv:1409.8180] [INSPIRE] – reference: SwingleBWangYHolographic Complexity of Einstein-Maxwell-Dilaton GravityJHEP2018091062018JHEP...09..106S386838110.1007/JHEP09(2018)1061398.83021[arXiv:1712.09826] [INSPIRE] – reference: DowlingMRNielsenMAThe geometry of quantum computationQuant. Inf. Comput.2008886125226861158.81313 – reference: MahapatraSRoyPOn the time dependence of holographic complexity in a dynamical Einstein-dilaton modelJHEP2018111382018JHEP...11..138M10.1007/JHEP11(2018)1381404.83006[arXiv:1808.09917] [INSPIRE] – reference: CaputaPKunduNMiyajiMTakayanagiTWatanabeKAnti-de Sitter Space from Optimization of Path Integrals in Conformal Field TheoriesPhys. Rev. Lett.20171192017PhRvL.119g1602C371336910.1103/PhysRevLett.119.071602[arXiv:1703.00456] [INSPIRE] – reference: ChapmanSHellerMPMarrochioHPastawskiFToward a Definition of Complexity for Quantum Field Theory StatesPhys. Rev. Lett.20181201216022018PhRvL.120l1602C378729810.1103/PhysRevLett.120.121602[arXiv:1707.08582] [INSPIRE] – reference: NielsenMAA geometric approach to quantum circuit lower boundsQuant. Inf. Comput.2006621322167381152.81788 – reference: BaoDChernS-SShenZAn Introduction to Riemann-Finsler Geometry2000New YorkSpringer New York10.1007/978-1-4612-1268-30954.53001 – volume: 10 start-page: 011 year: 2018 ident: 10242_CR36 publication-title: JHEP doi: 10.1007/JHEP10(2018)011 – volume: D 96 start-page: 126001 year: 2017 ident: 10242_CR43 publication-title: Phys. Rev. – volume: 03 start-page: 118 year: 2017 ident: 10242_CR12 publication-title: JHEP doi: 10.1007/JHEP03(2017)118 – ident: 10242_CR47 – volume: 64 start-page: 44 year: 2016 ident: 10242_CR3 publication-title: Fortsch. Phys. doi: 10.1002/prop.201500093 – ident: 10242_CR65 doi: 10.1142/5287 – volume: D 98 year: 2018 ident: 10242_CR44 publication-title: Phys. Rev. – volume: 07 start-page: 034 year: 2018 ident: 10242_CR25 publication-title: JHEP doi: 10.1007/JHEP07(2018)034 – volume: 09 start-page: 042 year: 2017 ident: 10242_CR14 publication-title: JHEP doi: 10.1007/JHEP09(2017)042 – volume: 10 start-page: 107 year: 2017 ident: 10242_CR32 publication-title: JHEP doi: 10.1007/JHEP10(2017)107 – volume: 6 start-page: 213 year: 2006 ident: 10242_CR51 publication-title: Quant. Inf. Comput. – volume-title: An introduction to Finsler geometry year: 2006 ident: 10242_CR56 – volume: D 98 start-page: 106013 year: 2018 ident: 10242_CR20 publication-title: Phys. Rev. – volume: C 79 start-page: 194 year: 2019 ident: 10242_CR26 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-019-6696-5 – volume: D 95 year: 2017 ident: 10242_CR30 publication-title: Phys. Rev. – volume: 8 start-page: 861 year: 2008 ident: 10242_CR52 publication-title: Quant. Inf. Comput. – volume: D 98 start-page: 126014 year: 2018 ident: 10242_CR21 publication-title: Phys. Rev. – volume: 03 start-page: 010 year: 2019 ident: 10242_CR60 publication-title: JHEP doi: 10.1007/JHEP03(2019)010 – ident: 10242_CR61 doi: 10.1007/978-3-319-16613-1_2 – volume: 02 start-page: 145 year: 2019 ident: 10242_CR27 publication-title: JHEP doi: 10.1007/JHEP02(2019)145 – ident: 10242_CR1 – volume: 11 start-page: 097 year: 2017 ident: 10242_CR41 publication-title: JHEP doi: 10.1007/JHEP11(2017)097 – volume: 10 start-page: 140 year: 2018 ident: 10242_CR37 publication-title: JHEP doi: 10.1007/JHEP10(2018)140 – volume: 02 start-page: 082 year: 2018 ident: 10242_CR16 publication-title: JHEP doi: 10.1007/JHEP02(2018)082 – volume: 09 start-page: 043 year: 2018 ident: 10242_CR45 publication-title: JHEP doi: 10.1007/JHEP09(2018)043 – volume: 11 start-page: 129 year: 2016 ident: 10242_CR24 publication-title: JHEP doi: 10.1007/JHEP11(2016)129 – volume: D 98 start-page: 126001 year: 2018 ident: 10242_CR34 publication-title: Phys. Rev. – volume: 311 start-page: 1133 year: 2006 ident: 10242_CR50 publication-title: Science doi: 10.1126/science.1121541 – volume: 09 start-page: 106 year: 2018 ident: 10242_CR17 publication-title: JHEP doi: 10.1007/JHEP09(2018)106 – volume: 1 start-page: 37 year: 2012 ident: 10242_CR66 publication-title: Asia Pac. Phys. Newslett. doi: 10.1142/S2251158X12000069 – volume: D 93 year: 2016 ident: 10242_CR8 publication-title: Phys. Rev. – volume: 11 start-page: 188 year: 2017 ident: 10242_CR15 publication-title: JHEP doi: 10.1007/JHEP11(2017)188 – volume-title: An Introduction to Riemann-Finsler Geometry year: 2000 ident: 10242_CR54 doi: 10.1007/978-1-4612-1268-3 – volume-title: The geometry of physics: an introduction year: 2012 ident: 10242_CR63 – volume: 64 start-page: 49 year: 2016 ident: 10242_CR4 publication-title: Fortsch. Phys. doi: 10.1002/prop.201500095 – ident: 10242_CR18 doi: 10.1007/JHEP06(2018)114 – volume: 119 year: 2017 ident: 10242_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.071602 – ident: 10242_CR2 doi: 10.1007/JHEP06(2013)085 – ident: 10242_CR19 doi: 10.1007/JHEP06(2018)114 – volume: D 90 start-page: 126007 year: 2014 ident: 10242_CR5 publication-title: Phys. Rev. – volume: 03 start-page: 119 year: 2017 ident: 10242_CR28 publication-title: JHEP doi: 10.1007/JHEP03(2017)119 – volume: 35 year: 2018 ident: 10242_CR33 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aab32d – volume: 120 start-page: 121602 year: 2018 ident: 10242_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.121602 – volume: C 79 start-page: 109 year: 2019 ident: 10242_CR49 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-019-6600-3 – volume: 34 start-page: 105004 year: 2017 ident: 10242_CR13 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aa6925 – ident: 10242_CR64 – volume: 07 start-page: 139 year: 2018 ident: 10242_CR35 publication-title: JHEP doi: 10.1007/JHEP07(2018)139 – volume: 09 start-page: 161 year: 2016 ident: 10242_CR9 publication-title: JHEP doi: 10.1007/JHEP09(2016)161 – volume: 01 start-page: 062 year: 2017 ident: 10242_CR11 publication-title: JHEP doi: 10.1007/JHEP01(2017)062 – volume-title: Lectures on differential geometry year: 1999 ident: 10242_CR68 doi: 10.1142/3812 – volume-title: Finsler Geometry, Relativity and Gauge Theories year: 1985 ident: 10242_CR57 doi: 10.1007/978-94-009-5329-1 – ident: 10242_CR53 doi: 10.1017/9781316848142 – volume: D 92 start-page: 126009 year: 2015 ident: 10242_CR23 publication-title: Phys. Rev. – volume: 12 start-page: 048 year: 2018 ident: 10242_CR42 publication-title: JHEP doi: 10.1007/JHEP12(2018)048 – volume: 03 start-page: 051 year: 2015 ident: 10242_CR6 publication-title: JHEP doi: 10.1007/JHEP03(2015)051 – volume: D 97 year: 2018 ident: 10242_CR31 publication-title: Phys. Rev. – ident: 10242_CR46 – ident: 10242_CR29 – volume: 40 start-page: 749 year: 1932 ident: 10242_CR67 publication-title: Phys. Rev. doi: 10.1103/PhysRev.40.749 – volume: 7 start-page: 37 year: 2013 ident: 10242_CR58 publication-title: Math. Sci. doi: 10.1186/2251-7456-7-37 – volume: 122 year: 2019 ident: 10242_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.081601 – volume: 136 start-page: 191 year: 2008 ident: 10242_CR62 publication-title: Geom. Dedicata doi: 10.1007/s10711-008-9284-7 – volume: D 94 year: 2016 ident: 10242_CR10 publication-title: Phys. Rev. – ident: 10242_CR55 doi: 10.1142/4619 – volume: 11 start-page: 138 year: 2018 ident: 10242_CR22 publication-title: JHEP doi: 10.1007/JHEP11(2018)138 – volume: 116 start-page: 191301 year: 2016 ident: 10242_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.191301 – volume: D 97 year: 2018 ident: 10242_CR48 publication-title: Phys. Rev. – volume: 5 start-page: 607 year: 2011 ident: 10242_CR59 publication-title: J. Basic Appl. Sci. |
SSID | ssj0015190 |
Score | 2.491969 |
Snippet | A
bstract
Recently it has been shown that the complexity of SU(
n
) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is... Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is... Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained... Abstract Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Axioms Classical and Quantum Gravitation Complexity Curvature Elementary Particles Field theory Gauge-gravity correspondence Geometry High energy physics Holography and condensed matter physics (AdS/CMT) Invariants Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Regular Article - Theoretical Physics Relativity Theory Saturation String Theory Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyIn1idkoOH7VCXrkmTHFU2xmDiwcFuJWlfQNB27gP0vzdJ2_kBw4vXNg2P32vze-W993sIXTPGlCAmCWMjWEi5hlBpKkOqM8liGWltXKPw5CEZTel4xmbfRn25mrBKHrgCrpdIAYIoSTVVru1ScgVAWab6Obc7eZ1Py3nNz1SdP7BxCWmEfAjvjUeDRxJ3LNnJbpREPzjIS_X_iC9_pUQ90wwP0H4dIuLbyrRDtAPFEdr1pZrZ8hjxSbkAXBbYV4PDuw2jcWlwOQefMV_i5wK_rS1g61fs69Owb1b8OEHT4eDpfhTW4w_CjIp4FfaZMcIyagIxFzJPNET9zB5eiYK-ysApm3NDIaJGEBlbTwBniudcc2GkARafolZRFnCGsLYkZBQQZXJC4xyESpTOgejMydHxPEA3DSBpVmuDuxEVL2mjalwhmDoEU4tggDqbB-aVLMb2pXcO4c0yp2ftL1gvp7WX07-8HKB245-0_siWqT1sbfBKLKEGqNv47Ov2FnvO_8OeC7Tn9quK0dqotVqs4dJGJyt95V_ET-D33-0 priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LiuBFfGJ9kYOH9VBJm6RJjrooi7DiwQVvJWknImir-wD99yZpu7KKB2-lnUD5ZjIzYWa-IHTGOdeS2CymVvKYCQOxNkzFzBSKU5UYY_2g8PguG03Y7SN_7KGkm4UJ3e5dSTJ46m7Y7XZ0fU_owAUsdZ74A88adwd3b9RDP-DQFg5cQkI6Bp_fi1aCT-DoX0ksf9RCQ4i52UKbbW6ILxtlbqMeVDtoPfRoFrNdJMb1FHBd4dAGDh8uf8a1xfUbhFL5DD9X-H3hkFq84tCYhsOU4ucemtxcPwxHcXvvQVwwSedxyq2VLpRmQIVUZWYgSQvntTINqS7AU5oLyyBhVhJFnQpAcC1KYYS0ygKn-6hf1RUcIGxc9LEaiLYlYbQEqTNtSiCm8Dx0oozQRQdIXrSk4P5uipe8ozNuEMw9grlDMEKD5YK3hg_jb9Erj_BSzBNZhxf19Clv90WeKQmSaMUM036qVgkNwHih01I4Q6EROu70k7e7a5Y7L-uyVuIiaYTOO519f_7jfw7_IXuENvxj02x2jPrz6QJOXPYxN6fB3r4AIMfSrw priority: 102 providerName: Springer Nature |
Title | More on complexity of operators in quantum field theory |
URI | https://link.springer.com/article/10.1007/JHEP03(2019)161 https://www.proquest.com/docview/2197740299 https://doaj.org/article/698e80a94b4a426997aee45ca2d71bb3 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNQqGX0vRBt0kXHXpIDm5k630KybLbJZAQShdyM5I8KoXU3uwDmn8fSStvSCC9CGyPjZnRPKQZfYPQN865UcSLgnrFCyYtFMYyXTDrNKe6tNbHg8KXV2I6Yxc3_CZvuC1zWWVvE5OhbjoX98hPgmaFSIUE63k6vyti16iYXc0tNHbQXjDBKiy-9s7HV9c_t3mEEJ-QHtCHyJOL6fia0KPg9PRxKconvihB9j-JM5-lRpPHmbxDb3OoiM82st1Hr6B9j16nkk23_IDkZbcA3LU4VYXDvxBO487jbg4pc77Ef1p8tw6MW__FqU4Np0OL9x_RbDL-NZoWuQ1C4Ziiq6Li3qvgWQVQqXQjLJSVC0ZMGKiMg4hwLj2DknlFNA0SAcmNbKSVymsPnH5Cu23XwmeEbXBG3gAxviGMNqCMMLYBYl2EpZPNAH3vGVK7jBEeW1Xc1j268YaDdeRgHTg4QEfbF-YbeIyXSc8jh7dkEdc63egWv-usJrXQChQxmllm4iFbLQ0A485UjQzzhg7QYS-fOivbsn6cGgN03Mvs8fEL__Pl_586QG8i5abc7BDtrhZr-Brij5Udoh01-THMUy1cjSoWRzEaphV9GGfV2QP2Pd0j |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsLeADSO0h1Int2D6gqkCX7WMrDq3Um7GdcYVEk-0-1PZP8RuxnWSrIpVbr4kdJfN2ZuYbhD5wzo0kvsyolzxjwkJmLFMZs05xqnJrfWwUHh-VoxO2f8pPV9CfvhcmllX2NjEZ6qpx8R_5VtCsEKmQYD23JxdZnBoVs6v9CI1WLA7g-jIc2Waf974F_n4siuHu8ddR1k0VyByTdJ4V3HsZHFUJVEhVlRbywgWbUBoojIMIGC48g5x5GU774QNBcCMqYYX0ykOcEhFM_gNGqYoaJYffl1mLEA2RHj6IiK390e4PQjeCi1WbeZnf8nxpQMCtqPafRGzyb8On6EkXmOKdVpKeoRWon6OHqUDUzV4gMW6mgJsapxp0uArBO248biaQ8vQz_KvGF4vApsU5TlVxOLVIXr9EJ_dCnldotW5qeI2wDa7PGyDGV4TRCqQpja2AWBdB8EQ1QJ96gmjXIZLHwRi_dY-l3FJQRwrqQMEB2lhumLRgHHcv_RIpvFwWUbTThWZ6pjul1KWSIIlRzDITW3qVMACMO1NUIkgpHaD1nj-6U-2ZvhHEAdrseXZz-473efP_R71Hj0bH40N9uHd0sIYex11tods6Wp1PF_A2RD5z-y6JG0Y_71u-_wIkxhTD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLemm0C8ID7FwRh5AGl7KJe2aZM-oGljd7pt7HRCTNpbSVpnQoL2dh-C_Wv8dXPS9qYhjbe9tkmV2o7txPbPAO-TJNGK2zSIrUoCIQ0G2ogsEKbIkjgLjbGuUPh0ko7PxPF5cr4Bf7taGJdW2elEr6jLunB35APaWeSpcNKeA9umRUwPR3uzy8B1kHKR1q6dRiMiJ3j1m45vi09Hh8TrD1E0Gn77PA7aDgNBIVS8DKLEWkVGK8VYqqxMDYZRQfoh1RjpAh14uLQCQ2EVnfzpZ1EmWpbSSGUzi65jBKn_TVqX5D3YPBhOpl_XMQzyjXgHJsTl4Hg8nPJ4hwxuthum4S076NsF3PJx_wnLems3egKPWzeV7Tdy9RQ2sHoGD3y6aLF4DvK0niOrK-Yz0vEPufKstqyeoY_aL9iPil2uiGmrX8znyDFfMHn1As7uhUAvoVfVFb4CZsgQWo1c25KLuESlU21K5KZwkHiy7MPHjiB50eKTuzYZP_MOWbmhYO4omBMF-7CznjBroDnuHnrgKLwe5jC1_YN6fpG3WzRPM4WK60wYoV2BbyY1okgKHZWSZDbuw1bHn7zd6Iv8Riz7sNvx7Ob1Het5_f9PvYOHJNv5l6PJyRt45CY1WW9b0FvOV_iW3KCl2W7ljcH3-xbxa5pFGlU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+on+complexity+of+operators+in+quantum+field+theory&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Yang%2C+Run-Qiu&rft.au=Yu-Sen%2C+An&rft.au=Niu%2C+Chao&rft.au=Cheng-Yong%2C+Zhang&rft.date=2019-03-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2019&rft.issue=3&rft.spage=1&rft.epage=41&rft_id=info:doi/10.1007%2FJHEP03%282019%29161&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |