More on complexity of operators in quantum field theory

A bstract Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 3; pp. 1 - 41
Main Authors Yang, Run-Qiu, An, Yu-Sen, Niu, Chao, Zhang, Cheng-Yong, Kim, Keun-Young
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1029-8479
DOI10.1007/JHEP03(2019)161

Cover

Loading…
Abstract A bstract Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p -norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k -local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU( n ) groups.
AbstractList Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p-norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k-local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU(n) groups.
Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p -norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k -local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU( n ) groups.
Abstract Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p-norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k-local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU(n) groups.
A bstract Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained by some symmetries of quantum field theory. It is based on three axioms and one assumption regarding the complexity in continuous systems. By relaxing one axiom and an assumption, we find that the complexity formula is naturally generalized to the Schatten p -norm type. We also clarify the relation between our complexity and other works. First, we show that our results in a bi-invariant geometry are consistent with the ones in a right-invariant geometry such as k -local geometry. Here, a careful analysis of the sectional curvature is crucial. Second, we show that our complexity can concretely realize the conjectured pattern of the time-evolution of the complexity: the linear growth up to saturation time. The saturation time can be estimated by the relation between the topology and curvature of SU( n ) groups.
ArticleNumber 161
Author An, Yu-Sen
Zhang, Cheng-Yong
Yang, Run-Qiu
Kim, Keun-Young
Niu, Chao
Author_xml – sequence: 1
  givenname: Run-Qiu
  surname: Yang
  fullname: Yang, Run-Qiu
  organization: Quantum Universe Center, Korea Institute for Advanced Study
– sequence: 2
  givenname: Yu-Sen
  surname: An
  fullname: An, Yu-Sen
  organization: Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, School of physical Science, University of Chinese Academy of Science
– sequence: 3
  givenname: Chao
  surname: Niu
  fullname: Niu, Chao
  organization: Department of Physics and Siyuan Laboratory, Jinan University
– sequence: 4
  givenname: Cheng-Yong
  surname: Zhang
  fullname: Zhang, Cheng-Yong
  organization: Department of Physics and Center for Field Theory and Particle Physics, Fudan University
– sequence: 5
  givenname: Keun-Young
  surname: Kim
  fullname: Kim, Keun-Young
  email: fortoe@gist.ac.kr
  organization: School of Physics and Chemistry, Gwangju Institute of Science and Technology
BookMark eNp9kE1LxDAQhoMouK6evRa86GE1SdMmOYr4yYoe9Bym6WTN0m120yy4_95qRUXQ0wzDPO8Mzx7ZbkOLhBwyesoolWd3N5ePND_mlOkTVrItMmKU64kSUm__6HfJXtfNKWUF03RE5H2ImIU2s2GxbPDVp00WXBaWGCGF2GW-zVZraNN6kTmPTZ2lFwxxs092HDQdHnzWMXm-uny6uJlMH65vL86nEytUnia8cE7xXJWYS6XrskLGrZJlCcjBIqO5kk4gE05RnVsLKAuQtaykctphkY_J7ZBbB5ibZfQLiBsTwJuPQYgzAzF526AptUJFQYtKgOCl1hIQRWGB15JVVd5nHQ1ZyxhWa-ySmYd1bPv3DWdaStE70v3W2bBlY-i6iO7rKqPm3bQZTJt306Y33RPFL8L6BMmHNkXwzT8cHbiuv9DOMH7_8xfyBjgQkgU
CitedBy_id crossref_primary_10_1007_JHEP10_2022_143
crossref_primary_10_1007_JHEP07_2019_104
crossref_primary_10_1007_JHEP07_2019_163
crossref_primary_10_1103_PhysRevE_111_014104
crossref_primary_10_1103_PhysRevB_107_075122
crossref_primary_10_1007_JHEP10_2024_107
crossref_primary_10_1103_PhysRevResearch_2_013323
crossref_primary_10_1103_PhysRevD_100_066026
crossref_primary_10_1007_JHEP03_2021_275
crossref_primary_10_1142_S0217751X20501523
crossref_primary_10_1007_JHEP04_2019_087
crossref_primary_10_1103_PhysRevD_100_066007
crossref_primary_10_1103_PhysRevD_99_126016
crossref_primary_10_1103_PhysRevE_105_064117
crossref_primary_10_1007_JHEP04_2019_146
crossref_primary_10_1103_PhysRevD_100_086016
crossref_primary_10_1103_PhysRevD_101_026021
crossref_primary_10_1007_JHEP01_2023_105
crossref_primary_10_1103_PhysRevD_102_084010
crossref_primary_10_1140_epjc_s10052_020_7661_z
crossref_primary_10_1103_PhysRevD_101_106011
crossref_primary_10_1007_JHEP10_2020_023
crossref_primary_10_1140_epjc_s10052_022_10151_0
crossref_primary_10_1103_PhysRevD_101_046006
crossref_primary_10_1007_JHEP05_2020_045
crossref_primary_10_1007_JHEP08_2020_102
crossref_primary_10_1007_JHEP05_2019_003
crossref_primary_10_1103_PhysRevD_104_084004
crossref_primary_10_1140_epjc_s10052_020_7864_3
crossref_primary_10_1007_JHEP09_2019_094
crossref_primary_10_1007_JHEP10_2019_276
crossref_primary_10_1007_JHEP01_2021_027
crossref_primary_10_1007_JHEP05_2019_086
Cites_doi 10.1007/JHEP10(2018)011
10.1007/JHEP03(2017)118
10.1002/prop.201500093
10.1142/5287
10.1007/JHEP07(2018)034
10.1007/JHEP09(2017)042
10.1007/JHEP10(2017)107
10.1140/epjc/s10052-019-6696-5
10.1007/JHEP03(2019)010
10.1007/978-3-319-16613-1_2
10.1007/JHEP02(2019)145
10.1007/JHEP11(2017)097
10.1007/JHEP10(2018)140
10.1007/JHEP02(2018)082
10.1007/JHEP09(2018)043
10.1007/JHEP11(2016)129
10.1126/science.1121541
10.1007/JHEP09(2018)106
10.1142/S2251158X12000069
10.1007/JHEP11(2017)188
10.1007/978-1-4612-1268-3
10.1002/prop.201500095
10.1007/JHEP06(2018)114
10.1103/PhysRevLett.119.071602
10.1007/JHEP06(2013)085
10.1007/JHEP03(2017)119
10.1088/1361-6382/aab32d
10.1103/PhysRevLett.120.121602
10.1140/epjc/s10052-019-6600-3
10.1088/1361-6382/aa6925
10.1007/JHEP07(2018)139
10.1007/JHEP09(2016)161
10.1007/JHEP01(2017)062
10.1142/3812
10.1007/978-94-009-5329-1
10.1017/9781316848142
10.1007/JHEP12(2018)048
10.1007/JHEP03(2015)051
10.1103/PhysRev.40.749
10.1186/2251-7456-7-37
10.1103/PhysRevLett.122.081601
10.1007/s10711-008-9284-7
10.1142/4619
10.1007/JHEP11(2018)138
10.1103/PhysRevLett.116.191301
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP03(2019)161
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 41
ExternalDocumentID oai_doaj_org_article_698e80a94b4a426997aee45ca2d71bb3
10_1007_JHEP03_2019_161
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c483t-25ff82386e3789d6be12c8766ae2ace10387f4e14f8093ccae75a7d7b78f9fe53
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:30:56 EDT 2025
Sat Jul 26 00:07:49 EDT 2025
Tue Jul 01 03:54:18 EDT 2025
Thu Apr 24 22:54:29 EDT 2025
Fri Feb 21 02:34:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Gauge-gravity correspondence
Holography and condensed matter physics (AdS/CMT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-25ff82386e3789d6be12c8766ae2ace10387f4e14f8093ccae75a7d7b78f9fe53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2197740299?pq-origsite=%requestingapplication%
PQID 2197740299
PQPubID 2034718
PageCount 41
ParticipantIDs doaj_primary_oai_doaj_org_article_698e80a94b4a426997aee45ca2d71bb3
proquest_journals_2197740299
crossref_primary_10_1007_JHEP03_2019_161
crossref_citationtrail_10_1007_JHEP03_2019_161
springer_journals_10_1007_JHEP03_2019_161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References StanfordDSusskindLComplexity and Shock Wave GeometriesPhys. Rev.2014D 901260072014PhRvD..90l6007S[arXiv:1406.2678] [INSPIRE]
AnY-SCaiR-GPengYTime Dependence of Holographic Complexity in Gauss-Bonnet GravityPhys. Rev.2018D 981060132018PhRvD..98j6013A[arXiv:1805.07775] [INSPIRE]
FrankelTThe geometry of physics: an introduction2012Cambridge, New YorkCambridge University Press0888.58077
YangR-QNiuCZhangC-YKimK-YComparison of holographic and field theoretic complexities for time dependent thermofield double statesJHEP2018020822018JHEP...02..082Y378517010.1007/JHEP02(2018)0821387.81279[arXiv:1710.00600] [INSPIRE]
S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes, arXiv:1607.05256 [INSPIRE].
AgónCAHeadrickMSwingleBSubsystem Complexity and HolographyJHEP2019021452019JHEP...02..145A10.1007/JHEP02(2019)145[arXiv:1804.01561] [INSPIRE]
ChenBLiW-MYangR-QZhangC-YZhangS-JHolographic subregion complexity under a thermal quenchJHEP2018070342018JHEP...07..034C386201910.1007/JHEP07(2018)0341395.81207[arXiv:1803.06680] [INSPIRE]
LatifiDToomanianMOn the existence of bi-invariant finsler metrics on lie groupsMath. Sci.2013737312883010.1186/2251-7456-7-371296.53146
BrownARRobertsDASusskindLSwingleBZhaoYHolographic Complexity Equals Bulk Action?Phys. Rev. Lett.20161161913012016PhRvL.116s1301B10.1103/PhysRevLett.116.191301[arXiv:1509.07876] [INSPIRE]
CaputaPKunduNMiyajiMTakayanagiTWatanabeKLiouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFTJHEP2017110972017JHEP...11..097C374721110.1007/JHEP11(2017)0971383.81189[arXiv:1706.07056] [INSPIRE]
ChernSSLectures on differential geometry1999Singapore River Edge, NJWorld Scientific10.1142/38120940.53001
ChapmanSHellerMPMarrochioHPastawskiFToward a Definition of Complexity for Quantum Field Theory StatesPhys. Rev. Lett.20181201216022018PhRvL.120l1602C378729810.1103/PhysRevLett.120.121602[arXiv:1707.08582] [INSPIRE]
MahapatraSRoyPOn the time dependence of holographic complexity in a dynamical Einstein-dilaton modelJHEP2018111382018JHEP...11..138M10.1007/JHEP11(2018)1381404.83006[arXiv:1808.09917] [INSPIRE]
M. Flory and N. Miekley, Complexity change under conformal transformations in AdS3/CFT2, arXiv:1806.08376 [INSPIRE].
M.M. Alexandrino and R.G. Bettiol, Lie Groups with Bi-invariant Metrics, Springer International Publishing, Cham (2015), pp. 27–47.
ReynoldsAPRossSFComplexity of the AdS SolitonClass. Quant. Grav.2018352018CQGra..35i5006R378063410.1088/1361-6382/aab32d1391.83046[arXiv:1712.03732] [INSPIRE]
RobertsDAStanfordDSusskindLLocalized shocksJHEP2015030512015JHEP...03..051R334073210.1007/JHEP03(2015)0511388.83694[arXiv:1409.8180] [INSPIRE]
LehnerLMyersRCPoissonESorkinRDGravitational action with null boundariesPhys. Rev.2016D 942016PhRvD..94h4046L3734058[arXiv:1609.00207] [INSPIRE]
SusskindLComputational Complexity and Black Hole HorizonsFortsch. Phys.201664442016ForPh..64...44S345836010.1002/prop.20150009306598745[arXiv:1403.5695] [INSPIRE]
TakayanagiTHolographic Spacetimes as Quantum Circuits of Path-IntegrationsJHEP2018120482018JHEP...12..048T390068410.1007/JHEP12(2018)0481405.83015[arXiv:1808.09072] [INSPIRE]
MagánJMBlack holes, complexity and quantum chaosJHEP2018090432018JHEP...09..043M387125610.1007/JHEP09(2018)0431398.83052[arXiv:1805.05839] [INSPIRE]
YangR-QComplexity for quantum field theory states and applications to thermofield double statesPhys. Rev.2018D 972018PhRvD..97f6004Y3833137[arXiv:1709.00921] [INSPIRE]
CouchJFischlerWNguyenPHNoether charge, black hole volume and complexityJHEP2017031192017JHEP...03..119C365069810.1007/JHEP03(2017)1191377.83039[arXiv:1610.02038] [INSPIRE]
R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Complexity between states in quantum field theories, work in progress.
WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.1932407491932PhRv...40..749W10.1103/PhysRev.40.74958.0948.07[INSPIRE]
CaputaPKunduNMiyajiMTakayanagiTWatanabeKAnti-de Sitter Space from Optimization of Path Integrals in Conformal Field TheoriesPhys. Rev. Lett.20171192017PhRvL.119g1602C371336910.1103/PhysRevLett.119.071602[arXiv:1703.00456] [INSPIRE]
LingYLiuYZhangC-YHolographic Subregion Complexity in Einstein-Born-Infeld theoryEur. Phys. J.2019C 791942019EPJC...79..194L10.1140/epjc/s10052-019-6696-5[arXiv:1808.10169] [INSPIRE]
JeffersonRMyersRCCircuit complexity in quantum field theoryJHEP2017101072017JHEP...10..107J373110610.1007/JHEP10(2017)1071383.81233[arXiv:1707.08570] [INSPIRE]
NagasakiKComplexity growth of rotating black holes with a probe stringPhys. Rev.2018D 981260142018PhRvD..98l6014N[arXiv:1807.01088] [INSPIRE]
HacklLMyersRCCircuit complexity for free fermionsJHEP2018071392018JHEP...07..139H385858410.1007/JHEP07(2018)1391395.81225[arXiv:1803.10638] [INSPIRE]
HashimotoKIizukaNSugishitaSThoughts on Holographic Complexity and its Basis-dependencePhys. Rev.2018D 982018PhRvD..98d6002H[arXiv:1805.04226] [INSPIRE]
YangR-QAnY-SNiuCZhangC-YKimK-YPrinciples and symmetries of complexity in quantum field theoryEur. Phys. J.2019C 791092019EPJC...79..109Y10.1140/epjc/s10052-019-6600-3[arXiv:1803.01797] [INSPIRE]
C. Zachos, D. Fairlie and T. Curtright, Quantum Mechanics in Phase Space: An Overview with Selected Papers, World Scientific (2005).
ChapmanSMarrochioHMyersRCComplexity of Formation in HolographyJHEP2017010622017JHEP...01..062C362859210.1007/JHEP01(2017)0621373.83052[arXiv:1610.08063] [INSPIRE]
CaiR-GRuanS-MWangS-JYangR-QPengR-HAction growth for AdS black holesJHEP2016091612016JHEP...09..161C356219010.1007/JHEP09(2016)1611390.83180[arXiv:1606.08307] [INSPIRE]
BrownARSusskindLZhaoYQuantum Complexity and Negative CurvaturePhys. Rev.2017D 952017PhRvD..95d5010B3783902[arXiv:1608.02612] [INSPIRE]
CarmiDChapmanSMarrochioHMyersRCSugishitaSOn the Time Dependence of Holographic ComplexityJHEP2017111882017JHEP...11..188C374125110.1007/JHEP11(2017)1881383.81191[arXiv:1709.10184] [INSPIRE]
HashimotoKIizukaNSugishitaSTime evolution of complexity in Abelian gauge theoriesPhys. Rev.2017D 961260012017PhRvD..96l6001H3873291[arXiv:1707.03840] [INSPIRE]
XiaohuanMAn introduction to Finsler geometry2006Singapore Hackensack, NJWorld Scientific1114.53001
DowlingMRNielsenMAThe geometry of quantum computationQuant. Inf. Comput.2008886125226861158.81313
GuoMHernandezJMyersRCRuanS-MCircuit Complexity for Coherent StatesJHEP2018100112018JHEP...10..011G389108510.1007/JHEP10(2018)0111402.81222[arXiv:1807.07677] [INSPIRE]
NielsenMADowlingMRGuMDohertyACQuantum computation as geometryScience200631111332006Sci...311.1133N220518910.1126/science.11215411226.81049
KhanRKrishnanCSharmaSCircuit Complexity in Fermionic Field TheoryPhys. Rev.2018D 981260012018PhRvD..98l6001K[arXiv:1801.07620] [INSPIRE]
LatifiDRazaviABi-invariant finsler metrics on lie groupsJ. Basic Appl. Sci.20115607
DengSHouZPositive definite minkowski lie algebras and bi-invariant finsler metrics on lie groupsGeom. Dedicata2008136191244335210.1007/s10711-008-9284-71213.17009
AlishahihaMHolographic ComplexityPhys. Rev.2015D 921260092015PhRvD..92l6009A3465278[arXiv:1509.06614] [INSPIRE]
P. Caputa and J.M. Magan, Quantum Computation as Gravity, arXiv:1807.04422 [INSPIRE].
CurtrightTLZachosCKQuantum Mechanics in Phase SpaceAsia Pac. Phys. Newslett.201213710.1142/S2251158X12000069[arXiv:1104.5269] [INSPIRE]
SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.20150009506598746[arXiv:1411.0690] [INSPIRE]
BrownARSusskindLSecond law of quantum complexityPhys. Rev.2018D 972018PhRvD..97h6015B3846527[arXiv:1701.01107] [INSPIRE]
SwingleBWangYHolographic Complexity of Einstein-Maxwell-Dilaton GravityJHEP2018091062018JHEP...09..106S386838110.1007/JHEP09(2018)1061398.83021[arXiv:1712.09826] [INSPIRE]
BhattacharyyaAShekarASinhaACircuit complexity in interacting QFTs and RG flowsJHEP2018101402018JHEP...10..140B387974410.1007/JHEP10(2018)1401402.81203[arXiv:1808.03105] [INSPIRE]
CarmiDMyersRCRathPComments on Holographic ComplexityJHEP2017031182017JHEP...03..118C365069910.1007/JHEP03(2017)1181377.81160[arXiv:1612.00433] [INSPIRE]
ReynoldsARossSFDivergences in Holographic ComplexityClass. Quant. Grav.2017341050042017CQGra..34j5004R364970210.1088/1361-6382/aa69251369.83030[arXiv:1612.05439] [INSPIRE]
S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP06 (2018) 114 [arXiv:1805.07262] [INSPIRE].
L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].
NielsenMAA geometric approach to quantum circuit lower boundsQuant. Inf. Comput.2006621322167381152.81788
BrownARRobertsDASusskindLSwingleBZhaoYComplexity, action and black holesPhys. Rev.2016D 932016PhRvD..93h6006B3550969[arXiv:1512.04993] [INSPIRE]
CamargoHACaputaPDasDHellerMPJeffersonRComplexity as a novel probe of quantum quenches: universal scalings and purificationsPhys. Rev. Lett.20191222019PhRvL.122h1601C10.1103/PhysRevLett.122.081601[arXiv:1807.07075] [INSPIRE]
Ben-AmiOCarmiDOn Volumes of Subregions in Holography and ComplexityJHEP2016111292016JHEP...11..129B359479210.1007/JHEP11(2016)1291390.83087[arXiv:1609.02514] [INSPIRE]
YangR-QNiuCKimK-YSurface Counterterms and Regularized Holographic ComplexityJHEP2017090422017JHEP...09..042Y371414210.1007/JHEP09(2017)0421382.83099[arXiv:1701.03706] [INSPIRE]
BaoDChernS-SShenZAn Introduction to Riemann-Finsler Geometry2000New YorkSpringer New York10.1007/978-1-4612-1268-30954.53001
D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
J. Watrous, Theory of quantum information, Cambridge University Press (2018).
Z. Shen, Lectures on Finsler geometry, Series on Multivariate Analysis, Wspc (2001).
AsanovGSFinsler Geometry, Relativity and Gauge Theories1985DordrechtSpringer Netherlands10.1007/978-94-009-5329-10576.53001
S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE].
YangR-QKimK-YComplexity of operators generated by quantum mechanical HamiltoniansJHEP201903010
O Ben-Ami (10242_CR24) 2016; 11
EP Wigner (10242_CR67) 1932; 40
SS Chern (10242_CR68) 1999
DA Roberts (10242_CR6) 2015; 03
M Alishahiha (10242_CR23) 2015; D 92
D Carmi (10242_CR15) 2017; 11
L Susskind (10242_CR3) 2016; 64
10242_CR29
R-Q Yang (10242_CR16) 2018; 02
MA Nielsen (10242_CR51) 2006; 6
AR Brown (10242_CR7) 2016; 116
Y Ling (10242_CR26) 2019; C 79
CA Agón (10242_CR27) 2019; 02
R Khan (10242_CR34) 2018; D 98
K Hashimoto (10242_CR44) 2018; D 98
J Couch (10242_CR28) 2017; 03
R-Q Yang (10242_CR14) 2017; 09
S Chapman (10242_CR11) 2017; 01
R Jefferson (10242_CR32) 2017; 10
TL Curtright (10242_CR66) 2012; 1
P Caputa (10242_CR41) 2017; 11
10242_CR46
M Xiaohuan (10242_CR56) 2006
L Susskind (10242_CR4) 2016; 64
S Chapman (10242_CR39) 2018; 120
HA Camargo (10242_CR38) 2019; 122
AR Brown (10242_CR8) 2016; D 93
D Bao (10242_CR54) 2000
S Mahapatra (10242_CR22) 2018; 11
AR Brown (10242_CR30) 2017; D 95
JM Magán (10242_CR45) 2018; 09
R-G Cai (10242_CR9) 2016; 09
10242_CR47
D Latifi (10242_CR59) 2011; 5
M Guo (10242_CR36) 2018; 10
L Hackl (10242_CR35) 2018; 07
R-Q Yang (10242_CR60) 2019; 03
10242_CR55
D Latifi (10242_CR58) 2013; 7
10242_CR53
A Reynolds (10242_CR13) 2017; 34
D Carmi (10242_CR12) 2017; 03
Y-S An (10242_CR20) 2018; D 98
P Caputa (10242_CR40) 2017; 119
GS Asanov (10242_CR57) 1985
10242_CR1
B Chen (10242_CR25) 2018; 07
10242_CR2
K Hashimoto (10242_CR43) 2017; D 96
10242_CR18
10242_CR19
AR Brown (10242_CR31) 2018; D 97
L Lehner (10242_CR10) 2016; D 94
R-Q Yang (10242_CR49) 2019; C 79
D Stanford (10242_CR5) 2014; D 90
S Deng (10242_CR62) 2008; 136
K Nagasaki (10242_CR21) 2018; D 98
10242_CR65
A Bhattacharyya (10242_CR37) 2018; 10
T Takayanagi (10242_CR42) 2018; 12
10242_CR64
10242_CR61
MA Nielsen (10242_CR50) 2006; 311
T Frankel (10242_CR63) 2012
AP Reynolds (10242_CR33) 2018; 35
MR Dowling (10242_CR52) 2008; 8
R-Q Yang (10242_CR48) 2018; D 97
B Swingle (10242_CR17) 2018; 09
References_xml – reference: CarmiDMyersRCRathPComments on Holographic ComplexityJHEP2017031182017JHEP...03..118C365069910.1007/JHEP03(2017)1181377.81160[arXiv:1612.00433] [INSPIRE]
– reference: S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP06 (2018) 114 [arXiv:1805.07262] [INSPIRE].
– reference: YangR-QKimK-YComplexity of operators generated by quantum mechanical HamiltoniansJHEP2019030102019JHEP...03..010Y10.1007/JHEP03(2019)010[arXiv:1810.09405] [INSPIRE]
– reference: R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, Complexity between states in quantum field theories, work in progress.
– reference: XiaohuanMAn introduction to Finsler geometry2006Singapore Hackensack, NJWorld Scientific1114.53001
– reference: ReynoldsARossSFDivergences in Holographic ComplexityClass. Quant. Grav.2017341050042017CQGra..34j5004R364970210.1088/1361-6382/aa69251369.83030[arXiv:1612.05439] [INSPIRE]
– reference: NagasakiKComplexity growth of rotating black holes with a probe stringPhys. Rev.2018D 981260142018PhRvD..98l6014N[arXiv:1807.01088] [INSPIRE]
– reference: AgónCAHeadrickMSwingleBSubsystem Complexity and HolographyJHEP2019021452019JHEP...02..145A10.1007/JHEP02(2019)145[arXiv:1804.01561] [INSPIRE]
– reference: BrownARRobertsDASusskindLSwingleBZhaoYComplexity, action and black holesPhys. Rev.2016D 932016PhRvD..93h6006B3550969[arXiv:1512.04993] [INSPIRE]
– reference: S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE].
– reference: Z. Shen, Lectures on Finsler geometry, Series on Multivariate Analysis, Wspc (2001).
– reference: D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
– reference: SusskindLComputational Complexity and Black Hole HorizonsFortsch. Phys.201664442016ForPh..64...44S345836010.1002/prop.20150009306598745[arXiv:1403.5695] [INSPIRE]
– reference: L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].
– reference: NielsenMADowlingMRGuMDohertyACQuantum computation as geometryScience200631111332006Sci...311.1133N220518910.1126/science.11215411226.81049
– reference: S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes, arXiv:1607.05256 [INSPIRE].
– reference: CamargoHACaputaPDasDHellerMPJeffersonRComplexity as a novel probe of quantum quenches: universal scalings and purificationsPhys. Rev. Lett.20191222019PhRvL.122h1601C10.1103/PhysRevLett.122.081601[arXiv:1807.07075] [INSPIRE]
– reference: ChernSSLectures on differential geometry1999Singapore River Edge, NJWorld Scientific10.1142/38120940.53001
– reference: CaputaPKunduNMiyajiMTakayanagiTWatanabeKLiouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFTJHEP2017110972017JHEP...11..097C374721110.1007/JHEP11(2017)0971383.81189[arXiv:1706.07056] [INSPIRE]
– reference: WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.1932407491932PhRv...40..749W10.1103/PhysRev.40.74958.0948.07[INSPIRE]
– reference: C. Zachos, D. Fairlie and T. Curtright, Quantum Mechanics in Phase Space: An Overview with Selected Papers, World Scientific (2005).
– reference: ChapmanSMarrochioHMyersRCComplexity of Formation in HolographyJHEP2017010622017JHEP...01..062C362859210.1007/JHEP01(2017)0621373.83052[arXiv:1610.08063] [INSPIRE]
– reference: AnY-SCaiR-GPengYTime Dependence of Holographic Complexity in Gauss-Bonnet GravityPhys. Rev.2018D 981060132018PhRvD..98j6013A[arXiv:1805.07775] [INSPIRE]
– reference: LatifiDToomanianMOn the existence of bi-invariant finsler metrics on lie groupsMath. Sci.2013737312883010.1186/2251-7456-7-371296.53146
– reference: M.M. Alexandrino and R.G. Bettiol, Lie Groups with Bi-invariant Metrics, Springer International Publishing, Cham (2015), pp. 27–47.
– reference: LingYLiuYZhangC-YHolographic Subregion Complexity in Einstein-Born-Infeld theoryEur. Phys. J.2019C 791942019EPJC...79..194L10.1140/epjc/s10052-019-6696-5[arXiv:1808.10169] [INSPIRE]
– reference: HacklLMyersRCCircuit complexity for free fermionsJHEP2018071392018JHEP...07..139H385858410.1007/JHEP07(2018)1391395.81225[arXiv:1803.10638] [INSPIRE]
– reference: BhattacharyyaAShekarASinhaACircuit complexity in interacting QFTs and RG flowsJHEP2018101402018JHEP...10..140B387974410.1007/JHEP10(2018)1401402.81203[arXiv:1808.03105] [INSPIRE]
– reference: CaiR-GRuanS-MWangS-JYangR-QPengR-HAction growth for AdS black holesJHEP2016091612016JHEP...09..161C356219010.1007/JHEP09(2016)1611390.83180[arXiv:1606.08307] [INSPIRE]
– reference: LatifiDRazaviABi-invariant finsler metrics on lie groupsJ. Basic Appl. Sci.20115607
– reference: BrownARSusskindLZhaoYQuantum Complexity and Negative CurvaturePhys. Rev.2017D 952017PhRvD..95d5010B3783902[arXiv:1608.02612] [INSPIRE]
– reference: HashimotoKIizukaNSugishitaSTime evolution of complexity in Abelian gauge theoriesPhys. Rev.2017D 961260012017PhRvD..96l6001H3873291[arXiv:1707.03840] [INSPIRE]
– reference: HashimotoKIizukaNSugishitaSThoughts on Holographic Complexity and its Basis-dependencePhys. Rev.2018D 982018PhRvD..98d6002H[arXiv:1805.04226] [INSPIRE]
– reference: AlishahihaMHolographic ComplexityPhys. Rev.2015D 921260092015PhRvD..92l6009A3465278[arXiv:1509.06614] [INSPIRE]
– reference: SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.20150009506598746[arXiv:1411.0690] [INSPIRE]
– reference: TakayanagiTHolographic Spacetimes as Quantum Circuits of Path-IntegrationsJHEP2018120482018JHEP...12..048T390068410.1007/JHEP12(2018)0481405.83015[arXiv:1808.09072] [INSPIRE]
– reference: YangR-QComplexity for quantum field theory states and applications to thermofield double statesPhys. Rev.2018D 972018PhRvD..97f6004Y3833137[arXiv:1709.00921] [INSPIRE]
– reference: YangR-QAnY-SNiuCZhangC-YKimK-YPrinciples and symmetries of complexity in quantum field theoryEur. Phys. J.2019C 791092019EPJC...79..109Y10.1140/epjc/s10052-019-6600-3[arXiv:1803.01797] [INSPIRE]
– reference: YangR-QNiuCZhangC-YKimK-YComparison of holographic and field theoretic complexities for time dependent thermofield double statesJHEP2018020822018JHEP...02..082Y378517010.1007/JHEP02(2018)0821387.81279[arXiv:1710.00600] [INSPIRE]
– reference: M. Flory and N. Miekley, Complexity change under conformal transformations in AdS3/CFT2, arXiv:1806.08376 [INSPIRE].
– reference: GuoMHernandezJMyersRCRuanS-MCircuit Complexity for Coherent StatesJHEP2018100112018JHEP...10..011G389108510.1007/JHEP10(2018)0111402.81222[arXiv:1807.07677] [INSPIRE]
– reference: JeffersonRMyersRCCircuit complexity in quantum field theoryJHEP2017101072017JHEP...10..107J373110610.1007/JHEP10(2017)1071383.81233[arXiv:1707.08570] [INSPIRE]
– reference: P. Caputa and J.M. Magan, Quantum Computation as Gravity, arXiv:1807.04422 [INSPIRE].
– reference: ReynoldsAPRossSFComplexity of the AdS SolitonClass. Quant. Grav.2018352018CQGra..35i5006R378063410.1088/1361-6382/aab32d1391.83046[arXiv:1712.03732] [INSPIRE]
– reference: YangR-QNiuCKimK-YSurface Counterterms and Regularized Holographic ComplexityJHEP2017090422017JHEP...09..042Y371414210.1007/JHEP09(2017)0421382.83099[arXiv:1701.03706] [INSPIRE]
– reference: CarmiDChapmanSMarrochioHMyersRCSugishitaSOn the Time Dependence of Holographic ComplexityJHEP2017111882017JHEP...11..188C374125110.1007/JHEP11(2017)1881383.81191[arXiv:1709.10184] [INSPIRE]
– reference: DengSHouZPositive definite minkowski lie algebras and bi-invariant finsler metrics on lie groupsGeom. Dedicata2008136191244335210.1007/s10711-008-9284-71213.17009
– reference: BrownARRobertsDASusskindLSwingleBZhaoYHolographic Complexity Equals Bulk Action?Phys. Rev. Lett.20161161913012016PhRvL.116s1301B10.1103/PhysRevLett.116.191301[arXiv:1509.07876] [INSPIRE]
– reference: KhanRKrishnanCSharmaSCircuit Complexity in Fermionic Field TheoryPhys. Rev.2018D 981260012018PhRvD..98l6001K[arXiv:1801.07620] [INSPIRE]
– reference: CouchJFischlerWNguyenPHNoether charge, black hole volume and complexityJHEP2017031192017JHEP...03..119C365069810.1007/JHEP03(2017)1191377.83039[arXiv:1610.02038] [INSPIRE]
– reference: FrankelTThe geometry of physics: an introduction2012Cambridge, New YorkCambridge University Press0888.58077
– reference: ChenBLiW-MYangR-QZhangC-YZhangS-JHolographic subregion complexity under a thermal quenchJHEP2018070342018JHEP...07..034C386201910.1007/JHEP07(2018)0341395.81207[arXiv:1803.06680] [INSPIRE]
– reference: AsanovGSFinsler Geometry, Relativity and Gauge Theories1985DordrechtSpringer Netherlands10.1007/978-94-009-5329-10576.53001
– reference: LehnerLMyersRCPoissonESorkinRDGravitational action with null boundariesPhys. Rev.2016D 942016PhRvD..94h4046L3734058[arXiv:1609.00207] [INSPIRE]
– reference: J. Watrous, Theory of quantum information, Cambridge University Press (2018).
– reference: Ben-AmiOCarmiDOn Volumes of Subregions in Holography and ComplexityJHEP2016111292016JHEP...11..129B359479210.1007/JHEP11(2016)1291390.83087[arXiv:1609.02514] [INSPIRE]
– reference: MagánJMBlack holes, complexity and quantum chaosJHEP2018090432018JHEP...09..043M387125610.1007/JHEP09(2018)0431398.83052[arXiv:1805.05839] [INSPIRE]
– reference: StanfordDSusskindLComplexity and Shock Wave GeometriesPhys. Rev.2014D 901260072014PhRvD..90l6007S[arXiv:1406.2678] [INSPIRE]
– reference: CurtrightTLZachosCKQuantum Mechanics in Phase SpaceAsia Pac. Phys. Newslett.201213710.1142/S2251158X12000069[arXiv:1104.5269] [INSPIRE]
– reference: BrownARSusskindLSecond law of quantum complexityPhys. Rev.2018D 972018PhRvD..97h6015B3846527[arXiv:1701.01107] [INSPIRE]
– reference: RobertsDAStanfordDSusskindLLocalized shocksJHEP2015030512015JHEP...03..051R334073210.1007/JHEP03(2015)0511388.83694[arXiv:1409.8180] [INSPIRE]
– reference: SwingleBWangYHolographic Complexity of Einstein-Maxwell-Dilaton GravityJHEP2018091062018JHEP...09..106S386838110.1007/JHEP09(2018)1061398.83021[arXiv:1712.09826] [INSPIRE]
– reference: DowlingMRNielsenMAThe geometry of quantum computationQuant. Inf. Comput.2008886125226861158.81313
– reference: MahapatraSRoyPOn the time dependence of holographic complexity in a dynamical Einstein-dilaton modelJHEP2018111382018JHEP...11..138M10.1007/JHEP11(2018)1381404.83006[arXiv:1808.09917] [INSPIRE]
– reference: CaputaPKunduNMiyajiMTakayanagiTWatanabeKAnti-de Sitter Space from Optimization of Path Integrals in Conformal Field TheoriesPhys. Rev. Lett.20171192017PhRvL.119g1602C371336910.1103/PhysRevLett.119.071602[arXiv:1703.00456] [INSPIRE]
– reference: ChapmanSHellerMPMarrochioHPastawskiFToward a Definition of Complexity for Quantum Field Theory StatesPhys. Rev. Lett.20181201216022018PhRvL.120l1602C378729810.1103/PhysRevLett.120.121602[arXiv:1707.08582] [INSPIRE]
– reference: NielsenMAA geometric approach to quantum circuit lower boundsQuant. Inf. Comput.2006621322167381152.81788
– reference: BaoDChernS-SShenZAn Introduction to Riemann-Finsler Geometry2000New YorkSpringer New York10.1007/978-1-4612-1268-30954.53001
– volume: 10
  start-page: 011
  year: 2018
  ident: 10242_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)011
– volume: D 96
  start-page: 126001
  year: 2017
  ident: 10242_CR43
  publication-title: Phys. Rev.
– volume: 03
  start-page: 118
  year: 2017
  ident: 10242_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP03(2017)118
– ident: 10242_CR47
– volume: 64
  start-page: 44
  year: 2016
  ident: 10242_CR3
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201500093
– ident: 10242_CR65
  doi: 10.1142/5287
– volume: D 98
  year: 2018
  ident: 10242_CR44
  publication-title: Phys. Rev.
– volume: 07
  start-page: 034
  year: 2018
  ident: 10242_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)034
– volume: 09
  start-page: 042
  year: 2017
  ident: 10242_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)042
– volume: 10
  start-page: 107
  year: 2017
  ident: 10242_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)107
– volume: 6
  start-page: 213
  year: 2006
  ident: 10242_CR51
  publication-title: Quant. Inf. Comput.
– volume-title: An introduction to Finsler geometry
  year: 2006
  ident: 10242_CR56
– volume: D 98
  start-page: 106013
  year: 2018
  ident: 10242_CR20
  publication-title: Phys. Rev.
– volume: C 79
  start-page: 194
  year: 2019
  ident: 10242_CR26
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-019-6696-5
– volume: D 95
  year: 2017
  ident: 10242_CR30
  publication-title: Phys. Rev.
– volume: 8
  start-page: 861
  year: 2008
  ident: 10242_CR52
  publication-title: Quant. Inf. Comput.
– volume: D 98
  start-page: 126014
  year: 2018
  ident: 10242_CR21
  publication-title: Phys. Rev.
– volume: 03
  start-page: 010
  year: 2019
  ident: 10242_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)010
– ident: 10242_CR61
  doi: 10.1007/978-3-319-16613-1_2
– volume: 02
  start-page: 145
  year: 2019
  ident: 10242_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)145
– ident: 10242_CR1
– volume: 11
  start-page: 097
  year: 2017
  ident: 10242_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)097
– volume: 10
  start-page: 140
  year: 2018
  ident: 10242_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)140
– volume: 02
  start-page: 082
  year: 2018
  ident: 10242_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP02(2018)082
– volume: 09
  start-page: 043
  year: 2018
  ident: 10242_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)043
– volume: 11
  start-page: 129
  year: 2016
  ident: 10242_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)129
– volume: D 98
  start-page: 126001
  year: 2018
  ident: 10242_CR34
  publication-title: Phys. Rev.
– volume: 311
  start-page: 1133
  year: 2006
  ident: 10242_CR50
  publication-title: Science
  doi: 10.1126/science.1121541
– volume: 09
  start-page: 106
  year: 2018
  ident: 10242_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)106
– volume: 1
  start-page: 37
  year: 2012
  ident: 10242_CR66
  publication-title: Asia Pac. Phys. Newslett.
  doi: 10.1142/S2251158X12000069
– volume: D 93
  year: 2016
  ident: 10242_CR8
  publication-title: Phys. Rev.
– volume: 11
  start-page: 188
  year: 2017
  ident: 10242_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)188
– volume-title: An Introduction to Riemann-Finsler Geometry
  year: 2000
  ident: 10242_CR54
  doi: 10.1007/978-1-4612-1268-3
– volume-title: The geometry of physics: an introduction
  year: 2012
  ident: 10242_CR63
– volume: 64
  start-page: 49
  year: 2016
  ident: 10242_CR4
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201500095
– ident: 10242_CR18
  doi: 10.1007/JHEP06(2018)114
– volume: 119
  year: 2017
  ident: 10242_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.071602
– ident: 10242_CR2
  doi: 10.1007/JHEP06(2013)085
– ident: 10242_CR19
  doi: 10.1007/JHEP06(2018)114
– volume: D 90
  start-page: 126007
  year: 2014
  ident: 10242_CR5
  publication-title: Phys. Rev.
– volume: 03
  start-page: 119
  year: 2017
  ident: 10242_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP03(2017)119
– volume: 35
  year: 2018
  ident: 10242_CR33
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aab32d
– volume: 120
  start-page: 121602
  year: 2018
  ident: 10242_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.121602
– volume: C 79
  start-page: 109
  year: 2019
  ident: 10242_CR49
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-019-6600-3
– volume: 34
  start-page: 105004
  year: 2017
  ident: 10242_CR13
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aa6925
– ident: 10242_CR64
– volume: 07
  start-page: 139
  year: 2018
  ident: 10242_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)139
– volume: 09
  start-page: 161
  year: 2016
  ident: 10242_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)161
– volume: 01
  start-page: 062
  year: 2017
  ident: 10242_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)062
– volume-title: Lectures on differential geometry
  year: 1999
  ident: 10242_CR68
  doi: 10.1142/3812
– volume-title: Finsler Geometry, Relativity and Gauge Theories
  year: 1985
  ident: 10242_CR57
  doi: 10.1007/978-94-009-5329-1
– ident: 10242_CR53
  doi: 10.1017/9781316848142
– volume: D 92
  start-page: 126009
  year: 2015
  ident: 10242_CR23
  publication-title: Phys. Rev.
– volume: 12
  start-page: 048
  year: 2018
  ident: 10242_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP12(2018)048
– volume: 03
  start-page: 051
  year: 2015
  ident: 10242_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP03(2015)051
– volume: D 97
  year: 2018
  ident: 10242_CR31
  publication-title: Phys. Rev.
– ident: 10242_CR46
– ident: 10242_CR29
– volume: 40
  start-page: 749
  year: 1932
  ident: 10242_CR67
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.40.749
– volume: 7
  start-page: 37
  year: 2013
  ident: 10242_CR58
  publication-title: Math. Sci.
  doi: 10.1186/2251-7456-7-37
– volume: 122
  year: 2019
  ident: 10242_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.081601
– volume: 136
  start-page: 191
  year: 2008
  ident: 10242_CR62
  publication-title: Geom. Dedicata
  doi: 10.1007/s10711-008-9284-7
– volume: D 94
  year: 2016
  ident: 10242_CR10
  publication-title: Phys. Rev.
– ident: 10242_CR55
  doi: 10.1142/4619
– volume: 11
  start-page: 138
  year: 2018
  ident: 10242_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)138
– volume: 116
  start-page: 191301
  year: 2016
  ident: 10242_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.191301
– volume: D 97
  year: 2018
  ident: 10242_CR48
  publication-title: Phys. Rev.
– volume: 5
  start-page: 607
  year: 2011
  ident: 10242_CR59
  publication-title: J. Basic Appl. Sci.
SSID ssj0015190
Score 2.491969
Snippet A bstract Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is...
Recently it has been shown that the complexity of SU( n ) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is...
Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is constrained...
Abstract Recently it has been shown that the complexity of SU(n) operator is determined by the geodesic length in a bi-invariant Finsler geometry, which is...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Axioms
Classical and Quantum Gravitation
Complexity
Curvature
Elementary Particles
Field theory
Gauge-gravity correspondence
Geometry
High energy physics
Holography and condensed matter physics (AdS/CMT)
Invariants
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Regular Article - Theoretical Physics
Relativity Theory
Saturation
String Theory
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyIn1idkoOH7VCXrkmTHFU2xmDiwcFuJWlfQNB27gP0vzdJ2_kBw4vXNg2P32vze-W993sIXTPGlCAmCWMjWEi5hlBpKkOqM8liGWltXKPw5CEZTel4xmbfRn25mrBKHrgCrpdIAYIoSTVVru1ScgVAWab6Obc7eZ1Py3nNz1SdP7BxCWmEfAjvjUeDRxJ3LNnJbpREPzjIS_X_iC9_pUQ90wwP0H4dIuLbyrRDtAPFEdr1pZrZ8hjxSbkAXBbYV4PDuw2jcWlwOQefMV_i5wK_rS1g61fs69Owb1b8OEHT4eDpfhTW4w_CjIp4FfaZMcIyagIxFzJPNET9zB5eiYK-ysApm3NDIaJGEBlbTwBniudcc2GkARafolZRFnCGsLYkZBQQZXJC4xyESpTOgejMydHxPEA3DSBpVmuDuxEVL2mjalwhmDoEU4tggDqbB-aVLMb2pXcO4c0yp2ftL1gvp7WX07-8HKB245-0_siWqT1sbfBKLKEGqNv47Ov2FnvO_8OeC7Tn9quK0dqotVqs4dJGJyt95V_ET-D33-0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LiuBFfGJ9kYOH9VBJm6RJjrooi7DiwQVvJWknImir-wD99yZpu7KKB2-lnUD5ZjIzYWa-IHTGOdeS2CymVvKYCQOxNkzFzBSKU5UYY_2g8PguG03Y7SN_7KGkm4UJ3e5dSTJ46m7Y7XZ0fU_owAUsdZ74A88adwd3b9RDP-DQFg5cQkI6Bp_fi1aCT-DoX0ksf9RCQ4i52UKbbW6ILxtlbqMeVDtoPfRoFrNdJMb1FHBd4dAGDh8uf8a1xfUbhFL5DD9X-H3hkFq84tCYhsOU4ucemtxcPwxHcXvvQVwwSedxyq2VLpRmQIVUZWYgSQvntTINqS7AU5oLyyBhVhJFnQpAcC1KYYS0ygKn-6hf1RUcIGxc9LEaiLYlYbQEqTNtSiCm8Dx0oozQRQdIXrSk4P5uipe8ozNuEMw9grlDMEKD5YK3hg_jb9Erj_BSzBNZhxf19Clv90WeKQmSaMUM036qVgkNwHih01I4Q6EROu70k7e7a5Y7L-uyVuIiaYTOO519f_7jfw7_IXuENvxj02x2jPrz6QJOXPYxN6fB3r4AIMfSrw
  priority: 102
  providerName: Springer Nature
Title More on complexity of operators in quantum field theory
URI https://link.springer.com/article/10.1007/JHEP03(2019)161
https://www.proquest.com/docview/2197740299
https://doaj.org/article/698e80a94b4a426997aee45ca2d71bb3
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNQqGX0vRBt0kXHXpIDm5k630KybLbJZAQShdyM5I8KoXU3uwDmn8fSStvSCC9CGyPjZnRPKQZfYPQN865UcSLgnrFCyYtFMYyXTDrNKe6tNbHg8KXV2I6Yxc3_CZvuC1zWWVvE5OhbjoX98hPgmaFSIUE63k6vyti16iYXc0tNHbQXjDBKiy-9s7HV9c_t3mEEJ-QHtCHyJOL6fia0KPg9PRxKconvihB9j-JM5-lRpPHmbxDb3OoiM82st1Hr6B9j16nkk23_IDkZbcA3LU4VYXDvxBO487jbg4pc77Ef1p8tw6MW__FqU4Np0OL9x_RbDL-NZoWuQ1C4Ziiq6Li3qvgWQVQqXQjLJSVC0ZMGKiMg4hwLj2DknlFNA0SAcmNbKSVymsPnH5Cu23XwmeEbXBG3gAxviGMNqCMMLYBYl2EpZPNAH3vGVK7jBEeW1Xc1j268YaDdeRgHTg4QEfbF-YbeIyXSc8jh7dkEdc63egWv-usJrXQChQxmllm4iFbLQ0A485UjQzzhg7QYS-fOivbsn6cGgN03Mvs8fEL__Pl_586QG8i5abc7BDtrhZr-Brij5Udoh01-THMUy1cjSoWRzEaphV9GGfV2QP2Pd0j
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsLeADSO0h1Int2D6gqkCX7WMrDq3Um7GdcYVEk-0-1PZP8RuxnWSrIpVbr4kdJfN2ZuYbhD5wzo0kvsyolzxjwkJmLFMZs05xqnJrfWwUHh-VoxO2f8pPV9CfvhcmllX2NjEZ6qpx8R_5VtCsEKmQYD23JxdZnBoVs6v9CI1WLA7g-jIc2Waf974F_n4siuHu8ddR1k0VyByTdJ4V3HsZHFUJVEhVlRbywgWbUBoojIMIGC48g5x5GU774QNBcCMqYYX0ykOcEhFM_gNGqYoaJYffl1mLEA2RHj6IiK390e4PQjeCi1WbeZnf8nxpQMCtqPafRGzyb8On6EkXmOKdVpKeoRWon6OHqUDUzV4gMW6mgJsapxp0uArBO248biaQ8vQz_KvGF4vApsU5TlVxOLVIXr9EJ_dCnldotW5qeI2wDa7PGyDGV4TRCqQpja2AWBdB8EQ1QJ96gmjXIZLHwRi_dY-l3FJQRwrqQMEB2lhumLRgHHcv_RIpvFwWUbTThWZ6pjul1KWSIIlRzDITW3qVMACMO1NUIkgpHaD1nj-6U-2ZvhHEAdrseXZz-473efP_R71Hj0bH40N9uHd0sIYex11tods6Wp1PF_A2RD5z-y6JG0Y_71u-_wIkxhTD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLemm0C8ID7FwRh5AGl7KJe2aZM-oGljd7pt7HRCTNpbSVpnQoL2dh-C_Wv8dXPS9qYhjbe9tkmV2o7txPbPAO-TJNGK2zSIrUoCIQ0G2ogsEKbIkjgLjbGuUPh0ko7PxPF5cr4Bf7taGJdW2elEr6jLunB35APaWeSpcNKeA9umRUwPR3uzy8B1kHKR1q6dRiMiJ3j1m45vi09Hh8TrD1E0Gn77PA7aDgNBIVS8DKLEWkVGK8VYqqxMDYZRQfoh1RjpAh14uLQCQ2EVnfzpZ1EmWpbSSGUzi65jBKn_TVqX5D3YPBhOpl_XMQzyjXgHJsTl4Hg8nPJ4hwxuthum4S076NsF3PJx_wnLems3egKPWzeV7Tdy9RQ2sHoGD3y6aLF4DvK0niOrK-Yz0vEPufKstqyeoY_aL9iPil2uiGmrX8znyDFfMHn1As7uhUAvoVfVFb4CZsgQWo1c25KLuESlU21K5KZwkHiy7MPHjiB50eKTuzYZP_MOWbmhYO4omBMF-7CznjBroDnuHnrgKLwe5jC1_YN6fpG3WzRPM4WK60wYoV2BbyY1okgKHZWSZDbuw1bHn7zd6Iv8Riz7sNvx7Ob1Het5_f9PvYOHJNv5l6PJyRt45CY1WW9b0FvOV_iW3KCl2W7ljcH3-xbxa5pFGlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+on+complexity+of+operators+in+quantum+field+theory&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Yang%2C+Run-Qiu&rft.au=Yu-Sen%2C+An&rft.au=Niu%2C+Chao&rft.au=Cheng-Yong%2C+Zhang&rft.date=2019-03-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2019&rft.issue=3&rft.spage=1&rft.epage=41&rft_id=info:doi/10.1007%2FJHEP03%282019%29161&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon