Stability Analysis for Delayed Neural Networks Considering Both Conservativeness and Complexity

This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented term...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 27; no. 7; pp. 1486 - 1501
Main Authors Zhang, Chuan-Ke, He, Yong, Jiang, Lin, Wu, Min
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples.
AbstractList This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples.
This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples.This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples.
Author Min Wu
Chuan-Ke Zhang
Lin Jiang
Yong He
Author_xml – sequence: 1
  givenname: Chuan-Ke
  surname: Zhang
  fullname: Zhang, Chuan-Ke
– sequence: 2
  givenname: Yong
  surname: He
  fullname: He, Yong
– sequence: 3
  givenname: Lin
  surname: Jiang
  fullname: Jiang, Lin
– sequence: 4
  givenname: Min
  surname: Wu
  fullname: Wu, Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26208366$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1UREvoHwAJjcSGTYIf49eyhKcUhUWLxM7y2HfAxRmn9kwh_x63SbvoAvDmWlffudI55yk6GtIACD0neEEI1m8u1uvV-YJiwhe0bbXS6hE6oUTQOWVKHd3_5bdjdFrKJa5PYC5a_QQdU0GxYkKcIHM-2i7EMO6as8HGXQml6VNu3kG0O_DNGqZsYx3jr5R_lmaZhhI85DB8b96m8cftAvK1HcM1DFBKYwdfl5tthN_16jP0uLexwOlhztDXD-8vlp_mqy8fPy_PVnPXKjbOiWPVQ0sdxZ5whSVWlrbK6o51XvSkc1I613uvdE88Edw7TiW01Y_XTlM2Q6_3d7c5XU1QRrMJxUGMdoA0FUMU5ZwSysR_oFgJwhRu_43KGryWuuIz9OoBepmmXCPdU5gpyVWlXh6oqduAN9scNjbvzF0hFVB7wOVUSobeuDDWcNMwZhuiIdjc1G9u6zc39ZtD_VVKH0jvrv9V9GIvCgBwL5CkOuKY_QGj2bnQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_neunet_2016_08_002
crossref_primary_10_1016_j_jfranklin_2018_06_023
crossref_primary_10_1109_TNNLS_2017_2764003
crossref_primary_10_1016_j_neucom_2021_01_098
crossref_primary_10_1016_j_isatra_2019_02_036
crossref_primary_10_1080_00207160_2017_1283412
crossref_primary_10_1016_j_amc_2024_129032
crossref_primary_10_1155_2019_1648576
crossref_primary_10_1016_j_apm_2017_01_032
crossref_primary_10_1186_s13662_018_1786_5
crossref_primary_10_1016_j_neucom_2020_02_064
crossref_primary_10_1109_TCYB_2017_2726015
crossref_primary_10_1109_TCYB_2020_3021556
crossref_primary_10_1080_00207721_2018_1483044
crossref_primary_10_1109_TNNLS_2018_2877195
crossref_primary_10_1109_ACCESS_2023_3326715
crossref_primary_10_3390_act10080186
crossref_primary_10_1016_j_isatra_2018_05_016
crossref_primary_10_1109_TFUZZ_2022_3159957
crossref_primary_10_3390_math11030684
crossref_primary_10_1016_j_amc_2017_06_031
crossref_primary_10_1109_ACCESS_2019_2925912
crossref_primary_10_1016_j_ins_2018_07_073
crossref_primary_10_1016_j_neucom_2019_10_034
crossref_primary_10_1109_TCYB_2021_3079423
crossref_primary_10_1016_j_neucom_2020_05_045
crossref_primary_10_1016_j_jfranklin_2020_04_049
crossref_primary_10_1080_00207179_2018_1432898
crossref_primary_10_1109_TNNLS_2021_3107427
crossref_primary_10_1016_j_neucom_2017_09_029
crossref_primary_10_1109_TCYB_2018_2862914
crossref_primary_10_1109_TSMC_2020_2967506
crossref_primary_10_1016_j_amc_2016_08_043
crossref_primary_10_1109_TNNLS_2018_2870553
crossref_primary_10_1109_TCYB_2018_2868136
crossref_primary_10_1016_j_jfranklin_2019_06_040
crossref_primary_10_1109_LCSYS_2020_3041097
crossref_primary_10_1109_TNNLS_2019_2952410
crossref_primary_10_1016_j_ins_2021_12_038
crossref_primary_10_1016_j_neucom_2016_05_022
crossref_primary_10_1016_j_aej_2023_07_073
crossref_primary_10_1016_j_amc_2023_128289
crossref_primary_10_1016_j_ins_2017_05_017
crossref_primary_10_1109_TNNLS_2019_2927610
crossref_primary_10_3934_math_2021504
crossref_primary_10_1016_j_amc_2017_07_045
crossref_primary_10_1016_j_neunet_2017_11_002
crossref_primary_10_1109_TNNLS_2018_2885115
crossref_primary_10_1016_j_neucom_2018_08_044
crossref_primary_10_1109_TSMC_2017_2753944
crossref_primary_10_1016_j_neunet_2018_06_010
crossref_primary_10_3390_a10040134
crossref_primary_10_1007_s00521_022_07177_6
crossref_primary_10_1016_j_neucom_2017_01_015
crossref_primary_10_1016_j_neucom_2019_09_019
crossref_primary_10_1016_j_neucom_2025_129730
crossref_primary_10_1016_j_neucom_2017_11_066
crossref_primary_10_1016_j_isatra_2021_11_046
crossref_primary_10_1016_j_jfranklin_2016_12_027
crossref_primary_10_1016_j_amc_2020_125329
crossref_primary_10_1109_TII_2023_3283543
crossref_primary_10_1080_00207721_2021_1924308
crossref_primary_10_1109_TCYB_2020_3031087
crossref_primary_10_1016_j_amc_2018_12_026
crossref_primary_10_1016_j_ins_2021_08_055
crossref_primary_10_1109_TNNLS_2017_2696582
crossref_primary_10_1016_j_neucom_2019_07_019
crossref_primary_10_1016_j_ins_2020_01_022
crossref_primary_10_1177_09596518221102204
crossref_primary_10_1109_TCYB_2019_2923244
crossref_primary_10_1016_j_jfranklin_2017_08_046
crossref_primary_10_1016_j_neucom_2019_07_018
crossref_primary_10_1109_TCYB_2017_2665683
crossref_primary_10_1109_TNNLS_2015_2503749
crossref_primary_10_1109_TNNLS_2020_2979778
crossref_primary_10_1016_j_automatica_2017_07_056
crossref_primary_10_1007_s12555_016_0315_0
crossref_primary_10_1016_j_jfranklin_2017_11_016
crossref_primary_10_1016_j_neucom_2018_06_038
crossref_primary_10_1080_00207721_2018_1540730
crossref_primary_10_1109_TAC_2016_2600024
crossref_primary_10_1109_TNNLS_2017_2743262
crossref_primary_10_12677_PM_2021_111012
crossref_primary_10_1016_j_neucom_2019_03_037
crossref_primary_10_1109_TNNLS_2018_2853658
crossref_primary_10_1016_j_chaos_2024_114475
crossref_primary_10_1016_j_fss_2018_11_017
crossref_primary_10_1109_TCYB_2018_2874273
crossref_primary_10_1016_j_neucom_2019_09_008
crossref_primary_10_1109_TNNLS_2019_2891552
crossref_primary_10_1016_j_ins_2020_02_060
crossref_primary_10_1007_s11063_018_9844_2
crossref_primary_10_1109_TNNLS_2019_2896162
crossref_primary_10_1007_s00521_023_09191_8
crossref_primary_10_1109_TFUZZ_2021_3078643
crossref_primary_10_3934_mmc_2024025
crossref_primary_10_1016_j_fss_2019_09_001
crossref_primary_10_1016_j_fss_2018_10_014
crossref_primary_10_1007_s00034_016_0463_8
crossref_primary_10_1016_j_neucom_2017_08_027
crossref_primary_10_1109_TNNLS_2018_2843771
crossref_primary_10_1016_j_neunet_2018_09_011
crossref_primary_10_1016_j_ins_2018_03_021
crossref_primary_10_1007_s12555_019_0536_0
crossref_primary_10_1016_j_neucom_2017_12_006
crossref_primary_10_1016_j_amc_2017_05_023
crossref_primary_10_1016_j_neucom_2018_01_036
crossref_primary_10_1109_TCYB_2019_2910520
crossref_primary_10_1109_TNNLS_2018_2806356
crossref_primary_10_1109_TNNLS_2018_2797279
crossref_primary_10_1016_j_jfranklin_2019_09_037
crossref_primary_10_1007_s11063_021_10601_y
crossref_primary_10_1016_j_jfranklin_2024_106871
crossref_primary_10_1109_TCYB_2020_3001341
crossref_primary_10_1155_2019_8725610
crossref_primary_10_1007_s12555_022_0875_0
crossref_primary_10_1016_j_amc_2018_01_009
crossref_primary_10_1109_TNNLS_2016_2578309
crossref_primary_10_1007_s11071_017_3574_2
crossref_primary_10_1109_TCYB_2021_3105058
crossref_primary_10_1109_TCYB_2017_2776283
crossref_primary_10_1155_2018_5147565
crossref_primary_10_1186_s13660_019_1984_z
crossref_primary_10_3934_mmc_2024010
crossref_primary_10_1109_TNNLS_2017_2771808
crossref_primary_10_1109_ACCESS_2019_2931714
crossref_primary_10_1007_s12555_017_0534_z
crossref_primary_10_1109_TCYB_2018_2836977
crossref_primary_10_1016_j_fss_2017_12_010
crossref_primary_10_1016_j_jfranklin_2023_08_005
crossref_primary_10_1109_TNNLS_2018_2795546
crossref_primary_10_1016_j_amc_2021_126226
crossref_primary_10_1109_ACCESS_2021_3089374
crossref_primary_10_1109_TSMC_2019_2946189
crossref_primary_10_1049_cth2_12409
crossref_primary_10_1002_oca_2948
crossref_primary_10_1109_TCYB_2021_3106793
crossref_primary_10_1016_j_neucom_2022_02_015
crossref_primary_10_1007_s40314_022_01879_2
crossref_primary_10_1016_j_neucom_2021_08_066
crossref_primary_10_1137_18M1213142
crossref_primary_10_31209_2018_100000021
crossref_primary_10_1016_j_neunet_2020_08_006
crossref_primary_10_1109_TNSE_2023_3321035
crossref_primary_10_1016_j_amc_2019_05_040
crossref_primary_10_1016_j_segan_2022_100920
crossref_primary_10_1016_j_jfranklin_2017_02_029
crossref_primary_10_1109_TCYB_2018_2890425
crossref_primary_10_3390_math9243321
crossref_primary_10_1016_j_neucom_2017_01_056
crossref_primary_10_1016_j_ins_2018_06_012
crossref_primary_10_1016_j_amc_2017_05_003
crossref_primary_10_1016_j_jfranklin_2017_07_040
crossref_primary_10_1002_mma_9008
crossref_primary_10_1016_j_amc_2017_11_022
crossref_primary_10_1109_TCYB_2018_2813979
crossref_primary_10_1109_TSMC_2024_3475483
crossref_primary_10_1016_j_neucom_2018_11_022
crossref_primary_10_1109_TNNLS_2017_2760979
crossref_primary_10_1109_TNNLS_2021_3095183
crossref_primary_10_1016_j_neucom_2020_07_021
crossref_primary_10_1016_j_jfranklin_2020_09_039
crossref_primary_10_1109_TCYB_2024_3410710
crossref_primary_10_1109_TFUZZ_2020_3009735
crossref_primary_10_1016_j_neunet_2018_05_006
crossref_primary_10_1016_j_cnsns_2017_05_021
crossref_primary_10_1016_j_neucom_2021_05_044
crossref_primary_10_1155_2017_4157256
crossref_primary_10_1016_j_amc_2017_07_019
crossref_primary_10_1109_TCYB_2018_2831782
crossref_primary_10_1109_TNNLS_2017_2750708
crossref_primary_10_1109_TNNLS_2023_3289208
crossref_primary_10_1016_j_jfranklin_2020_08_017
crossref_primary_10_12677_CSA_2022_1212279
crossref_primary_10_1016_j_ins_2017_08_072
crossref_primary_10_1007_s00034_020_01509_4
crossref_primary_10_1109_TNNLS_2017_2661862
crossref_primary_10_1109_TNNLS_2016_2618899
crossref_primary_10_1109_TNNLS_2020_3016120
crossref_primary_10_1016_j_neucom_2021_09_028
crossref_primary_10_1109_TNNLS_2018_2836339
crossref_primary_10_1016_j_jfranklin_2024_01_007
crossref_primary_10_1016_j_neunet_2017_01_008
crossref_primary_10_1049_cth2_12147
crossref_primary_10_1016_j_neucom_2016_09_102
crossref_primary_10_1007_s11063_021_10697_2
Cites_doi 10.1016/j.neucom.2012.09.012
10.1109/TNN.2008.2002436
10.1016/j.physleta.2009.12.020
10.1109/TPWRS.2012.2228281
10.1109/TNN.2010.2056383
10.1109/TNNLS.2014.2387434
10.1016/j.neucom.2012.09.004
10.1109/TNN.2011.2132762
10.1016/j.neucom.2014.01.024
10.1109/TNN.2011.2114366
10.1109/TPWRS.2013.2265104
10.1016/j.neunet.2014.02.012
10.1007/s11071-013-1122-2
10.1016/j.jfranklin.2014.05.014
10.1109/TPWRS.2011.2172821
10.1109/TCYB.2013.2272399
10.1016/j.automatica.2009.11.017
10.1049/iet-cta.2012.0814
10.1016/j.physleta.2008.11.048
10.1016/j.amc.2014.01.129
10.1109/TNN.2009.2014160
10.1109/TAC.2006.887907
10.1109/TNNLS.2014.2347290
10.1016/j.amc.2014.04.089
10.1016/j.jfranklin.2014.12.023
10.1109/TNN.2011.2111383
10.1109/TCSII.2009.2024244
10.1016/j.amc.2013.12.063
10.1016/j.automatica.2010.10.014
10.1016/j.neucom.2014.07.024
10.1016/j.neucom.2013.07.053
10.1016/j.amc.2011.05.029
10.1016/j.neucom.2013.04.031
10.1016/j.isatra.2014.05.010
10.1109/TNN.2009.2036610
10.1109/TNN.2010.2054107
10.1109/TNNLS.2013.2284968
10.1109/TSMCB.2008.915652
10.1109/TNNLS.2014.2317880
10.1109/TNN.2011.2169425
10.1109/TNN.2008.2001265
10.1109/72.822526
10.1109/TNN.2010.2048434
10.1016/j.automatica.2014.04.019
10.1088/1674-1056/20/5/050505
10.1109/TNN.2010.2051455
10.1109/TNNLS.2011.2178563
10.1109/TPWRS.2010.2093031
10.1109/TNN.2007.903147
10.1016/j.cnsns.2014.02.024
10.1109/TPWRS.2013.2280216
10.1109/TNN.2011.2147331
10.1109/TNN.2009.2034742
10.1109/TCSII.2006.876385
10.1016/j.neucom.2013.09.019
10.1109/TNN.2006.888373
10.1109/TNNLS.2013.2256796
10.1109/TCSII.2011.2172523
10.1109/TSMCB.2010.2040274
10.1109/TNNLS.2013.2285564
10.1007/978-1-4612-0039-0
10.1109/TNN.2009.2037893
10.1109/TSMCB.2009.2030506
10.1016/j.neucom.2012.07.005
10.1155/2014/859736
10.1016/j.automatica.2013.05.030
10.1016/j.isatra.2014.05.009
10.1109/TNN.2007.914162
10.1109/TNNLS.2012.2224883
10.1109/TNNLS.2012.2236571
10.1109/31.7601
10.1016/j.automatica.2009.11.002
10.1109/TCYB.2013.2240451
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2015.2449898
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Technology Research Database
PubMed
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1501
ExternalDocumentID 4094630721
26208366
10_1109_TNNLS_2015_2449898
7161350
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51428702; 61125301; 61210011
  funderid: 10.13039/501100001809
– fundername: Hubei Provincial Natural Science Foundation of China
  grantid: 2015CFA010
  funderid: 10.13039/501100003819
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c483t-1c349842c20d1580708a248a9b3bd6f1bc77ccfdd89f1d165dc527e4564d9c923
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 03:10:17 EDT 2025
Fri Jul 11 10:50:58 EDT 2025
Sun Aug 24 03:04:37 EDT 2025
Sun Jun 29 13:47:54 EDT 2025
Mon Jul 21 05:59:42 EDT 2025
Tue Jul 01 00:27:20 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords delay-dependent stability
conservativeness
Lyapunov–Krasovskii functional (LKF)
Calculation complexity
delayed neural networks (DNNs)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-1c349842c20d1580708a248a9b3bd6f1bc77ccfdd89f1d165dc527e4564d9c923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26208366
PQID 1798038758
PQPubID 85436
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2015_2449898
ieee_primary_7161350
pubmed_primary_26208366
proquest_miscellaneous_1798997961
crossref_primary_10_1109_TNNLS_2015_2449898
proquest_miscellaneous_1825521236
proquest_miscellaneous_1808613804
proquest_journals_1798038758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-July
2016-7-00
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ge (ref37) 2014; 25
ref19
ref18
li (ref21) 2010; 21
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
li (ref27) 2011; 22
ref9
ref3
he (ref4) 2006; 53
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
zhu (ref26) 2008; 19
ref2
ref1
ref39
ref38
wu (ref12) 2010; 21
wu (ref7) 2008; 38
ref71
ref70
ref73
zuo (ref24) 2010; 21
ref72
ref67
ref23
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
li (ref28) 2013; 24
ref29
liu (ref68) 2010; 21
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1016/j.neucom.2012.09.012
– volume: 19
  start-page: 1783
  year: 2008
  ident: ref26
  article-title: New delay-dependent stability results for neural networks with time-varying delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2002436
– ident: ref22
  doi: 10.1016/j.physleta.2009.12.020
– ident: ref56
  doi: 10.1109/TPWRS.2012.2228281
– volume: 21
  start-page: 1396
  year: 2010
  ident: ref12
  article-title: Exponential stability analysis for delayed neural networks with switching parameters: Average dwell time approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2056383
– ident: ref72
  doi: 10.1109/TNNLS.2014.2387434
– ident: ref35
  doi: 10.1016/j.neucom.2012.09.004
– ident: ref3
  doi: 10.1109/TNN.2011.2132762
– ident: ref43
  doi: 10.1016/j.neucom.2014.01.024
– ident: ref30
  doi: 10.1109/TNN.2011.2114366
– ident: ref57
  doi: 10.1109/TPWRS.2013.2265104
– ident: ref41
  doi: 10.1016/j.neunet.2014.02.012
– ident: ref42
  doi: 10.1007/s11071-013-1122-2
– ident: ref54
  doi: 10.1016/j.jfranklin.2014.05.014
– ident: ref58
  doi: 10.1109/TPWRS.2011.2172821
– ident: ref70
  doi: 10.1109/TCYB.2013.2272399
– ident: ref52
  doi: 10.1016/j.automatica.2009.11.017
– ident: ref53
  doi: 10.1049/iet-cta.2012.0814
– ident: ref11
  doi: 10.1016/j.physleta.2008.11.048
– ident: ref49
  doi: 10.1016/j.amc.2014.01.129
– ident: ref15
  doi: 10.1109/TNN.2009.2014160
– ident: ref62
  doi: 10.1109/TAC.2006.887907
– ident: ref71
  doi: 10.1109/TNNLS.2014.2347290
– ident: ref45
  doi: 10.1016/j.amc.2014.04.089
– ident: ref73
  doi: 10.1016/j.jfranklin.2014.12.023
– ident: ref23
  doi: 10.1109/TNN.2011.2111383
– ident: ref9
  doi: 10.1109/TCSII.2009.2024244
– ident: ref39
  doi: 10.1016/j.amc.2013.12.063
– ident: ref61
  doi: 10.1016/j.automatica.2010.10.014
– ident: ref46
  doi: 10.1016/j.neucom.2014.07.024
– ident: ref50
  doi: 10.1016/j.neucom.2013.07.053
– ident: ref20
  doi: 10.1016/j.amc.2011.05.029
– ident: ref32
  doi: 10.1016/j.neucom.2013.04.031
– ident: ref38
  doi: 10.1016/j.isatra.2014.05.010
– ident: ref14
  doi: 10.1109/TNN.2009.2036610
– volume: 21
  start-page: 1710
  year: 2010
  ident: ref68
  article-title: Novel stability analysis for recurrent neural networks with multiple delays via line integral-type L-K functional
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNN.2010.2054107
– ident: ref47
  doi: 10.1109/TNNLS.2013.2284968
– volume: 38
  start-page: 1152
  year: 2008
  ident: ref7
  article-title: Exponential stability analysis for neural networks with time-varying delay
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.915652
– ident: ref65
  doi: 10.1109/TNNLS.2014.2317880
– volume: 22
  start-page: 2138
  year: 2011
  ident: ref27
  article-title: Delay-slope-dependent stability results of recurrent neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2169425
– ident: ref8
  doi: 10.1109/TNN.2008.2001265
– ident: ref2
  doi: 10.1109/72.822526
– ident: ref19
  doi: 10.1109/TNN.2010.2048434
– ident: ref60
  doi: 10.1016/j.automatica.2014.04.019
– ident: ref66
  doi: 10.1088/1674-1056/20/5/050505
– volume: 21
  start-page: 1365
  year: 2010
  ident: ref21
  article-title: Delay-derivative-dependent stability for delayed neural networks with unbound distributed delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2051455
– ident: ref13
  doi: 10.1109/TNNLS.2011.2178563
– ident: ref59
  doi: 10.1109/TPWRS.2010.2093031
– ident: ref6
  doi: 10.1109/TNN.2007.903147
– ident: ref44
  doi: 10.1016/j.cnsns.2014.02.024
– ident: ref55
  doi: 10.1109/TPWRS.2013.2280216
– ident: ref25
  doi: 10.1109/TNN.2011.2147331
– ident: ref16
  doi: 10.1109/TNN.2009.2034742
– volume: 53
  start-page: 553
  year: 2006
  ident: ref4
  article-title: Delay-dependent exponential stability of delayed neural networks with time-varying delay
  publication-title: IEEE Trans Circuits Syst II Exp Briefs
  doi: 10.1109/TCSII.2006.876385
– ident: ref48
  doi: 10.1016/j.neucom.2013.09.019
– ident: ref5
  doi: 10.1109/TNN.2006.888373
– volume: 24
  start-page: 1459
  year: 2013
  ident: ref28
  article-title: Combined convex technique on delay-dependent stability for delayed neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2256796
– ident: ref18
  doi: 10.1109/TCSII.2011.2172523
– ident: ref40
  doi: 10.1109/TSMCB.2010.2040274
– volume: 25
  start-page: 1378
  year: 2014
  ident: ref37
  article-title: New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNNLS.2013.2285564
– ident: ref63
  doi: 10.1007/978-1-4612-0039-0
– volume: 21
  start-page: 339
  year: 2010
  ident: ref24
  article-title: A new method for stability analysis of recurrent neural networks with interval time-varying delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2037893
– ident: ref69
  doi: 10.1109/TSMCB.2009.2030506
– ident: ref29
  doi: 10.1016/j.neucom.2012.07.005
– ident: ref67
  doi: 10.1155/2014/859736
– ident: ref51
  doi: 10.1016/j.automatica.2013.05.030
– ident: ref10
  doi: 10.1016/j.isatra.2014.05.009
– ident: ref17
  doi: 10.1109/TNN.2007.914162
– ident: ref33
  doi: 10.1109/TNNLS.2012.2224883
– ident: ref31
  doi: 10.1109/TNNLS.2012.2236571
– ident: ref1
  doi: 10.1109/31.7601
– ident: ref64
  doi: 10.1016/j.automatica.2009.11.002
– ident: ref36
  doi: 10.1109/TCYB.2013.2240451
SSID ssj0000605649
Score 2.5832148
Snippet This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1486
SubjectTerms Biological neural networks
Calculation complexity
Complexity
Complexity theory
conservativeness
Criteria
Delay
delay-dependent stability
delayed neural networks (DNNs)
Delays
Derivatives
Guidelines
Lyapunov-Krasovskii functional (LKF)
Mathematical analysis
Neural networks
Numerical stability
Stability
Stability criteria
Symmetric matrices
Title Stability Analysis for Delayed Neural Networks Considering Both Conservativeness and Complexity
URI https://ieeexplore.ieee.org/document/7161350
https://www.ncbi.nlm.nih.gov/pubmed/26208366
https://www.proquest.com/docview/1798038758
https://www.proquest.com/docview/1798997961
https://www.proquest.com/docview/1808613804
https://www.proquest.com/docview/1825521236
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYop16AQmmX0sqVemuzxEns2Mc-QKgqeylIe4vssXMpylYle1h-PTN2EqmIrnqLknFiZ_z4xp75hrEP1tZBe5lnUjsi1RYmc2iFZdpSwAiIFnKKRr5aqMub6vtSLnfYpykWJoQQnc_CnC7jWb5fwZq2ys4Q24uSDPRnaLilWK1pPyVHXK4i2i2EKrKirJdjjExuzq4Xix8_yZFLznE9o5yJxAKsCuJmVn8tSTHHyr_hZlx2LvbZ1Vjh5G3ya77u3RzuH3E5_m-LDtjegD_559RhXrCd0B2y_TG3Ax-G-hFrEIVGv9kNH3lLOOJb_i3c2k3wnEg98D2L5EV-x8fEn7gS8i-o_Xgjbfim6ZTbznP6DjFw9puX7Obi_PrrZTYkY8ig0mWfCSjxv1UFFLkXUuNMoW1RaWtc6bxqhYO6Bmi916YVXijpQRZ1ILYabwBh5DHb7VZdeM24MyW0bSgtSEdB1baCKgcXsFBwtXczJkZ9NDAwlVPCjNsmWiy5aaI6G1JnM6hzxj5OZX4nno6t0keki0lyUMOMnY5qb4ahfNcQoxud8Uss9X56jIOQTlZsF1brJGNMbZTYIqPRehSlzqttMmjhEZhQM_YqdbupjmNvPXm67m_Yc2yhSp7Ep2y3_7MObxEv9e5dHCgPKnIPiw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZWywEuLLA8CgsYiRukGyexYx95rQq0udCVerP8ymVXKWLTQ_n1zNhJJBBU3KJknDgZO_ONPfMNIa-NqYP0PM-4tEiqzVRmwQvLpMGEEcdal2M28qoRi8vqy4ZvjsjbKRcmhBCDz8IcD-Nevt-6HS6VnQO2ZyU66LfA7nOWsrWmFZUckLmIeLdgosiKst6MWTK5Ol83zfIbhnLxOVg0rJqIPMCiQHZm8ZtRilVW_g04o-G5OCGrscsp3uRqvuvt3P38g83xf9_pHrk7IFD6Lg2Z--QodA_IyVjdgQ6T_ZRowKExcnZPR-YSCgiXfgzXZh88RVoPuE-T4shv6Fj6E2whfQ_6jyfSkm_6oVLTeYrPQQ7Ofv-QXF58Wn9YZEM5hsxVsuwz5kr4blXhitwzLuFfIU1RSaNsab1omXV17VzrvVQt80xw73hRB-Sr8coBkHxEjrttF54QalXp2jaUxnGLadWmclXubIBGwdbezggb9aHdwFWOJTOudfRZcqWjOjWqUw_qnJE3U5vvianjoPQp6mKSHNQwI2ej2vUwmW80crrhLj-HVq-myzANcW_FdGG7SzJK1UqwAzIS_EdWyrw6JAM-HsIJMSOP07Cb-jiO1qd_7_tLcnuxXi318nPz9Rm5A28rUlzxGTnuf-zCc0BPvX0RJ80vcgMS1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Analysis+for+Delayed+Neural+Networks+Considering+Both+Conservativeness+and+Complexity&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Chuan-Ke+Zhang&rft.au=Yong+He&rft.au=Lin+Jiang&rft.au=Min+Wu&rft.date=2016-07-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=27&rft.issue=7&rft.spage=1486&rft.epage=1501&rft_id=info:doi/10.1109%2FTNNLS.2015.2449898&rft_id=info%3Apmid%2F26208366&rft.externalDocID=7161350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon