Stability Analysis for Delayed Neural Networks Considering Both Conservativeness and Complexity
This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented term...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 27; no. 7; pp. 1486 - 1501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples. |
---|---|
AbstractList | This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples. This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples.This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples. |
Author | Min Wu Chuan-Ke Zhang Lin Jiang Yong He |
Author_xml | – sequence: 1 givenname: Chuan-Ke surname: Zhang fullname: Zhang, Chuan-Ke – sequence: 2 givenname: Yong surname: He fullname: He, Yong – sequence: 3 givenname: Lin surname: Jiang fullname: Jiang, Lin – sequence: 4 givenname: Min surname: Wu fullname: Wu, Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26208366$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1UREvoHwAJjcSGTYIf49eyhKcUhUWLxM7y2HfAxRmn9kwh_x63SbvoAvDmWlffudI55yk6GtIACD0neEEI1m8u1uvV-YJiwhe0bbXS6hE6oUTQOWVKHd3_5bdjdFrKJa5PYC5a_QQdU0GxYkKcIHM-2i7EMO6as8HGXQml6VNu3kG0O_DNGqZsYx3jr5R_lmaZhhI85DB8b96m8cftAvK1HcM1DFBKYwdfl5tthN_16jP0uLexwOlhztDXD-8vlp_mqy8fPy_PVnPXKjbOiWPVQ0sdxZ5whSVWlrbK6o51XvSkc1I613uvdE88Edw7TiW01Y_XTlM2Q6_3d7c5XU1QRrMJxUGMdoA0FUMU5ZwSysR_oFgJwhRu_43KGryWuuIz9OoBepmmXCPdU5gpyVWlXh6oqduAN9scNjbvzF0hFVB7wOVUSobeuDDWcNMwZhuiIdjc1G9u6zc39ZtD_VVKH0jvrv9V9GIvCgBwL5CkOuKY_QGj2bnQ |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_neunet_2016_08_002 crossref_primary_10_1016_j_jfranklin_2018_06_023 crossref_primary_10_1109_TNNLS_2017_2764003 crossref_primary_10_1016_j_neucom_2021_01_098 crossref_primary_10_1016_j_isatra_2019_02_036 crossref_primary_10_1080_00207160_2017_1283412 crossref_primary_10_1016_j_amc_2024_129032 crossref_primary_10_1155_2019_1648576 crossref_primary_10_1016_j_apm_2017_01_032 crossref_primary_10_1186_s13662_018_1786_5 crossref_primary_10_1016_j_neucom_2020_02_064 crossref_primary_10_1109_TCYB_2017_2726015 crossref_primary_10_1109_TCYB_2020_3021556 crossref_primary_10_1080_00207721_2018_1483044 crossref_primary_10_1109_TNNLS_2018_2877195 crossref_primary_10_1109_ACCESS_2023_3326715 crossref_primary_10_3390_act10080186 crossref_primary_10_1016_j_isatra_2018_05_016 crossref_primary_10_1109_TFUZZ_2022_3159957 crossref_primary_10_3390_math11030684 crossref_primary_10_1016_j_amc_2017_06_031 crossref_primary_10_1109_ACCESS_2019_2925912 crossref_primary_10_1016_j_ins_2018_07_073 crossref_primary_10_1016_j_neucom_2019_10_034 crossref_primary_10_1109_TCYB_2021_3079423 crossref_primary_10_1016_j_neucom_2020_05_045 crossref_primary_10_1016_j_jfranklin_2020_04_049 crossref_primary_10_1080_00207179_2018_1432898 crossref_primary_10_1109_TNNLS_2021_3107427 crossref_primary_10_1016_j_neucom_2017_09_029 crossref_primary_10_1109_TCYB_2018_2862914 crossref_primary_10_1109_TSMC_2020_2967506 crossref_primary_10_1016_j_amc_2016_08_043 crossref_primary_10_1109_TNNLS_2018_2870553 crossref_primary_10_1109_TCYB_2018_2868136 crossref_primary_10_1016_j_jfranklin_2019_06_040 crossref_primary_10_1109_LCSYS_2020_3041097 crossref_primary_10_1109_TNNLS_2019_2952410 crossref_primary_10_1016_j_ins_2021_12_038 crossref_primary_10_1016_j_neucom_2016_05_022 crossref_primary_10_1016_j_aej_2023_07_073 crossref_primary_10_1016_j_amc_2023_128289 crossref_primary_10_1016_j_ins_2017_05_017 crossref_primary_10_1109_TNNLS_2019_2927610 crossref_primary_10_3934_math_2021504 crossref_primary_10_1016_j_amc_2017_07_045 crossref_primary_10_1016_j_neunet_2017_11_002 crossref_primary_10_1109_TNNLS_2018_2885115 crossref_primary_10_1016_j_neucom_2018_08_044 crossref_primary_10_1109_TSMC_2017_2753944 crossref_primary_10_1016_j_neunet_2018_06_010 crossref_primary_10_3390_a10040134 crossref_primary_10_1007_s00521_022_07177_6 crossref_primary_10_1016_j_neucom_2017_01_015 crossref_primary_10_1016_j_neucom_2019_09_019 crossref_primary_10_1016_j_neucom_2025_129730 crossref_primary_10_1016_j_neucom_2017_11_066 crossref_primary_10_1016_j_isatra_2021_11_046 crossref_primary_10_1016_j_jfranklin_2016_12_027 crossref_primary_10_1016_j_amc_2020_125329 crossref_primary_10_1109_TII_2023_3283543 crossref_primary_10_1080_00207721_2021_1924308 crossref_primary_10_1109_TCYB_2020_3031087 crossref_primary_10_1016_j_amc_2018_12_026 crossref_primary_10_1016_j_ins_2021_08_055 crossref_primary_10_1109_TNNLS_2017_2696582 crossref_primary_10_1016_j_neucom_2019_07_019 crossref_primary_10_1016_j_ins_2020_01_022 crossref_primary_10_1177_09596518221102204 crossref_primary_10_1109_TCYB_2019_2923244 crossref_primary_10_1016_j_jfranklin_2017_08_046 crossref_primary_10_1016_j_neucom_2019_07_018 crossref_primary_10_1109_TCYB_2017_2665683 crossref_primary_10_1109_TNNLS_2015_2503749 crossref_primary_10_1109_TNNLS_2020_2979778 crossref_primary_10_1016_j_automatica_2017_07_056 crossref_primary_10_1007_s12555_016_0315_0 crossref_primary_10_1016_j_jfranklin_2017_11_016 crossref_primary_10_1016_j_neucom_2018_06_038 crossref_primary_10_1080_00207721_2018_1540730 crossref_primary_10_1109_TAC_2016_2600024 crossref_primary_10_1109_TNNLS_2017_2743262 crossref_primary_10_12677_PM_2021_111012 crossref_primary_10_1016_j_neucom_2019_03_037 crossref_primary_10_1109_TNNLS_2018_2853658 crossref_primary_10_1016_j_chaos_2024_114475 crossref_primary_10_1016_j_fss_2018_11_017 crossref_primary_10_1109_TCYB_2018_2874273 crossref_primary_10_1016_j_neucom_2019_09_008 crossref_primary_10_1109_TNNLS_2019_2891552 crossref_primary_10_1016_j_ins_2020_02_060 crossref_primary_10_1007_s11063_018_9844_2 crossref_primary_10_1109_TNNLS_2019_2896162 crossref_primary_10_1007_s00521_023_09191_8 crossref_primary_10_1109_TFUZZ_2021_3078643 crossref_primary_10_3934_mmc_2024025 crossref_primary_10_1016_j_fss_2019_09_001 crossref_primary_10_1016_j_fss_2018_10_014 crossref_primary_10_1007_s00034_016_0463_8 crossref_primary_10_1016_j_neucom_2017_08_027 crossref_primary_10_1109_TNNLS_2018_2843771 crossref_primary_10_1016_j_neunet_2018_09_011 crossref_primary_10_1016_j_ins_2018_03_021 crossref_primary_10_1007_s12555_019_0536_0 crossref_primary_10_1016_j_neucom_2017_12_006 crossref_primary_10_1016_j_amc_2017_05_023 crossref_primary_10_1016_j_neucom_2018_01_036 crossref_primary_10_1109_TCYB_2019_2910520 crossref_primary_10_1109_TNNLS_2018_2806356 crossref_primary_10_1109_TNNLS_2018_2797279 crossref_primary_10_1016_j_jfranklin_2019_09_037 crossref_primary_10_1007_s11063_021_10601_y crossref_primary_10_1016_j_jfranklin_2024_106871 crossref_primary_10_1109_TCYB_2020_3001341 crossref_primary_10_1155_2019_8725610 crossref_primary_10_1007_s12555_022_0875_0 crossref_primary_10_1016_j_amc_2018_01_009 crossref_primary_10_1109_TNNLS_2016_2578309 crossref_primary_10_1007_s11071_017_3574_2 crossref_primary_10_1109_TCYB_2021_3105058 crossref_primary_10_1109_TCYB_2017_2776283 crossref_primary_10_1155_2018_5147565 crossref_primary_10_1186_s13660_019_1984_z crossref_primary_10_3934_mmc_2024010 crossref_primary_10_1109_TNNLS_2017_2771808 crossref_primary_10_1109_ACCESS_2019_2931714 crossref_primary_10_1007_s12555_017_0534_z crossref_primary_10_1109_TCYB_2018_2836977 crossref_primary_10_1016_j_fss_2017_12_010 crossref_primary_10_1016_j_jfranklin_2023_08_005 crossref_primary_10_1109_TNNLS_2018_2795546 crossref_primary_10_1016_j_amc_2021_126226 crossref_primary_10_1109_ACCESS_2021_3089374 crossref_primary_10_1109_TSMC_2019_2946189 crossref_primary_10_1049_cth2_12409 crossref_primary_10_1002_oca_2948 crossref_primary_10_1109_TCYB_2021_3106793 crossref_primary_10_1016_j_neucom_2022_02_015 crossref_primary_10_1007_s40314_022_01879_2 crossref_primary_10_1016_j_neucom_2021_08_066 crossref_primary_10_1137_18M1213142 crossref_primary_10_31209_2018_100000021 crossref_primary_10_1016_j_neunet_2020_08_006 crossref_primary_10_1109_TNSE_2023_3321035 crossref_primary_10_1016_j_amc_2019_05_040 crossref_primary_10_1016_j_segan_2022_100920 crossref_primary_10_1016_j_jfranklin_2017_02_029 crossref_primary_10_1109_TCYB_2018_2890425 crossref_primary_10_3390_math9243321 crossref_primary_10_1016_j_neucom_2017_01_056 crossref_primary_10_1016_j_ins_2018_06_012 crossref_primary_10_1016_j_amc_2017_05_003 crossref_primary_10_1016_j_jfranklin_2017_07_040 crossref_primary_10_1002_mma_9008 crossref_primary_10_1016_j_amc_2017_11_022 crossref_primary_10_1109_TCYB_2018_2813979 crossref_primary_10_1109_TSMC_2024_3475483 crossref_primary_10_1016_j_neucom_2018_11_022 crossref_primary_10_1109_TNNLS_2017_2760979 crossref_primary_10_1109_TNNLS_2021_3095183 crossref_primary_10_1016_j_neucom_2020_07_021 crossref_primary_10_1016_j_jfranklin_2020_09_039 crossref_primary_10_1109_TCYB_2024_3410710 crossref_primary_10_1109_TFUZZ_2020_3009735 crossref_primary_10_1016_j_neunet_2018_05_006 crossref_primary_10_1016_j_cnsns_2017_05_021 crossref_primary_10_1016_j_neucom_2021_05_044 crossref_primary_10_1155_2017_4157256 crossref_primary_10_1016_j_amc_2017_07_019 crossref_primary_10_1109_TCYB_2018_2831782 crossref_primary_10_1109_TNNLS_2017_2750708 crossref_primary_10_1109_TNNLS_2023_3289208 crossref_primary_10_1016_j_jfranklin_2020_08_017 crossref_primary_10_12677_CSA_2022_1212279 crossref_primary_10_1016_j_ins_2017_08_072 crossref_primary_10_1007_s00034_020_01509_4 crossref_primary_10_1109_TNNLS_2017_2661862 crossref_primary_10_1109_TNNLS_2016_2618899 crossref_primary_10_1109_TNNLS_2020_3016120 crossref_primary_10_1016_j_neucom_2021_09_028 crossref_primary_10_1109_TNNLS_2018_2836339 crossref_primary_10_1016_j_jfranklin_2024_01_007 crossref_primary_10_1016_j_neunet_2017_01_008 crossref_primary_10_1049_cth2_12147 crossref_primary_10_1016_j_neucom_2016_09_102 crossref_primary_10_1007_s11063_021_10697_2 |
Cites_doi | 10.1016/j.neucom.2012.09.012 10.1109/TNN.2008.2002436 10.1016/j.physleta.2009.12.020 10.1109/TPWRS.2012.2228281 10.1109/TNN.2010.2056383 10.1109/TNNLS.2014.2387434 10.1016/j.neucom.2012.09.004 10.1109/TNN.2011.2132762 10.1016/j.neucom.2014.01.024 10.1109/TNN.2011.2114366 10.1109/TPWRS.2013.2265104 10.1016/j.neunet.2014.02.012 10.1007/s11071-013-1122-2 10.1016/j.jfranklin.2014.05.014 10.1109/TPWRS.2011.2172821 10.1109/TCYB.2013.2272399 10.1016/j.automatica.2009.11.017 10.1049/iet-cta.2012.0814 10.1016/j.physleta.2008.11.048 10.1016/j.amc.2014.01.129 10.1109/TNN.2009.2014160 10.1109/TAC.2006.887907 10.1109/TNNLS.2014.2347290 10.1016/j.amc.2014.04.089 10.1016/j.jfranklin.2014.12.023 10.1109/TNN.2011.2111383 10.1109/TCSII.2009.2024244 10.1016/j.amc.2013.12.063 10.1016/j.automatica.2010.10.014 10.1016/j.neucom.2014.07.024 10.1016/j.neucom.2013.07.053 10.1016/j.amc.2011.05.029 10.1016/j.neucom.2013.04.031 10.1016/j.isatra.2014.05.010 10.1109/TNN.2009.2036610 10.1109/TNN.2010.2054107 10.1109/TNNLS.2013.2284968 10.1109/TSMCB.2008.915652 10.1109/TNNLS.2014.2317880 10.1109/TNN.2011.2169425 10.1109/TNN.2008.2001265 10.1109/72.822526 10.1109/TNN.2010.2048434 10.1016/j.automatica.2014.04.019 10.1088/1674-1056/20/5/050505 10.1109/TNN.2010.2051455 10.1109/TNNLS.2011.2178563 10.1109/TPWRS.2010.2093031 10.1109/TNN.2007.903147 10.1016/j.cnsns.2014.02.024 10.1109/TPWRS.2013.2280216 10.1109/TNN.2011.2147331 10.1109/TNN.2009.2034742 10.1109/TCSII.2006.876385 10.1016/j.neucom.2013.09.019 10.1109/TNN.2006.888373 10.1109/TNNLS.2013.2256796 10.1109/TCSII.2011.2172523 10.1109/TSMCB.2010.2040274 10.1109/TNNLS.2013.2285564 10.1007/978-1-4612-0039-0 10.1109/TNN.2009.2037893 10.1109/TSMCB.2009.2030506 10.1016/j.neucom.2012.07.005 10.1155/2014/859736 10.1016/j.automatica.2013.05.030 10.1016/j.isatra.2014.05.009 10.1109/TNN.2007.914162 10.1109/TNNLS.2012.2224883 10.1109/TNNLS.2012.2236571 10.1109/31.7601 10.1016/j.automatica.2009.11.002 10.1109/TCYB.2013.2240451 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2015.2449898 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic Technology Research Database PubMed Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 1501 |
ExternalDocumentID | 4094630721 26208366 10_1109_TNNLS_2015_2449898 7161350 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51428702; 61125301; 61210011 funderid: 10.13039/501100001809 – fundername: Hubei Provincial Natural Science Foundation of China grantid: 2015CFA010 funderid: 10.13039/501100003819 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c483t-1c349842c20d1580708a248a9b3bd6f1bc77ccfdd89f1d165dc527e4564d9c923 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 03:10:17 EDT 2025 Fri Jul 11 10:50:58 EDT 2025 Sun Aug 24 03:04:37 EDT 2025 Sun Jun 29 13:47:54 EDT 2025 Mon Jul 21 05:59:42 EDT 2025 Tue Jul 01 00:27:20 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Tue Aug 26 16:42:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Keywords | delay-dependent stability conservativeness Lyapunov–Krasovskii functional (LKF) Calculation complexity delayed neural networks (DNNs) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-1c349842c20d1580708a248a9b3bd6f1bc77ccfdd89f1d165dc527e4564d9c923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26208366 |
PQID | 1798038758 |
PQPubID | 85436 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2015_2449898 ieee_primary_7161350 pubmed_primary_26208366 proquest_miscellaneous_1798997961 crossref_primary_10_1109_TNNLS_2015_2449898 proquest_miscellaneous_1825521236 proquest_miscellaneous_1808613804 proquest_journals_1798038758 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-July 2016-7-00 2016-07-00 20160701 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-July |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ge (ref37) 2014; 25 ref19 ref18 li (ref21) 2010; 21 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 li (ref27) 2011; 22 ref9 ref3 he (ref4) 2006; 53 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 zhu (ref26) 2008; 19 ref2 ref1 ref39 ref38 wu (ref12) 2010; 21 wu (ref7) 2008; 38 ref71 ref70 ref73 zuo (ref24) 2010; 21 ref72 ref67 ref23 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 li (ref28) 2013; 24 ref29 liu (ref68) 2010; 21 ref60 ref62 ref61 |
References_xml | – ident: ref34 doi: 10.1016/j.neucom.2012.09.012 – volume: 19 start-page: 1783 year: 2008 ident: ref26 article-title: New delay-dependent stability results for neural networks with time-varying delay publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2002436 – ident: ref22 doi: 10.1016/j.physleta.2009.12.020 – ident: ref56 doi: 10.1109/TPWRS.2012.2228281 – volume: 21 start-page: 1396 year: 2010 ident: ref12 article-title: Exponential stability analysis for delayed neural networks with switching parameters: Average dwell time approach publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2056383 – ident: ref72 doi: 10.1109/TNNLS.2014.2387434 – ident: ref35 doi: 10.1016/j.neucom.2012.09.004 – ident: ref3 doi: 10.1109/TNN.2011.2132762 – ident: ref43 doi: 10.1016/j.neucom.2014.01.024 – ident: ref30 doi: 10.1109/TNN.2011.2114366 – ident: ref57 doi: 10.1109/TPWRS.2013.2265104 – ident: ref41 doi: 10.1016/j.neunet.2014.02.012 – ident: ref42 doi: 10.1007/s11071-013-1122-2 – ident: ref54 doi: 10.1016/j.jfranklin.2014.05.014 – ident: ref58 doi: 10.1109/TPWRS.2011.2172821 – ident: ref70 doi: 10.1109/TCYB.2013.2272399 – ident: ref52 doi: 10.1016/j.automatica.2009.11.017 – ident: ref53 doi: 10.1049/iet-cta.2012.0814 – ident: ref11 doi: 10.1016/j.physleta.2008.11.048 – ident: ref49 doi: 10.1016/j.amc.2014.01.129 – ident: ref15 doi: 10.1109/TNN.2009.2014160 – ident: ref62 doi: 10.1109/TAC.2006.887907 – ident: ref71 doi: 10.1109/TNNLS.2014.2347290 – ident: ref45 doi: 10.1016/j.amc.2014.04.089 – ident: ref73 doi: 10.1016/j.jfranklin.2014.12.023 – ident: ref23 doi: 10.1109/TNN.2011.2111383 – ident: ref9 doi: 10.1109/TCSII.2009.2024244 – ident: ref39 doi: 10.1016/j.amc.2013.12.063 – ident: ref61 doi: 10.1016/j.automatica.2010.10.014 – ident: ref46 doi: 10.1016/j.neucom.2014.07.024 – ident: ref50 doi: 10.1016/j.neucom.2013.07.053 – ident: ref20 doi: 10.1016/j.amc.2011.05.029 – ident: ref32 doi: 10.1016/j.neucom.2013.04.031 – ident: ref38 doi: 10.1016/j.isatra.2014.05.010 – ident: ref14 doi: 10.1109/TNN.2009.2036610 – volume: 21 start-page: 1710 year: 2010 ident: ref68 article-title: Novel stability analysis for recurrent neural networks with multiple delays via line integral-type L-K functional publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNN.2010.2054107 – ident: ref47 doi: 10.1109/TNNLS.2013.2284968 – volume: 38 start-page: 1152 year: 2008 ident: ref7 article-title: Exponential stability analysis for neural networks with time-varying delay publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.915652 – ident: ref65 doi: 10.1109/TNNLS.2014.2317880 – volume: 22 start-page: 2138 year: 2011 ident: ref27 article-title: Delay-slope-dependent stability results of recurrent neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2169425 – ident: ref8 doi: 10.1109/TNN.2008.2001265 – ident: ref2 doi: 10.1109/72.822526 – ident: ref19 doi: 10.1109/TNN.2010.2048434 – ident: ref60 doi: 10.1016/j.automatica.2014.04.019 – ident: ref66 doi: 10.1088/1674-1056/20/5/050505 – volume: 21 start-page: 1365 year: 2010 ident: ref21 article-title: Delay-derivative-dependent stability for delayed neural networks with unbound distributed delay publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2051455 – ident: ref13 doi: 10.1109/TNNLS.2011.2178563 – ident: ref59 doi: 10.1109/TPWRS.2010.2093031 – ident: ref6 doi: 10.1109/TNN.2007.903147 – ident: ref44 doi: 10.1016/j.cnsns.2014.02.024 – ident: ref55 doi: 10.1109/TPWRS.2013.2280216 – ident: ref25 doi: 10.1109/TNN.2011.2147331 – ident: ref16 doi: 10.1109/TNN.2009.2034742 – volume: 53 start-page: 553 year: 2006 ident: ref4 article-title: Delay-dependent exponential stability of delayed neural networks with time-varying delay publication-title: IEEE Trans Circuits Syst II Exp Briefs doi: 10.1109/TCSII.2006.876385 – ident: ref48 doi: 10.1016/j.neucom.2013.09.019 – ident: ref5 doi: 10.1109/TNN.2006.888373 – volume: 24 start-page: 1459 year: 2013 ident: ref28 article-title: Combined convex technique on delay-dependent stability for delayed neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2256796 – ident: ref18 doi: 10.1109/TCSII.2011.2172523 – ident: ref40 doi: 10.1109/TSMCB.2010.2040274 – volume: 25 start-page: 1378 year: 2014 ident: ref37 article-title: New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach publication-title: IEEE Trans Neural Netw doi: 10.1109/TNNLS.2013.2285564 – ident: ref63 doi: 10.1007/978-1-4612-0039-0 – volume: 21 start-page: 339 year: 2010 ident: ref24 article-title: A new method for stability analysis of recurrent neural networks with interval time-varying delay publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2037893 – ident: ref69 doi: 10.1109/TSMCB.2009.2030506 – ident: ref29 doi: 10.1016/j.neucom.2012.07.005 – ident: ref67 doi: 10.1155/2014/859736 – ident: ref51 doi: 10.1016/j.automatica.2013.05.030 – ident: ref10 doi: 10.1016/j.isatra.2014.05.009 – ident: ref17 doi: 10.1109/TNN.2007.914162 – ident: ref33 doi: 10.1109/TNNLS.2012.2224883 – ident: ref31 doi: 10.1109/TNNLS.2012.2236571 – ident: ref1 doi: 10.1109/31.7601 – ident: ref64 doi: 10.1016/j.automatica.2009.11.002 – ident: ref36 doi: 10.1109/TCYB.2013.2240451 |
SSID | ssj0000605649 |
Score | 2.5832148 |
Snippet | This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1486 |
SubjectTerms | Biological neural networks Calculation complexity Complexity Complexity theory conservativeness Criteria Delay delay-dependent stability delayed neural networks (DNNs) Delays Derivatives Guidelines Lyapunov-Krasovskii functional (LKF) Mathematical analysis Neural networks Numerical stability Stability Stability criteria Symmetric matrices |
Title | Stability Analysis for Delayed Neural Networks Considering Both Conservativeness and Complexity |
URI | https://ieeexplore.ieee.org/document/7161350 https://www.ncbi.nlm.nih.gov/pubmed/26208366 https://www.proquest.com/docview/1798038758 https://www.proquest.com/docview/1798997961 https://www.proquest.com/docview/1808613804 https://www.proquest.com/docview/1825521236 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYop16AQmmX0sqVemuzxEns2Mc-QKgqeylIe4vssXMpylYle1h-PTN2EqmIrnqLknFiZ_z4xp75hrEP1tZBe5lnUjsi1RYmc2iFZdpSwAiIFnKKRr5aqMub6vtSLnfYpykWJoQQnc_CnC7jWb5fwZq2ys4Q24uSDPRnaLilWK1pPyVHXK4i2i2EKrKirJdjjExuzq4Xix8_yZFLznE9o5yJxAKsCuJmVn8tSTHHyr_hZlx2LvbZ1Vjh5G3ya77u3RzuH3E5_m-LDtjegD_559RhXrCd0B2y_TG3Ax-G-hFrEIVGv9kNH3lLOOJb_i3c2k3wnEg98D2L5EV-x8fEn7gS8i-o_Xgjbfim6ZTbznP6DjFw9puX7Obi_PrrZTYkY8ig0mWfCSjxv1UFFLkXUuNMoW1RaWtc6bxqhYO6Bmi916YVXijpQRZ1ILYabwBh5DHb7VZdeM24MyW0bSgtSEdB1baCKgcXsFBwtXczJkZ9NDAwlVPCjNsmWiy5aaI6G1JnM6hzxj5OZX4nno6t0keki0lyUMOMnY5qb4ahfNcQoxud8Uss9X56jIOQTlZsF1brJGNMbZTYIqPRehSlzqttMmjhEZhQM_YqdbupjmNvPXm67m_Yc2yhSp7Ep2y3_7MObxEv9e5dHCgPKnIPiw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZWywEuLLA8CgsYiRukGyexYx95rQq0udCVerP8ymVXKWLTQ_n1zNhJJBBU3KJknDgZO_ONPfMNIa-NqYP0PM-4tEiqzVRmwQvLpMGEEcdal2M28qoRi8vqy4ZvjsjbKRcmhBCDz8IcD-Nevt-6HS6VnQO2ZyU66LfA7nOWsrWmFZUckLmIeLdgosiKst6MWTK5Ol83zfIbhnLxOVg0rJqIPMCiQHZm8ZtRilVW_g04o-G5OCGrscsp3uRqvuvt3P38g83xf9_pHrk7IFD6Lg2Z--QodA_IyVjdgQ6T_ZRowKExcnZPR-YSCgiXfgzXZh88RVoPuE-T4shv6Fj6E2whfQ_6jyfSkm_6oVLTeYrPQQ7Ofv-QXF58Wn9YZEM5hsxVsuwz5kr4blXhitwzLuFfIU1RSaNsab1omXV17VzrvVQt80xw73hRB-Sr8coBkHxEjrttF54QalXp2jaUxnGLadWmclXubIBGwdbezggb9aHdwFWOJTOudfRZcqWjOjWqUw_qnJE3U5vvianjoPQp6mKSHNQwI2ej2vUwmW80crrhLj-HVq-myzANcW_FdGG7SzJK1UqwAzIS_EdWyrw6JAM-HsIJMSOP07Cb-jiO1qd_7_tLcnuxXi318nPz9Rm5A28rUlzxGTnuf-zCc0BPvX0RJ80vcgMS1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Analysis+for+Delayed+Neural+Networks+Considering+Both+Conservativeness+and+Complexity&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Chuan-Ke+Zhang&rft.au=Yong+He&rft.au=Lin+Jiang&rft.au=Min+Wu&rft.date=2016-07-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=27&rft.issue=7&rft.spage=1486&rft.epage=1501&rft_id=info:doi/10.1109%2FTNNLS.2015.2449898&rft_id=info%3Apmid%2F26208366&rft.externalDocID=7161350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |