Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics

Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 33; pp. e2203379 - n/a
Main Authors He, Chengliang, Pan, Youwen, Lu, Guanghao, Wu, Baohua, Xia, Xinxin, Ma, Chang‐Qi, Chen, Zeng, Zhu, Haiming, Lu, Xinhui, Ma, Wei, Zuo, Lijian, Chen, Hongzheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs. Sequential casting (SC) processing is practical and universal for device performance improvement in both fullerene‐ and nonfullerene‐based systems of organic solar cells (OSCs). A swelling–intercalation phase‐separation model is proposed to interpret the morphology evolution during SC processing. Notably, a champion efficiency of 18.86% (certified as 18.44%) is reached from SC processing, representing the highest value among binary OSCs.
AbstractList Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.
Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC 71 BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs.
Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs.
Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. Finally, this work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.
Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs. Sequential casting (SC) processing is practical and universal for device performance improvement in both fullerene‐ and nonfullerene‐based systems of organic solar cells (OSCs). A swelling–intercalation phase‐separation model is proposed to interpret the morphology evolution during SC processing. Notably, a champion efficiency of 18.86% (certified as 18.44%) is reached from SC processing, representing the highest value among binary OSCs.
Author Ma, Wei
Pan, Youwen
He, Chengliang
Wu, Baohua
Lu, Guanghao
Lu, Xinhui
Zuo, Lijian
Chen, Zeng
Chen, Hongzheng
Ma, Chang‐Qi
Zhu, Haiming
Xia, Xinxin
Author_xml – sequence: 1
  givenname: Chengliang
  surname: He
  fullname: He, Chengliang
  organization: Zhejiang University
– sequence: 2
  givenname: Youwen
  surname: Pan
  fullname: Pan, Youwen
  organization: Zhejiang University
– sequence: 3
  givenname: Guanghao
  surname: Lu
  fullname: Lu, Guanghao
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Baohua
  surname: Wu
  fullname: Wu, Baohua
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Xinxin
  surname: Xia
  fullname: Xia, Xinxin
  organization: New Territories
– sequence: 6
  givenname: Chang‐Qi
  surname: Ma
  fullname: Ma, Chang‐Qi
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Zeng
  surname: Chen
  fullname: Chen, Zeng
  organization: Zhejiang University
– sequence: 8
  givenname: Haiming
  surname: Zhu
  fullname: Zhu, Haiming
  organization: Zhejiang University
– sequence: 9
  givenname: Xinhui
  surname: Lu
  fullname: Lu, Xinhui
  organization: New Territories
– sequence: 10
  givenname: Wei
  surname: Ma
  fullname: Ma, Wei
  organization: Xi'an Jiaotong University
– sequence: 11
  givenname: Lijian
  surname: Zuo
  fullname: Zuo, Lijian
  email: zjuzlj@zju.edu.cn
  organization: Zhejiang University
– sequence: 12
  givenname: Hongzheng
  orcidid: 0000-0002-5922-9550
  surname: Chen
  fullname: Chen, Hongzheng
  email: hzchen@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.osti.gov/servlets/purl/1981358$$D View this record in Osti.gov
BookMark eNqFkc9LmzEch8NwsNrt6jlsl13emt9vcuw6p4JDwc1ryJsmbeRt4pJ0o_-9KRUFYXhKDs_z_fU5BkcxRQfACUYzjBA5NcuNmRFECKK0V-_ABHOCO4YUPwITpCjvlGDyAzgu5R4hpAQSE7C8c7mYGkYHb92frYs1mBEuTKkhruBNTtaVsv_6lOFFWK3HHTzzPtjQUGjiEt5WMzT7W4gm7-B1XpkYLLxZp5r-prGaYMtH8N6bsbhPT-8U_P5x9mtx0V1dn18u5ledZZKqTiy9sMKJXnlFDO17yxEZJOvlIIYBUTYoiRn2nuGeDb3g3Fk5GMq5Z5JQQ6fg86FuauPrYkN1dm1TjM5WjZtMuWzQ1wP0kFNbuFS9CcW6cTTRpW3RREhCBEZENfTLK_Q-bXNsK2jStysLgVrfKZgdKJtTKdl5_ZDDph1DY6T3yeh9Mvo5mSawV0KbtGWQYs0mjP_X1EH719LavdFEz7__nL-4jwZepD8
CitedBy_id crossref_primary_10_1002_aenm_202300168
crossref_primary_10_1002_aenm_202403162
crossref_primary_10_1002_adfm_202214956
crossref_primary_10_1002_solr_202300805
crossref_primary_10_1021_acsami_4c00411
crossref_primary_10_1021_acsaem_2c02791
crossref_primary_10_1021_acsami_2c22461
crossref_primary_10_1021_acsami_3c01779
crossref_primary_10_1016_j_synthmet_2024_117586
crossref_primary_10_1002_solr_202201090
crossref_primary_10_1039_D3MA00754E
crossref_primary_10_1002_aenm_202401816
crossref_primary_10_1002_adom_202400005
crossref_primary_10_1038_s41467_023_42071_2
crossref_primary_10_1021_acsaem_4c01690
crossref_primary_10_1002_adfm_202209152
crossref_primary_10_1007_s11771_024_5839_5
crossref_primary_10_1002_adma_202208750
crossref_primary_10_1038_s41560_023_01436_z
crossref_primary_10_1002_cptc_202300348
crossref_primary_10_1002_adfm_202416381
crossref_primary_10_1002_adma_202208279
crossref_primary_10_1002_adma_202301906
crossref_primary_10_1002_adma_202208997
crossref_primary_10_1039_D2TA09500A
crossref_primary_10_1021_acsami_5c01195
crossref_primary_10_1039_D2TA09936E
crossref_primary_10_1002_aenm_202300904
crossref_primary_10_1002_adom_202302285
crossref_primary_10_1002_adom_202402613
crossref_primary_10_1039_D3EE01317K
crossref_primary_10_1016_j_nanoen_2023_109023
crossref_primary_10_1016_j_nanoen_2024_109542
crossref_primary_10_1016_j_wees_2024_04_001
crossref_primary_10_1002_adfm_202301108
crossref_primary_10_1002_smll_202205244
crossref_primary_10_3390_en16114494
crossref_primary_10_1002_adma_202209350
crossref_primary_10_1016_j_cej_2023_144711
crossref_primary_10_1002_adma_202419923
crossref_primary_10_1021_acsaem_3c01897
crossref_primary_10_1039_D2TA04784E
crossref_primary_10_1002_aenm_202400354
crossref_primary_10_1002_aenm_202405889
crossref_primary_10_1002_solr_202300225
crossref_primary_10_1002_adom_202302947
crossref_primary_10_1002_adma_202308909
crossref_primary_10_1002_adfm_202213324
crossref_primary_10_1002_cjoc_202200770
crossref_primary_10_1038_s41467_024_51359_w
crossref_primary_10_1002_adom_202302548
crossref_primary_10_1007_s40820_023_01057_x
crossref_primary_10_1021_acsenergylett_3c01681
crossref_primary_10_1002_adma_202313105
crossref_primary_10_1002_anie_202402831
crossref_primary_10_1007_s11708_023_0871_y
crossref_primary_10_1039_D4EE03315A
crossref_primary_10_1002_smtd_202301803
crossref_primary_10_1016_j_saa_2024_125058
crossref_primary_10_1002_agt2_567
crossref_primary_10_1021_acsami_5c00117
crossref_primary_10_1002_idm2_12129
crossref_primary_10_1002_aenm_202401191
crossref_primary_10_1002_aenm_202401355
crossref_primary_10_1002_ange_202402831
crossref_primary_10_1039_D4CP03492A
crossref_primary_10_1002_chem_202402928
crossref_primary_10_1016_j_cej_2023_142327
crossref_primary_10_1002_adfm_202422867
crossref_primary_10_1002_solr_202300599
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1039_D3EE00630A
crossref_primary_10_1021_acsenergylett_4c03046
crossref_primary_10_1039_D2TC04142A
crossref_primary_10_1002_adfm_202311216
crossref_primary_10_1002_aenm_202400214
crossref_primary_10_1002_aenm_202204154
crossref_primary_10_1039_D4TA01679C
crossref_primary_10_1021_acsmaterialslett_4c00848
Cites_doi 10.1038/s41565-021-01011-1
10.1038/ncomms7229
10.1002/adma.201800388
10.1016/j.scib.2020.01.001
10.1126/science.270.5243.1789
10.1021/nl401758g
10.3390/polym9090456
10.1002/adom.201900152
10.1038/s41566-018-0104-9
10.1002/adfm.200304399
10.1021/jacs.8b12126
10.1039/c3ee43541e
10.1002/adma.202001160
10.1038/s41563-022-01244-y
10.1016/j.joule.2019.12.004
10.1038/s41560-020-00732-2
10.1021/jp504560r
10.1038/nenergy.2015.27
10.1038/s41467-022-30225-7
10.1002/adma.201800343
10.1038/s41467-021-25148-8
10.1016/j.joule.2021.12.017
10.1002/adfm.202112511
10.1039/D1EE02977K
10.1039/D1TA09106A
10.1038/s41560-021-00820-x
10.1038/s41467-019-08386-9
10.1021/accountsmr.2c00052
10.1039/C9TA11613C
10.1002/aelm.201600359
10.1021/acsenergylett.0c00537
10.1038/nmat5063
10.1002/adma.201502110
10.1038/s41467-020-20791-z
10.1002/adma.201404317
10.1016/j.joule.2022.02.001
10.1039/D2EE00595F
10.1039/C9EE03710A
10.1038/s41467-021-24937-5
10.1002/adma.201705208
10.1002/adma.202007231
10.1002/aenm.201802832
10.1002/aenm.201402020
10.1002/adma.201808356
10.1021/acsami.2c04997
10.1002/solr.202200076
10.1039/D0EE03490H
10.1016/j.joule.2019.01.004
10.1002/aenm.202003408
10.1021/cr400353v
10.1038/s41467-020-16621-x
10.1021/acsami.0c00837
10.1039/D0TA06907H
10.1039/C8EE02560F
10.1002/adma.201802888
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
DOI 10.1002/adma.202203379
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1981358
10_1002_adma_202203379
ADMA202203379
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21734008; 52173185; 5212780017; 61721005
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705900
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c4839-6df6c6e679f92a377c502b8478b6bb034b98141ff4174b7655ec8ba355f4823a3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Oct 09 04:06:34 EDT 2023
Fri Jul 11 12:37:25 EDT 2025
Sun Jul 13 05:14:21 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Tue Jul 01 02:33:19 EDT 2025
Wed Jan 22 16:23:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4839-6df6c6e679f92a377c502b8478b6bb034b98141ff4174b7655ec8ba355f4823a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-5922-9550
0000000259229550
OpenAccessLink https://www.osti.gov/servlets/purl/1981358
PQID 2703366082
PQPubID 2045203
PageCount 10
ParticipantIDs osti_scitechconnect_1981358
proquest_miscellaneous_2682261029
proquest_journals_2703366082
crossref_primary_10_1002_adma_202203379
crossref_citationtrail_10_1002_adma_202203379
wiley_primary_10_1002_adma_202203379_ADMA202203379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2014; 118
2019; 7
2021; 6
2019; 9
2015; 6
2019; 3
2015; 5
2019; 31
2019; 10
2019; 12
2020; 13
2020; 12
2022; 21
2020; 11
2020; 32
2019; 141
2014; 114
2017; 9
1995; 270
2020; 8
2021; 14
2018; 17
2020; 5
2020; 4
2015; 27
2016; 1
2021; 12
2016; 2
2021; 11
2021; 33
2022; 3
2013; 13
2022; 6
2004; 14
2022; 13
2022; 14
2022; 15
2018; 30
2022; 32
2022; 10
2020; 65
2018; 12
2014; 7
2022; 17
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2022
  publication-title: Sol. RRL
– volume: 12
  start-page: 384
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 2314
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 401
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 38
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 4627
  year: 2021
  publication-title: Nat. Commun.
– volume: 17
  start-page: 53
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 468
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1554
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1103
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 656
  year: 2022
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 6229
  year: 2015
  publication-title: Nat. Commun.
– volume: 12
  start-page: 131
  year: 2018
  publication-title: Nat. Photonics
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 114
  start-page: 7006
  year: 2014
  publication-title: Chem. Rev.
– volume: 12
  start-page: 4815
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 570
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 662
  year: 2022
  publication-title: Joule
– volume: 6
  start-page: 605
  year: 2021
  publication-title: Nat. Energy
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 13
  start-page: 2598
  year: 2022
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 27
  start-page: 1170
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 947
  year: 2020
  publication-title: Nat. Energy
– volume: 10
  start-page: 1948
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2855
  year: 2020
  publication-title: Nat. Commun.
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 13
  start-page: 635
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 270
  start-page: 1789
  year: 1995
  publication-title: Science
– volume: 6
  start-page: 171
  year: 2022
  publication-title: Joule
– volume: 4
  start-page: 407
  year: 2020
  publication-title: Joule
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 2537
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 644
  year: 2022
  publication-title: Acc. Mater. Res.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 4655
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 17
  start-page: 119
  year: 2018
  publication-title: Nat. Mater.
– volume: 9
  start-page: 456
  year: 2017
  publication-title: Polymers
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 855
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 141
  start-page: 3073
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 3796
  year: 2013
  publication-title: Nano Lett.
– ident: e_1_2_7_9_1
  doi: 10.1038/s41565-021-01011-1
– ident: e_1_2_7_28_1
  doi: 10.1038/ncomms7229
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201800388
– ident: e_1_2_7_47_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_7_7_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_7_43_1
  doi: 10.1021/nl401758g
– ident: e_1_2_7_54_1
  doi: 10.3390/polym9090456
– ident: e_1_2_7_50_1
  doi: 10.1002/adom.201900152
– ident: e_1_2_7_3_1
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_7_52_1
  doi: 10.1002/adfm.200304399
– ident: e_1_2_7_20_1
  doi: 10.1021/jacs.8b12126
– ident: e_1_2_7_30_1
  doi: 10.1039/c3ee43541e
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202001160
– ident: e_1_2_7_26_1
  doi: 10.1038/s41563-022-01244-y
– ident: e_1_2_7_36_1
  doi: 10.1016/j.joule.2019.12.004
– ident: e_1_2_7_53_1
  doi: 10.1038/s41560-020-00732-2
– ident: e_1_2_7_31_1
  doi: 10.1021/jp504560r
– ident: e_1_2_7_45_1
  doi: 10.1038/nenergy.2015.27
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-022-30225-7
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201800343
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-021-25148-8
– ident: e_1_2_7_27_1
  doi: 10.1016/j.joule.2021.12.017
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.202112511
– ident: e_1_2_7_21_1
  doi: 10.1039/D1EE02977K
– ident: e_1_2_7_41_1
  doi: 10.1039/D1TA09106A
– ident: e_1_2_7_40_1
  doi: 10.1038/s41560-021-00820-x
– ident: e_1_2_7_12_1
  doi: 10.1038/s41467-019-08386-9
– ident: e_1_2_7_6_1
  doi: 10.1021/accountsmr.2c00052
– ident: e_1_2_7_51_1
  doi: 10.1039/C9TA11613C
– ident: e_1_2_7_49_1
  doi: 10.1002/aelm.201600359
– ident: e_1_2_7_5_1
  doi: 10.1021/acsenergylett.0c00537
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat5063
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201502110
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-020-20791-z
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_7_24_1
  doi: 10.1016/j.joule.2022.02.001
– ident: e_1_2_7_16_1
  doi: 10.1039/D2EE00595F
– ident: e_1_2_7_19_1
  doi: 10.1039/C9EE03710A
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-021-24937-5
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201705208
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202007231
– ident: e_1_2_7_55_1
  doi: 10.1002/aenm.201802832
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201402020
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201808356
– ident: e_1_2_7_42_1
  doi: 10.1021/acsami.2c04997
– ident: e_1_2_7_32_1
  doi: 10.1002/solr.202200076
– ident: e_1_2_7_48_1
  doi: 10.1039/D0EE03490H
– ident: e_1_2_7_13_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.202003408
– ident: e_1_2_7_8_1
  doi: 10.1021/cr400353v
– ident: e_1_2_7_33_1
  doi: 10.1038/s41467-020-16621-x
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.0c00837
– ident: e_1_2_7_22_1
  doi: 10.1039/D0TA06907H
– ident: e_1_2_7_37_1
  doi: 10.1039/C8EE02560F
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201802888
SSID ssj0009606
Score 2.6329997
Snippet Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2203379
SubjectTerms binary devices
bulk-heterojunctions
Charge transport
Energy conversion efficiency
Heterojunctions
MATERIALS SCIENCE
Morphology
organic solar cells
Phase separation
Photovoltaic cells
sequential casting
Solar cells
SOLAR ENERGY
Vertical distribution
Vertical separation
Title Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202203379
https://www.proquest.com/docview/2703366082
https://www.proquest.com/docview/2682261029
https://www.osti.gov/servlets/purl/1981358
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA4yT_qgrhcc90IEwafstrm1fRzXXRZBEXVh30KuKA6tOJ2H3V_vOWmnO7Mggr6l9ISmOZd8Tc_5Qsjr0tdOh1Ayp4rAZAoVc65SzMqkQymjdCmzfX7UF5fy_ZW62qriH_ghpg039Iwcr9HBrVud3JKG2pB5gzgvhKiwgg8TthAVfb7lj0J4nsn2hGKNlvWGtbHgJ7vdd1alWQfetYM4t3FrXnjOHxG7GfKQb_LjeN27Y39zh83xf97pMXk4olK6GMxoj9yL7RPyYIur8CkJuLMGalxG-iWnX0NoWNJTu8K8aTrWG2ATUDDF7JHlNT3L_BQgSm0bKOBaB73f5gpgOhSBevrpW9d3ECN7-92vnpHL87OvpxdsPKKBeQnQiumQtNdRV01quBVV5VXBHax4YAHOFUK6pi5lmZKELx9XaaUiGIcFkJNkzYUVz8ms7dr4gtCAR4wnrWKsrCx8UzuhXAFwApZP66WfE7ZRkfEjfzkeo7E0A_MyNzh7Zpq9OXkzyf8cmDv-KLmPGjeAOZA412OGke9NCUMXqp6Tg40hmNG_V4ZDoBRaA36ak1fTbfBM_N1i29itQUYD-AJ0yuEBPGv9L-Mwi3cfFtPVy3_ptE_uY3vIUDwgs_7XOh4CaurdUfaM30ZGDgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZgeQAeuCuWHhgJiae0ia8kj0sPLdBWCFqJN8tXBGKVoG72ofx6ZpyjXaQKqbzlGCuOx-P54sx8Q8jbzBVWeZ8lVqY-EZXPE2tzmRhRKZ-JIGwV2T5P1fxcfPwmh2hCzIXp-CHGDTe0jLheo4HjhvTeFWuo8ZE4iLGU87y8S-5hWW-kzz_4csUghQA90u1xmZRKFANvY8r21tuv-aVJA_a1hjmvI9foeo4eEzt0uos4-bm7au2u-_0Xn-N_vdUT8qgHpnTWzaSn5E6on5GH1-gKnxOPm2ugyUWgX2MENqwOC7pvlhg6TfuUAzwEIEwxgGRxSQ8jRQWIUlN7CtDWQuv3MQmYdnmgjn7-3rQNLJOt-eGWL8j50eHZ_jzpqzQkTgC6SpSvlFNB5WVVMsPz3MmUWXB6MAmsTbmwZZGJrKoEfPzYXEkZYH4YwDmVKBg3fINM6qYOLwn1WGW8UjKE3IjUlYXl0qaAKMCDGifclCSDjrTrKcyxksZCd-TLTOPo6XH0puTdKP-rI--4UXITVa4BdiB3rsMgI9fqDLrOZTElW8NM0L2JLzWDtZIrBRBqSt6Mt8E48Y-LqUOzAhkF-AsAKoMHsKj2f_RDzw5OZuPZq9s0ek3uz89OjvXxh9NPm-QBXu8CFrfIpL1YhW0AUa3diWbyBymhEiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZgkBAc2CumLWAkJE5uE29JjkOno7JVFVCpN8urWjFKKiZzKL-eZyeTziBVSOWW5Vlx_BZ_cd77jNC73JZGOpcTIzJHeHAFMaYQRPMgXc49NyGxfR7Lo1P-6UycrVXxd_wQw4Jb9IwUr6ODX7qwf00aql3iDaI0Y6yo7qJ7XGZV3Lxh-u2aQCri88S2xwSpJC9XtI0Z3d9svzEtjRpwrw3IuQ5c08wze4z0qs9dwsnPvWVr9uzvv-gc_-elnqBHPSzFk86OnqI7vn6GHq6RFT5HLi6tgR7nHn9P-dcQG-b4QC9i4jTuCw7iIcBgHNNH5lf4MBFUgCjWtcMAbA20_pBKgHFXBWrxyXnTNhAkW31hFy_Q6ezwx8ER6fdoIJYDtiLSBWmll0UVKqpZUViRUQNTHpiAMRnjpipznofA4dPHFFIID9ahAeUEXlKm2RYa1U3tXyLs4h7jQQrvC80zW5WGCZMBnoD5U1tux4isVKRsT2Ae99GYq456mao4emoYvTF6P8hfdtQdN0ruRI0rAB2ROdfGFCPbqhy6zkQ5RrsrQ1C9gy8UhUjJpAQANUZvh9vgmvF_i659swQZCegL4CmFB9Ck9X_0Q02mXyfD2fZtGr1B90-mM_Xl4_HnHfQgXu6yFXfRqP219K8AQbXmdXKSP9wnEM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Versatile+Sequential+Casting+Processing+for+Highly+Efficient+and+Stable+Binary+Organic+Photovoltaics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Chengliang&rft.au=Pan%2C+Youwen&rft.au=Lu%2C+Guanghao&rft.au=Wu%2C+Baohua&rft.date=2022-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202203379&rft.externalDBID=10.1002%252Fadma.202203379&rft.externalDocID=ADMA202203379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon