Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics
Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 33; pp. e2203379 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs.
Sequential casting (SC) processing is practical and universal for device performance improvement in both fullerene‐ and nonfullerene‐based systems of organic solar cells (OSCs). A swelling–intercalation phase‐separation model is proposed to interpret the morphology evolution during SC processing. Notably, a champion efficiency of 18.86% (certified as 18.44%) is reached from SC processing, representing the highest value among binary OSCs. |
---|---|
AbstractList | Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs. Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC 71 BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs. Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs. Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. Finally, this work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs. Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely‐used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT‐4F and PM6:L8‐BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8‐BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling–intercalation phase‐separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A‐ratio‐dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ‐based OSCs. Sequential casting (SC) processing is practical and universal for device performance improvement in both fullerene‐ and nonfullerene‐based systems of organic solar cells (OSCs). A swelling–intercalation phase‐separation model is proposed to interpret the morphology evolution during SC processing. Notably, a champion efficiency of 18.86% (certified as 18.44%) is reached from SC processing, representing the highest value among binary OSCs. |
Author | Ma, Wei Pan, Youwen He, Chengliang Wu, Baohua Lu, Guanghao Lu, Xinhui Zuo, Lijian Chen, Zeng Chen, Hongzheng Ma, Chang‐Qi Zhu, Haiming Xia, Xinxin |
Author_xml | – sequence: 1 givenname: Chengliang surname: He fullname: He, Chengliang organization: Zhejiang University – sequence: 2 givenname: Youwen surname: Pan fullname: Pan, Youwen organization: Zhejiang University – sequence: 3 givenname: Guanghao surname: Lu fullname: Lu, Guanghao organization: Xi'an Jiaotong University – sequence: 4 givenname: Baohua surname: Wu fullname: Wu, Baohua organization: Xi'an Jiaotong University – sequence: 5 givenname: Xinxin surname: Xia fullname: Xia, Xinxin organization: New Territories – sequence: 6 givenname: Chang‐Qi surname: Ma fullname: Ma, Chang‐Qi organization: Chinese Academy of Sciences – sequence: 7 givenname: Zeng surname: Chen fullname: Chen, Zeng organization: Zhejiang University – sequence: 8 givenname: Haiming surname: Zhu fullname: Zhu, Haiming organization: Zhejiang University – sequence: 9 givenname: Xinhui surname: Lu fullname: Lu, Xinhui organization: New Territories – sequence: 10 givenname: Wei surname: Ma fullname: Ma, Wei organization: Xi'an Jiaotong University – sequence: 11 givenname: Lijian surname: Zuo fullname: Zuo, Lijian email: zjuzlj@zju.edu.cn organization: Zhejiang University – sequence: 12 givenname: Hongzheng orcidid: 0000-0002-5922-9550 surname: Chen fullname: Chen, Hongzheng email: hzchen@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.osti.gov/servlets/purl/1981358$$D View this record in Osti.gov |
BookMark | eNqFkc9LmzEch8NwsNrt6jlsl13emt9vcuw6p4JDwc1ryJsmbeRt4pJ0o_-9KRUFYXhKDs_z_fU5BkcxRQfACUYzjBA5NcuNmRFECKK0V-_ABHOCO4YUPwITpCjvlGDyAzgu5R4hpAQSE7C8c7mYGkYHb92frYs1mBEuTKkhruBNTtaVsv_6lOFFWK3HHTzzPtjQUGjiEt5WMzT7W4gm7-B1XpkYLLxZp5r-prGaYMtH8N6bsbhPT-8U_P5x9mtx0V1dn18u5ledZZKqTiy9sMKJXnlFDO17yxEZJOvlIIYBUTYoiRn2nuGeDb3g3Fk5GMq5Z5JQQ6fg86FuauPrYkN1dm1TjM5WjZtMuWzQ1wP0kFNbuFS9CcW6cTTRpW3RREhCBEZENfTLK_Q-bXNsK2jStysLgVrfKZgdKJtTKdl5_ZDDph1DY6T3yeh9Mvo5mSawV0KbtGWQYs0mjP_X1EH719LavdFEz7__nL-4jwZepD8 |
CitedBy_id | crossref_primary_10_1002_aenm_202300168 crossref_primary_10_1002_aenm_202403162 crossref_primary_10_1002_adfm_202214956 crossref_primary_10_1002_solr_202300805 crossref_primary_10_1021_acsami_4c00411 crossref_primary_10_1021_acsaem_2c02791 crossref_primary_10_1021_acsami_2c22461 crossref_primary_10_1021_acsami_3c01779 crossref_primary_10_1016_j_synthmet_2024_117586 crossref_primary_10_1002_solr_202201090 crossref_primary_10_1039_D3MA00754E crossref_primary_10_1002_aenm_202401816 crossref_primary_10_1002_adom_202400005 crossref_primary_10_1038_s41467_023_42071_2 crossref_primary_10_1021_acsaem_4c01690 crossref_primary_10_1002_adfm_202209152 crossref_primary_10_1007_s11771_024_5839_5 crossref_primary_10_1002_adma_202208750 crossref_primary_10_1038_s41560_023_01436_z crossref_primary_10_1002_cptc_202300348 crossref_primary_10_1002_adfm_202416381 crossref_primary_10_1002_adma_202208279 crossref_primary_10_1002_adma_202301906 crossref_primary_10_1002_adma_202208997 crossref_primary_10_1039_D2TA09500A crossref_primary_10_1021_acsami_5c01195 crossref_primary_10_1039_D2TA09936E crossref_primary_10_1002_aenm_202300904 crossref_primary_10_1002_adom_202302285 crossref_primary_10_1002_adom_202402613 crossref_primary_10_1039_D3EE01317K crossref_primary_10_1016_j_nanoen_2023_109023 crossref_primary_10_1016_j_nanoen_2024_109542 crossref_primary_10_1016_j_wees_2024_04_001 crossref_primary_10_1002_adfm_202301108 crossref_primary_10_1002_smll_202205244 crossref_primary_10_3390_en16114494 crossref_primary_10_1002_adma_202209350 crossref_primary_10_1016_j_cej_2023_144711 crossref_primary_10_1002_adma_202419923 crossref_primary_10_1021_acsaem_3c01897 crossref_primary_10_1039_D2TA04784E crossref_primary_10_1002_aenm_202400354 crossref_primary_10_1002_aenm_202405889 crossref_primary_10_1002_solr_202300225 crossref_primary_10_1002_adom_202302947 crossref_primary_10_1002_adma_202308909 crossref_primary_10_1002_adfm_202213324 crossref_primary_10_1002_cjoc_202200770 crossref_primary_10_1038_s41467_024_51359_w crossref_primary_10_1002_adom_202302548 crossref_primary_10_1007_s40820_023_01057_x crossref_primary_10_1021_acsenergylett_3c01681 crossref_primary_10_1002_adma_202313105 crossref_primary_10_1002_anie_202402831 crossref_primary_10_1007_s11708_023_0871_y crossref_primary_10_1039_D4EE03315A crossref_primary_10_1002_smtd_202301803 crossref_primary_10_1016_j_saa_2024_125058 crossref_primary_10_1002_agt2_567 crossref_primary_10_1021_acsami_5c00117 crossref_primary_10_1002_idm2_12129 crossref_primary_10_1002_aenm_202401191 crossref_primary_10_1002_aenm_202401355 crossref_primary_10_1002_ange_202402831 crossref_primary_10_1039_D4CP03492A crossref_primary_10_1002_chem_202402928 crossref_primary_10_1016_j_cej_2023_142327 crossref_primary_10_1002_adfm_202422867 crossref_primary_10_1002_solr_202300599 crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1039_D3EE00630A crossref_primary_10_1021_acsenergylett_4c03046 crossref_primary_10_1039_D2TC04142A crossref_primary_10_1002_adfm_202311216 crossref_primary_10_1002_aenm_202400214 crossref_primary_10_1002_aenm_202204154 crossref_primary_10_1039_D4TA01679C crossref_primary_10_1021_acsmaterialslett_4c00848 |
Cites_doi | 10.1038/s41565-021-01011-1 10.1038/ncomms7229 10.1002/adma.201800388 10.1016/j.scib.2020.01.001 10.1126/science.270.5243.1789 10.1021/nl401758g 10.3390/polym9090456 10.1002/adom.201900152 10.1038/s41566-018-0104-9 10.1002/adfm.200304399 10.1021/jacs.8b12126 10.1039/c3ee43541e 10.1002/adma.202001160 10.1038/s41563-022-01244-y 10.1016/j.joule.2019.12.004 10.1038/s41560-020-00732-2 10.1021/jp504560r 10.1038/nenergy.2015.27 10.1038/s41467-022-30225-7 10.1002/adma.201800343 10.1038/s41467-021-25148-8 10.1016/j.joule.2021.12.017 10.1002/adfm.202112511 10.1039/D1EE02977K 10.1039/D1TA09106A 10.1038/s41560-021-00820-x 10.1038/s41467-019-08386-9 10.1021/accountsmr.2c00052 10.1039/C9TA11613C 10.1002/aelm.201600359 10.1021/acsenergylett.0c00537 10.1038/nmat5063 10.1002/adma.201502110 10.1038/s41467-020-20791-z 10.1002/adma.201404317 10.1016/j.joule.2022.02.001 10.1039/D2EE00595F 10.1039/C9EE03710A 10.1038/s41467-021-24937-5 10.1002/adma.201705208 10.1002/adma.202007231 10.1002/aenm.201802832 10.1002/aenm.201402020 10.1002/adma.201808356 10.1021/acsami.2c04997 10.1002/solr.202200076 10.1039/D0EE03490H 10.1016/j.joule.2019.01.004 10.1002/aenm.202003408 10.1021/cr400353v 10.1038/s41467-020-16621-x 10.1021/acsami.0c00837 10.1039/D0TA06907H 10.1039/C8EE02560F 10.1002/adma.201802888 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 OIOZB OTOTI |
DOI | 10.1002/adma.202203379 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1981358 10_1002_adma_202203379 ADMA202203379 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21734008; 52173185; 5212780017; 61721005 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705900 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c4839-6df6c6e679f92a377c502b8478b6bb034b98141ff4174b7655ec8ba355f4823a3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Oct 09 04:06:34 EDT 2023 Fri Jul 11 12:37:25 EDT 2025 Sun Jul 13 05:14:21 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Tue Jul 01 02:33:19 EDT 2025 Wed Jan 22 16:23:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4839-6df6c6e679f92a377c502b8478b6bb034b98141ff4174b7655ec8ba355f4823a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-5922-9550 0000000259229550 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1981358 |
PQID | 2703366082 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1981358 proquest_miscellaneous_2682261029 proquest_journals_2703366082 crossref_primary_10_1002_adma_202203379 crossref_citationtrail_10_1002_adma_202203379 wiley_primary_10_1002_adma_202203379_ADMA202203379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2014; 118 2019; 7 2021; 6 2019; 9 2015; 6 2019; 3 2015; 5 2019; 31 2019; 10 2019; 12 2020; 13 2020; 12 2022; 21 2020; 11 2020; 32 2019; 141 2014; 114 2017; 9 1995; 270 2020; 8 2021; 14 2018; 17 2020; 5 2020; 4 2015; 27 2016; 1 2021; 12 2016; 2 2021; 11 2021; 33 2022; 3 2013; 13 2022; 6 2004; 14 2022; 13 2022; 14 2022; 15 2018; 30 2022; 32 2022; 10 2020; 65 2018; 12 2014; 7 2022; 17 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2022 publication-title: Sol. RRL – volume: 12 start-page: 384 year: 2019 publication-title: Energy Environ. Sci. – volume: 14 start-page: 2314 year: 2021 publication-title: Energy Environ. Sci. – volume: 8 start-page: 401 year: 2020 publication-title: J. Mater. Chem. A – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 38 year: 2004 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 4627 year: 2021 publication-title: Nat. Commun. – volume: 17 start-page: 53 year: 2022 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 468 year: 2021 publication-title: Nat. Commun. – volume: 5 start-page: 1554 year: 2020 publication-title: ACS Energy Lett. – volume: 7 start-page: 1103 year: 2014 publication-title: Energy Environ. Sci. – volume: 21 start-page: 656 year: 2022 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 6229 year: 2015 publication-title: Nat. Commun. – volume: 12 start-page: 131 year: 2018 publication-title: Nat. Photonics – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 114 start-page: 7006 year: 2014 publication-title: Chem. Rev. – volume: 12 start-page: 4815 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 570 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 662 year: 2022 publication-title: Joule – volume: 6 start-page: 605 year: 2021 publication-title: Nat. Energy – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 13 start-page: 2598 year: 2022 publication-title: Nat. Commun. – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 27 start-page: 1170 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 947 year: 2020 publication-title: Nat. Energy – volume: 10 start-page: 1948 year: 2022 publication-title: J. Mater. Chem. A – volume: 11 start-page: 2855 year: 2020 publication-title: Nat. Commun. – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 13 start-page: 635 year: 2020 publication-title: Energy Environ. Sci. – volume: 270 start-page: 1789 year: 1995 publication-title: Science – volume: 6 start-page: 171 year: 2022 publication-title: Joule – volume: 4 start-page: 407 year: 2020 publication-title: Joule – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 15 start-page: 2537 year: 2022 publication-title: Energy Environ. Sci. – volume: 3 start-page: 644 year: 2022 publication-title: Acc. Mater. Res. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 4655 year: 2015 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 17 start-page: 119 year: 2018 publication-title: Nat. Mater. – volume: 9 start-page: 456 year: 2017 publication-title: Polymers – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 15 start-page: 855 year: 2022 publication-title: Energy Environ. Sci. – volume: 141 start-page: 3073 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 13 start-page: 3796 year: 2013 publication-title: Nano Lett. – ident: e_1_2_7_9_1 doi: 10.1038/s41565-021-01011-1 – ident: e_1_2_7_28_1 doi: 10.1038/ncomms7229 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201800388 – ident: e_1_2_7_47_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_7_7_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_7_43_1 doi: 10.1021/nl401758g – ident: e_1_2_7_54_1 doi: 10.3390/polym9090456 – ident: e_1_2_7_50_1 doi: 10.1002/adom.201900152 – ident: e_1_2_7_3_1 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_7_52_1 doi: 10.1002/adfm.200304399 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.8b12126 – ident: e_1_2_7_30_1 doi: 10.1039/c3ee43541e – ident: e_1_2_7_15_1 doi: 10.1002/adma.202001160 – ident: e_1_2_7_26_1 doi: 10.1038/s41563-022-01244-y – ident: e_1_2_7_36_1 doi: 10.1016/j.joule.2019.12.004 – ident: e_1_2_7_53_1 doi: 10.1038/s41560-020-00732-2 – ident: e_1_2_7_31_1 doi: 10.1021/jp504560r – ident: e_1_2_7_45_1 doi: 10.1038/nenergy.2015.27 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-022-30225-7 – ident: e_1_2_7_44_1 doi: 10.1002/adma.201800343 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-021-25148-8 – ident: e_1_2_7_27_1 doi: 10.1016/j.joule.2021.12.017 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.202112511 – ident: e_1_2_7_21_1 doi: 10.1039/D1EE02977K – ident: e_1_2_7_41_1 doi: 10.1039/D1TA09106A – ident: e_1_2_7_40_1 doi: 10.1038/s41560-021-00820-x – ident: e_1_2_7_12_1 doi: 10.1038/s41467-019-08386-9 – ident: e_1_2_7_6_1 doi: 10.1021/accountsmr.2c00052 – ident: e_1_2_7_51_1 doi: 10.1039/C9TA11613C – ident: e_1_2_7_49_1 doi: 10.1002/aelm.201600359 – ident: e_1_2_7_5_1 doi: 10.1021/acsenergylett.0c00537 – ident: e_1_2_7_2_1 doi: 10.1038/nmat5063 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201502110 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-020-20791-z – ident: e_1_2_7_10_1 doi: 10.1002/adma.201404317 – ident: e_1_2_7_24_1 doi: 10.1016/j.joule.2022.02.001 – ident: e_1_2_7_16_1 doi: 10.1039/D2EE00595F – ident: e_1_2_7_19_1 doi: 10.1039/C9EE03710A – ident: e_1_2_7_23_1 doi: 10.1038/s41467-021-24937-5 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201705208 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202007231 – ident: e_1_2_7_55_1 doi: 10.1002/aenm.201802832 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201402020 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201808356 – ident: e_1_2_7_42_1 doi: 10.1021/acsami.2c04997 – ident: e_1_2_7_32_1 doi: 10.1002/solr.202200076 – ident: e_1_2_7_48_1 doi: 10.1039/D0EE03490H – ident: e_1_2_7_13_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_7_4_1 doi: 10.1002/aenm.202003408 – ident: e_1_2_7_8_1 doi: 10.1021/cr400353v – ident: e_1_2_7_33_1 doi: 10.1038/s41467-020-16621-x – ident: e_1_2_7_25_1 doi: 10.1021/acsami.0c00837 – ident: e_1_2_7_22_1 doi: 10.1039/D0TA06907H – ident: e_1_2_7_37_1 doi: 10.1039/C8EE02560F – ident: e_1_2_7_46_1 doi: 10.1002/adma.201802888 |
SSID | ssj0009606 |
Score | 2.6329997 |
Snippet | Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2203379 |
SubjectTerms | binary devices bulk-heterojunctions Charge transport Energy conversion efficiency Heterojunctions MATERIALS SCIENCE Morphology organic solar cells Phase separation Photovoltaic cells sequential casting Solar cells SOLAR ENERGY Vertical distribution Vertical separation |
Title | Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202203379 https://www.proquest.com/docview/2703366082 https://www.proquest.com/docview/2682261029 https://www.osti.gov/servlets/purl/1981358 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA4yT_qgrhcc90IEwafstrm1fRzXXRZBEXVh30KuKA6tOJ2H3V_vOWmnO7Mggr6l9ISmOZd8Tc_5Qsjr0tdOh1Ayp4rAZAoVc65SzMqkQymjdCmzfX7UF5fy_ZW62qriH_ghpg039Iwcr9HBrVud3JKG2pB5gzgvhKiwgg8TthAVfb7lj0J4nsn2hGKNlvWGtbHgJ7vdd1alWQfetYM4t3FrXnjOHxG7GfKQb_LjeN27Y39zh83xf97pMXk4olK6GMxoj9yL7RPyYIur8CkJuLMGalxG-iWnX0NoWNJTu8K8aTrWG2ATUDDF7JHlNT3L_BQgSm0bKOBaB73f5gpgOhSBevrpW9d3ECN7-92vnpHL87OvpxdsPKKBeQnQiumQtNdRV01quBVV5VXBHax4YAHOFUK6pi5lmZKELx9XaaUiGIcFkJNkzYUVz8ms7dr4gtCAR4wnrWKsrCx8UzuhXAFwApZP66WfE7ZRkfEjfzkeo7E0A_MyNzh7Zpq9OXkzyf8cmDv-KLmPGjeAOZA412OGke9NCUMXqp6Tg40hmNG_V4ZDoBRaA36ak1fTbfBM_N1i29itQUYD-AJ0yuEBPGv9L-Mwi3cfFtPVy3_ptE_uY3vIUDwgs_7XOh4CaurdUfaM30ZGDgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZgeQAeuCuWHhgJiae0ia8kj0sPLdBWCFqJN8tXBGKVoG72ofx6ZpyjXaQKqbzlGCuOx-P54sx8Q8jbzBVWeZ8lVqY-EZXPE2tzmRhRKZ-JIGwV2T5P1fxcfPwmh2hCzIXp-CHGDTe0jLheo4HjhvTeFWuo8ZE4iLGU87y8S-5hWW-kzz_4csUghQA90u1xmZRKFANvY8r21tuv-aVJA_a1hjmvI9foeo4eEzt0uos4-bm7au2u-_0Xn-N_vdUT8qgHpnTWzaSn5E6on5GH1-gKnxOPm2ugyUWgX2MENqwOC7pvlhg6TfuUAzwEIEwxgGRxSQ8jRQWIUlN7CtDWQuv3MQmYdnmgjn7-3rQNLJOt-eGWL8j50eHZ_jzpqzQkTgC6SpSvlFNB5WVVMsPz3MmUWXB6MAmsTbmwZZGJrKoEfPzYXEkZYH4YwDmVKBg3fINM6qYOLwn1WGW8UjKE3IjUlYXl0qaAKMCDGifclCSDjrTrKcyxksZCd-TLTOPo6XH0puTdKP-rI--4UXITVa4BdiB3rsMgI9fqDLrOZTElW8NM0L2JLzWDtZIrBRBqSt6Mt8E48Y-LqUOzAhkF-AsAKoMHsKj2f_RDzw5OZuPZq9s0ek3uz89OjvXxh9NPm-QBXu8CFrfIpL1YhW0AUa3diWbyBymhEiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZgkBAc2CumLWAkJE5uE29JjkOno7JVFVCpN8urWjFKKiZzKL-eZyeTziBVSOWW5Vlx_BZ_cd77jNC73JZGOpcTIzJHeHAFMaYQRPMgXc49NyGxfR7Lo1P-6UycrVXxd_wQw4Jb9IwUr6ODX7qwf00aql3iDaI0Y6yo7qJ7XGZV3Lxh-u2aQCri88S2xwSpJC9XtI0Z3d9svzEtjRpwrw3IuQ5c08wze4z0qs9dwsnPvWVr9uzvv-gc_-elnqBHPSzFk86OnqI7vn6GHq6RFT5HLi6tgR7nHn9P-dcQG-b4QC9i4jTuCw7iIcBgHNNH5lf4MBFUgCjWtcMAbA20_pBKgHFXBWrxyXnTNhAkW31hFy_Q6ezwx8ER6fdoIJYDtiLSBWmll0UVKqpZUViRUQNTHpiAMRnjpipznofA4dPHFFIID9ahAeUEXlKm2RYa1U3tXyLs4h7jQQrvC80zW5WGCZMBnoD5U1tux4isVKRsT2Ae99GYq456mao4emoYvTF6P8hfdtQdN0ruRI0rAB2ROdfGFCPbqhy6zkQ5RrsrQ1C9gy8UhUjJpAQANUZvh9vgmvF_i659swQZCegL4CmFB9Ck9X_0Q02mXyfD2fZtGr1B90-mM_Xl4_HnHfQgXu6yFXfRqP219K8AQbXmdXKSP9wnEM8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Versatile+Sequential+Casting+Processing+for+Highly+Efficient+and+Stable+Binary+Organic+Photovoltaics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Chengliang&rft.au=Pan%2C+Youwen&rft.au=Lu%2C+Guanghao&rft.au=Wu%2C+Baohua&rft.date=2022-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202203379&rft.externalDBID=10.1002%252Fadma.202203379&rft.externalDocID=ADMA202203379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |