Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe
The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time ar...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 44; pp. e2104908 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2021
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described. |
---|---|
AbstractList | The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m −1 K −1 ), a high power factor (11.6 µW cm −1 K −2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe 4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl + lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl + as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m-1 K-1 ), a high power factor (11.6 µW cm-1 K-2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon-phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m-1 K-1 ), a high power factor (11.6 µW cm-1 K-2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon-phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described. |
Author | Su, Xianli Chung, Duck Young Tan, Ganjian Bailey, Trevor P. Wolverton, Chris Kanatzidis, Mercouri G. Xia, Yi Uher, Ctirad Zhang, Xiaomi Rettie, Alexander J. E. Stoumpos, Constantinos C. He, Jiangang Lin, Wenwen Dravid, Vinayak P. |
Author_xml | – sequence: 1 givenname: Wenwen surname: Lin fullname: Lin, Wenwen organization: Northwestern University – sequence: 2 givenname: Jiangang surname: He fullname: He, Jiangang organization: Northwestern University – sequence: 3 givenname: Xianli surname: Su fullname: Su, Xianli organization: Wuhan University of Technology – sequence: 4 givenname: Xiaomi surname: Zhang fullname: Zhang, Xiaomi organization: Northwestern University – sequence: 5 givenname: Yi surname: Xia fullname: Xia, Yi organization: Northwestern University – sequence: 6 givenname: Trevor P. surname: Bailey fullname: Bailey, Trevor P. organization: University of Michigan – sequence: 7 givenname: Constantinos C. surname: Stoumpos fullname: Stoumpos, Constantinos C. organization: University of Crete – sequence: 8 givenname: Ganjian surname: Tan fullname: Tan, Ganjian organization: Wuhan University of Technology – sequence: 9 givenname: Alexander J. E. surname: Rettie fullname: Rettie, Alexander J. E. organization: University College London – sequence: 10 givenname: Duck Young surname: Chung fullname: Chung, Duck Young organization: Argonne National Laboratory – sequence: 11 givenname: Vinayak P. surname: Dravid fullname: Dravid, Vinayak P. organization: Northwestern University – sequence: 12 givenname: Ctirad surname: Uher fullname: Uher, Ctirad organization: University of Michigan – sequence: 13 givenname: Chris surname: Wolverton fullname: Wolverton, Chris email: c-wolverton@northwestern.edu organization: Northwestern University – sequence: 14 givenname: Mercouri G. orcidid: 0000-0003-2037-4168 surname: Kanatzidis fullname: Kanatzidis, Mercouri G. email: m-kanatzidis@northwestern.edu organization: University of Crete |
BackLink | https://www.osti.gov/biblio/1822530$$D View this record in Osti.gov |
BookMark | eNqFkUtvGyEURlGVSnXSbrtG7aaLjsswD8PScp5SrC7irBEwl5gIQwpMIv_74kzUSJGiru7invNx0XeMjnzwgNDXmsxrQugvOezknBJak5YT9gHN6o7WVUt4d4RmhDddxfuWfULHKd0TQnhP-hkKty5H6cIT3mwh7qTDq-CHUWf7aPP-J16PLlsl_YDPHOgcg7ca3-RYiDECPiwu7d12sgM8M4U4t3eHdTB4DdFmbD3euNV4A5_RRyNdgi8v8wTdnp9tVpfV9e-Lq9XyutIta1hlqFmYARa8MSAbrhhTrONswSjlVBllymwlr6XuhkEBHySntOvVAEwRxUxzgr5NuSFlK5K2GfRWB-_LgaIuMV1DCvRjgh5i-DNCymJnkwbnpIcwJkG7BeVNSe4L-v0Neh_G6MsXCsV4oTijhZpPlI4hpQhGPES7k3EvaiIOJYlDSeJfSUVo3wjlUplt8KUV697X-KQ9WQf7_zwilqfr5av7F_ELqZU |
CitedBy_id | crossref_primary_10_1016_j_actamat_2022_118162 crossref_primary_10_1002_aenm_202404251 crossref_primary_10_1002_adma_202210380 crossref_primary_10_1016_j_matchemphys_2022_127155 crossref_primary_10_1039_D2TC03356A crossref_primary_10_1021_acsaem_3c01811 crossref_primary_10_1021_jacs_1c11998 crossref_primary_10_1039_D3MA00409K crossref_primary_10_1021_acs_inorgchem_3c00350 crossref_primary_10_1063_5_0190970 crossref_primary_10_1016_j_scib_2023_04_017 crossref_primary_10_1039_D2NR07006E crossref_primary_10_1016_j_mtphys_2024_101454 crossref_primary_10_1016_j_jallcom_2022_166181 crossref_primary_10_1002_pssr_202100482 crossref_primary_10_1016_j_ceramint_2022_10_351 crossref_primary_10_1002_eem2_12799 crossref_primary_10_1021_acs_jpcc_2c00880 crossref_primary_10_1021_acsnano_4c11732 crossref_primary_10_1002_advs_202417292 crossref_primary_10_1021_acsami_3c05602 crossref_primary_10_1021_jacs_3c04871 crossref_primary_10_1088_1361_6463_acf22c crossref_primary_10_1016_j_apsusc_2022_156064 crossref_primary_10_1007_s11082_023_04666_3 crossref_primary_10_1021_acs_inorgchem_4c01764 crossref_primary_10_1039_D2SC02915D crossref_primary_10_1016_j_apsusc_2022_156167 crossref_primary_10_1021_acsami_4c12729 crossref_primary_10_1021_jacs_4c16394 crossref_primary_10_1103_PhysRevMaterials_8_094601 crossref_primary_10_1016_j_jeurceramsoc_2023_02_047 crossref_primary_10_1039_D1CP04657H crossref_primary_10_1016_j_jmat_2022_03_003 crossref_primary_10_1039_D3CP00273J crossref_primary_10_1039_D2CP05090K crossref_primary_10_1016_j_mtphys_2022_100608 crossref_primary_10_1021_acs_chemmater_4c03025 crossref_primary_10_1039_D4TC03784G |
Cites_doi | 10.1021/acs.chemrev.6b00255 10.1039/C1EE02612G 10.1126/science.1072886 10.1016/j.commatsci.2015.05.028 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.17.89 10.1103/PhysRevB.55.13605 10.1103/PhysRevLett.107.235901 10.1002/adma.201900108 10.1126/science.aak9997 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRev.181.1336 10.1002/anie.201508381 10.1179/095066003225010182 10.1103/PhysRevLett.101.035901 10.1103/PhysRevLett.113.025506 10.1103/PhysRevB.37.8958 10.1007/BF00654839 10.1088/0370-1298/65/5/307 10.1002/pssr.201004278 10.1002/aenm.201702167 10.1557/mrs2006.44 10.1038/nature09996 10.1103/PhysRevMaterials.3.025402 10.1063/1.1564060 10.1039/C7EE02677C 10.1038/nature13184 10.1103/PhysRevLett.114.095501 10.1103/PhysRevLett.97.085901 10.1039/c1jm11754h 10.1021/jacs.7b01434 10.1016/0022-4596(87)90178-2 10.1016/j.cpc.2014.02.015 10.1103/PhysRevLett.100.136406 10.1021/ja208658w 10.1038/s41467-019-08542-1 10.1039/b822664b 10.1002/ange.201511737 10.1016/j.ensm.2016.01.009 10.1080/14786440408520575 10.1039/C5TC01535A 10.1063/1.2204597 10.1021/ja017602i 10.1021/jacs.0c03427 10.1103/RevModPhys.86.669 10.1038/s41563-021-01064-6 10.1021/ja111199y 10.1103/PhysRevLett.93.146403 10.1557/mrs.2018.7 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.113.185501 10.1073/pnas.93.15.7436 10.1038/nmat2273 10.1002/advs.201600196 10.1103/PhysRevB.1.572 10.1021/ja01379a006 10.1016/0927-0256(96)00008-0 10.1038/ncomms9144 10.1039/C4EE00997E 10.1038/nmat3273 10.1103/PhysRevB.48.13115 10.1002/ange.19870990907 10.1038/nature11439 10.1039/C7EE01193H 10.1016/0022-3697(70)90284-2 10.1134/1.1130849 10.1002/adma.201202919 10.1021/ja051653o 10.1021/acs.chemmater.6b01002 10.1002/adma.201102450 10.1002/adfm.201604145 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.202104908 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1822530 10_1002_adma_202104908 ADMA202104908 |
Genre | article |
GrantInformation_xml | – fundername: Basic Energy Sciences funderid: DE‐SC0014520 – fundername: U.S. Department of Energy funderid: DE‐AC02‐05CH11231 – fundername: Office of Science |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu May 18 22:32:14 EDT 2023 Fri Jul 11 08:18:20 EDT 2025 Sun Jul 13 05:02:27 EDT 2025 Tue Jul 01 02:33:07 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Wed Jan 22 16:28:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 DE‐AC02‐05CH11231 USDOE |
ORCID | 0000-0003-2037-4168 0000000320374168 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202104908 |
PQID | 2589939982 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1822530 proquest_miscellaneous_2572939226 proquest_journals_2589939982 crossref_primary_10_1002_adma_202104908 crossref_citationtrail_10_1002_adma_202104908 wiley_primary_10_1002_adma_202104908_ADMA202104908 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2003; 118 2002 2016; 124 28 2019; 10 1987; 70 2008; 7 1993 1996; 48 6 1970; 31 2011 2011; 133 23 2015; 108 2016 2006 2003 2017; 116 31 48 357 2020; 10 2008; 101 2012; 489 2008; 100 2018; 43 2012; 11 1952; 65 2018; 8 1997; 55 1999; 59 2011; 21 1999 2002; 41 297 2014; 7 2010; 4 2011 2019; 473 3 2006; 124 1987; 99 2014 2021; 508 2015; 6 2012 1996; 5 93 2015; 3 2020; 142 2019 2016 2016; 31 3 55 2017 2011 2017; 27 107 10 2005 2016; 128 2011 2012; 473 24 2011; 133 2017; 139 2014; 86 2014; 113 1955 1966 1970 1972; 46 17 1 9 2012 1969; 181 1988 2015; 37 108 2004; 93 2016; 3 2017; 10 2005; 127 2014 2015 2006; 113 114 97 2009; 2 1994; 50 2014; 185 1929; 51 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Xia Y. (e_1_2_8_33_1) 2020; 10 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_20_2 e_1_2_8_20_3 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_43_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Mott N. F. (e_1_2_8_40_1) 2012 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_30_3 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_2 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_2 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_2 e_1_2_8_37_1 Tritt T. M. (e_1_2_8_16_1) 2005 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_50_4 e_1_2_8_12_1 e_1_2_8_31_3 e_1_2_8_50_2 e_1_2_8_50_3 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 139 start-page: 4350 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 7923 year: 2016 publication-title: Angew. Chem. – volume: 10 year: 2020 publication-title: Phys. Rev. X – volume: 10 start-page: 1668 year: 2017 publication-title: Energy Environ. Sci. – volume: 118 start-page: 8207 year: 2003 publication-title: J. Chem. Phys. – volume: 3 year: 2015 publication-title: J. Mater. Chem. C – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 31 start-page: 19 year: 1970 publication-title: J. Phys. Chem. Solids – volume: 41 297 start-page: 679 2229 year: 1999 2002 publication-title: Phys. Solid State Science – year: 2005 – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 86 start-page: 669 year: 2014 publication-title: Rev. Mod. Phys. – volume: 48 6 start-page: 15 year: 1993 1996 publication-title: Phys. Rev. B Comput. Mater. Sci – volume: 43 start-page: 181 year: 2018 publication-title: MRS Bull. – volume: 127 start-page: 9177 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 124 year: 2006 publication-title: J. Chem. Phys. – volume: 181 start-page: 1336 year: 2012 1969 publication-title: Phys. Rev. – volume: 27 107 10 start-page: 2638 year: 2017 2011 2017 publication-title: Adv. Funct. Mater. Phys. Rev. Lett. Energy Environ. Sci. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 133 start-page: 7837 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 113 114 97 year: 2014 2015 2006 publication-title: Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 46 17 1 9 start-page: 422 89 572 151 year: 1955 1966 1970 1972 publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci. Phys. Rev. Lett. Phys. Rev. B J. Low Temp. Phys. – volume: 508 start-page: 373 year: 2014 2021 publication-title: Nature Nat. Mater. – volume: 51 start-page: 1010 year: 1929 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 185 start-page: 1747 year: 2014 publication-title: Comput. Phys. Commun. – volume: 473 3 start-page: 66 year: 2011 2019 publication-title: Nature Phys. Rev. Mater. – volume: 5 93 start-page: 5510 7436 year: 2012 1996 publication-title: Energy Environ. Sci. Proc. Natl. Acad. Sci. U. S. A. – volume: 116 31 48 357 start-page: 188 45 1369 year: 2016 2006 2003 2017 publication-title: Chem. Rev. MRS Bull. Int. Mater. Rev. Science – volume: 473 24 start-page: 66 6125 year: 2011 2012 publication-title: Nature Adv. Mater. – volume: 108 start-page: 1 year: 2015 publication-title: Scr. Mater. – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 422 year: 2012 publication-title: Nat. Mater. – volume: 142 start-page: 9553 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 124 28 start-page: 2410 2463 year: 2002 2016 publication-title: J. Am. Chem. Soc. Chem. Mater. – volume: 37 108 start-page: 8958 239 year: 1988 2015 publication-title: Phys. Rev. B Comput. Mater. Sci. – volume: 6 start-page: 8144 year: 2015 publication-title: Nat. Commun. – volume: 489 start-page: 414 year: 2012 publication-title: Nature – volume: 2 start-page: 466 year: 2009 publication-title: Energy Environ. Sci. – volume: 70 start-page: 65 year: 1987 publication-title: J. Solid State Chem. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 31 3 55 start-page: 6826 year: 2019 2016 2016 publication-title: Adv. Mater. Adv. Sci. Angew. Chem., Int. Ed. – volume: 4 start-page: 317 year: 2010 publication-title: Phys. Status Solidi R – volume: 3 start-page: 85 year: 2016 publication-title: Energy Storage Mater. – volume: 10 start-page: 719 year: 2019 publication-title: Nat. Commun. – volume: 65 start-page: 349 year: 1952 publication-title: Proc. Phys. Soc., London, Sect. A – volume: 7 start-page: 2900 year: 2014 publication-title: Energy Environ. Sci. – volume: 133 23 start-page: 4163 year: 2011 2011 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 55 year: 1997 publication-title: Phys. Rev. B – volume: 99 start-page: 871 year: 1987 publication-title: Angew. Chem. – volume: 7 start-page: 811 year: 2008 publication-title: Nat. Mater. – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.6b00255 – ident: e_1_2_8_4_1 doi: 10.1039/C1EE02612G – ident: e_1_2_8_5_2 doi: 10.1126/science.1072886 – ident: e_1_2_8_37_2 doi: 10.1016/j.commatsci.2015.05.028 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_50_2 doi: 10.1103/PhysRevLett.17.89 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevB.55.13605 – ident: e_1_2_8_31_2 doi: 10.1103/PhysRevLett.107.235901 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201900108 – ident: e_1_2_8_2_4 doi: 10.1126/science.aak9997 – ident: e_1_2_8_49_1 doi: 10.1016/j.scriptamat.2015.07.021 – ident: e_1_2_8_40_2 doi: 10.1103/PhysRev.181.1336 – volume: 10 year: 2020 ident: e_1_2_8_33_1 publication-title: Phys. Rev. X – ident: e_1_2_8_20_3 doi: 10.1002/anie.201508381 – ident: e_1_2_8_2_3 doi: 10.1179/095066003225010182 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.101.035901 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevLett.113.025506 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevB.37.8958 – ident: e_1_2_8_50_4 doi: 10.1007/BF00654839 – ident: e_1_2_8_53_1 doi: 10.1088/0370-1298/65/5/307 – ident: e_1_2_8_32_1 doi: 10.1002/pssr.201004278 – ident: e_1_2_8_1_1 doi: 10.1002/aenm.201702167 – ident: e_1_2_8_2_2 doi: 10.1557/mrs2006.44 – ident: e_1_2_8_39_1 doi: 10.1038/nature09996 – ident: e_1_2_8_39_2 doi: 10.1103/PhysRevMaterials.3.025402 – ident: e_1_2_8_47_1 doi: 10.1063/1.1564060 – ident: e_1_2_8_31_3 doi: 10.1039/C7EE02677C – ident: e_1_2_8_11_1 doi: 10.1038/nature13184 – ident: e_1_2_8_30_2 doi: 10.1103/PhysRevLett.114.095501 – ident: e_1_2_8_30_3 doi: 10.1103/PhysRevLett.97.085901 – ident: e_1_2_8_35_1 doi: 10.1039/c1jm11754h – ident: e_1_2_8_21_1 doi: 10.1021/jacs.7b01434 – ident: e_1_2_8_28_1 doi: 10.1016/0022-4596(87)90178-2 – ident: e_1_2_8_52_1 doi: 10.1016/j.cpc.2014.02.015 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevLett.100.136406 – ident: e_1_2_8_42_1 doi: 10.1021/ja208658w – ident: e_1_2_8_27_1 doi: 10.1038/s41467-019-08542-1 – ident: e_1_2_8_8_1 doi: 10.1039/b822664b – ident: e_1_2_8_22_1 doi: 10.1002/ange.201511737 – ident: e_1_2_8_38_1 doi: 10.1016/j.ensm.2016.01.009 – ident: e_1_2_8_50_1 doi: 10.1080/14786440408520575 – volume-title: Electronic Processes in Non‐crystalline Materials year: 2012 ident: e_1_2_8_40_1 – ident: e_1_2_8_41_1 doi: 10.1039/C5TC01535A – ident: e_1_2_8_48_1 doi: 10.1063/1.2204597 – ident: e_1_2_8_15_1 doi: 10.1021/ja017602i – volume-title: Thermal Conductivity: Theory, Properties, and Applications year: 2005 ident: e_1_2_8_16_1 – ident: e_1_2_8_23_1 doi: 10.1021/jacs.0c03427 – ident: e_1_2_8_29_1 doi: 10.1103/RevModPhys.86.669 – ident: e_1_2_8_11_2 doi: 10.1038/s41563-021-01064-6 – ident: e_1_2_8_14_1 doi: 10.1021/ja111199y – ident: e_1_2_8_10_1 doi: 10.1103/PhysRevLett.93.146403 – ident: e_1_2_8_6_1 doi: 10.1557/mrs.2018.7 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevLett.113.185501 – ident: e_1_2_8_4_2 doi: 10.1073/pnas.93.15.7436 – ident: e_1_2_8_18_1 doi: 10.1038/nmat2273 – ident: e_1_2_8_20_2 doi: 10.1002/advs.201600196 – ident: e_1_2_8_50_3 doi: 10.1103/PhysRevB.1.572 – ident: e_1_2_8_36_1 doi: 10.1021/ja01379a006 – ident: e_1_2_8_43_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_8_12_1 doi: 10.1038/ncomms9144 – ident: e_1_2_8_26_1 doi: 10.1039/C4EE00997E – ident: e_1_2_8_19_1 doi: 10.1038/nmat3273 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevB.48.13115 – ident: e_1_2_8_24_1 doi: 10.1002/ange.19870990907 – ident: e_1_2_8_9_1 doi: 10.1038/nature11439 – ident: e_1_2_8_13_1 doi: 10.1039/C7EE01193H – ident: e_1_2_8_3_1 doi: 10.1038/nature09996 – ident: e_1_2_8_34_1 doi: 10.1016/0022-3697(70)90284-2 – ident: e_1_2_8_5_1 doi: 10.1134/1.1130849 – ident: e_1_2_8_3_2 doi: 10.1002/adma.201202919 – ident: e_1_2_8_7_1 doi: 10.1021/ja051653o – ident: e_1_2_8_15_2 doi: 10.1021/acs.chemmater.6b01002 – ident: e_1_2_8_42_2 doi: 10.1002/adma.201102450 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.201604145 |
SSID | ssj0009606 |
Score | 2.5481925 |
Snippet | The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2104908 |
SubjectTerms | Acoustic velocity Anharmonicity Atomic properties Bonding strength chalcogenides Chemical bonds Conductivity Electrical resistivity Electronic structure Electrons Energy conversion Entanglement Figure of merit Heat conductivity Heat transfer Materials science narrow‐gap semiconductors Phonons Power factor Seebeck effect Tetrahedra Thermal conductivity Thermoelectric materials Valence band |
Title | Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104908 https://www.proquest.com/docview/2589939982 https://www.proquest.com/docview/2572939226 https://www.osti.gov/biblio/1822530 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclT-vDPtqNue2KBoW9zG0iW470GLKGMkgf2gb6JnT6GGXBLm3CYH_97uTETQZlsD7ZRhKWpbvzT9Ld7xg7ka7SCgY-lyWF5FR2kGsthrmDYbQlxKLvKVB4elldzMrvt_J2I4q_5YfoNtxIM5K9JgW38Hj2RBpqfeINwiULnV2hESaHLUJFV0_8UQTPE9leIXNdlWrN2tgXZ9vNt_5KvQa1awtxbuLW9OOZvGF23eXW3-Tn6XIBp-73X2yOL_mmt-z1CpXyUStG79hOqPfY7gZX4T5rZnPaFGl-cZQstOZzPm5qIotN2Se-8hTJC7b2_LzLrMOvEzvt8iFwKiCfkrZ102bfwRqTux9U3EQ-xRct-F3Nb-bj5XV4z2aT85vxRb7K1pC7UqHVjCIOow-o7zHYQoNSoKRWhEC0gAgRr6XVA-uk9xC0txptSQU-KOiDisUH1qubOnxkHO0E8STGUklbRjmEitYADoQVIjhrM5avZ8u4FZU5ZdSYm5aEWRgaSNMNZMa-dPXvWxKPZ2se0uQbhB_EoevI2cgtDC7ChCz6GTtay4RZqfqjERKXrAjzlMjY564YlZROXmwdmiXVwf4jEhVVxkQSgH_0w4y-TUfd08H_NDpkr-i-jZs8Yj2c8PAJAdQCjpOS_AHVPhKU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BOQAH3oiwCxgJiQvZbZ04tY9V2arAdg9sK3Gz_EQrqgRBKyR-PTNOk90iISQ4RYnHimN7Jt_Ynm8AXglXKWlHPhclheRUZpQrxce5s-NoShuLoadA4cVZNV-V7z-J7jQhxcK0_BD9ghtpRrLXpOC0IH18yRpqfCIOQp-FNq-uww1K6528qo-XDFIE0BPdXiFyVZWy420c8uP9-nv_pUGD-rWHOa8i1_Trmd0F2zW6PXHy5Wi7sUfu5298jv_1Vffgzg6Yskk7k-7DtVA_gNtX6AofQrNa07pI84Ph5EKDvmbTpia-2JSA4g1LwbzW1J6d9Ml12HkiqN1-C4wK6FhJW7tpE_CgxOziMxU3kS3wRRt2UbPlero9D49gNTtZTuf5LmFD7kqJhjPyOI4-oMrHYAplpbRSKEkgRHEbbcRradTIOOG9Dcobheaksj5IO7QyFo9hUDd1eAIMTQVRJcZSClNGMbYVuQHOcsN5cMZkkHfDpd2OzZySaqx1y8PMNXWk7jsyg9e9_NeWx-OPkgc0-hoRCNHoOjpv5DYa_TAuimEGh92k0Dtt_665QK8VkZ7kGbzsi1FPafPF1KHZkgy2H8EorzLgaQb8pR168nYx6e-e_kulF3Bzvlyc6tN3Zx8O4BY9b8MoD2GAgx-eIZ7a2OdJY34B93UWrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2DMb2sO6rzGvXaTDYy9w6suVIjyFp6D5SxtpA34Q-R1mwy5Yw2F_fOztxk8EYdE_GloRl6e78O0n3O4C3wpVK2r5PRUEhOaXpp0rxQersIJrCxjzzFCg8PS1PZsXHC3GxEcXf8kN0C26kGY29JgW_8vHohjTU-IY3CF0W2ru6C_eKMpMk1-OvNwRShM8btr1cpKos5Jq2MeNH2-23fku9GtVrC3JuAtfmzzPZAbPuc3vg5PvhcmEP3e8_6Bz_56Mew6MVLGXDVo6ewJ1QPYWHG2SFz6CezWlVpP7FULTQnM_ZqK6ILbZJP_GeNaG81lSeHXepddhZQ0-7_BEYFdChkrZ13abfwRqTy29UXEc2xRct2GXFzuej5Vl4DrPJ8fnoJF2la0hdIdFsRh4H0QdU-BhMrqyUVgolCYIobqONeC2M6hsnvLdBeaPQmJTWB2kzK2O-C72qrsILYGgoiCgxFlKYIoqBLckJcJYbzoMzJoF0PVvarbjMKaXGXLcszFzTQOpuIBN419W_alk8_lpzjyZfI_4gEl1Hp43cQqMXxkWeJbC_lgm90vWfmgv0WRHnSZ7Am64YtZS2XkwV6iXVwf4jFOVlArwRgH_0Qw_H02F39_I2jV7D_S_jif784fTTHjygx20M5T70cO7DKwRTC3vQ6Ms1uUoVZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultralow+Thermal+Conductivity%2C+Multiband+Electronic+Structure+and+High+Thermoelectric+Figure+of+Merit+in+TlCuSe&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lin%2C+Wenwen&rft.au=He%2C+Jiangang&rft.au=Su%2C+Xianli&rft.au=Zhang%2C+Xiaomi&rft.date=2021-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=44&rft_id=info:doi/10.1002%2Fadma.202104908&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202104908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |