Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe

The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time ar...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 44; pp. e2104908 - n/a
Main Authors Lin, Wenwen, He, Jiangang, Su, Xianli, Zhang, Xiaomi, Xia, Yi, Bailey, Trevor P., Stoumpos, Constantinos C., Tan, Ganjian, Rettie, Alexander J. E., Chung, Duck Young, Dravid, Vinayak P., Uher, Ctirad, Wolverton, Chris, Kanatzidis, Mercouri G.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2021
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.
AbstractList The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m −1 K −1 ), a high power factor (11.6 µW cm −1 K −2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe 4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl + lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl + as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m-1 K-1 ), a high power factor (11.6 µW cm-1 K-2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon-phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m-1 K-1 ), a high power factor (11.6 µW cm-1 K-2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon-phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.
Author Su, Xianli
Chung, Duck Young
Tan, Ganjian
Bailey, Trevor P.
Wolverton, Chris
Kanatzidis, Mercouri G.
Xia, Yi
Uher, Ctirad
Zhang, Xiaomi
Rettie, Alexander J. E.
Stoumpos, Constantinos C.
He, Jiangang
Lin, Wenwen
Dravid, Vinayak P.
Author_xml – sequence: 1
  givenname: Wenwen
  surname: Lin
  fullname: Lin, Wenwen
  organization: Northwestern University
– sequence: 2
  givenname: Jiangang
  surname: He
  fullname: He, Jiangang
  organization: Northwestern University
– sequence: 3
  givenname: Xianli
  surname: Su
  fullname: Su, Xianli
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Xiaomi
  surname: Zhang
  fullname: Zhang, Xiaomi
  organization: Northwestern University
– sequence: 5
  givenname: Yi
  surname: Xia
  fullname: Xia, Yi
  organization: Northwestern University
– sequence: 6
  givenname: Trevor P.
  surname: Bailey
  fullname: Bailey, Trevor P.
  organization: University of Michigan
– sequence: 7
  givenname: Constantinos C.
  surname: Stoumpos
  fullname: Stoumpos, Constantinos C.
  organization: University of Crete
– sequence: 8
  givenname: Ganjian
  surname: Tan
  fullname: Tan, Ganjian
  organization: Wuhan University of Technology
– sequence: 9
  givenname: Alexander J. E.
  surname: Rettie
  fullname: Rettie, Alexander J. E.
  organization: University College London
– sequence: 10
  givenname: Duck Young
  surname: Chung
  fullname: Chung, Duck Young
  organization: Argonne National Laboratory
– sequence: 11
  givenname: Vinayak P.
  surname: Dravid
  fullname: Dravid, Vinayak P.
  organization: Northwestern University
– sequence: 12
  givenname: Ctirad
  surname: Uher
  fullname: Uher, Ctirad
  organization: University of Michigan
– sequence: 13
  givenname: Chris
  surname: Wolverton
  fullname: Wolverton, Chris
  email: c-wolverton@northwestern.edu
  organization: Northwestern University
– sequence: 14
  givenname: Mercouri G.
  orcidid: 0000-0003-2037-4168
  surname: Kanatzidis
  fullname: Kanatzidis, Mercouri G.
  email: m-kanatzidis@northwestern.edu
  organization: University of Crete
BackLink https://www.osti.gov/biblio/1822530$$D View this record in Osti.gov
BookMark eNqFkUtvGyEURlGVSnXSbrtG7aaLjsswD8PScp5SrC7irBEwl5gIQwpMIv_74kzUSJGiru7invNx0XeMjnzwgNDXmsxrQugvOezknBJak5YT9gHN6o7WVUt4d4RmhDddxfuWfULHKd0TQnhP-hkKty5H6cIT3mwh7qTDq-CHUWf7aPP-J16PLlsl_YDPHOgcg7ca3-RYiDECPiwu7d12sgM8M4U4t3eHdTB4DdFmbD3euNV4A5_RRyNdgi8v8wTdnp9tVpfV9e-Lq9XyutIta1hlqFmYARa8MSAbrhhTrONswSjlVBllymwlr6XuhkEBHySntOvVAEwRxUxzgr5NuSFlK5K2GfRWB-_LgaIuMV1DCvRjgh5i-DNCymJnkwbnpIcwJkG7BeVNSe4L-v0Neh_G6MsXCsV4oTijhZpPlI4hpQhGPES7k3EvaiIOJYlDSeJfSUVo3wjlUplt8KUV697X-KQ9WQf7_zwilqfr5av7F_ELqZU
CitedBy_id crossref_primary_10_1016_j_actamat_2022_118162
crossref_primary_10_1002_aenm_202404251
crossref_primary_10_1002_adma_202210380
crossref_primary_10_1016_j_matchemphys_2022_127155
crossref_primary_10_1039_D2TC03356A
crossref_primary_10_1021_acsaem_3c01811
crossref_primary_10_1021_jacs_1c11998
crossref_primary_10_1039_D3MA00409K
crossref_primary_10_1021_acs_inorgchem_3c00350
crossref_primary_10_1063_5_0190970
crossref_primary_10_1016_j_scib_2023_04_017
crossref_primary_10_1039_D2NR07006E
crossref_primary_10_1016_j_mtphys_2024_101454
crossref_primary_10_1016_j_jallcom_2022_166181
crossref_primary_10_1002_pssr_202100482
crossref_primary_10_1016_j_ceramint_2022_10_351
crossref_primary_10_1002_eem2_12799
crossref_primary_10_1021_acs_jpcc_2c00880
crossref_primary_10_1021_acsnano_4c11732
crossref_primary_10_1002_advs_202417292
crossref_primary_10_1021_acsami_3c05602
crossref_primary_10_1021_jacs_3c04871
crossref_primary_10_1088_1361_6463_acf22c
crossref_primary_10_1016_j_apsusc_2022_156064
crossref_primary_10_1007_s11082_023_04666_3
crossref_primary_10_1021_acs_inorgchem_4c01764
crossref_primary_10_1039_D2SC02915D
crossref_primary_10_1016_j_apsusc_2022_156167
crossref_primary_10_1021_acsami_4c12729
crossref_primary_10_1021_jacs_4c16394
crossref_primary_10_1103_PhysRevMaterials_8_094601
crossref_primary_10_1016_j_jeurceramsoc_2023_02_047
crossref_primary_10_1039_D1CP04657H
crossref_primary_10_1016_j_jmat_2022_03_003
crossref_primary_10_1039_D3CP00273J
crossref_primary_10_1039_D2CP05090K
crossref_primary_10_1016_j_mtphys_2022_100608
crossref_primary_10_1021_acs_chemmater_4c03025
crossref_primary_10_1039_D4TC03784G
Cites_doi 10.1021/acs.chemrev.6b00255
10.1039/C1EE02612G
10.1126/science.1072886
10.1016/j.commatsci.2015.05.028
10.1103/PhysRevB.59.1758
10.1103/PhysRevLett.17.89
10.1103/PhysRevB.55.13605
10.1103/PhysRevLett.107.235901
10.1002/adma.201900108
10.1126/science.aak9997
10.1016/j.scriptamat.2015.07.021
10.1103/PhysRev.181.1336
10.1002/anie.201508381
10.1179/095066003225010182
10.1103/PhysRevLett.101.035901
10.1103/PhysRevLett.113.025506
10.1103/PhysRevB.37.8958
10.1007/BF00654839
10.1088/0370-1298/65/5/307
10.1002/pssr.201004278
10.1002/aenm.201702167
10.1557/mrs2006.44
10.1038/nature09996
10.1103/PhysRevMaterials.3.025402
10.1063/1.1564060
10.1039/C7EE02677C
10.1038/nature13184
10.1103/PhysRevLett.114.095501
10.1103/PhysRevLett.97.085901
10.1039/c1jm11754h
10.1021/jacs.7b01434
10.1016/0022-4596(87)90178-2
10.1016/j.cpc.2014.02.015
10.1103/PhysRevLett.100.136406
10.1021/ja208658w
10.1038/s41467-019-08542-1
10.1039/b822664b
10.1002/ange.201511737
10.1016/j.ensm.2016.01.009
10.1080/14786440408520575
10.1039/C5TC01535A
10.1063/1.2204597
10.1021/ja017602i
10.1021/jacs.0c03427
10.1103/RevModPhys.86.669
10.1038/s41563-021-01064-6
10.1021/ja111199y
10.1103/PhysRevLett.93.146403
10.1557/mrs.2018.7
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.113.185501
10.1073/pnas.93.15.7436
10.1038/nmat2273
10.1002/advs.201600196
10.1103/PhysRevB.1.572
10.1021/ja01379a006
10.1016/0927-0256(96)00008-0
10.1038/ncomms9144
10.1039/C4EE00997E
10.1038/nmat3273
10.1103/PhysRevB.48.13115
10.1002/ange.19870990907
10.1038/nature11439
10.1039/C7EE01193H
10.1016/0022-3697(70)90284-2
10.1134/1.1130849
10.1002/adma.201202919
10.1021/ja051653o
10.1021/acs.chemmater.6b01002
10.1002/adma.201102450
10.1002/adfm.201604145
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.202104908
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1822530
10_1002_adma_202104908
ADMA202104908
Genre article
GrantInformation_xml – fundername: Basic Energy Sciences
  funderid: DE‐SC0014520
– fundername: U.S. Department of Energy
  funderid: DE‐AC02‐05CH11231
– fundername: Office of Science
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu May 18 22:32:14 EDT 2023
Fri Jul 11 08:18:20 EDT 2025
Sun Jul 13 05:02:27 EDT 2025
Tue Jul 01 02:33:07 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Wed Jan 22 16:28:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
DE‐AC02‐05CH11231
USDOE
ORCID 0000-0003-2037-4168
0000000320374168
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202104908
PQID 2589939982
PQPubID 2045203
PageCount 11
ParticipantIDs osti_scitechconnect_1822530
proquest_miscellaneous_2572939226
proquest_journals_2589939982
crossref_primary_10_1002_adma_202104908
crossref_citationtrail_10_1002_adma_202104908
wiley_primary_10_1002_adma_202104908_ADMA202104908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2003; 118
2002 2016; 124 28
2019; 10
1987; 70
2008; 7
1993 1996; 48 6
1970; 31
2011 2011; 133 23
2015; 108
2016 2006 2003 2017; 116 31 48 357
2020; 10
2008; 101
2012; 489
2008; 100
2018; 43
2012; 11
1952; 65
2018; 8
1997; 55
1999; 59
2011; 21
1999 2002; 41 297
2014; 7
2010; 4
2011 2019; 473 3
2006; 124
1987; 99
2014 2021; 508
2015; 6
2012 1996; 5 93
2015; 3
2020; 142
2019 2016 2016; 31 3 55
2017 2011 2017; 27 107 10
2005
2016; 128
2011 2012; 473 24
2011; 133
2017; 139
2014; 86
2014; 113
1955 1966 1970 1972; 46 17 1 9
2012 1969; 181
1988 2015; 37 108
2004; 93
2016; 3
2017; 10
2005; 127
2014 2015 2006; 113 114 97
2009; 2
1994; 50
2014; 185
1929; 51
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Xia Y. (e_1_2_8_33_1) 2020; 10
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_20_2
e_1_2_8_20_3
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_43_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Mott N. F. (e_1_2_8_40_1) 2012
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_30_3
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_2
e_1_2_8_39_2
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_2
e_1_2_8_37_1
Tritt T. M. (e_1_2_8_16_1) 2005
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_50_4
e_1_2_8_12_1
e_1_2_8_31_3
e_1_2_8_50_2
e_1_2_8_50_3
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 139
  start-page: 4350
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 7923
  year: 2016
  publication-title: Angew. Chem.
– volume: 10
  year: 2020
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 1668
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 118
  start-page: 8207
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 31
  start-page: 19
  year: 1970
  publication-title: J. Phys. Chem. Solids
– volume: 41 297
  start-page: 679 2229
  year: 1999 2002
  publication-title: Phys. Solid State Science
– year: 2005
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 669
  year: 2014
  publication-title: Rev. Mod. Phys.
– volume: 48 6
  start-page: 15
  year: 1993 1996
  publication-title: Phys. Rev. B Comput. Mater. Sci
– volume: 43
  start-page: 181
  year: 2018
  publication-title: MRS Bull.
– volume: 127
  start-page: 9177
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 124
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 181
  start-page: 1336
  year: 2012 1969
  publication-title: Phys. Rev.
– volume: 27 107 10
  start-page: 2638
  year: 2017 2011 2017
  publication-title: Adv. Funct. Mater. Phys. Rev. Lett. Energy Environ. Sci.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 133
  start-page: 7837
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 113 114 97
  year: 2014 2015 2006
  publication-title: Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 46 17 1 9
  start-page: 422 89 572 151
  year: 1955 1966 1970 1972
  publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci. Phys. Rev. Lett. Phys. Rev. B J. Low Temp. Phys.
– volume: 508
  start-page: 373
  year: 2014 2021
  publication-title: Nature Nat. Mater.
– volume: 51
  start-page: 1010
  year: 1929
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 185
  start-page: 1747
  year: 2014
  publication-title: Comput. Phys. Commun.
– volume: 473 3
  start-page: 66
  year: 2011 2019
  publication-title: Nature Phys. Rev. Mater.
– volume: 5 93
  start-page: 5510 7436
  year: 2012 1996
  publication-title: Energy Environ. Sci. Proc. Natl. Acad. Sci. U. S. A.
– volume: 116 31 48 357
  start-page: 188 45 1369
  year: 2016 2006 2003 2017
  publication-title: Chem. Rev. MRS Bull. Int. Mater. Rev. Science
– volume: 473 24
  start-page: 66 6125
  year: 2011 2012
  publication-title: Nature Adv. Mater.
– volume: 108
  start-page: 1
  year: 2015
  publication-title: Scr. Mater.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 422
  year: 2012
  publication-title: Nat. Mater.
– volume: 142
  start-page: 9553
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 124 28
  start-page: 2410 2463
  year: 2002 2016
  publication-title: J. Am. Chem. Soc. Chem. Mater.
– volume: 37 108
  start-page: 8958 239
  year: 1988 2015
  publication-title: Phys. Rev. B Comput. Mater. Sci.
– volume: 6
  start-page: 8144
  year: 2015
  publication-title: Nat. Commun.
– volume: 489
  start-page: 414
  year: 2012
  publication-title: Nature
– volume: 2
  start-page: 466
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 70
  start-page: 65
  year: 1987
  publication-title: J. Solid State Chem.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 31 3 55
  start-page: 6826
  year: 2019 2016 2016
  publication-title: Adv. Mater. Adv. Sci. Angew. Chem., Int. Ed.
– volume: 4
  start-page: 317
  year: 2010
  publication-title: Phys. Status Solidi R
– volume: 3
  start-page: 85
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 719
  year: 2019
  publication-title: Nat. Commun.
– volume: 65
  start-page: 349
  year: 1952
  publication-title: Proc. Phys. Soc., London, Sect. A
– volume: 7
  start-page: 2900
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 133 23
  start-page: 4163
  year: 2011 2011
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 55
  year: 1997
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 871
  year: 1987
  publication-title: Angew. Chem.
– volume: 7
  start-page: 811
  year: 2008
  publication-title: Nat. Mater.
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.6b00255
– ident: e_1_2_8_4_1
  doi: 10.1039/C1EE02612G
– ident: e_1_2_8_5_2
  doi: 10.1126/science.1072886
– ident: e_1_2_8_37_2
  doi: 10.1016/j.commatsci.2015.05.028
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_50_2
  doi: 10.1103/PhysRevLett.17.89
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevB.55.13605
– ident: e_1_2_8_31_2
  doi: 10.1103/PhysRevLett.107.235901
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201900108
– ident: e_1_2_8_2_4
  doi: 10.1126/science.aak9997
– ident: e_1_2_8_49_1
  doi: 10.1016/j.scriptamat.2015.07.021
– ident: e_1_2_8_40_2
  doi: 10.1103/PhysRev.181.1336
– volume: 10
  year: 2020
  ident: e_1_2_8_33_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_20_3
  doi: 10.1002/anie.201508381
– ident: e_1_2_8_2_3
  doi: 10.1179/095066003225010182
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.101.035901
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevLett.113.025506
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevB.37.8958
– ident: e_1_2_8_50_4
  doi: 10.1007/BF00654839
– ident: e_1_2_8_53_1
  doi: 10.1088/0370-1298/65/5/307
– ident: e_1_2_8_32_1
  doi: 10.1002/pssr.201004278
– ident: e_1_2_8_1_1
  doi: 10.1002/aenm.201702167
– ident: e_1_2_8_2_2
  doi: 10.1557/mrs2006.44
– ident: e_1_2_8_39_1
  doi: 10.1038/nature09996
– ident: e_1_2_8_39_2
  doi: 10.1103/PhysRevMaterials.3.025402
– ident: e_1_2_8_47_1
  doi: 10.1063/1.1564060
– ident: e_1_2_8_31_3
  doi: 10.1039/C7EE02677C
– ident: e_1_2_8_11_1
  doi: 10.1038/nature13184
– ident: e_1_2_8_30_2
  doi: 10.1103/PhysRevLett.114.095501
– ident: e_1_2_8_30_3
  doi: 10.1103/PhysRevLett.97.085901
– ident: e_1_2_8_35_1
  doi: 10.1039/c1jm11754h
– ident: e_1_2_8_21_1
  doi: 10.1021/jacs.7b01434
– ident: e_1_2_8_28_1
  doi: 10.1016/0022-4596(87)90178-2
– ident: e_1_2_8_52_1
  doi: 10.1016/j.cpc.2014.02.015
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevLett.100.136406
– ident: e_1_2_8_42_1
  doi: 10.1021/ja208658w
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-019-08542-1
– ident: e_1_2_8_8_1
  doi: 10.1039/b822664b
– ident: e_1_2_8_22_1
  doi: 10.1002/ange.201511737
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ensm.2016.01.009
– ident: e_1_2_8_50_1
  doi: 10.1080/14786440408520575
– volume-title: Electronic Processes in Non‐crystalline Materials
  year: 2012
  ident: e_1_2_8_40_1
– ident: e_1_2_8_41_1
  doi: 10.1039/C5TC01535A
– ident: e_1_2_8_48_1
  doi: 10.1063/1.2204597
– ident: e_1_2_8_15_1
  doi: 10.1021/ja017602i
– volume-title: Thermal Conductivity: Theory, Properties, and Applications
  year: 2005
  ident: e_1_2_8_16_1
– ident: e_1_2_8_23_1
  doi: 10.1021/jacs.0c03427
– ident: e_1_2_8_29_1
  doi: 10.1103/RevModPhys.86.669
– ident: e_1_2_8_11_2
  doi: 10.1038/s41563-021-01064-6
– ident: e_1_2_8_14_1
  doi: 10.1021/ja111199y
– ident: e_1_2_8_10_1
  doi: 10.1103/PhysRevLett.93.146403
– ident: e_1_2_8_6_1
  doi: 10.1557/mrs.2018.7
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevLett.113.185501
– ident: e_1_2_8_4_2
  doi: 10.1073/pnas.93.15.7436
– ident: e_1_2_8_18_1
  doi: 10.1038/nmat2273
– ident: e_1_2_8_20_2
  doi: 10.1002/advs.201600196
– ident: e_1_2_8_50_3
  doi: 10.1103/PhysRevB.1.572
– ident: e_1_2_8_36_1
  doi: 10.1021/ja01379a006
– ident: e_1_2_8_43_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms9144
– ident: e_1_2_8_26_1
  doi: 10.1039/C4EE00997E
– ident: e_1_2_8_19_1
  doi: 10.1038/nmat3273
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevB.48.13115
– ident: e_1_2_8_24_1
  doi: 10.1002/ange.19870990907
– ident: e_1_2_8_9_1
  doi: 10.1038/nature11439
– ident: e_1_2_8_13_1
  doi: 10.1039/C7EE01193H
– ident: e_1_2_8_3_1
  doi: 10.1038/nature09996
– ident: e_1_2_8_34_1
  doi: 10.1016/0022-3697(70)90284-2
– ident: e_1_2_8_5_1
  doi: 10.1134/1.1130849
– ident: e_1_2_8_3_2
  doi: 10.1002/adma.201202919
– ident: e_1_2_8_7_1
  doi: 10.1021/ja051653o
– ident: e_1_2_8_15_2
  doi: 10.1021/acs.chemmater.6b01002
– ident: e_1_2_8_42_2
  doi: 10.1002/adma.201102450
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201604145
SSID ssj0009606
Score 2.5481925
Snippet The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2104908
SubjectTerms Acoustic velocity
Anharmonicity
Atomic properties
Bonding strength
chalcogenides
Chemical bonds
Conductivity
Electrical resistivity
Electronic structure
Electrons
Energy conversion
Entanglement
Figure of merit
Heat conductivity
Heat transfer
Materials science
narrow‐gap semiconductors
Phonons
Power factor
Seebeck effect
Tetrahedra
Thermal conductivity
Thermoelectric materials
Valence band
Title Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104908
https://www.proquest.com/docview/2589939982
https://www.proquest.com/docview/2572939226
https://www.osti.gov/biblio/1822530
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclT-vDPtqNue2KBoW9zG0iW470GLKGMkgf2gb6JnT6GGXBLm3CYH_97uTETQZlsD7ZRhKWpbvzT9Ld7xg7ka7SCgY-lyWF5FR2kGsthrmDYbQlxKLvKVB4elldzMrvt_J2I4q_5YfoNtxIM5K9JgW38Hj2RBpqfeINwiULnV2hESaHLUJFV0_8UQTPE9leIXNdlWrN2tgXZ9vNt_5KvQa1awtxbuLW9OOZvGF23eXW3-Tn6XIBp-73X2yOL_mmt-z1CpXyUStG79hOqPfY7gZX4T5rZnPaFGl-cZQstOZzPm5qIotN2Se-8hTJC7b2_LzLrMOvEzvt8iFwKiCfkrZ102bfwRqTux9U3EQ-xRct-F3Nb-bj5XV4z2aT85vxRb7K1pC7UqHVjCIOow-o7zHYQoNSoKRWhEC0gAgRr6XVA-uk9xC0txptSQU-KOiDisUH1qubOnxkHO0E8STGUklbRjmEitYADoQVIjhrM5avZ8u4FZU5ZdSYm5aEWRgaSNMNZMa-dPXvWxKPZ2se0uQbhB_EoevI2cgtDC7ChCz6GTtay4RZqfqjERKXrAjzlMjY564YlZROXmwdmiXVwf4jEhVVxkQSgH_0w4y-TUfd08H_NDpkr-i-jZs8Yj2c8PAJAdQCjpOS_AHVPhKU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BOQAH3oiwCxgJiQvZbZ04tY9V2arAdg9sK3Gz_EQrqgRBKyR-PTNOk90iISQ4RYnHimN7Jt_Ynm8AXglXKWlHPhclheRUZpQrxce5s-NoShuLoadA4cVZNV-V7z-J7jQhxcK0_BD9ghtpRrLXpOC0IH18yRpqfCIOQp-FNq-uww1K6528qo-XDFIE0BPdXiFyVZWy420c8uP9-nv_pUGD-rWHOa8i1_Trmd0F2zW6PXHy5Wi7sUfu5298jv_1Vffgzg6Yskk7k-7DtVA_gNtX6AofQrNa07pI84Ph5EKDvmbTpia-2JSA4g1LwbzW1J6d9Ml12HkiqN1-C4wK6FhJW7tpE_CgxOziMxU3kS3wRRt2UbPlero9D49gNTtZTuf5LmFD7kqJhjPyOI4-oMrHYAplpbRSKEkgRHEbbcRradTIOOG9Dcobheaksj5IO7QyFo9hUDd1eAIMTQVRJcZSClNGMbYVuQHOcsN5cMZkkHfDpd2OzZySaqx1y8PMNXWk7jsyg9e9_NeWx-OPkgc0-hoRCNHoOjpv5DYa_TAuimEGh92k0Dtt_665QK8VkZ7kGbzsi1FPafPF1KHZkgy2H8EorzLgaQb8pR168nYx6e-e_kulF3Bzvlyc6tN3Zx8O4BY9b8MoD2GAgx-eIZ7a2OdJY34B93UWrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2DMb2sO6rzGvXaTDYy9w6suVIjyFp6D5SxtpA34Q-R1mwy5Yw2F_fOztxk8EYdE_GloRl6e78O0n3O4C3wpVK2r5PRUEhOaXpp0rxQersIJrCxjzzFCg8PS1PZsXHC3GxEcXf8kN0C26kGY29JgW_8vHohjTU-IY3CF0W2ru6C_eKMpMk1-OvNwRShM8btr1cpKos5Jq2MeNH2-23fku9GtVrC3JuAtfmzzPZAbPuc3vg5PvhcmEP3e8_6Bz_56Mew6MVLGXDVo6ewJ1QPYWHG2SFz6CezWlVpP7FULTQnM_ZqK6ILbZJP_GeNaG81lSeHXepddhZQ0-7_BEYFdChkrZ13abfwRqTy29UXEc2xRct2GXFzuej5Vl4DrPJ8fnoJF2la0hdIdFsRh4H0QdU-BhMrqyUVgolCYIobqONeC2M6hsnvLdBeaPQmJTWB2kzK2O-C72qrsILYGgoiCgxFlKYIoqBLckJcJYbzoMzJoF0PVvarbjMKaXGXLcszFzTQOpuIBN419W_alk8_lpzjyZfI_4gEl1Hp43cQqMXxkWeJbC_lgm90vWfmgv0WRHnSZ7Am64YtZS2XkwV6iXVwf4jFOVlArwRgH_0Qw_H02F39_I2jV7D_S_jif784fTTHjygx20M5T70cO7DKwRTC3vQ6Ms1uUoVZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultralow+Thermal+Conductivity%2C+Multiband+Electronic+Structure+and+High+Thermoelectric+Figure+of+Merit+in+TlCuSe&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lin%2C+Wenwen&rft.au=He%2C+Jiangang&rft.au=Su%2C+Xianli&rft.au=Zhang%2C+Xiaomi&rft.date=2021-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=44&rft_id=info:doi/10.1002%2Fadma.202104908&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202104908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon