Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men

Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men Ulf Risérus 1 , Dennis Sprecher 2 , Tony Johnson 2 , Eric Olson 2 , Sandra Hirschberg 2 , Aixue...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 57; no. 2; pp. 332 - 339
Main Authors Risérus, Ulf, Sprecher, Dennis, Johnson, Tony, Olson, Eric, Hirschberg, Sandra, Liu, Aixue, Fang, Zeke, Hegde, Priti, Richards, Duncan, Sarov-Blat, Leli, Strum, Jay C., Basu, Samar, Cheeseman, Jane, Fielding, Barbara A., Humphreys, Sandy M., Danoff, Theodore, Moore, Niall R., Murgatroyd, Peter, O'Rahilly, Stephen, Sutton, Pauline, Willson, Tim, Hassall, David, Frayn, Keith N., Karpe, Fredrik
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men Ulf Risérus 1 , Dennis Sprecher 2 , Tony Johnson 2 , Eric Olson 2 , Sandra Hirschberg 2 , Aixue Liu 3 , Zeke Fang 4 , Priti Hegde 5 , Duncan Richards 6 , Leli Sarov-Blat 5 , Jay C. Strum 5 , Samar Basu 7 , Jane Cheeseman 1 , Barbara A. Fielding 1 , Sandy M. Humphreys 1 , Theodore Danoff 3 , Niall R. Moore 8 , Peter Murgatroyd 9 , Stephen O'Rahilly 10 , Pauline Sutton 1 , Tim Willson 11 , David Hassall 12 , Keith N. Frayn 1 and Fredrik Karpe 1 1 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K 2 Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 3 Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 4 Statistics, GlaxoSmithKline, King of Prussia, Pennsylvania 5 Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania 6 Addenbrooke's Centre for Clinical Investigation (ACCI) Unit, GlaxoSmithKline, Cambridge, U.K 7 Department of Public Health, University of Uppsala, Uppsala, Sweden 8 Department of Radiology, Churchill Hospital, University of Oxford, Oxford, U.K 9 Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, U.K 10 Department of Clinical Biochemistry and Medicine, University of Cambridge, Cambridge, U.K 11 GlaxoSmithKline, Research Triangle Park, North Carolina 12 GlaxoSmithKline, Stevenage, U.K Address correspondence and reprint requests to Dr. F. Karpe, Churchill Hospital, Oxford OX3 7LJ, U.K. E-mail: fredrik.karpe{at}ocdem.ox.ac.uk Abstract OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS— The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 μg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS— Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (−30%), apolipoprotein B (−26%), LDL cholesterol (−23%), and insulin (−11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content ( P < 0.05) and 30% reduction in urinary isoprostanes ( P = 0.01) were also observed. Except for a lowering of triglycerides (−30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO 2 directly originating from the fat content of the meal was increased ( P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b ( CPT1b ) was also significantly increased. CONCLUSIONS— The PPARδ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. Apo, apolipoprotein AST, aspartate aminotransferase AUC, area under the curve γGT, γ-glutamyltransferase LCM, laser capture microdissection LPL, lipoprotein lipase MRI, magnetic resonance imaging NEFA, nonesterified fatty acid TTR, tracer-to-tracee ratio Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 16 November 2007. DOI: 10.2337/db07-1318. U.R. and D.S. contributed equally to this work. Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-1318 . The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted November 10, 2007. Received September 14, 2007. DIABETES
AbstractList Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. The PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. The PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.
Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men Ulf Risérus 1 , Dennis Sprecher 2 , Tony Johnson 2 , Eric Olson 2 , Sandra Hirschberg 2 , Aixue Liu 3 , Zeke Fang 4 , Priti Hegde 5 , Duncan Richards 6 , Leli Sarov-Blat 5 , Jay C. Strum 5 , Samar Basu 7 , Jane Cheeseman 1 , Barbara A. Fielding 1 , Sandy M. Humphreys 1 , Theodore Danoff 3 , Niall R. Moore 8 , Peter Murgatroyd 9 , Stephen O'Rahilly 10 , Pauline Sutton 1 , Tim Willson 11 , David Hassall 12 , Keith N. Frayn 1 and Fredrik Karpe 1 1 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K 2 Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 3 Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 4 Statistics, GlaxoSmithKline, King of Prussia, Pennsylvania 5 Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania 6 Addenbrooke's Centre for Clinical Investigation (ACCI) Unit, GlaxoSmithKline, Cambridge, U.K 7 Department of Public Health, University of Uppsala, Uppsala, Sweden 8 Department of Radiology, Churchill Hospital, University of Oxford, Oxford, U.K 9 Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, U.K 10 Department of Clinical Biochemistry and Medicine, University of Cambridge, Cambridge, U.K 11 GlaxoSmithKline, Research Triangle Park, North Carolina 12 GlaxoSmithKline, Stevenage, U.K Address correspondence and reprint requests to Dr. F. Karpe, Churchill Hospital, Oxford OX3 7LJ, U.K. E-mail: fredrik.karpe{at}ocdem.ox.ac.uk Abstract OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS— The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 μg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS— Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (−30%), apolipoprotein B (−26%), LDL cholesterol (−23%), and insulin (−11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content ( P < 0.05) and 30% reduction in urinary isoprostanes ( P = 0.01) were also observed. Except for a lowering of triglycerides (−30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO 2 directly originating from the fat content of the meal was increased ( P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b ( CPT1b ) was also significantly increased. CONCLUSIONS— The PPARδ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. Apo, apolipoprotein AST, aspartate aminotransferase AUC, area under the curve γGT, γ-glutamyltransferase LCM, laser capture microdissection LPL, lipoprotein lipase MRI, magnetic resonance imaging NEFA, nonesterified fatty acid TTR, tracer-to-tracee ratio Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 16 November 2007. DOI: 10.2337/db07-1318. U.R. and D.S. contributed equally to this work. Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-1318 . The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted November 10, 2007. Received September 14, 2007. DIABETES
Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans.OBJECTIVEPharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans.The PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress.RESEARCH DESIGN AND METHODSThe PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress.Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased.RESULTSTreatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased.The PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.CONCLUSIONSThe PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.
OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS— The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 μg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS— Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (−30%), apolipoprotein B (−26%), LDL cholesterol (−23%), and insulin (−11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (−30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO2 directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS— The PPARδ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.
OBJECTIEVE-Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPAR delta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS-The PPAR delta agonist (10 mg o.d. GW501516), a comparator PPAR alpha agonist (20 mu g o.d. GW590735)), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS-Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P &lt; 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P &lt; 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO, directly originating from the fat content of the meal was increased (P &lt; 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS-The PPAR delta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.
OBJECTIVE--Pharmacological use of peroxisome proliferator-activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS--The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 µg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS--Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled C[O.sub.2] directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS--The PPARδ agonist GWb01516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.
Audience Professional
Author Peter Murgatroyd
Barbara A. Fielding
Leli Sarov-Blat
Jay C. Strum
Jane Cheeseman
Sandy M. Humphreys
David Hassall
Duncan Richards
Pauline Sutton
Niall R. Moore
Sandra Hirschberg
Theodore Danoff
Tony Johnson
Fredrik Karpe
Eric Olson
Zeke Fang
Ulf Risérus
Dennis Sprecher
Priti Hegde
Stephen O'Rahilly
Samar Basu
Aixue Liu
Keith N. Frayn
Tim Willson
Author_xml – sequence: 1
  givenname: Ulf
  surname: Risérus
  fullname: Risérus, Ulf
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
– sequence: 2
  givenname: Dennis
  surname: Sprecher
  fullname: Sprecher, Dennis
  organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 3
  givenname: Tony
  surname: Johnson
  fullname: Johnson, Tony
  organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 4
  givenname: Eric
  surname: Olson
  fullname: Olson, Eric
  organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 5
  givenname: Sandra
  surname: Hirschberg
  fullname: Hirschberg, Sandra
  organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 6
  givenname: Aixue
  surname: Liu
  fullname: Liu, Aixue
  organization: Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 7
  givenname: Zeke
  surname: Fang
  fullname: Fang, Zeke
  organization: Statistics, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 8
  givenname: Priti
  surname: Hegde
  fullname: Hegde, Priti
  organization: Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 9
  givenname: Duncan
  surname: Richards
  fullname: Richards, Duncan
  organization: Addenbrooke's Centre for Clinical Investigation (ACCI) Unit, GlaxoSmithKline, Cambridge, U.K
– sequence: 10
  givenname: Leli
  surname: Sarov-Blat
  fullname: Sarov-Blat, Leli
  organization: Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 11
  givenname: Jay C.
  surname: Strum
  fullname: Strum, Jay C.
  organization: Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 12
  givenname: Samar
  surname: Basu
  fullname: Basu, Samar
  organization: Department of Public Health, University of Uppsala, Uppsala, Sweden
– sequence: 13
  givenname: Jane
  surname: Cheeseman
  fullname: Cheeseman, Jane
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
– sequence: 14
  givenname: Barbara A.
  surname: Fielding
  fullname: Fielding, Barbara A.
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
– sequence: 15
  givenname: Sandy M.
  surname: Humphreys
  fullname: Humphreys, Sandy M.
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
– sequence: 16
  givenname: Theodore
  surname: Danoff
  fullname: Danoff, Theodore
  organization: Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania
– sequence: 17
  givenname: Niall R.
  surname: Moore
  fullname: Moore, Niall R.
  organization: Department of Radiology, Churchill Hospital, University of Oxford, Oxford, U.K
– sequence: 18
  givenname: Peter
  surname: Murgatroyd
  fullname: Murgatroyd, Peter
  organization: Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, U.K
– sequence: 19
  givenname: Stephen
  surname: O'Rahilly
  fullname: O'Rahilly, Stephen
  organization: Department of Clinical Biochemistry and Medicine, University of Cambridge, Cambridge, U.K
– sequence: 20
  givenname: Pauline
  surname: Sutton
  fullname: Sutton, Pauline
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
– sequence: 21
  givenname: Tim
  surname: Willson
  fullname: Willson, Tim
  organization: GlaxoSmithKline, Research Triangle Park, North Carolina
– sequence: 22
  givenname: David
  surname: Hassall
  fullname: Hassall, David
  organization: GlaxoSmithKline, Stevenage, U.K
– sequence: 23
  givenname: Keith N.
  surname: Frayn
  fullname: Frayn, Keith N.
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
– sequence: 24
  givenname: Fredrik
  surname: Karpe
  fullname: Karpe, Fredrik
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20181212$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18024853$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-15746$$DView record from Swedish Publication Index
BookMark eNptkstu1DAUhiNURC-w4AVQNiAKpPUlmWSWUaGlUqsZlYvYWY59PDVy4sF22pkd78Cr8BzwDjwJDjNtVTTyIpHP9_8-Pv53k63OdpAkTzE6IJSWh7JBZYYprh4kO3hMxxkl5ZetZAchTDJcjsvtZNf7rwihUVyPkm1cIZJXBd1Jftci6CsetO1Sq9IpOLvQ3raQTp01WoHjwbo_33-sOZDpBQiYx8305XRaX-z_-jmgrQ3gY-kKnOdmsDrvTdBzA-k5BN5EL5HWTWddy40OGvybSMteRNVkoWXs4ArSD8GBjxXeyfS0Ew64j_VjHsIyrYWWN2hsVnfpuZVDe2CW6aQBP5zUPU4eKm48PFl_95JPx-8-Hr3PziYnp0f1WSbyilaZQoA4bZoxR0RJhRAQhQoYIZUXmIyqAuVj1UCJi5LiUqqKN7ICMmogFwKPgO4lr1e-_hrmfcPmTrfcLZnlmr3Vn2tm3Yz1PYsG-SjSL1b03NlvPfjAWu0FGMM7sL1nZXwOVIwHMFuBM26A6U7Z4LiYQRcvauKjKx23a1xWJc5RRSN_sIGPS0KrxUbB_j1BZAIswoz33rPq5Ow-m21ihTUGZsDiPI8m9_ln61v2TQvydiY3aYvA8zXAveBGOd4J7W85gnCFCSZ3TQpnvXeg7qwQGxLPhsSzIfGRPfyPFTr8i0ichDYbFa9Wiks9u7zWDpjUvIGY37ufomSEUUroXw1TE64
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1038_nrendo_2016_135
crossref_primary_10_1038_srep34317
crossref_primary_10_1002_bmc_5032
crossref_primary_10_3390_ph14050435
crossref_primary_10_1016_j_molmet_2017_12_008
crossref_primary_10_1155_2008_230893
crossref_primary_10_5507_tk_2020_010
crossref_primary_10_1016_j_jcmgh_2019_04_007
crossref_primary_10_1186_s12967_023_04367_1
crossref_primary_10_1152_ajpendo_00620_2009
crossref_primary_10_3748_wjg_v30_i28_3428
crossref_primary_10_1111_bph_12950
crossref_primary_10_1016_j_mam_2016_03_001
crossref_primary_10_1016_j_freeradbiomed_2016_02_005
crossref_primary_10_5633_amm_2011_0211
crossref_primary_10_1124_pr_109_001560
crossref_primary_10_1517_17460440902821640
crossref_primary_10_3390_cells9071638
crossref_primary_10_1038_s41419_019_1458_8
crossref_primary_10_1177_17562848231170946
crossref_primary_10_1016_j_tem_2012_03_001
crossref_primary_10_1124_jpet_116_233106
crossref_primary_10_1186_s12944_017_0472_z
crossref_primary_10_1016_j_arteri_2011_11_002
crossref_primary_10_1038_cr_2010_13
crossref_primary_10_3390_ijms19071893
crossref_primary_10_1002_hep4_1072
crossref_primary_10_1016_j_jgr_2022_11_006
crossref_primary_10_3390_cells11172635
crossref_primary_10_1266_ggs_87_253
crossref_primary_10_1042_CS20160518
crossref_primary_10_1097_MOL_0b013e32832402a2
crossref_primary_10_1016_j_jceh_2019_06_004
crossref_primary_10_1111_1755_5922_12166
crossref_primary_10_1155_2021_6889533
crossref_primary_10_1038_nm_2882
crossref_primary_10_1016_j_bbalip_2025_159599
crossref_primary_10_1016_j_lfs_2013_10_022
crossref_primary_10_1016_j_plipres_2014_07_002
crossref_primary_10_1152_ajpheart_00761_2013
crossref_primary_10_1186_gb_2011_12_8_r75
crossref_primary_10_1155_2012_107434
crossref_primary_10_1126_scitranslmed_aad8390
crossref_primary_10_1016_j_metabol_2021_154892
crossref_primary_10_3390_ijms22105375
crossref_primary_10_1016_j_ejphar_2009_09_053
crossref_primary_10_1097_MOL_0b013e32832dd4b1
crossref_primary_10_3389_fphys_2017_01044
crossref_primary_10_1126_sciadv_abc1586
crossref_primary_10_15406_jdmdc_2021_08_00216
crossref_primary_10_1016_j_freeradbiomed_2013_08_163
crossref_primary_10_1016_j_jacl_2018_08_003
crossref_primary_10_1097_FJC_0000000000000580
crossref_primary_10_1136_gutjnl_2016_312431
crossref_primary_10_3390_nu12113476
crossref_primary_10_1080_13543784_2020_1703949
crossref_primary_10_1016_j_bmc_2014_12_013
crossref_primary_10_1172_JCI42127
crossref_primary_10_1002_hep_22505
crossref_primary_10_1093_toxsci_kfn142
crossref_primary_10_1053_j_gastro_2020_01_051
crossref_primary_10_1016_j_cmet_2008_02_006
crossref_primary_10_1038_ijo_2017_197
crossref_primary_10_5483_BMBRep_2014_47_11_174
crossref_primary_10_1007_s00125_008_1040_x
crossref_primary_10_1152_ajpregu_00052_2022
crossref_primary_10_1177_1074248410362891
crossref_primary_10_1371_journal_pone_0007046
crossref_primary_10_1002_ddr_20358
crossref_primary_10_1186_s12263_016_0521_4
crossref_primary_10_3390_ijms22094495
crossref_primary_10_2337_dc12_2012
crossref_primary_10_1002_hep_22630
crossref_primary_10_1038_nrd4023
crossref_primary_10_1124_jpet_109_159806
crossref_primary_10_1186_s12891_022_05572_7
crossref_primary_10_3390_ijms19041197
crossref_primary_10_1016_j_jhep_2017_10_015
crossref_primary_10_1016_j_freeradbiomed_2011_09_031
crossref_primary_10_1007_s11883_013_0309_9
crossref_primary_10_1007_s40261_019_00779_4
crossref_primary_10_1152_ajpendo_00508_2010
crossref_primary_10_1021_acs_est_7b02752
crossref_primary_10_1089_gtmb_2015_0002
crossref_primary_10_1016_j_cct_2020_106170
crossref_primary_10_1111_liv_13302
crossref_primary_10_1161_ATVBAHA_113_302777
crossref_primary_10_1016_j_atherosclerosis_2013_08_027
crossref_primary_10_1186_s12950_020_00264_2
crossref_primary_10_2337_db23_0432
crossref_primary_10_12677_acm_2024_1441345
crossref_primary_10_2337_db12_0117
crossref_primary_10_1111_j_1463_1326_2011_01371_x
crossref_primary_10_1039_c2ay00030j
crossref_primary_10_1007_s12272_019_01178_1
crossref_primary_10_1038_s41392_022_01119_3
crossref_primary_10_1111_micc_12020
crossref_primary_10_1126_scitranslmed_aav9701
crossref_primary_10_1253_circj_CJ_13_0647
crossref_primary_10_3390_ijms22158298
crossref_primary_10_1177_1479164114548027
crossref_primary_10_1155_2008_164163
crossref_primary_10_1002_tox_22097
crossref_primary_10_1586_14779072_2014_888312
crossref_primary_10_1002_hep_26461
crossref_primary_10_1155_2019_6740616
crossref_primary_10_1016_j_freeradbiomed_2019_01_026
crossref_primary_10_1016_j_cmet_2013_12_009
crossref_primary_10_1111_dom_12277
crossref_primary_10_2337_dc11_0093
crossref_primary_10_3109_13813455_2015_1118128
crossref_primary_10_1016_j_pharmthera_2009_12_001
crossref_primary_10_1016_j_pharmthera_2009_06_011
crossref_primary_10_1007_s11010_010_0520_8
crossref_primary_10_1155_2008_172676
crossref_primary_10_1093_hmg_ddr265
crossref_primary_10_1007_s12325_016_0306_9
crossref_primary_10_1016_j_canlet_2024_216937
crossref_primary_10_1007_s40256_017_0220_9
crossref_primary_10_1016_j_plipres_2016_09_001
crossref_primary_10_1002_wsbm_137
crossref_primary_10_1152_physrev_00027_2013
crossref_primary_10_1155_2008_285842
crossref_primary_10_17816_mechnikov201810437_42
crossref_primary_10_1186_s12902_021_00687_9
crossref_primary_10_1016_j_metabol_2012_04_015
crossref_primary_10_1210_me_2010_0392
crossref_primary_10_1007_s12170_010_0080_1
crossref_primary_10_1210_en_2009_1192
crossref_primary_10_1515_HMBCI_2010_076
crossref_primary_10_1155_2012_757803
crossref_primary_10_1210_jc_2011_1131
crossref_primary_10_3164_jcbn_10_139
crossref_primary_10_1007_s11901_016_0300_3
crossref_primary_10_1038_clpt_2010_55
crossref_primary_10_3109_13813455_2013_829105
crossref_primary_10_1111_liv_14423
crossref_primary_10_1016_j_atherosclerosis_2011_10_029
crossref_primary_10_1089_ars_2008_2280
crossref_primary_10_3389_fphys_2020_00677
crossref_primary_10_1016_j_jhepr_2023_100845
crossref_primary_10_1210_er_2009_0003
crossref_primary_10_1007_s13277_016_5305_6
crossref_primary_10_1097_MOL_0b013e3283462e16
crossref_primary_10_1111_j_1476_5381_2012_02081_x
crossref_primary_10_1016_j_ddmec_2009_02_002
crossref_primary_10_1038_nrm3772
crossref_primary_10_1016_j_bcp_2015_06_032
crossref_primary_10_1111_j_1463_1326_2008_00958_x
crossref_primary_10_1007_s40265_013_0078_3
crossref_primary_10_1097_MOL_0b013e32833884a4
crossref_primary_10_1039_D4CP01002G
crossref_primary_10_11131_2017_101310
crossref_primary_10_1096_fj_201902537R
crossref_primary_10_1093_jnci_dju052
crossref_primary_10_1111_j_1365_2265_2011_04244_x
crossref_primary_10_1021_jm900464j
crossref_primary_10_1172_jci_insight_122289
crossref_primary_10_2174_1871529X19666190114155302
crossref_primary_10_2337_dc11_0840
crossref_primary_10_1007_s12263_012_0329_z
crossref_primary_10_2217_fca_10_86
crossref_primary_10_2337_dcS13_2003
crossref_primary_10_3389_fendo_2023_1193373
crossref_primary_10_3390_cells9071708
crossref_primary_10_1089_rej_2013_1485
crossref_primary_10_1093_cvr_cvp365
crossref_primary_10_3389_fphar_2020_00730
crossref_primary_10_1016_j_biochi_2016_11_009
crossref_primary_10_1021_acs_jmedchem_9b01882
crossref_primary_10_1155_2012_546548
crossref_primary_10_1371_journal_pone_0034895
crossref_primary_10_1002_bmc_4006
crossref_primary_10_1016_j_clinre_2024_102343
crossref_primary_10_1152_ajpregu_00163_2020
crossref_primary_10_1016_j_cell_2009_05_036
crossref_primary_10_2337_dc11_1027
crossref_primary_10_3390_cancers13143473
crossref_primary_10_1152_ajpregu_00431_2009
crossref_primary_10_1016_j_yjmcc_2022_04_019
crossref_primary_10_1016_j_arteri_2013_01_001
crossref_primary_10_1016_j_jep_2019_03_006
crossref_primary_10_1016_j_nutres_2015_05_006
crossref_primary_10_1042_CS20080022
crossref_primary_10_3390_ph16060850
crossref_primary_10_1155_2016_7403230
crossref_primary_10_1053_j_gastro_2016_01_038
crossref_primary_10_3390_ijerph16224334
crossref_primary_10_1016_j_atherosclerosissup_2008_05_013
crossref_primary_10_1093_jn_nxz240
crossref_primary_10_1111_j_1476_5381_2011_01240_x
crossref_primary_10_2174_1389200219666180611083155
crossref_primary_10_1016_j_ando_2012_09_002
crossref_primary_10_1016_j_jcmgh_2021_01_012
crossref_primary_10_1517_13543784_2014_954034
crossref_primary_10_1016_j_bmcl_2010_10_083
crossref_primary_10_1096_fj_13_238071
crossref_primary_10_1002_dmrr_899
crossref_primary_10_1517_14728222_2012_658370
crossref_primary_10_1016_j_bbrc_2024_150158
crossref_primary_10_1089_met_2008_0079
crossref_primary_10_1007_s40200_018_0378_y
crossref_primary_10_1016_j_bcp_2015_01_016
crossref_primary_10_1007_s00125_009_1420_x
crossref_primary_10_1016_j_yjmcc_2009_02_001
crossref_primary_10_1042_CS20150246
crossref_primary_10_1016_j_tips_2012_05_005
crossref_primary_10_3390_ijms20205055
crossref_primary_10_4196_kjpp_2011_15_2_83
crossref_primary_10_1161_ATVBAHA_112_247890
crossref_primary_10_1016_j_bbalip_2025_159604
crossref_primary_10_1111_dom_14090
crossref_primary_10_1093_hmg_ddv444
crossref_primary_10_1155_2010_368467
crossref_primary_10_1002_cbdv_202401598
crossref_primary_10_1016_j_bbrc_2009_12_127
crossref_primary_10_1210_en_2009_1211
crossref_primary_10_4093_dmj_2020_0115
crossref_primary_10_1016_j_tem_2016_02_008
crossref_primary_10_3390_molecules24142545
crossref_primary_10_1016_j_expneurol_2010_03_022
crossref_primary_10_1080_10408398_2022_2146044
crossref_primary_10_1016_j_metabol_2020_154342
crossref_primary_10_1155_2012_304760
crossref_primary_10_1097_SPV_0b013e31828746e9
crossref_primary_10_1007_s00125_010_1663_6
crossref_primary_10_1097_HJH_0000000000000634
crossref_primary_10_1111_j_1476_5381_2011_01359_x
crossref_primary_10_1097_MOL_0b013e32835cc949
crossref_primary_10_1161_ATVBAHA_107_160192
crossref_primary_10_18585_inabj_v1i1_79
crossref_primary_10_1155_2015_927057
crossref_primary_10_1016_j_mce_2009_09_014
crossref_primary_10_1517_14656566_2014_876992
crossref_primary_10_1016_j_cld_2013_09_005
crossref_primary_10_2217_17460875_3_5_531
crossref_primary_10_3390_cells9010037
crossref_primary_10_1517_13543784_2015_1006359
crossref_primary_10_1096_fj_201800081R
crossref_primary_10_3389_fendo_2020_00062
crossref_primary_10_1186_1475_2840_12_17
crossref_primary_10_3389_fendo_2021_681356
crossref_primary_10_1172_JCI88894
crossref_primary_10_3390_ijms19030913
crossref_primary_10_1016_j_bbalip_2011_10_016
crossref_primary_10_1007_s11033_014_3079_8
crossref_primary_10_1002_hep4_1057
crossref_primary_10_1152_ajpheart_00155_2016
crossref_primary_10_1089_met_2022_0069
crossref_primary_10_1152_physrev_00015_2009
crossref_primary_10_4137_CMT_S18885
crossref_primary_10_1038_s41467_022_30392_7
crossref_primary_10_1016_j_metabol_2009_06_003
crossref_primary_10_1016_j_molmed_2013_07_002
crossref_primary_10_1016_j_clinthera_2015_08_001
crossref_primary_10_1517_13543784_17_10_1465
Cites_doi 10.1152/ajpendo.00430.2005
10.1080/10715760310001646895
10.1016/j.amjmed.2006.01.009
10.2337/diabetes.51.3.797
10.1194/jlr.M400400-JLR200
10.1056/NEJM199411033311803
10.1016/0021-9150(93)90067-5
10.1001/jama.285.19.2486
10.1016/S0009-9236(03)00170-X
10.1016/S0092-8674(03)00269-1
10.1073/pnas.0511253103
10.1172/JCI117717
10.1172/JCI111643
10.1021/jm058056x
10.1007/s00125-002-0873-y
10.1016/0026-0495(95)90115-9
10.1056/NEJMra041001
10.1097/01.mol.0000174401.07056.56
10.1016/0026-0495(77)90053-1
10.1080/07853890510037383
10.1007/s11745-005-1460-7
10.1016/S0021-9150(00)00409-3
10.1161/01.ATV.0000252790.70572.0c
10.1038/ncpgasthep0084
10.1073/pnas.091021198
10.1038/sj.ijo.0802853
10.2337/diacare.24.4.710
10.1371/journal.pbio.0020294
10.1016/S0022-2275(20)41090-9
10.1007/s00125-004-1619-9
10.1111/j.1399-543X.2004.00071.x
10.1172/JCI118118
10.1073/pnas.0306981100
10.7326/0003-4819-128-3-199802010-00002
10.1007/BF00280883
10.2337/diabetes.51.9.2684
10.1016/S0140-6736(06)69420-8
10.1016/S0952-3278(98)90042-4
10.2337/diabetes.53.8.2169
10.1038/sj.ijo.0800400
10.1007/s00125-005-0125-z
10.2337/diabetes.52.6.1364
10.1016/S0021-9150(96)05955-2
10.2337/diabetes.51.12.3479
10.1210/me.2003-0151
10.1016/0026-0495(89)90086-3
10.1016/0021-9150(93)90086-A
ContentType Journal Article
Copyright 2008 INIST-CNRS
COPYRIGHT 2008 American Diabetes Association
Copyright_xml – notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2008 American Diabetes Association
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
7X8
ADTPV
AOWAS
DF2
DOI 10.2337/db07-1318
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: College
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 339
ExternalDocumentID oai_DiVA_org_uu_15746
A178714083
18024853
20181212
10_2337_db07_1318
diabetes_57_2_332
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O5R
O5S
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
354
6PF
AAFWJ
AAKAS
AAYOK
AAYXX
ACGFO
ADGHP
ADZCM
AEGXH
AERZD
AIAGR
AIZAD
ALIPV
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
1CY
8F7
AFFNX
AI.
IQODW
J5H
MVM
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c4838-f0e0a3bb9a02fdf00e2f05e60f4512685049fbe7157317df8abd8e26be4cc16e3
ISSN 0012-1797
1939-327X
IngestDate Thu Aug 21 06:40:11 EDT 2025
Tue Aug 05 09:50:12 EDT 2025
Fri Jun 13 00:49:31 EDT 2025
Tue Jun 10 21:30:13 EDT 2025
Fri Jun 27 06:00:07 EDT 2025
Tue Jun 10 20:05:33 EDT 2025
Thu Apr 03 07:06:39 EDT 2025
Mon Jul 21 09:11:13 EDT 2025
Tue Jul 01 03:03:58 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Fri Jan 15 19:45:56 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Endocrinopathy
Human
Obesity
Oxidative stress
Diabetes mellitus
Nutrition disorder
Lipids
Oxidation
Fatty acids
Nutritional status
Peroxisome proliferator activated receptor
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4838-f0e0a3bb9a02fdf00e2f05e60f4512685049fbe7157317df8abd8e26be4cc16e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://diabetes.diabetesjournals.org/content/diabetes/57/2/332.full.pdf
PMID 18024853
PQID 70240596
PQPubID 23479
PageCount 8
ParticipantIDs pubmed_primary_18024853
gale_infotracacademiconefile_A178714083
pascalfrancis_primary_20181212
swepub_primary_oai_DiVA_org_uu_15746
gale_incontextcollege_GICCO_A178714083
gale_infotracgeneralonefile_A178714083
crossref_primary_10_2337_db07_1318
gale_incontextgauss_8GL_A178714083
highwire_diabetes_diabetes_57_2_332
crossref_citationtrail_10_2337_db07_1318
proquest_miscellaneous_70240596
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-00
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-00
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2008
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022031207594428000_R4
2022031207594428000_R5
2022031207594428000_R6
2022031207594428000_R7
2022031207594428000_R1
2022031207594428000_R2
2022031207594428000_R3
2022031207594428000_R27
2022031207594428000_R26
2022031207594428000_R48
2022031207594428000_R29
2022031207594428000_R28
2022031207594428000_R8
2022031207594428000_R23
2022031207594428000_R45
2022031207594428000_R9
2022031207594428000_R22
2022031207594428000_R44
2022031207594428000_R25
2022031207594428000_R47
2022031207594428000_R24
2022031207594428000_R46
2022031207594428000_R41
2022031207594428000_R40
2022031207594428000_R21
2022031207594428000_R43
2022031207594428000_R20
2022031207594428000_R42
2022031207594428000_R19
2022031207594428000_R16
2022031207594428000_R38
2022031207594428000_R15
2022031207594428000_R37
2022031207594428000_R18
2022031207594428000_R17
2022031207594428000_R39
2022031207594428000_R12
2022031207594428000_R34
2022031207594428000_R11
2022031207594428000_R33
2022031207594428000_R14
2022031207594428000_R36
2022031207594428000_R13
2022031207594428000_R35
2022031207594428000_R30
2022031207594428000_R10
2022031207594428000_R32
2022031207594428000_R31
References_xml – ident: 2022031207594428000_R30
  doi: 10.1152/ajpendo.00430.2005
– ident: 2022031207594428000_R37
  doi: 10.1080/10715760310001646895
– ident: 2022031207594428000_R6
  doi: 10.1016/j.amjmed.2006.01.009
– ident: 2022031207594428000_R9
  doi: 10.2337/diabetes.51.3.797
– ident: 2022031207594428000_R43
  doi: 10.1194/jlr.M400400-JLR200
– ident: 2022031207594428000_R8
  doi: 10.1056/NEJM199411033311803
– ident: 2022031207594428000_R19
  doi: 10.1016/0021-9150(93)90067-5
– ident: 2022031207594428000_R39
  doi: 10.1001/jama.285.19.2486
– ident: 2022031207594428000_R41
  doi: 10.1016/S0009-9236(03)00170-X
– ident: 2022031207594428000_R20
– ident: 2022031207594428000_R27
  doi: 10.1016/S0092-8674(03)00269-1
– ident: 2022031207594428000_R31
  doi: 10.1073/pnas.0511253103
– ident: 2022031207594428000_R21
  doi: 10.1172/JCI117717
– ident: 2022031207594428000_R42
  doi: 10.1172/JCI111643
– ident: 2022031207594428000_R33
  doi: 10.1021/jm058056x
– ident: 2022031207594428000_R1
  doi: 10.1007/s00125-002-0873-y
– ident: 2022031207594428000_R14
  doi: 10.1016/0026-0495(95)90115-9
– ident: 2022031207594428000_R7
  doi: 10.1056/NEJMra041001
– ident: 2022031207594428000_R2
  doi: 10.1097/01.mol.0000174401.07056.56
– ident: 2022031207594428000_R15
  doi: 10.1016/0026-0495(77)90053-1
– ident: 2022031207594428000_R3
  doi: 10.1080/07853890510037383
– ident: 2022031207594428000_R36
  doi: 10.1007/s11745-005-1460-7
– ident: 2022031207594428000_R17
  doi: 10.1016/S0021-9150(00)00409-3
– ident: 2022031207594428000_R32
  doi: 10.1161/01.ATV.0000252790.70572.0c
– ident: 2022031207594428000_R44
  doi: 10.1038/ncpgasthep0084
– ident: 2022031207594428000_R29
  doi: 10.1073/pnas.091021198
– ident: 2022031207594428000_R4
  doi: 10.1038/sj.ijo.0802853
– ident: 2022031207594428000_R11
  doi: 10.2337/diacare.24.4.710
– ident: 2022031207594428000_R28
  doi: 10.1371/journal.pbio.0020294
– ident: 2022031207594428000_R22
  doi: 10.1016/S0022-2275(20)41090-9
– ident: 2022031207594428000_R47
  doi: 10.1007/s00125-004-1619-9
– ident: 2022031207594428000_R5
  doi: 10.1111/j.1399-543X.2004.00071.x
– ident: 2022031207594428000_R24
  doi: 10.1172/JCI118118
– ident: 2022031207594428000_R26
  doi: 10.1073/pnas.0306981100
– ident: 2022031207594428000_R46
  doi: 10.7326/0003-4819-128-3-199802010-00002
– ident: 2022031207594428000_R40
  doi: 10.1007/BF00280883
– ident: 2022031207594428000_R35
  doi: 10.2337/diabetes.51.9.2684
– ident: 2022031207594428000_R13
  doi: 10.1016/S0140-6736(06)69420-8
– ident: 2022031207594428000_R38
  doi: 10.1016/S0952-3278(98)90042-4
– ident: 2022031207594428000_R12
  doi: 10.2337/diabetes.53.8.2169
– ident: 2022031207594428000_R34
  doi: 10.1038/sj.ijo.0800400
– ident: 2022031207594428000_R48
  doi: 10.1007/s00125-005-0125-z
– ident: 2022031207594428000_R45
  doi: 10.2337/diabetes.52.6.1364
– ident: 2022031207594428000_R23
  doi: 10.1016/S0021-9150(96)05955-2
– ident: 2022031207594428000_R10
  doi: 10.2337/diabetes.51.12.3479
– ident: 2022031207594428000_R25
  doi: 10.1210/me.2003-0151
– ident: 2022031207594428000_R16
  doi: 10.1016/0026-0495(89)90086-3
– ident: 2022031207594428000_R18
  doi: 10.1016/0021-9150(93)90086-A
SSID ssj0006060
Score 2.4103866
Snippet Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases...
OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest...
Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration...
OBJECTIVE--Pharmacological use of peroxisome proliferator-activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest...
OBJECTIEVE-Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPAR delta in mice suggest...
SourceID swepub
proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 332
SubjectTerms Adolescent
Adult
Apolipoproteins B - blood
Apolipoproteins B - drug effects
Biological and medical sciences
Care and treatment
Cholesterol, HDL - blood
Cholesterol, HDL - drug effects
Diabetes. Impaired glucose tolerance
Double-Blind Method
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fat metabolism
Fatty Acids - metabolism
Fibric acids
Genetic aspects
Humans
Magnetic Resonance Imaging
Male
Medical sciences
MEDICIN
MEDICINE
Metabolic diseases
Metabolic syndrome X
Middle Aged
Obesity
Obesity - physiopathology
Oxidation-Reduction
Oxidative stress
Oxidative Stress - physiology
Peroxisomes
Physiological aspects
Placebos
PPAR delta - agonists
PPAR delta - physiology
Thiazoles - pharmacology
Triglycerides - blood
Title Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men
URI http://diabetes.diabetesjournals.org/content/57/2/332.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18024853
https://www.proquest.com/docview/70240596
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-15746
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB11kRAviJ2wlBG0pSgNeF8e07SlQnRRF5S3kZdxiZTaVRJLLU_8A7_Cd8A_8CXc61lihzwUXqzIubHHmXvm3js-c4aQVT8JOcS1sGPYsdNxHCh3AtfgnTSBaJIkhmOnFUH2wNs7cz723f7ColdjLZWT-F3yde66kv_pVTgH_YqrZP-hZ_VF4QR8hv6FI_QwHG_Ux91EbU5WUdn4qLgajIsLjvT_IXJWsKJWdAZbWnNckIhklmprjeDoqHu8ZoVrvZ21LQd_CH3HcfEI8jVEprqvSIf7fAI-g7LY3TjHZHdY6bGKbkpLJHcdXg1SoSV-Uq1CUexQGIeQ_g4Wu9EEEv9uMkiVsWBbVruyQfOG123crQDvltdT5-3aLPHs_kG1-YyzYdY-HowFAWBU6pJhG2k84_bJJQzxX6aU5NMiv27LbcJ0dYGrCw6H6oyaEwkUjVp5sXrZpVs26-syGpgWyrOKgM9FAAjtsGNbfr8eIYSEtkSCVRvubTE3OxuGLLsSMkhjFOC0RXypuePlReWPqL3nBEIquSkEPhOgNW1STccz12cWg5svkmULyiMY35e3dg6OjnUOAmWpWHwln1BoamG73utWoV6ubEIjKVOpidLLRrpwNIYRIxNbvcyrxWaEdqvk7PQuuSOrKtoVELlHFnh-n9zal7yRB-TXFCm0yOgUKbSOlN_fvmuMUIURuoEIefvzB1XYoAobeCmFDaqxQRvY2KQSGVQjgwpkbFLABdW4oBUuKOKCalzQQU6nuKAVLuBO-UNytrtz2tvryK1MOokTQEqRGdyI7DgOI8PK0swwuJUZLveMzIGM24Ph0QmzmPum60NCn2ZBFKcBt7yYO0lietx-RJbyIudPCHWdkKeZb2RplDgxvoVPOffcmJtRFhmp3yIbqi9ZInX-cbuZIYN6Hz2AoQcw9IAWeaVNL4W4zTyjdXQIhmIxObLREjGjyeD5eoesa0LINx2o5OBqTcPzqByPWfDhU8PojTTKCmhVEslVQPBsKETXsFxvWJ4LGf55hq-VqzKNkL-g0iIrDS_WD2xVkoUmGLxUbs0gxOJ70yjnRTlmPupAuqHXIo-Ft0__LImfFlkV7q-_QdX-7cHnLitG56wsGXSs4z29UUufkdvTMe05WZqMSv4CKp9JvEIW_b4Px6BnrkjI_wF_02Jx
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+Peroxisome+Proliferator%E2%80%93Activated+Receptor+%28PPAR%29%CE%B4+Promotes+Reversal+of+Multiple+Metabolic+Abnormalities%2C+Reduces+Oxidative+Stress%2C+and+Increases+Fatty+Acid+Oxidation+in+Moderately+Obese+Men&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Ulf+Ris%C3%A9rus&rft.au=Dennis+Sprecher&rft.au=Tony+Johnson&rft.au=Eric+Olson&rft.date=2008-02-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=57&rft.issue=2&rft.spage=332&rft_id=info:doi/10.2337%2Fdb07-1318&rft_id=info%3Apmid%2F18024853&rft.externalDBID=n%2Fa&rft.externalDocID=diabetes_57_2_332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon