Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men
Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men Ulf Risérus 1 , Dennis Sprecher 2 , Tony Johnson 2 , Eric Olson 2 , Sandra Hirschberg 2 , Aixue...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 57; no. 2; pp. 332 - 339 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.02.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces
Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men
Ulf Risérus 1 ,
Dennis Sprecher 2 ,
Tony Johnson 2 ,
Eric Olson 2 ,
Sandra Hirschberg 2 ,
Aixue Liu 3 ,
Zeke Fang 4 ,
Priti Hegde 5 ,
Duncan Richards 6 ,
Leli Sarov-Blat 5 ,
Jay C. Strum 5 ,
Samar Basu 7 ,
Jane Cheeseman 1 ,
Barbara A. Fielding 1 ,
Sandy M. Humphreys 1 ,
Theodore Danoff 3 ,
Niall R. Moore 8 ,
Peter Murgatroyd 9 ,
Stephen O'Rahilly 10 ,
Pauline Sutton 1 ,
Tim Willson 11 ,
David Hassall 12 ,
Keith N. Frayn 1 and
Fredrik Karpe 1
1 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
2 Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania
3 Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia,
Pennsylvania
4 Statistics, GlaxoSmithKline, King of Prussia, Pennsylvania
5 Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia,
Pennsylvania
6 Addenbrooke's Centre for Clinical Investigation (ACCI) Unit, GlaxoSmithKline, Cambridge, U.K
7 Department of Public Health, University of Uppsala, Uppsala, Sweden
8 Department of Radiology, Churchill Hospital, University of Oxford, Oxford, U.K
9 Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, U.K
10 Department of Clinical Biochemistry and Medicine, University of Cambridge, Cambridge, U.K
11 GlaxoSmithKline, Research Triangle Park, North Carolina
12 GlaxoSmithKline, Stevenage, U.K
Address correspondence and reprint requests to Dr. F. Karpe, Churchill Hospital, Oxford OX3 7LJ, U.K. E-mail: fredrik.karpe{at}ocdem.ox.ac.uk
Abstract
OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ
in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize
a similar mechanism operates in humans.
RESEARCH DESIGN AND METHODS— The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 μg o.d. GW590735), and placebo were given in a double-blind,
randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation
was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with
stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress.
RESULTS— Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (−30%), apolipoprotein
B (−26%), LDL cholesterol (−23%), and insulin (−11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat
content ( P < 0.05) and 30% reduction in urinary isoprostanes ( P = 0.01) were also observed. Except for a lowering of triglycerides (−30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO 2 directly originating from the fat content of the meal was increased ( P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b ( CPT1b ) was also significantly increased.
CONCLUSIONS— The PPARδ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative
stress. The effect is probably caused by increased fat oxidation in skeletal muscle.
Apo, apolipoprotein
AST, aspartate aminotransferase
AUC, area under the curve
γGT, γ-glutamyltransferase
LCM, laser capture microdissection
LPL, lipoprotein lipase
MRI, magnetic resonance imaging
NEFA, nonesterified fatty acid
TTR, tracer-to-tracee ratio
Footnotes
Published ahead of print at http://diabetes.diabetesjournals.org on 16 November 2007. DOI: 10.2337/db07-1318.
U.R. and D.S. contributed equally to this work.
Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-1318 .
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Accepted November 10, 2007.
Received September 14, 2007.
DIABETES |
---|---|
AbstractList | Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans.
The PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress.
Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased.
The PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men Ulf Risérus 1 , Dennis Sprecher 2 , Tony Johnson 2 , Eric Olson 2 , Sandra Hirschberg 2 , Aixue Liu 3 , Zeke Fang 4 , Priti Hegde 5 , Duncan Richards 6 , Leli Sarov-Blat 5 , Jay C. Strum 5 , Samar Basu 7 , Jane Cheeseman 1 , Barbara A. Fielding 1 , Sandy M. Humphreys 1 , Theodore Danoff 3 , Niall R. Moore 8 , Peter Murgatroyd 9 , Stephen O'Rahilly 10 , Pauline Sutton 1 , Tim Willson 11 , David Hassall 12 , Keith N. Frayn 1 and Fredrik Karpe 1 1 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K 2 Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 3 Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 4 Statistics, GlaxoSmithKline, King of Prussia, Pennsylvania 5 Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania 6 Addenbrooke's Centre for Clinical Investigation (ACCI) Unit, GlaxoSmithKline, Cambridge, U.K 7 Department of Public Health, University of Uppsala, Uppsala, Sweden 8 Department of Radiology, Churchill Hospital, University of Oxford, Oxford, U.K 9 Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, U.K 10 Department of Clinical Biochemistry and Medicine, University of Cambridge, Cambridge, U.K 11 GlaxoSmithKline, Research Triangle Park, North Carolina 12 GlaxoSmithKline, Stevenage, U.K Address correspondence and reprint requests to Dr. F. Karpe, Churchill Hospital, Oxford OX3 7LJ, U.K. E-mail: fredrik.karpe{at}ocdem.ox.ac.uk Abstract OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS— The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 μg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS— Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (−30%), apolipoprotein B (−26%), LDL cholesterol (−23%), and insulin (−11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content ( P < 0.05) and 30% reduction in urinary isoprostanes ( P = 0.01) were also observed. Except for a lowering of triglycerides (−30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO 2 directly originating from the fat content of the meal was increased ( P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b ( CPT1b ) was also significantly increased. CONCLUSIONS— The PPARδ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. Apo, apolipoprotein AST, aspartate aminotransferase AUC, area under the curve γGT, γ-glutamyltransferase LCM, laser capture microdissection LPL, lipoprotein lipase MRI, magnetic resonance imaging NEFA, nonesterified fatty acid TTR, tracer-to-tracee ratio Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 16 November 2007. DOI: 10.2337/db07-1318. U.R. and D.S. contributed equally to this work. Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-1318 . The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted November 10, 2007. Received September 14, 2007. DIABETES Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans.OBJECTIVEPharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans.The PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress.RESEARCH DESIGN AND METHODSThe PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress.Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased.RESULTSTreatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased.The PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.CONCLUSIONSThe PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS— The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 μg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS— Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (−30%), apolipoprotein B (−26%), LDL cholesterol (−23%), and insulin (−11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (−30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO2 directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS— The PPARδ agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. OBJECTIEVE-Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPAR delta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS-The PPAR delta agonist (10 mg o.d. GW501516), a comparator PPAR alpha agonist (20 mu g o.d. GW590735)), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS-Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO, directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS-The PPAR delta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. OBJECTIVE--Pharmacological use of peroxisome proliferator-activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. RESEARCH DESIGN AND METHODS--The PPARδ agonist (10 mg o.d. GW501516), a comparator PPARα agonist (20 µg o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. RESULTS--Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled C[O.sub.2] directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. CONCLUSIONS--The PPARδ agonist GWb01516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle. |
Audience | Professional |
Author | Peter Murgatroyd Barbara A. Fielding Leli Sarov-Blat Jay C. Strum Jane Cheeseman Sandy M. Humphreys David Hassall Duncan Richards Pauline Sutton Niall R. Moore Sandra Hirschberg Theodore Danoff Tony Johnson Fredrik Karpe Eric Olson Zeke Fang Ulf Risérus Dennis Sprecher Priti Hegde Stephen O'Rahilly Samar Basu Aixue Liu Keith N. Frayn Tim Willson |
Author_xml | – sequence: 1 givenname: Ulf surname: Risérus fullname: Risérus, Ulf organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K – sequence: 2 givenname: Dennis surname: Sprecher fullname: Sprecher, Dennis organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 3 givenname: Tony surname: Johnson fullname: Johnson, Tony organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 4 givenname: Eric surname: Olson fullname: Olson, Eric organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 5 givenname: Sandra surname: Hirschberg fullname: Hirschberg, Sandra organization: Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 6 givenname: Aixue surname: Liu fullname: Liu, Aixue organization: Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 7 givenname: Zeke surname: Fang fullname: Fang, Zeke organization: Statistics, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 8 givenname: Priti surname: Hegde fullname: Hegde, Priti organization: Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 9 givenname: Duncan surname: Richards fullname: Richards, Duncan organization: Addenbrooke's Centre for Clinical Investigation (ACCI) Unit, GlaxoSmithKline, Cambridge, U.K – sequence: 10 givenname: Leli surname: Sarov-Blat fullname: Sarov-Blat, Leli organization: Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 11 givenname: Jay C. surname: Strum fullname: Strum, Jay C. organization: Clinical Pharmacology and Discovery Medicine/Cardiovascular and Urogenital (CPDM CVU) Unit, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 12 givenname: Samar surname: Basu fullname: Basu, Samar organization: Department of Public Health, University of Uppsala, Uppsala, Sweden – sequence: 13 givenname: Jane surname: Cheeseman fullname: Cheeseman, Jane organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K – sequence: 14 givenname: Barbara A. surname: Fielding fullname: Fielding, Barbara A. organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K – sequence: 15 givenname: Sandy M. surname: Humphreys fullname: Humphreys, Sandy M. organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K – sequence: 16 givenname: Theodore surname: Danoff fullname: Danoff, Theodore organization: Human Target Validation, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania – sequence: 17 givenname: Niall R. surname: Moore fullname: Moore, Niall R. organization: Department of Radiology, Churchill Hospital, University of Oxford, Oxford, U.K – sequence: 18 givenname: Peter surname: Murgatroyd fullname: Murgatroyd, Peter organization: Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, U.K – sequence: 19 givenname: Stephen surname: O'Rahilly fullname: O'Rahilly, Stephen organization: Department of Clinical Biochemistry and Medicine, University of Cambridge, Cambridge, U.K – sequence: 20 givenname: Pauline surname: Sutton fullname: Sutton, Pauline organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K – sequence: 21 givenname: Tim surname: Willson fullname: Willson, Tim organization: GlaxoSmithKline, Research Triangle Park, North Carolina – sequence: 22 givenname: David surname: Hassall fullname: Hassall, David organization: GlaxoSmithKline, Stevenage, U.K – sequence: 23 givenname: Keith N. surname: Frayn fullname: Frayn, Keith N. organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K – sequence: 24 givenname: Fredrik surname: Karpe fullname: Karpe, Fredrik organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20181212$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18024853$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-15746$$DView record from Swedish Publication Index |
BookMark | eNptkstu1DAUhiNURC-w4AVQNiAKpPUlmWSWUaGlUqsZlYvYWY59PDVy4sF22pkd78Cr8BzwDjwJDjNtVTTyIpHP9_8-Pv53k63OdpAkTzE6IJSWh7JBZYYprh4kO3hMxxkl5ZetZAchTDJcjsvtZNf7rwihUVyPkm1cIZJXBd1Jftci6CsetO1Sq9IpOLvQ3raQTp01WoHjwbo_33-sOZDpBQiYx8305XRaX-z_-jmgrQ3gY-kKnOdmsDrvTdBzA-k5BN5EL5HWTWddy40OGvybSMteRNVkoWXs4ArSD8GBjxXeyfS0Ew64j_VjHsIyrYWWN2hsVnfpuZVDe2CW6aQBP5zUPU4eKm48PFl_95JPx-8-Hr3PziYnp0f1WSbyilaZQoA4bZoxR0RJhRAQhQoYIZUXmIyqAuVj1UCJi5LiUqqKN7ICMmogFwKPgO4lr1e-_hrmfcPmTrfcLZnlmr3Vn2tm3Yz1PYsG-SjSL1b03NlvPfjAWu0FGMM7sL1nZXwOVIwHMFuBM26A6U7Z4LiYQRcvauKjKx23a1xWJc5RRSN_sIGPS0KrxUbB_j1BZAIswoz33rPq5Ow-m21ihTUGZsDiPI8m9_ln61v2TQvydiY3aYvA8zXAveBGOd4J7W85gnCFCSZ3TQpnvXeg7qwQGxLPhsSzIfGRPfyPFTr8i0ichDYbFa9Wiks9u7zWDpjUvIGY37ufomSEUUroXw1TE64 |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1038_nrendo_2016_135 crossref_primary_10_1038_srep34317 crossref_primary_10_1002_bmc_5032 crossref_primary_10_3390_ph14050435 crossref_primary_10_1016_j_molmet_2017_12_008 crossref_primary_10_1155_2008_230893 crossref_primary_10_5507_tk_2020_010 crossref_primary_10_1016_j_jcmgh_2019_04_007 crossref_primary_10_1186_s12967_023_04367_1 crossref_primary_10_1152_ajpendo_00620_2009 crossref_primary_10_3748_wjg_v30_i28_3428 crossref_primary_10_1111_bph_12950 crossref_primary_10_1016_j_mam_2016_03_001 crossref_primary_10_1016_j_freeradbiomed_2016_02_005 crossref_primary_10_5633_amm_2011_0211 crossref_primary_10_1124_pr_109_001560 crossref_primary_10_1517_17460440902821640 crossref_primary_10_3390_cells9071638 crossref_primary_10_1038_s41419_019_1458_8 crossref_primary_10_1177_17562848231170946 crossref_primary_10_1016_j_tem_2012_03_001 crossref_primary_10_1124_jpet_116_233106 crossref_primary_10_1186_s12944_017_0472_z crossref_primary_10_1016_j_arteri_2011_11_002 crossref_primary_10_1038_cr_2010_13 crossref_primary_10_3390_ijms19071893 crossref_primary_10_1002_hep4_1072 crossref_primary_10_1016_j_jgr_2022_11_006 crossref_primary_10_3390_cells11172635 crossref_primary_10_1266_ggs_87_253 crossref_primary_10_1042_CS20160518 crossref_primary_10_1097_MOL_0b013e32832402a2 crossref_primary_10_1016_j_jceh_2019_06_004 crossref_primary_10_1111_1755_5922_12166 crossref_primary_10_1155_2021_6889533 crossref_primary_10_1038_nm_2882 crossref_primary_10_1016_j_bbalip_2025_159599 crossref_primary_10_1016_j_lfs_2013_10_022 crossref_primary_10_1016_j_plipres_2014_07_002 crossref_primary_10_1152_ajpheart_00761_2013 crossref_primary_10_1186_gb_2011_12_8_r75 crossref_primary_10_1155_2012_107434 crossref_primary_10_1126_scitranslmed_aad8390 crossref_primary_10_1016_j_metabol_2021_154892 crossref_primary_10_3390_ijms22105375 crossref_primary_10_1016_j_ejphar_2009_09_053 crossref_primary_10_1097_MOL_0b013e32832dd4b1 crossref_primary_10_3389_fphys_2017_01044 crossref_primary_10_1126_sciadv_abc1586 crossref_primary_10_15406_jdmdc_2021_08_00216 crossref_primary_10_1016_j_freeradbiomed_2013_08_163 crossref_primary_10_1016_j_jacl_2018_08_003 crossref_primary_10_1097_FJC_0000000000000580 crossref_primary_10_1136_gutjnl_2016_312431 crossref_primary_10_3390_nu12113476 crossref_primary_10_1080_13543784_2020_1703949 crossref_primary_10_1016_j_bmc_2014_12_013 crossref_primary_10_1172_JCI42127 crossref_primary_10_1002_hep_22505 crossref_primary_10_1093_toxsci_kfn142 crossref_primary_10_1053_j_gastro_2020_01_051 crossref_primary_10_1016_j_cmet_2008_02_006 crossref_primary_10_1038_ijo_2017_197 crossref_primary_10_5483_BMBRep_2014_47_11_174 crossref_primary_10_1007_s00125_008_1040_x crossref_primary_10_1152_ajpregu_00052_2022 crossref_primary_10_1177_1074248410362891 crossref_primary_10_1371_journal_pone_0007046 crossref_primary_10_1002_ddr_20358 crossref_primary_10_1186_s12263_016_0521_4 crossref_primary_10_3390_ijms22094495 crossref_primary_10_2337_dc12_2012 crossref_primary_10_1002_hep_22630 crossref_primary_10_1038_nrd4023 crossref_primary_10_1124_jpet_109_159806 crossref_primary_10_1186_s12891_022_05572_7 crossref_primary_10_3390_ijms19041197 crossref_primary_10_1016_j_jhep_2017_10_015 crossref_primary_10_1016_j_freeradbiomed_2011_09_031 crossref_primary_10_1007_s11883_013_0309_9 crossref_primary_10_1007_s40261_019_00779_4 crossref_primary_10_1152_ajpendo_00508_2010 crossref_primary_10_1021_acs_est_7b02752 crossref_primary_10_1089_gtmb_2015_0002 crossref_primary_10_1016_j_cct_2020_106170 crossref_primary_10_1111_liv_13302 crossref_primary_10_1161_ATVBAHA_113_302777 crossref_primary_10_1016_j_atherosclerosis_2013_08_027 crossref_primary_10_1186_s12950_020_00264_2 crossref_primary_10_2337_db23_0432 crossref_primary_10_12677_acm_2024_1441345 crossref_primary_10_2337_db12_0117 crossref_primary_10_1111_j_1463_1326_2011_01371_x crossref_primary_10_1039_c2ay00030j crossref_primary_10_1007_s12272_019_01178_1 crossref_primary_10_1038_s41392_022_01119_3 crossref_primary_10_1111_micc_12020 crossref_primary_10_1126_scitranslmed_aav9701 crossref_primary_10_1253_circj_CJ_13_0647 crossref_primary_10_3390_ijms22158298 crossref_primary_10_1177_1479164114548027 crossref_primary_10_1155_2008_164163 crossref_primary_10_1002_tox_22097 crossref_primary_10_1586_14779072_2014_888312 crossref_primary_10_1002_hep_26461 crossref_primary_10_1155_2019_6740616 crossref_primary_10_1016_j_freeradbiomed_2019_01_026 crossref_primary_10_1016_j_cmet_2013_12_009 crossref_primary_10_1111_dom_12277 crossref_primary_10_2337_dc11_0093 crossref_primary_10_3109_13813455_2015_1118128 crossref_primary_10_1016_j_pharmthera_2009_12_001 crossref_primary_10_1016_j_pharmthera_2009_06_011 crossref_primary_10_1007_s11010_010_0520_8 crossref_primary_10_1155_2008_172676 crossref_primary_10_1093_hmg_ddr265 crossref_primary_10_1007_s12325_016_0306_9 crossref_primary_10_1016_j_canlet_2024_216937 crossref_primary_10_1007_s40256_017_0220_9 crossref_primary_10_1016_j_plipres_2016_09_001 crossref_primary_10_1002_wsbm_137 crossref_primary_10_1152_physrev_00027_2013 crossref_primary_10_1155_2008_285842 crossref_primary_10_17816_mechnikov201810437_42 crossref_primary_10_1186_s12902_021_00687_9 crossref_primary_10_1016_j_metabol_2012_04_015 crossref_primary_10_1210_me_2010_0392 crossref_primary_10_1007_s12170_010_0080_1 crossref_primary_10_1210_en_2009_1192 crossref_primary_10_1515_HMBCI_2010_076 crossref_primary_10_1155_2012_757803 crossref_primary_10_1210_jc_2011_1131 crossref_primary_10_3164_jcbn_10_139 crossref_primary_10_1007_s11901_016_0300_3 crossref_primary_10_1038_clpt_2010_55 crossref_primary_10_3109_13813455_2013_829105 crossref_primary_10_1111_liv_14423 crossref_primary_10_1016_j_atherosclerosis_2011_10_029 crossref_primary_10_1089_ars_2008_2280 crossref_primary_10_3389_fphys_2020_00677 crossref_primary_10_1016_j_jhepr_2023_100845 crossref_primary_10_1210_er_2009_0003 crossref_primary_10_1007_s13277_016_5305_6 crossref_primary_10_1097_MOL_0b013e3283462e16 crossref_primary_10_1111_j_1476_5381_2012_02081_x crossref_primary_10_1016_j_ddmec_2009_02_002 crossref_primary_10_1038_nrm3772 crossref_primary_10_1016_j_bcp_2015_06_032 crossref_primary_10_1111_j_1463_1326_2008_00958_x crossref_primary_10_1007_s40265_013_0078_3 crossref_primary_10_1097_MOL_0b013e32833884a4 crossref_primary_10_1039_D4CP01002G crossref_primary_10_11131_2017_101310 crossref_primary_10_1096_fj_201902537R crossref_primary_10_1093_jnci_dju052 crossref_primary_10_1111_j_1365_2265_2011_04244_x crossref_primary_10_1021_jm900464j crossref_primary_10_1172_jci_insight_122289 crossref_primary_10_2174_1871529X19666190114155302 crossref_primary_10_2337_dc11_0840 crossref_primary_10_1007_s12263_012_0329_z crossref_primary_10_2217_fca_10_86 crossref_primary_10_2337_dcS13_2003 crossref_primary_10_3389_fendo_2023_1193373 crossref_primary_10_3390_cells9071708 crossref_primary_10_1089_rej_2013_1485 crossref_primary_10_1093_cvr_cvp365 crossref_primary_10_3389_fphar_2020_00730 crossref_primary_10_1016_j_biochi_2016_11_009 crossref_primary_10_1021_acs_jmedchem_9b01882 crossref_primary_10_1155_2012_546548 crossref_primary_10_1371_journal_pone_0034895 crossref_primary_10_1002_bmc_4006 crossref_primary_10_1016_j_clinre_2024_102343 crossref_primary_10_1152_ajpregu_00163_2020 crossref_primary_10_1016_j_cell_2009_05_036 crossref_primary_10_2337_dc11_1027 crossref_primary_10_3390_cancers13143473 crossref_primary_10_1152_ajpregu_00431_2009 crossref_primary_10_1016_j_yjmcc_2022_04_019 crossref_primary_10_1016_j_arteri_2013_01_001 crossref_primary_10_1016_j_jep_2019_03_006 crossref_primary_10_1016_j_nutres_2015_05_006 crossref_primary_10_1042_CS20080022 crossref_primary_10_3390_ph16060850 crossref_primary_10_1155_2016_7403230 crossref_primary_10_1053_j_gastro_2016_01_038 crossref_primary_10_3390_ijerph16224334 crossref_primary_10_1016_j_atherosclerosissup_2008_05_013 crossref_primary_10_1093_jn_nxz240 crossref_primary_10_1111_j_1476_5381_2011_01240_x crossref_primary_10_2174_1389200219666180611083155 crossref_primary_10_1016_j_ando_2012_09_002 crossref_primary_10_1016_j_jcmgh_2021_01_012 crossref_primary_10_1517_13543784_2014_954034 crossref_primary_10_1016_j_bmcl_2010_10_083 crossref_primary_10_1096_fj_13_238071 crossref_primary_10_1002_dmrr_899 crossref_primary_10_1517_14728222_2012_658370 crossref_primary_10_1016_j_bbrc_2024_150158 crossref_primary_10_1089_met_2008_0079 crossref_primary_10_1007_s40200_018_0378_y crossref_primary_10_1016_j_bcp_2015_01_016 crossref_primary_10_1007_s00125_009_1420_x crossref_primary_10_1016_j_yjmcc_2009_02_001 crossref_primary_10_1042_CS20150246 crossref_primary_10_1016_j_tips_2012_05_005 crossref_primary_10_3390_ijms20205055 crossref_primary_10_4196_kjpp_2011_15_2_83 crossref_primary_10_1161_ATVBAHA_112_247890 crossref_primary_10_1016_j_bbalip_2025_159604 crossref_primary_10_1111_dom_14090 crossref_primary_10_1093_hmg_ddv444 crossref_primary_10_1155_2010_368467 crossref_primary_10_1002_cbdv_202401598 crossref_primary_10_1016_j_bbrc_2009_12_127 crossref_primary_10_1210_en_2009_1211 crossref_primary_10_4093_dmj_2020_0115 crossref_primary_10_1016_j_tem_2016_02_008 crossref_primary_10_3390_molecules24142545 crossref_primary_10_1016_j_expneurol_2010_03_022 crossref_primary_10_1080_10408398_2022_2146044 crossref_primary_10_1016_j_metabol_2020_154342 crossref_primary_10_1155_2012_304760 crossref_primary_10_1097_SPV_0b013e31828746e9 crossref_primary_10_1007_s00125_010_1663_6 crossref_primary_10_1097_HJH_0000000000000634 crossref_primary_10_1111_j_1476_5381_2011_01359_x crossref_primary_10_1097_MOL_0b013e32835cc949 crossref_primary_10_1161_ATVBAHA_107_160192 crossref_primary_10_18585_inabj_v1i1_79 crossref_primary_10_1155_2015_927057 crossref_primary_10_1016_j_mce_2009_09_014 crossref_primary_10_1517_14656566_2014_876992 crossref_primary_10_1016_j_cld_2013_09_005 crossref_primary_10_2217_17460875_3_5_531 crossref_primary_10_3390_cells9010037 crossref_primary_10_1517_13543784_2015_1006359 crossref_primary_10_1096_fj_201800081R crossref_primary_10_3389_fendo_2020_00062 crossref_primary_10_1186_1475_2840_12_17 crossref_primary_10_3389_fendo_2021_681356 crossref_primary_10_1172_JCI88894 crossref_primary_10_3390_ijms19030913 crossref_primary_10_1016_j_bbalip_2011_10_016 crossref_primary_10_1007_s11033_014_3079_8 crossref_primary_10_1002_hep4_1057 crossref_primary_10_1152_ajpheart_00155_2016 crossref_primary_10_1089_met_2022_0069 crossref_primary_10_1152_physrev_00015_2009 crossref_primary_10_4137_CMT_S18885 crossref_primary_10_1038_s41467_022_30392_7 crossref_primary_10_1016_j_metabol_2009_06_003 crossref_primary_10_1016_j_molmed_2013_07_002 crossref_primary_10_1016_j_clinthera_2015_08_001 crossref_primary_10_1517_13543784_17_10_1465 |
Cites_doi | 10.1152/ajpendo.00430.2005 10.1080/10715760310001646895 10.1016/j.amjmed.2006.01.009 10.2337/diabetes.51.3.797 10.1194/jlr.M400400-JLR200 10.1056/NEJM199411033311803 10.1016/0021-9150(93)90067-5 10.1001/jama.285.19.2486 10.1016/S0009-9236(03)00170-X 10.1016/S0092-8674(03)00269-1 10.1073/pnas.0511253103 10.1172/JCI117717 10.1172/JCI111643 10.1021/jm058056x 10.1007/s00125-002-0873-y 10.1016/0026-0495(95)90115-9 10.1056/NEJMra041001 10.1097/01.mol.0000174401.07056.56 10.1016/0026-0495(77)90053-1 10.1080/07853890510037383 10.1007/s11745-005-1460-7 10.1016/S0021-9150(00)00409-3 10.1161/01.ATV.0000252790.70572.0c 10.1038/ncpgasthep0084 10.1073/pnas.091021198 10.1038/sj.ijo.0802853 10.2337/diacare.24.4.710 10.1371/journal.pbio.0020294 10.1016/S0022-2275(20)41090-9 10.1007/s00125-004-1619-9 10.1111/j.1399-543X.2004.00071.x 10.1172/JCI118118 10.1073/pnas.0306981100 10.7326/0003-4819-128-3-199802010-00002 10.1007/BF00280883 10.2337/diabetes.51.9.2684 10.1016/S0140-6736(06)69420-8 10.1016/S0952-3278(98)90042-4 10.2337/diabetes.53.8.2169 10.1038/sj.ijo.0800400 10.1007/s00125-005-0125-z 10.2337/diabetes.52.6.1364 10.1016/S0021-9150(96)05955-2 10.2337/diabetes.51.12.3479 10.1210/me.2003-0151 10.1016/0026-0495(89)90086-3 10.1016/0021-9150(93)90086-A |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS COPYRIGHT 2008 American Diabetes Association |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: COPYRIGHT 2008 American Diabetes Association |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 7X8 ADTPV AOWAS DF2 |
DOI | 10.2337/db07-1318 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: College MEDLINE - Academic SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 339 |
ExternalDocumentID | oai_DiVA_org_uu_15746 A178714083 18024853 20181212 10_2337_db07_1318 diabetes_57_2_332 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ H~9 IAG IAO IEA IHR INH INR IOF IPO K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O5R O5S O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 354 6PF AAFWJ AAKAS AAYOK AAYXX ACGFO ADGHP ADZCM AEGXH AERZD AIAGR AIZAD ALIPV BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM 1CY 8F7 AFFNX AI. IQODW J5H MVM PJZUB PPXIY PQGLB VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM PMFND 7X8 ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-c4838-f0e0a3bb9a02fdf00e2f05e60f4512685049fbe7157317df8abd8e26be4cc16e3 |
ISSN | 0012-1797 1939-327X |
IngestDate | Thu Aug 21 06:40:11 EDT 2025 Tue Aug 05 09:50:12 EDT 2025 Fri Jun 13 00:49:31 EDT 2025 Tue Jun 10 21:30:13 EDT 2025 Fri Jun 27 06:00:07 EDT 2025 Tue Jun 10 20:05:33 EDT 2025 Thu Apr 03 07:06:39 EDT 2025 Mon Jul 21 09:11:13 EDT 2025 Tue Jul 01 03:03:58 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Fri Jan 15 19:45:56 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Endocrinopathy Human Obesity Oxidative stress Diabetes mellitus Nutrition disorder Lipids Oxidation Fatty acids Nutritional status Peroxisome proliferator activated receptor |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4838-f0e0a3bb9a02fdf00e2f05e60f4512685049fbe7157317df8abd8e26be4cc16e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://diabetes.diabetesjournals.org/content/diabetes/57/2/332.full.pdf |
PMID | 18024853 |
PQID | 70240596 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_18024853 gale_infotracacademiconefile_A178714083 pascalfrancis_primary_20181212 swepub_primary_oai_DiVA_org_uu_15746 gale_incontextcollege_GICCO_A178714083 gale_infotracgeneralonefile_A178714083 crossref_primary_10_2337_db07_1318 gale_incontextgauss_8GL_A178714083 highwire_diabetes_diabetes_57_2_332 crossref_citationtrail_10_2337_db07_1318 proquest_miscellaneous_70240596 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-00 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-00 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2008 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 2022031207594428000_R4 2022031207594428000_R5 2022031207594428000_R6 2022031207594428000_R7 2022031207594428000_R1 2022031207594428000_R2 2022031207594428000_R3 2022031207594428000_R27 2022031207594428000_R26 2022031207594428000_R48 2022031207594428000_R29 2022031207594428000_R28 2022031207594428000_R8 2022031207594428000_R23 2022031207594428000_R45 2022031207594428000_R9 2022031207594428000_R22 2022031207594428000_R44 2022031207594428000_R25 2022031207594428000_R47 2022031207594428000_R24 2022031207594428000_R46 2022031207594428000_R41 2022031207594428000_R40 2022031207594428000_R21 2022031207594428000_R43 2022031207594428000_R20 2022031207594428000_R42 2022031207594428000_R19 2022031207594428000_R16 2022031207594428000_R38 2022031207594428000_R15 2022031207594428000_R37 2022031207594428000_R18 2022031207594428000_R17 2022031207594428000_R39 2022031207594428000_R12 2022031207594428000_R34 2022031207594428000_R11 2022031207594428000_R33 2022031207594428000_R14 2022031207594428000_R36 2022031207594428000_R13 2022031207594428000_R35 2022031207594428000_R30 2022031207594428000_R10 2022031207594428000_R32 2022031207594428000_R31 |
References_xml | – ident: 2022031207594428000_R30 doi: 10.1152/ajpendo.00430.2005 – ident: 2022031207594428000_R37 doi: 10.1080/10715760310001646895 – ident: 2022031207594428000_R6 doi: 10.1016/j.amjmed.2006.01.009 – ident: 2022031207594428000_R9 doi: 10.2337/diabetes.51.3.797 – ident: 2022031207594428000_R43 doi: 10.1194/jlr.M400400-JLR200 – ident: 2022031207594428000_R8 doi: 10.1056/NEJM199411033311803 – ident: 2022031207594428000_R19 doi: 10.1016/0021-9150(93)90067-5 – ident: 2022031207594428000_R39 doi: 10.1001/jama.285.19.2486 – ident: 2022031207594428000_R41 doi: 10.1016/S0009-9236(03)00170-X – ident: 2022031207594428000_R20 – ident: 2022031207594428000_R27 doi: 10.1016/S0092-8674(03)00269-1 – ident: 2022031207594428000_R31 doi: 10.1073/pnas.0511253103 – ident: 2022031207594428000_R21 doi: 10.1172/JCI117717 – ident: 2022031207594428000_R42 doi: 10.1172/JCI111643 – ident: 2022031207594428000_R33 doi: 10.1021/jm058056x – ident: 2022031207594428000_R1 doi: 10.1007/s00125-002-0873-y – ident: 2022031207594428000_R14 doi: 10.1016/0026-0495(95)90115-9 – ident: 2022031207594428000_R7 doi: 10.1056/NEJMra041001 – ident: 2022031207594428000_R2 doi: 10.1097/01.mol.0000174401.07056.56 – ident: 2022031207594428000_R15 doi: 10.1016/0026-0495(77)90053-1 – ident: 2022031207594428000_R3 doi: 10.1080/07853890510037383 – ident: 2022031207594428000_R36 doi: 10.1007/s11745-005-1460-7 – ident: 2022031207594428000_R17 doi: 10.1016/S0021-9150(00)00409-3 – ident: 2022031207594428000_R32 doi: 10.1161/01.ATV.0000252790.70572.0c – ident: 2022031207594428000_R44 doi: 10.1038/ncpgasthep0084 – ident: 2022031207594428000_R29 doi: 10.1073/pnas.091021198 – ident: 2022031207594428000_R4 doi: 10.1038/sj.ijo.0802853 – ident: 2022031207594428000_R11 doi: 10.2337/diacare.24.4.710 – ident: 2022031207594428000_R28 doi: 10.1371/journal.pbio.0020294 – ident: 2022031207594428000_R22 doi: 10.1016/S0022-2275(20)41090-9 – ident: 2022031207594428000_R47 doi: 10.1007/s00125-004-1619-9 – ident: 2022031207594428000_R5 doi: 10.1111/j.1399-543X.2004.00071.x – ident: 2022031207594428000_R24 doi: 10.1172/JCI118118 – ident: 2022031207594428000_R26 doi: 10.1073/pnas.0306981100 – ident: 2022031207594428000_R46 doi: 10.7326/0003-4819-128-3-199802010-00002 – ident: 2022031207594428000_R40 doi: 10.1007/BF00280883 – ident: 2022031207594428000_R35 doi: 10.2337/diabetes.51.9.2684 – ident: 2022031207594428000_R13 doi: 10.1016/S0140-6736(06)69420-8 – ident: 2022031207594428000_R38 doi: 10.1016/S0952-3278(98)90042-4 – ident: 2022031207594428000_R12 doi: 10.2337/diabetes.53.8.2169 – ident: 2022031207594428000_R34 doi: 10.1038/sj.ijo.0800400 – ident: 2022031207594428000_R48 doi: 10.1007/s00125-005-0125-z – ident: 2022031207594428000_R45 doi: 10.2337/diabetes.52.6.1364 – ident: 2022031207594428000_R23 doi: 10.1016/S0021-9150(96)05955-2 – ident: 2022031207594428000_R10 doi: 10.2337/diabetes.51.12.3479 – ident: 2022031207594428000_R25 doi: 10.1210/me.2003-0151 – ident: 2022031207594428000_R16 doi: 10.1016/0026-0495(89)90086-3 – ident: 2022031207594428000_R18 doi: 10.1016/0021-9150(93)90086-A |
SSID | ssj0006060 |
Score | 2.4103866 |
Snippet | Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces
Oxidative Stress, and Increases... OBJECTIVE— Pharmacological use of peroxisome proliferator–activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest... Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration... OBJECTIVE--Pharmacological use of peroxisome proliferator-activated receptor (PPAR)δ agonists and transgenic overexpression of PPARδ in mice suggest... OBJECTIEVE-Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPAR delta in mice suggest... |
SourceID | swepub proquest gale pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 332 |
SubjectTerms | Adolescent Adult Apolipoproteins B - blood Apolipoproteins B - drug effects Biological and medical sciences Care and treatment Cholesterol, HDL - blood Cholesterol, HDL - drug effects Diabetes. Impaired glucose tolerance Double-Blind Method Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Fat metabolism Fatty Acids - metabolism Fibric acids Genetic aspects Humans Magnetic Resonance Imaging Male Medical sciences MEDICIN MEDICINE Metabolic diseases Metabolic syndrome X Middle Aged Obesity Obesity - physiopathology Oxidation-Reduction Oxidative stress Oxidative Stress - physiology Peroxisomes Physiological aspects Placebos PPAR delta - agonists PPAR delta - physiology Thiazoles - pharmacology Triglycerides - blood |
Title | Activation of Peroxisome Proliferator–Activated Receptor (PPAR)δ Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men |
URI | http://diabetes.diabetesjournals.org/content/57/2/332.abstract https://www.ncbi.nlm.nih.gov/pubmed/18024853 https://www.proquest.com/docview/70240596 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-15746 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB11kRAviJ2wlBG0pSgNeF8e07SlQnRRF5S3kZdxiZTaVRJLLU_8A7_Cd8A_8CXc61lihzwUXqzIubHHmXvm3js-c4aQVT8JOcS1sGPYsdNxHCh3AtfgnTSBaJIkhmOnFUH2wNs7cz723f7ColdjLZWT-F3yde66kv_pVTgH_YqrZP-hZ_VF4QR8hv6FI_QwHG_Ux91EbU5WUdn4qLgajIsLjvT_IXJWsKJWdAZbWnNckIhklmprjeDoqHu8ZoVrvZ21LQd_CH3HcfEI8jVEprqvSIf7fAI-g7LY3TjHZHdY6bGKbkpLJHcdXg1SoSV-Uq1CUexQGIeQ_g4Wu9EEEv9uMkiVsWBbVruyQfOG123crQDvltdT5-3aLPHs_kG1-YyzYdY-HowFAWBU6pJhG2k84_bJJQzxX6aU5NMiv27LbcJ0dYGrCw6H6oyaEwkUjVp5sXrZpVs26-syGpgWyrOKgM9FAAjtsGNbfr8eIYSEtkSCVRvubTE3OxuGLLsSMkhjFOC0RXypuePlReWPqL3nBEIquSkEPhOgNW1STccz12cWg5svkmULyiMY35e3dg6OjnUOAmWpWHwln1BoamG73utWoV6ubEIjKVOpidLLRrpwNIYRIxNbvcyrxWaEdqvk7PQuuSOrKtoVELlHFnh-n9zal7yRB-TXFCm0yOgUKbSOlN_fvmuMUIURuoEIefvzB1XYoAobeCmFDaqxQRvY2KQSGVQjgwpkbFLABdW4oBUuKOKCalzQQU6nuKAVLuBO-UNytrtz2tvryK1MOokTQEqRGdyI7DgOI8PK0swwuJUZLveMzIGM24Ph0QmzmPum60NCn2ZBFKcBt7yYO0lietx-RJbyIudPCHWdkKeZb2RplDgxvoVPOffcmJtRFhmp3yIbqi9ZInX-cbuZIYN6Hz2AoQcw9IAWeaVNL4W4zTyjdXQIhmIxObLREjGjyeD5eoesa0LINx2o5OBqTcPzqByPWfDhU8PojTTKCmhVEslVQPBsKETXsFxvWJ4LGf55hq-VqzKNkL-g0iIrDS_WD2xVkoUmGLxUbs0gxOJ70yjnRTlmPupAuqHXIo-Ft0__LImfFlkV7q-_QdX-7cHnLitG56wsGXSs4z29UUufkdvTMe05WZqMSv4CKp9JvEIW_b4Px6BnrkjI_wF_02Jx |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+Peroxisome+Proliferator%E2%80%93Activated+Receptor+%28PPAR%29%CE%B4+Promotes+Reversal+of+Multiple+Metabolic+Abnormalities%2C+Reduces+Oxidative+Stress%2C+and+Increases+Fatty+Acid+Oxidation+in+Moderately+Obese+Men&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Ulf+Ris%C3%A9rus&rft.au=Dennis+Sprecher&rft.au=Tony+Johnson&rft.au=Eric+Olson&rft.date=2008-02-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=57&rft.issue=2&rft.spage=332&rft_id=info:doi/10.2337%2Fdb07-1318&rft_id=info%3Apmid%2F18024853&rft.externalDBID=n%2Fa&rft.externalDocID=diabetes_57_2_332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |