Enhancing Li+ Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes
LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphas...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 61; no. 35; pp. e202205967 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
26.08.2022
Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g−1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C.
Low‐polarity‐solvent electrolytes (LPSEs) 1) enable the formation of the anion‐derived interphases on both electrodes and 2) have weak interactions between the solvent molecules and Li+, which provide fast Li+ transport kinetics and reduced resistance in both charge transfer process and Li+ transport in electrode/electrolyte interphases, achieving excellent battery performance under both fast‐charge and low‐temperature conditions. |
---|---|
AbstractList | LiNixCoyMnzO2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ –20°C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low-temperature LIBs performance. In this work, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g–1 (98% full-cell capacity) at 25°C and to remain 82% of their room-temperature capacity at –20°C without lithium plating at 1/3C. They also retain 84% of their capacity at –30°C and 78% of their capacity at –40°C and show stable cycling at 50°C. LiNi x Co y Mn z O 2 ( x +y+ z =1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li + transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance ( R ct ) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li + to reduce R ct , achieving facile Li + transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi 0.8 Mn 0.1 Co 0.1 O 2 ||graphite cells to deliver a capacity of ≈113 mAh g −1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C. LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g−1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C. LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113 mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C.LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113 mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C. LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g−1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C. Low‐polarity‐solvent electrolytes (LPSEs) 1) enable the formation of the anion‐derived interphases on both electrodes and 2) have weak interactions between the solvent molecules and Li+, which provide fast Li+ transport kinetics and reduced resistance in both charge transfer process and Li+ transport in electrode/electrolyte interphases, achieving excellent battery performance under both fast‐charge and low‐temperature conditions. |
Author | Piao, Nan Wang, Chunsheng Xia, Jiale Ma, Lin Wan, Hongli Borodin, Oleg Zhang, Weiran Zhang, Xiyue Nan, Bo Hou, Singyuk Ji, Xiao Pollard, Travis He, Xinzi Chen, Long Liu, Sufu Lucht, Brett Yang, Xiao‐Qing Rodrigo, Nuwanthi D. Xu, Jijian Xu, Kang Hu, Enyuan Zhang, Jiaxun |
Author_xml | – sequence: 1 givenname: Bo surname: Nan fullname: Nan, Bo organization: University of Maryland – sequence: 2 givenname: Long surname: Chen fullname: Chen, Long organization: University of Maryland – sequence: 3 givenname: Nuwanthi D. surname: Rodrigo fullname: Rodrigo, Nuwanthi D. organization: University of Rhode Island – sequence: 4 givenname: Oleg surname: Borodin fullname: Borodin, Oleg organization: Army Research Laboratory – sequence: 5 givenname: Nan surname: Piao fullname: Piao, Nan organization: University of Maryland – sequence: 6 givenname: Jiale surname: Xia fullname: Xia, Jiale organization: University of Maryland – sequence: 7 givenname: Travis surname: Pollard fullname: Pollard, Travis organization: Army Research Laboratory – sequence: 8 givenname: Singyuk surname: Hou fullname: Hou, Singyuk organization: University of Maryland – sequence: 9 givenname: Jiaxun surname: Zhang fullname: Zhang, Jiaxun organization: University of Maryland – sequence: 10 givenname: Xiao surname: Ji fullname: Ji, Xiao organization: University of Maryland – sequence: 11 givenname: Jijian surname: Xu fullname: Xu, Jijian organization: University of Maryland – sequence: 12 givenname: Xiyue surname: Zhang fullname: Zhang, Xiyue organization: University of Maryland – sequence: 13 givenname: Lin surname: Ma fullname: Ma, Lin organization: The University of North Carolina at Charlotte – sequence: 14 givenname: Xinzi surname: He fullname: He, Xinzi organization: University of Maryland – sequence: 15 givenname: Sufu surname: Liu fullname: Liu, Sufu organization: University of Maryland – sequence: 16 givenname: Hongli surname: Wan fullname: Wan, Hongli organization: University of Maryland – sequence: 17 givenname: Enyuan surname: Hu fullname: Hu, Enyuan organization: Brookhaven National Laboratory – sequence: 18 givenname: Weiran surname: Zhang fullname: Zhang, Weiran organization: University of Maryland – sequence: 19 givenname: Kang surname: Xu fullname: Xu, Kang email: conrad.k.xu.civ@mail.mil organization: Army Research Laboratory – sequence: 20 givenname: Xiao‐Qing surname: Yang fullname: Yang, Xiao‐Qing email: xyang@bnl.gov organization: Brookhaven National Laboratory – sequence: 21 givenname: Brett surname: Lucht fullname: Lucht, Brett email: blucht@uri.edu organization: University of Rhode Island – sequence: 22 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: University of Maryland |
BackLink | https://www.osti.gov/servlets/purl/1889129$$D View this record in Osti.gov |
BookMark | eNqFkc9rFDEUxwepYFu9eg56EWTW_JjJZI51WevCthXcnkMm-8ZNySZjknEZ6MGTZ_9G_5KmrlgoiKf3CJ_Py3t8T4oj5x0UxUuCZwRj-k45AzOKKcV1y5snxTGpKSlZ07Cj3FeMlY2oybPiJMabzAuB-XHxY-G2ymnjvqCVeYvWQbk4-JCQcejyYi4Iub09D2rYmgSZSFsz7n59_7n0Dr1XKUEwEJFKaOX3aA27AYJKY8hv3YSu4--xfp-FT96qYNKU28_efgOX0MKCTsHbKUF8XjztlY3w4k89La4_LNbzj-Xq6nw5P1uVuhKsKTdN1wHrekxJx7uO0B5XmPJOCNYzwTjHoCjUuWjOGG_rqgeNu43aMNq3GNhp8eow18dkZNT5Kr3V3rm8iiRCtIS2GXpzgIbgv44Qk9yZqMFa5cCPUVIuaswYwTSjrx-hN34MLp8gaYMrwjlpSaaqA6WDjzFAL_PHKhnvUlDGSoLlfYLyPkH5N8GszR5pQzA7FaZ_C-1B2BsL039oeXa5XDy4d0dntBg |
CitedBy_id | crossref_primary_10_1002_ange_202422259 crossref_primary_10_1021_acsami_4c15594 crossref_primary_10_1002_ange_202314509 crossref_primary_10_1021_acsaem_3c02203 crossref_primary_10_1021_jacsau_4c00196 crossref_primary_10_1002_advs_202409259 crossref_primary_10_1002_ange_202318663 crossref_primary_10_1039_D3EE03809B crossref_primary_10_1002_anie_202409409 crossref_primary_10_1039_D3TA00254C crossref_primary_10_1039_D4EE03191A crossref_primary_10_1002_adfm_202403682 crossref_primary_10_1002_anie_202300384 crossref_primary_10_1038_s41467_023_37033_7 crossref_primary_10_1002_adma_202308881 crossref_primary_10_1016_j_jechem_2024_10_007 crossref_primary_10_1021_acscentsci_2c00791 crossref_primary_10_1002_ange_202406182 crossref_primary_10_1039_D3EE02861E crossref_primary_10_1039_D4EE03192J crossref_primary_10_1002_smll_202401200 crossref_primary_10_1016_j_cej_2025_160827 crossref_primary_10_1002_adfm_202409494 crossref_primary_10_1002_ange_202401051 crossref_primary_10_1039_D4TA06896C crossref_primary_10_1002_aenm_202300626 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1016_j_ensm_2024_103955 crossref_primary_10_1002_anie_202300016 crossref_primary_10_1021_jacs_3c08313 crossref_primary_10_1039_D3EE03340F crossref_primary_10_1002_anie_202307122 crossref_primary_10_1002_bte2_20230064 crossref_primary_10_1021_acsaem_3c00385 crossref_primary_10_1021_acs_jpcc_2c08357 crossref_primary_10_1021_acsaem_3c00261 crossref_primary_10_1039_D4TA02958E crossref_primary_10_1016_j_nxener_2024_100115 crossref_primary_10_1039_D3RA01111A crossref_primary_10_1021_acsenergylett_2c02003 crossref_primary_10_1149_1945_7111_ad88aa crossref_primary_10_1002_batt_202400246 crossref_primary_10_1021_acsnano_4c07986 crossref_primary_10_1002_anie_202318663 crossref_primary_10_1039_D4RA08490J crossref_primary_10_1002_elan_202400318 crossref_primary_10_1002_adfm_202312994 crossref_primary_10_1002_adma_202311327 crossref_primary_10_1002_anie_202314509 crossref_primary_10_1021_acsaem_4c01510 crossref_primary_10_1021_jacs_4c02345 crossref_primary_10_1002_adma_202209140 crossref_primary_10_1002_adfm_202419994 crossref_primary_10_1088_2515_7655_acbf76 crossref_primary_10_1016_j_jechem_2023_10_002 crossref_primary_10_1002_adfm_202400337 crossref_primary_10_1016_j_jechem_2024_06_020 crossref_primary_10_1088_0256_307X_40_8_086101 crossref_primary_10_1002_adfm_202408465 crossref_primary_10_1002_adfm_202309858 crossref_primary_10_1002_eem2_12741 crossref_primary_10_1002_adma_202308675 crossref_primary_10_1002_smtd_202400183 crossref_primary_10_1016_j_cej_2024_149610 crossref_primary_10_1021_acsami_4c03645 crossref_primary_10_1039_D3EE03176D crossref_primary_10_1007_s43979_023_00074_4 crossref_primary_10_35940_ijitee_F9871_13060524 crossref_primary_10_1002_cssc_202201595 crossref_primary_10_1021_jacs_4c07806 crossref_primary_10_1002_anie_202406182 crossref_primary_10_1039_D4TA07449A crossref_primary_10_1016_j_ensm_2024_103258 crossref_primary_10_1002_adma_202300841 crossref_primary_10_1073_pnas_2420398122 crossref_primary_10_1149_1945_7111_ad6934 crossref_primary_10_1002_anie_202401051 crossref_primary_10_1002_ange_202300016 crossref_primary_10_1007_s12274_024_6620_7 crossref_primary_10_1002_ange_202303888 crossref_primary_10_1021_jacs_4c09027 crossref_primary_10_1021_jacs_4c13011 crossref_primary_10_1016_j_cej_2023_145455 crossref_primary_10_1016_j_ensm_2024_103242 crossref_primary_10_1016_j_ensm_2024_103484 crossref_primary_10_1021_acs_nanolett_4c01591 crossref_primary_10_1002_ange_202315624 crossref_primary_10_1002_idm2_12105 crossref_primary_10_1002_smll_202404879 crossref_primary_10_1002_batt_202200458 crossref_primary_10_1016_j_matt_2023_04_012 crossref_primary_10_1002_chem_202400803 crossref_primary_10_1021_acsnano_4c00533 crossref_primary_10_1021_acs_chemmater_2c03806 crossref_primary_10_1039_D4TA02103G crossref_primary_10_1016_j_jelechem_2023_117241 crossref_primary_10_1016_j_cej_2025_159927 crossref_primary_10_34133_energymatadv_0130 crossref_primary_10_1002_celc_202300759 crossref_primary_10_1002_ange_202409409 crossref_primary_10_1021_jacsau_2c00590 crossref_primary_10_1002_ange_202300384 crossref_primary_10_1002_adma_202210115 crossref_primary_10_1007_s41918_023_00199_1 crossref_primary_10_1002_adma_202308210 crossref_primary_10_1038_s41467_024_50899_5 crossref_primary_10_1021_acsenergylett_3c00833 crossref_primary_10_1002_adfm_202301028 crossref_primary_10_1002_adsu_202300285 crossref_primary_10_1002_aenm_202401961 crossref_primary_10_1002_anie_202315624 crossref_primary_10_1002_smll_202311810 crossref_primary_10_1021_acsenergylett_4c01616 crossref_primary_10_1002_ange_202406596 crossref_primary_10_1016_j_jpowsour_2024_234559 crossref_primary_10_1021_acs_jpcc_4c02475 crossref_primary_10_1021_acsenergylett_3c02572 crossref_primary_10_1016_j_cej_2023_147180 crossref_primary_10_1021_acssuschemeng_3c07276 crossref_primary_10_1016_j_jechem_2025_02_027 crossref_primary_10_1002_aenm_202301285 crossref_primary_10_1016_j_nanoen_2023_108894 crossref_primary_10_1021_acsnano_4c11874 crossref_primary_10_1002_ange_202307122 crossref_primary_10_1016_j_ensm_2023_02_029 crossref_primary_10_1038_s41467_023_43163_9 crossref_primary_10_1002_anie_202422259 crossref_primary_10_1002_anie_202406596 crossref_primary_10_1016_j_ensm_2023_102995 crossref_primary_10_1016_j_jpowsour_2024_236056 crossref_primary_10_1038_s41467_024_45374_0 crossref_primary_10_1002_adfm_202302503 crossref_primary_10_1002_cssc_202400210 crossref_primary_10_1016_j_esci_2024_100252 crossref_primary_10_1002_adfm_202315498 crossref_primary_10_1039_D3TA07347E |
Cites_doi | 10.1021/acs.jpcc.5b03694 10.1002/anie.202011482 10.1038/nenergy.2017.108 10.1021/la901829v 10.1126/science.aal4263 10.1021/acsenergylett.7b00163 10.1002/aenm.202000368 10.1149/2.1221802jes 10.1002/ange.202017063 10.1039/D0EE01446J 10.1149/1.3615828 10.1021/la1009994 10.1016/j.electacta.2017.11.018 10.1002/ange.202011482 10.1002/adfm.201909887 10.1149/2.0121903jes 10.1016/S0378-7753(99)00187-1 10.1039/D1TA04737J 10.1021/acsenergylett.7b00792 10.1038/s41560-021-00783-z 10.1016/j.joule.2018.01.017 10.1038/s41560-020-0601-1 10.1002/aenm.201401792 10.1038/s41560-020-0567-z 10.1016/j.elecom.2018.10.007 10.1038/s41560-021-00792-y 10.1016/j.ensm.2019.12.020 10.1149/1.1690782 10.1038/s41560-019-0474-3 10.1149/1.2409866 10.1149/2.1441707jes 10.1021/acsenergylett.1c00484 10.1021/acsenergylett.9b00822 10.1039/D0TA10166D 10.1002/anie.201900266 10.1039/C3EE43029D 10.1149/1.2042907 10.1021/acs.chemmater.1c01744 10.1016/S0378-7753(01)00682-6 10.1021/cr030203g 10.1021/ja305366r 10.1039/C9CS00728H 10.1021/acsenergylett.0c01209 10.1557/jmr.2012.104 10.1149/2.0511802jes 10.1002/anie.202017063 10.1002/aenm.201903568 10.1039/C5CP05121E 10.1002/ange.201900266 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
DBID | AAYXX CITATION 7TM K9. 7X8 OIOZB OTOTI |
DOI | 10.1002/anie.202205967 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 1889129 10_1002_anie_202205967 ANIE202205967 |
Genre | article |
GrantInformation_xml | – fundername: the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. DOE through Applied Battery Research for Transportation (ABRT) program funderid: DE-SC0012704 – fundername: ARL funderid: 89243319SEE000004 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OIOZB OTOTI PQEST |
ID | FETCH-LOGICAL-c4837-d7bbe3bf021b6bb12f04026b883f383660ea2e560ec6336954fec0bdad32f90e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Mon Jul 24 03:56:52 EDT 2023 Fri Jul 11 11:47:35 EDT 2025 Fri Jul 25 10:35:40 EDT 2025 Tue Jul 01 01:18:25 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Wed Jan 22 16:23:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4837-d7bbe3bf021b6bb12f04026b883f383660ea2e560ec6336954fec0bdad32f90e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 BNL-223428-2022-JAAM SC0012704; 89243319SEE000004 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office US Army Research Laboratory (USARL) |
ORCID | 0000-0002-8626-6381 0000000286266381 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1889129 |
PQID | 2704166191 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1889129 proquest_miscellaneous_2685033102 proquest_journals_2704166191 crossref_citationtrail_10_1002_anie_202205967 crossref_primary_10_1002_anie_202205967 wiley_primary_10_1002_anie_202205967_ANIE202205967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 26, 2022 |
PublicationDateYYYYMMDD | 2022-08-26 |
PublicationDate_xml | – month: 08 year: 2022 text: August 26, 2022 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2021; 9 2009; 25 2018; 165 2021; 6 2019; 4 2017; 2 2004; 104 2015; 5 2005; 152 1999; 81–82 2020; 13 2011; 14 2020; 10 2016; 18 2017; 356 2019; 166 2019 2019; 58 131 2020; 5 2010; 26 2018; 2 2012; 134 2021; 33 2020; 30 2018; 259 2007; 154 2004; 151 2001; 97–98 2020; 28 2020; 49 2021 2021; 60 133 2015; 119 2012; 27 2017; 164 2014; 7 2018; 97 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 4 start-page: 882 year: 2019 end-page: 890 publication-title: Nat. Energy – volume: 6 start-page: 495 year: 2021 end-page: 505 publication-title: Nat. Energy – volume: 25 start-page: 12766 year: 2009 end-page: 12770 publication-title: Langmuir – volume: 152 start-page: A2151 year: 2005 publication-title: J. Electrochem. Soc. – volume: 165 start-page: A361 year: 2018 end-page: A367 publication-title: J. Electrochem. Soc. – volume: 104 start-page: 4303 year: 2004 end-page: 4417 publication-title: Chem. Rev. – volume: 97–98 start-page: 137 year: 2001 end-page: 139 publication-title: J. Power Sources – volume: 26 start-page: 11538 year: 2010 end-page: 11543 publication-title: Langmuir – volume: 5 start-page: 291 year: 2020 end-page: 298 publication-title: Nat. Energy – volume: 97 start-page: 37 year: 2018 end-page: 41 publication-title: Electrochem. Commun. – volume: 33 start-page: 7315 year: 2021 end-page: 7336 publication-title: Chem. Mater. – volume: 2 start-page: 2563 year: 2017 end-page: 2575 publication-title: ACS Energy Lett. – volume: 13 start-page: 2209 year: 2020 end-page: 2219 publication-title: Energy Environ. Sci. – volume: 60 133 start-page: 4090 4136 year: 2021 2021 end-page: 4097 4143 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 154 start-page: A162 year: 2007 publication-title: J. Electrochem. Soc. – volume: 14 start-page: A154 year: 2011 end-page: A157 publication-title: Electrochem. Solid-State Lett. – volume: 7 start-page: 1737 year: 2014 end-page: 1743 publication-title: Energy Environ. Sci. – volume: 6 start-page: 303 year: 2021 end-page: 313 publication-title: Nat. Energy – volume: 2 start-page: 1337 year: 2017 end-page: 1345 publication-title: ACS Energy Lett. – volume: 166 start-page: A5090 year: 2019 end-page: A5098 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 2016 year: 2021 end-page: 2023 publication-title: ACS Energy Lett. – volume: 259 start-page: 949 year: 2018 end-page: 954 publication-title: Electrochim. Acta – volume: 18 start-page: 164 year: 2016 end-page: 175 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 902 year: 2018 end-page: 913 publication-title: Joule – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 386 year: 2020 end-page: 397 publication-title: Nat. Energy – volume: 60 133 start-page: 8289 8370 year: 2021 2021 end-page: 8296 8377 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 4858 year: 2021 end-page: 4869 publication-title: J. Mater. Chem. A – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1584 year: 2019 end-page: 1593 publication-title: ACS Energy Lett. – volume: 164 start-page: A1703 year: 2017 end-page: A1719 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 17108 year: 2017 publication-title: Nat. Energy – volume: 356 start-page: 6345 year: 2017 publication-title: Science – volume: 58 131 start-page: 5623 5679 year: 2019 2019 end-page: 5627 5683 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 401 year: 2020 end-page: 406 publication-title: Energy Storage Mater. – volume: 5 start-page: 2411 year: 2020 end-page: 2420 publication-title: ACS Energy Lett. – volume: 165 start-page: A126 year: 2018 end-page: A131 publication-title: J. Electrochem. Soc. – volume: 151 start-page: A731 year: 2004 publication-title: J. Electrochem. Soc. – volume: 134 start-page: 15476 year: 2012 end-page: 15487 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 3806 year: 2020 end-page: 3833 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 17459 year: 2021 end-page: 17473 publication-title: J. Mater. Chem. A – volume: 81–82 start-page: 95 year: 1999 end-page: 111 publication-title: J. Power Sources – volume: 27 start-page: 2327 year: 2012 end-page: 2341 publication-title: J. Mater. Res. – volume: 119 start-page: 14038 year: 2015 end-page: 14046 publication-title: J. Phys. Chem. C – ident: e_1_2_7_25_1 doi: 10.1021/acs.jpcc.5b03694 – ident: e_1_2_7_23_1 doi: 10.1002/anie.202011482 – ident: e_1_2_7_1_1 doi: 10.1038/nenergy.2017.108 – ident: e_1_2_7_10_1 doi: 10.1021/la901829v – ident: e_1_2_7_11_1 doi: 10.1126/science.aal4263 – ident: e_1_2_7_39_1 doi: 10.1021/acsenergylett.7b00163 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.202000368 – ident: e_1_2_7_2_1 doi: 10.1149/2.1221802jes – ident: e_1_2_7_32_2 doi: 10.1002/ange.202017063 – ident: e_1_2_7_12_1 doi: 10.1039/D0EE01446J – ident: e_1_2_7_14_1 doi: 10.1149/1.3615828 – ident: e_1_2_7_15_1 doi: 10.1021/la1009994 – ident: e_1_2_7_40_1 doi: 10.1016/j.electacta.2017.11.018 – ident: e_1_2_7_23_2 doi: 10.1002/ange.202011482 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201909887 – ident: e_1_2_7_6_1 doi: 10.1149/2.0121903jes – ident: e_1_2_7_43_1 doi: 10.1016/S0378-7753(99)00187-1 – ident: e_1_2_7_46_1 doi: 10.1039/D1TA04737J – ident: e_1_2_7_31_1 doi: 10.1021/acsenergylett.7b00792 – ident: e_1_2_7_17_1 doi: 10.1038/s41560-021-00783-z – ident: e_1_2_7_20_1 doi: 10.1016/j.joule.2018.01.017 – ident: e_1_2_7_27_1 doi: 10.1038/s41560-020-0601-1 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201401792 – ident: e_1_2_7_30_1 doi: 10.1038/s41560-020-0567-z – ident: e_1_2_7_33_1 doi: 10.1016/j.elecom.2018.10.007 – ident: e_1_2_7_45_1 doi: 10.1038/s41560-021-00792-y – ident: e_1_2_7_41_1 doi: 10.1016/j.ensm.2019.12.020 – ident: e_1_2_7_3_1 doi: 10.1149/1.1690782 – ident: e_1_2_7_16_1 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_7_35_1 doi: 10.1149/1.2409866 – ident: e_1_2_7_38_1 doi: 10.1149/2.1441707jes – ident: e_1_2_7_22_1 doi: 10.1021/acsenergylett.1c00484 – ident: e_1_2_7_36_1 doi: 10.1021/acsenergylett.9b00822 – ident: e_1_2_7_37_1 doi: 10.1039/D0TA10166D – ident: e_1_2_7_18_1 doi: 10.1002/anie.201900266 – ident: e_1_2_7_13_1 doi: 10.1039/C3EE43029D – ident: e_1_2_7_34_1 doi: 10.1149/1.2042907 – ident: e_1_2_7_28_1 doi: 10.1021/acs.chemmater.1c01744 – ident: e_1_2_7_8_1 doi: 10.1016/S0378-7753(01)00682-6 – ident: e_1_2_7_9_1 doi: 10.1021/cr030203g – ident: e_1_2_7_42_1 doi: 10.1021/ja305366r – ident: e_1_2_7_4_1 doi: 10.1039/C9CS00728H – ident: e_1_2_7_19_1 doi: 10.1021/acsenergylett.0c01209 – ident: e_1_2_7_5_1 doi: 10.1557/jmr.2012.104 – ident: e_1_2_7_26_1 doi: 10.1149/2.0511802jes – ident: e_1_2_7_32_1 doi: 10.1002/anie.202017063 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201903568 – ident: e_1_2_7_24_1 doi: 10.1039/C5CP05121E – ident: e_1_2_7_18_2 doi: 10.1002/ange.201900266 |
SSID | ssj0028806 |
Score | 2.6751456 |
Snippet | LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is... LiNi x Co y Mn z O 2 ( x +y+ z =1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C)... LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance... LiNixCoyMnzO2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ –20°C) performance is... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202205967 |
SubjectTerms | Charge transfer Electrolytes Electrolytic cells ENERGY STORAGE Graphite Inorganic-Rich EEIs Li-Plating Free Lithium Lithium-ion batteries Low temperature Low-Temperature Electrolyte NMC811llGraphite NMC811||Graphite Polarity Solvents Weak Ion-Dipole Interactions |
Title | Enhancing Li+ Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205967 https://www.proquest.com/docview/2704166191 https://www.proquest.com/docview/2685033102 https://www.osti.gov/servlets/purl/1889129 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hvcCFRwERWpArIXFAbhM7cZJjtdo-ULtC0Eq9WXFi0xVLgtisUFEPnDjzG_klnYk3oYuEkODmyGPJsWfsb5KZbwBeVFWJ15iQPFdJwhERZ9zEseTOibhMZZXEkhKFT6bq8Cx-fZ6c38ji9_wQwwc3sozuvCYDL8xi9xdpKGVgo39HiaK5onRyCtgiVPR24I8SqJw-vUhKTlXoe9bGUOyuD1-7lUYNWtca4ryJW7uLZ_8eFP2UfbzJh51la3bKr7-xOf7PO92HuytUyva8Gj2AW7begNvjvhjcQ_g-qS-ImaN-z45nr9hAic5mNZuejLMouro6IO5rRLAo0V7Mlh9_fvtx1NTMM3iiQ86Klh03X9ipRajuqZwXzFyyLmqBenDAG_K00THA5rtmTrGYbOIL9cwvERQ_grP9yen4kK9KOPCSqOp5lRpjpXGIJIwyJhIODw2hTJZJh76xUqEthEXUZVFlpMqT2NkyNFVRSeHy0MrHMKqb2j4BhtpmEuEQcFiBUrJQoUmTNEfMVLg4rQLg_RbqcsVvTmU25tozMwtNq6uH1Q3g5SD_yTN7_FFykzRCIyYhYt2SIpDKVkdZliNaCmCrVxS9sv-FFmmISBed0yiA7aEb94x-xxS1bZYoozL6h4wILwDRacVf5qH3pkeT4enpvwzahDvUpo_iQm3BqP28tM8QVbXmeWc514cuHJY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcCgX_hGmBRYJxAG5tXfttX3gUKUpCU0iBKnU2-K11zQi2Ig4qoJ64MSZV-FVeASehBk7NgQJISH1wM0_Y2u9O-P9ZnfmG4CHaZrgNMaFHUnftxERh7b2PGFnGfeSQKS-JyhReDSW_SPv-bF_vAFfm1yYmh-iXXAjy6j-12TgtCC9-5M1lFKw0cGjTNFIBqu4ykOzPEWvbf50sI9D_Ijzg96k27dXhQXshAjU7TTQ2gid4fympdYuz1CVudRhKDL02KR0TMwNYgGDHyJk5HuZSRydxqngWeQYge-9ABepjDjR9e-_bBmrOJpDndAkhE117xueSIfvrrd3bR7sFGjPaxj3V6RcTXUHV-Bb00l1hMvbnUWpd5KPv_FH_le9eBUur4A326st5RpsmPw6bHabenc34HMvPyHykfwNG06fsJb1nU1zNh51Q9c9O3tG9N4I0lGiPJku3n3_9GVQ5KwmKZ2aOYtLNixO2cSgN1KzVc-ZXrIqMIPu4AMvaDEBfR88fFXMKNyU9epaRLMl4v6bcHQu3XALOnmRm9vA0KC0zzPEVIajlIilowM_iBAWxpkXpBbYjc6oZEXhTpVEZqomn-aKRlO1o2nB41b-fU1e8kfJLVJBhbCLuIMTCrJKSuWGYYSA0ILtRjPV6hc3VzxwEMyj_-1a8KC9jWNGO05xbooFysiQtskRxFrAKzX8SzvU3njQa8_u_MtD92GzPxkN1XAwPtyCS3Sd9gC43IZO-WFh7iKILPW9ymwZvD5vDf8BUdd6wA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRQIu_CNCCxgJxAGlTezESQ4cqv2hS7erClqpNxMnDl2xJBWbVbWoB06ceRRehVfgSZhJNoFFQkhIPXBL4nGU2DPxN_HMNwCP0zTBZYwLO5K-byMiDm3tecLOMu4lgUh9T1Ci8N5Y7hx6L4_8ozX42uTC1PwQ7Q83sozqe00GfpJmWz9JQykDG_07ShSNZLAMq9w1i1N02mbPhz2c4SecD_oH3R17WVfATog_3U4DrY3QGS5vWmrt8gw1mUsdhiJDh01Kx8TcIBQw-B5CRr6XmcTRaZwKnkWOEXjfC3DRk05ExSJ6r1rCKo7WUOczCWFT2fuGJtLhW6vPu7IMdgo05xWI-ytQrla6wTX41oxRHeDybnNe6s3k42_0kf_TIF6Hq0vYzbZrO7kBaya_CZe7TbW7W_C5nx8T9Uj-lo0mz1jL-c4mORvvdUPXPTt7QeTeCNFRojyezN9___RlWOSspiidmBmLSzYqTtmBQV-k5qqeMb1gVVgGtWCHffqVgJ4PHr4uphRsyvp1JaLpAlH_bTg8l2G4A528yM1dYGhO2ucZIirDUUrE0tGBH0QICuPMC1IL7EZlVLIkcKc6IlNVU09zRbOp2tm04Gkrf1JTl_xRcp00UCHoIubghEKsklK5YRghHLRgo1FMtfzAzRQPHITy6H27Fjxqm3HOaL8pzk0xRxkZ0iY5QlgLeKWFf3kOtT0e9tuze__S6SFc2u8N1Gg43l2HK3SZNgC43IBO-WFu7iOCLPWDymgZvDlvBf8BVXl5bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Li%2B+Transport+in+NMC811%7C%7CGraphite+Lithium%E2%80%90Ion+Batteries+at+Low+Temperatures+by+Using+Low%E2%80%90Polarity%E2%80%90Solvent+Electrolytes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Nan%2C+Bo&rft.au=Long%2C+Chen&rft.au=Rodrigo%2C+Nuwanthi+D&rft.au=Borodin%2C+Oleg&rft.date=2022-08-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=35&rft_id=info:doi/10.1002%2Fanie.202205967&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |