Enhancing Li+ Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes

LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphas...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 61; no. 35; pp. e202205967 - n/a
Main Authors Nan, Bo, Chen, Long, Rodrigo, Nuwanthi D., Borodin, Oleg, Piao, Nan, Xia, Jiale, Pollard, Travis, Hou, Singyuk, Zhang, Jiaxun, Ji, Xiao, Xu, Jijian, Zhang, Xiyue, Ma, Lin, He, Xinzi, Liu, Sufu, Wan, Hongli, Hu, Enyuan, Zhang, Weiran, Xu, Kang, Yang, Xiao‐Qing, Lucht, Brett, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 26.08.2022
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g−1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C. Low‐polarity‐solvent electrolytes (LPSEs) 1) enable the formation of the anion‐derived interphases on both electrodes and 2) have weak interactions between the solvent molecules and Li+, which provide fast Li+ transport kinetics and reduced resistance in both charge transfer process and Li+ transport in electrode/electrolyte interphases, achieving excellent battery performance under both fast‐charge and low‐temperature conditions.
AbstractList LiNixCoyMnzO2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ –20°C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low-temperature LIBs performance. In this work, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g–1 (98% full-cell capacity) at 25°C and to remain 82% of their room-temperature capacity at –20°C without lithium plating at 1/3C. They also retain 84% of their capacity at –30°C and 78% of their capacity at –40°C and show stable cycling at 50°C.
LiNi x Co y Mn z O 2 ( x +y+ z =1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li + transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance ( R ct ) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li + to reduce R ct , achieving facile Li + transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi 0.8 Mn 0.1 Co 0.1 O 2 ||graphite cells to deliver a capacity of ≈113 mAh g −1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C.
LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g−1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C.
LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113 mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C.LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113 mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C.
LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g−1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C. Low‐polarity‐solvent electrolytes (LPSEs) 1) enable the formation of the anion‐derived interphases on both electrodes and 2) have weak interactions between the solvent molecules and Li+, which provide fast Li+ transport kinetics and reduced resistance in both charge transfer process and Li+ transport in electrode/electrolyte interphases, achieving excellent battery performance under both fast‐charge and low‐temperature conditions.
Author Piao, Nan
Wang, Chunsheng
Xia, Jiale
Ma, Lin
Wan, Hongli
Borodin, Oleg
Zhang, Weiran
Zhang, Xiyue
Nan, Bo
Hou, Singyuk
Ji, Xiao
Pollard, Travis
He, Xinzi
Chen, Long
Liu, Sufu
Lucht, Brett
Yang, Xiao‐Qing
Rodrigo, Nuwanthi D.
Xu, Jijian
Xu, Kang
Hu, Enyuan
Zhang, Jiaxun
Author_xml – sequence: 1
  givenname: Bo
  surname: Nan
  fullname: Nan, Bo
  organization: University of Maryland
– sequence: 2
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: University of Maryland
– sequence: 3
  givenname: Nuwanthi D.
  surname: Rodrigo
  fullname: Rodrigo, Nuwanthi D.
  organization: University of Rhode Island
– sequence: 4
  givenname: Oleg
  surname: Borodin
  fullname: Borodin, Oleg
  organization: Army Research Laboratory
– sequence: 5
  givenname: Nan
  surname: Piao
  fullname: Piao, Nan
  organization: University of Maryland
– sequence: 6
  givenname: Jiale
  surname: Xia
  fullname: Xia, Jiale
  organization: University of Maryland
– sequence: 7
  givenname: Travis
  surname: Pollard
  fullname: Pollard, Travis
  organization: Army Research Laboratory
– sequence: 8
  givenname: Singyuk
  surname: Hou
  fullname: Hou, Singyuk
  organization: University of Maryland
– sequence: 9
  givenname: Jiaxun
  surname: Zhang
  fullname: Zhang, Jiaxun
  organization: University of Maryland
– sequence: 10
  givenname: Xiao
  surname: Ji
  fullname: Ji, Xiao
  organization: University of Maryland
– sequence: 11
  givenname: Jijian
  surname: Xu
  fullname: Xu, Jijian
  organization: University of Maryland
– sequence: 12
  givenname: Xiyue
  surname: Zhang
  fullname: Zhang, Xiyue
  organization: University of Maryland
– sequence: 13
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
  organization: The University of North Carolina at Charlotte
– sequence: 14
  givenname: Xinzi
  surname: He
  fullname: He, Xinzi
  organization: University of Maryland
– sequence: 15
  givenname: Sufu
  surname: Liu
  fullname: Liu, Sufu
  organization: University of Maryland
– sequence: 16
  givenname: Hongli
  surname: Wan
  fullname: Wan, Hongli
  organization: University of Maryland
– sequence: 17
  givenname: Enyuan
  surname: Hu
  fullname: Hu, Enyuan
  organization: Brookhaven National Laboratory
– sequence: 18
  givenname: Weiran
  surname: Zhang
  fullname: Zhang, Weiran
  organization: University of Maryland
– sequence: 19
  givenname: Kang
  surname: Xu
  fullname: Xu, Kang
  email: conrad.k.xu.civ@mail.mil
  organization: Army Research Laboratory
– sequence: 20
  givenname: Xiao‐Qing
  surname: Yang
  fullname: Yang, Xiao‐Qing
  email: xyang@bnl.gov
  organization: Brookhaven National Laboratory
– sequence: 21
  givenname: Brett
  surname: Lucht
  fullname: Lucht, Brett
  email: blucht@uri.edu
  organization: University of Rhode Island
– sequence: 22
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: University of Maryland
BackLink https://www.osti.gov/servlets/purl/1889129$$D View this record in Osti.gov
BookMark eNqFkc9rFDEUxwepYFu9eg56EWTW_JjJZI51WevCthXcnkMm-8ZNySZjknEZ6MGTZ_9G_5KmrlgoiKf3CJ_Py3t8T4oj5x0UxUuCZwRj-k45AzOKKcV1y5snxTGpKSlZ07Cj3FeMlY2oybPiJMabzAuB-XHxY-G2ymnjvqCVeYvWQbk4-JCQcejyYi4Iub09D2rYmgSZSFsz7n59_7n0Dr1XKUEwEJFKaOX3aA27AYJKY8hv3YSu4--xfp-FT96qYNKU28_efgOX0MKCTsHbKUF8XjztlY3w4k89La4_LNbzj-Xq6nw5P1uVuhKsKTdN1wHrekxJx7uO0B5XmPJOCNYzwTjHoCjUuWjOGG_rqgeNu43aMNq3GNhp8eow18dkZNT5Kr3V3rm8iiRCtIS2GXpzgIbgv44Qk9yZqMFa5cCPUVIuaswYwTSjrx-hN34MLp8gaYMrwjlpSaaqA6WDjzFAL_PHKhnvUlDGSoLlfYLyPkH5N8GszR5pQzA7FaZ_C-1B2BsL039oeXa5XDy4d0dntBg
CitedBy_id crossref_primary_10_1002_ange_202422259
crossref_primary_10_1021_acsami_4c15594
crossref_primary_10_1002_ange_202314509
crossref_primary_10_1021_acsaem_3c02203
crossref_primary_10_1021_jacsau_4c00196
crossref_primary_10_1002_advs_202409259
crossref_primary_10_1002_ange_202318663
crossref_primary_10_1039_D3EE03809B
crossref_primary_10_1002_anie_202409409
crossref_primary_10_1039_D3TA00254C
crossref_primary_10_1039_D4EE03191A
crossref_primary_10_1002_adfm_202403682
crossref_primary_10_1002_anie_202300384
crossref_primary_10_1038_s41467_023_37033_7
crossref_primary_10_1002_adma_202308881
crossref_primary_10_1016_j_jechem_2024_10_007
crossref_primary_10_1021_acscentsci_2c00791
crossref_primary_10_1002_ange_202406182
crossref_primary_10_1039_D3EE02861E
crossref_primary_10_1039_D4EE03192J
crossref_primary_10_1002_smll_202401200
crossref_primary_10_1016_j_cej_2025_160827
crossref_primary_10_1002_adfm_202409494
crossref_primary_10_1002_ange_202401051
crossref_primary_10_1039_D4TA06896C
crossref_primary_10_1002_aenm_202300626
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1016_j_ensm_2024_103955
crossref_primary_10_1002_anie_202300016
crossref_primary_10_1021_jacs_3c08313
crossref_primary_10_1039_D3EE03340F
crossref_primary_10_1002_anie_202307122
crossref_primary_10_1002_bte2_20230064
crossref_primary_10_1021_acsaem_3c00385
crossref_primary_10_1021_acs_jpcc_2c08357
crossref_primary_10_1021_acsaem_3c00261
crossref_primary_10_1039_D4TA02958E
crossref_primary_10_1016_j_nxener_2024_100115
crossref_primary_10_1039_D3RA01111A
crossref_primary_10_1021_acsenergylett_2c02003
crossref_primary_10_1149_1945_7111_ad88aa
crossref_primary_10_1002_batt_202400246
crossref_primary_10_1021_acsnano_4c07986
crossref_primary_10_1002_anie_202318663
crossref_primary_10_1039_D4RA08490J
crossref_primary_10_1002_elan_202400318
crossref_primary_10_1002_adfm_202312994
crossref_primary_10_1002_adma_202311327
crossref_primary_10_1002_anie_202314509
crossref_primary_10_1021_acsaem_4c01510
crossref_primary_10_1021_jacs_4c02345
crossref_primary_10_1002_adma_202209140
crossref_primary_10_1002_adfm_202419994
crossref_primary_10_1088_2515_7655_acbf76
crossref_primary_10_1016_j_jechem_2023_10_002
crossref_primary_10_1002_adfm_202400337
crossref_primary_10_1016_j_jechem_2024_06_020
crossref_primary_10_1088_0256_307X_40_8_086101
crossref_primary_10_1002_adfm_202408465
crossref_primary_10_1002_adfm_202309858
crossref_primary_10_1002_eem2_12741
crossref_primary_10_1002_adma_202308675
crossref_primary_10_1002_smtd_202400183
crossref_primary_10_1016_j_cej_2024_149610
crossref_primary_10_1021_acsami_4c03645
crossref_primary_10_1039_D3EE03176D
crossref_primary_10_1007_s43979_023_00074_4
crossref_primary_10_35940_ijitee_F9871_13060524
crossref_primary_10_1002_cssc_202201595
crossref_primary_10_1021_jacs_4c07806
crossref_primary_10_1002_anie_202406182
crossref_primary_10_1039_D4TA07449A
crossref_primary_10_1016_j_ensm_2024_103258
crossref_primary_10_1002_adma_202300841
crossref_primary_10_1073_pnas_2420398122
crossref_primary_10_1149_1945_7111_ad6934
crossref_primary_10_1002_anie_202401051
crossref_primary_10_1002_ange_202300016
crossref_primary_10_1007_s12274_024_6620_7
crossref_primary_10_1002_ange_202303888
crossref_primary_10_1021_jacs_4c09027
crossref_primary_10_1021_jacs_4c13011
crossref_primary_10_1016_j_cej_2023_145455
crossref_primary_10_1016_j_ensm_2024_103242
crossref_primary_10_1016_j_ensm_2024_103484
crossref_primary_10_1021_acs_nanolett_4c01591
crossref_primary_10_1002_ange_202315624
crossref_primary_10_1002_idm2_12105
crossref_primary_10_1002_smll_202404879
crossref_primary_10_1002_batt_202200458
crossref_primary_10_1016_j_matt_2023_04_012
crossref_primary_10_1002_chem_202400803
crossref_primary_10_1021_acsnano_4c00533
crossref_primary_10_1021_acs_chemmater_2c03806
crossref_primary_10_1039_D4TA02103G
crossref_primary_10_1016_j_jelechem_2023_117241
crossref_primary_10_1016_j_cej_2025_159927
crossref_primary_10_34133_energymatadv_0130
crossref_primary_10_1002_celc_202300759
crossref_primary_10_1002_ange_202409409
crossref_primary_10_1021_jacsau_2c00590
crossref_primary_10_1002_ange_202300384
crossref_primary_10_1002_adma_202210115
crossref_primary_10_1007_s41918_023_00199_1
crossref_primary_10_1002_adma_202308210
crossref_primary_10_1038_s41467_024_50899_5
crossref_primary_10_1021_acsenergylett_3c00833
crossref_primary_10_1002_adfm_202301028
crossref_primary_10_1002_adsu_202300285
crossref_primary_10_1002_aenm_202401961
crossref_primary_10_1002_anie_202315624
crossref_primary_10_1002_smll_202311810
crossref_primary_10_1021_acsenergylett_4c01616
crossref_primary_10_1002_ange_202406596
crossref_primary_10_1016_j_jpowsour_2024_234559
crossref_primary_10_1021_acs_jpcc_4c02475
crossref_primary_10_1021_acsenergylett_3c02572
crossref_primary_10_1016_j_cej_2023_147180
crossref_primary_10_1021_acssuschemeng_3c07276
crossref_primary_10_1016_j_jechem_2025_02_027
crossref_primary_10_1002_aenm_202301285
crossref_primary_10_1016_j_nanoen_2023_108894
crossref_primary_10_1021_acsnano_4c11874
crossref_primary_10_1002_ange_202307122
crossref_primary_10_1016_j_ensm_2023_02_029
crossref_primary_10_1038_s41467_023_43163_9
crossref_primary_10_1002_anie_202422259
crossref_primary_10_1002_anie_202406596
crossref_primary_10_1016_j_ensm_2023_102995
crossref_primary_10_1016_j_jpowsour_2024_236056
crossref_primary_10_1038_s41467_024_45374_0
crossref_primary_10_1002_adfm_202302503
crossref_primary_10_1002_cssc_202400210
crossref_primary_10_1016_j_esci_2024_100252
crossref_primary_10_1002_adfm_202315498
crossref_primary_10_1039_D3TA07347E
Cites_doi 10.1021/acs.jpcc.5b03694
10.1002/anie.202011482
10.1038/nenergy.2017.108
10.1021/la901829v
10.1126/science.aal4263
10.1021/acsenergylett.7b00163
10.1002/aenm.202000368
10.1149/2.1221802jes
10.1002/ange.202017063
10.1039/D0EE01446J
10.1149/1.3615828
10.1021/la1009994
10.1016/j.electacta.2017.11.018
10.1002/ange.202011482
10.1002/adfm.201909887
10.1149/2.0121903jes
10.1016/S0378-7753(99)00187-1
10.1039/D1TA04737J
10.1021/acsenergylett.7b00792
10.1038/s41560-021-00783-z
10.1016/j.joule.2018.01.017
10.1038/s41560-020-0601-1
10.1002/aenm.201401792
10.1038/s41560-020-0567-z
10.1016/j.elecom.2018.10.007
10.1038/s41560-021-00792-y
10.1016/j.ensm.2019.12.020
10.1149/1.1690782
10.1038/s41560-019-0474-3
10.1149/1.2409866
10.1149/2.1441707jes
10.1021/acsenergylett.1c00484
10.1021/acsenergylett.9b00822
10.1039/D0TA10166D
10.1002/anie.201900266
10.1039/C3EE43029D
10.1149/1.2042907
10.1021/acs.chemmater.1c01744
10.1016/S0378-7753(01)00682-6
10.1021/cr030203g
10.1021/ja305366r
10.1039/C9CS00728H
10.1021/acsenergylett.0c01209
10.1557/jmr.2012.104
10.1149/2.0511802jes
10.1002/anie.202017063
10.1002/aenm.201903568
10.1039/C5CP05121E
10.1002/ange.201900266
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
7TM
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/anie.202205967
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 1889129
10_1002_anie_202205967
ANIE202205967
Genre article
GrantInformation_xml – fundername: the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. DOE through Applied Battery Research for Transportation (ABRT) program
  funderid: DE-SC0012704
– fundername: ARL
  funderid: 89243319SEE000004
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c4837-d7bbe3bf021b6bb12f04026b883f383660ea2e560ec6336954fec0bdad32f90e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Mon Jul 24 03:56:52 EDT 2023
Fri Jul 11 11:47:35 EDT 2025
Fri Jul 25 10:35:40 EDT 2025
Tue Jul 01 01:18:25 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Wed Jan 22 16:23:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4837-d7bbe3bf021b6bb12f04026b883f383660ea2e560ec6336954fec0bdad32f90e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
BNL-223428-2022-JAAM
SC0012704; 89243319SEE000004
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
US Army Research Laboratory (USARL)
ORCID 0000-0002-8626-6381
0000000286266381
OpenAccessLink https://www.osti.gov/servlets/purl/1889129
PQID 2704166191
PQPubID 946352
PageCount 11
ParticipantIDs osti_scitechconnect_1889129
proquest_miscellaneous_2685033102
proquest_journals_2704166191
crossref_citationtrail_10_1002_anie_202205967
crossref_primary_10_1002_anie_202205967
wiley_primary_10_1002_anie_202205967_ANIE202205967
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 26, 2022
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: August 26, 2022
  day: 26
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2021; 9
2009; 25
2018; 165
2021; 6
2019; 4
2017; 2
2004; 104
2015; 5
2005; 152
1999; 81–82
2020; 13
2011; 14
2020; 10
2016; 18
2017; 356
2019; 166
2019 2019; 58 131
2020; 5
2010; 26
2018; 2
2012; 134
2021; 33
2020; 30
2018; 259
2007; 154
2004; 151
2001; 97–98
2020; 28
2020; 49
2021 2021; 60 133
2015; 119
2012; 27
2017; 164
2014; 7
2018; 97
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 882
  year: 2019
  end-page: 890
  publication-title: Nat. Energy
– volume: 6
  start-page: 495
  year: 2021
  end-page: 505
  publication-title: Nat. Energy
– volume: 25
  start-page: 12766
  year: 2009
  end-page: 12770
  publication-title: Langmuir
– volume: 152
  start-page: A2151
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 165
  start-page: A361
  year: 2018
  end-page: A367
  publication-title: J. Electrochem. Soc.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4417
  publication-title: Chem. Rev.
– volume: 97–98
  start-page: 137
  year: 2001
  end-page: 139
  publication-title: J. Power Sources
– volume: 26
  start-page: 11538
  year: 2010
  end-page: 11543
  publication-title: Langmuir
– volume: 5
  start-page: 291
  year: 2020
  end-page: 298
  publication-title: Nat. Energy
– volume: 97
  start-page: 37
  year: 2018
  end-page: 41
  publication-title: Electrochem. Commun.
– volume: 33
  start-page: 7315
  year: 2021
  end-page: 7336
  publication-title: Chem. Mater.
– volume: 2
  start-page: 2563
  year: 2017
  end-page: 2575
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 2209
  year: 2020
  end-page: 2219
  publication-title: Energy Environ. Sci.
– volume: 60 133
  start-page: 4090 4136
  year: 2021 2021
  end-page: 4097 4143
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 154
  start-page: A162
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 14
  start-page: A154
  year: 2011
  end-page: A157
  publication-title: Electrochem. Solid-State Lett.
– volume: 7
  start-page: 1737
  year: 2014
  end-page: 1743
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 303
  year: 2021
  end-page: 313
  publication-title: Nat. Energy
– volume: 2
  start-page: 1337
  year: 2017
  end-page: 1345
  publication-title: ACS Energy Lett.
– volume: 166
  start-page: A5090
  year: 2019
  end-page: A5098
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 2016
  year: 2021
  end-page: 2023
  publication-title: ACS Energy Lett.
– volume: 259
  start-page: 949
  year: 2018
  end-page: 954
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 164
  year: 2016
  end-page: 175
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 902
  year: 2018
  end-page: 913
  publication-title: Joule
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 386
  year: 2020
  end-page: 397
  publication-title: Nat. Energy
– volume: 60 133
  start-page: 8289 8370
  year: 2021 2021
  end-page: 8296 8377
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 4858
  year: 2021
  end-page: 4869
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1584
  year: 2019
  end-page: 1593
  publication-title: ACS Energy Lett.
– volume: 164
  start-page: A1703
  year: 2017
  end-page: A1719
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 17108
  year: 2017
  publication-title: Nat. Energy
– volume: 356
  start-page: 6345
  year: 2017
  publication-title: Science
– volume: 58 131
  start-page: 5623 5679
  year: 2019 2019
  end-page: 5627 5683
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 401
  year: 2020
  end-page: 406
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 2411
  year: 2020
  end-page: 2420
  publication-title: ACS Energy Lett.
– volume: 165
  start-page: A126
  year: 2018
  end-page: A131
  publication-title: J. Electrochem. Soc.
– volume: 151
  start-page: A731
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 134
  start-page: 15476
  year: 2012
  end-page: 15487
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 3806
  year: 2020
  end-page: 3833
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 17459
  year: 2021
  end-page: 17473
  publication-title: J. Mater. Chem. A
– volume: 81–82
  start-page: 95
  year: 1999
  end-page: 111
  publication-title: J. Power Sources
– volume: 27
  start-page: 2327
  year: 2012
  end-page: 2341
  publication-title: J. Mater. Res.
– volume: 119
  start-page: 14038
  year: 2015
  end-page: 14046
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.jpcc.5b03694
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.202011482
– ident: e_1_2_7_1_1
  doi: 10.1038/nenergy.2017.108
– ident: e_1_2_7_10_1
  doi: 10.1021/la901829v
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aal4263
– ident: e_1_2_7_39_1
  doi: 10.1021/acsenergylett.7b00163
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.202000368
– ident: e_1_2_7_2_1
  doi: 10.1149/2.1221802jes
– ident: e_1_2_7_32_2
  doi: 10.1002/ange.202017063
– ident: e_1_2_7_12_1
  doi: 10.1039/D0EE01446J
– ident: e_1_2_7_14_1
  doi: 10.1149/1.3615828
– ident: e_1_2_7_15_1
  doi: 10.1021/la1009994
– ident: e_1_2_7_40_1
  doi: 10.1016/j.electacta.2017.11.018
– ident: e_1_2_7_23_2
  doi: 10.1002/ange.202011482
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201909887
– ident: e_1_2_7_6_1
  doi: 10.1149/2.0121903jes
– ident: e_1_2_7_43_1
  doi: 10.1016/S0378-7753(99)00187-1
– ident: e_1_2_7_46_1
  doi: 10.1039/D1TA04737J
– ident: e_1_2_7_31_1
  doi: 10.1021/acsenergylett.7b00792
– ident: e_1_2_7_17_1
  doi: 10.1038/s41560-021-00783-z
– ident: e_1_2_7_20_1
  doi: 10.1016/j.joule.2018.01.017
– ident: e_1_2_7_27_1
  doi: 10.1038/s41560-020-0601-1
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201401792
– ident: e_1_2_7_30_1
  doi: 10.1038/s41560-020-0567-z
– ident: e_1_2_7_33_1
  doi: 10.1016/j.elecom.2018.10.007
– ident: e_1_2_7_45_1
  doi: 10.1038/s41560-021-00792-y
– ident: e_1_2_7_41_1
  doi: 10.1016/j.ensm.2019.12.020
– ident: e_1_2_7_3_1
  doi: 10.1149/1.1690782
– ident: e_1_2_7_16_1
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_7_35_1
  doi: 10.1149/1.2409866
– ident: e_1_2_7_38_1
  doi: 10.1149/2.1441707jes
– ident: e_1_2_7_22_1
  doi: 10.1021/acsenergylett.1c00484
– ident: e_1_2_7_36_1
  doi: 10.1021/acsenergylett.9b00822
– ident: e_1_2_7_37_1
  doi: 10.1039/D0TA10166D
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.201900266
– ident: e_1_2_7_13_1
  doi: 10.1039/C3EE43029D
– ident: e_1_2_7_34_1
  doi: 10.1149/1.2042907
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.chemmater.1c01744
– ident: e_1_2_7_8_1
  doi: 10.1016/S0378-7753(01)00682-6
– ident: e_1_2_7_9_1
  doi: 10.1021/cr030203g
– ident: e_1_2_7_42_1
  doi: 10.1021/ja305366r
– ident: e_1_2_7_4_1
  doi: 10.1039/C9CS00728H
– ident: e_1_2_7_19_1
  doi: 10.1021/acsenergylett.0c01209
– ident: e_1_2_7_5_1
  doi: 10.1557/jmr.2012.104
– ident: e_1_2_7_26_1
  doi: 10.1149/2.0511802jes
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202017063
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201903568
– ident: e_1_2_7_24_1
  doi: 10.1039/C5CP05121E
– ident: e_1_2_7_18_2
  doi: 10.1002/ange.201900266
SSID ssj0028806
Score 2.6751456
Snippet LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is...
LiNi x Co y Mn z O 2 ( x +y+ z =1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C)...
LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance...
LiNixCoyMnzO2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ –20°C) performance is...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202205967
SubjectTerms Charge transfer
Electrolytes
Electrolytic cells
ENERGY STORAGE
Graphite
Inorganic-Rich EEIs
Li-Plating Free
Lithium
Lithium-ion batteries
Low temperature
Low-Temperature Electrolyte
NMC811llGraphite
NMC811||Graphite
Polarity
Solvents
Weak Ion-Dipole Interactions
Title Enhancing Li+ Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205967
https://www.proquest.com/docview/2704166191
https://www.proquest.com/docview/2685033102
https://www.osti.gov/servlets/purl/1889129
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hvcCFRwERWpArIXFAbhM7cZJjtdo-ULtC0Eq9WXFi0xVLgtisUFEPnDjzG_klnYk3oYuEkODmyGPJsWfsb5KZbwBeVFWJ15iQPFdJwhERZ9zEseTOibhMZZXEkhKFT6bq8Cx-fZ6c38ji9_wQwwc3sozuvCYDL8xi9xdpKGVgo39HiaK5onRyCtgiVPR24I8SqJw-vUhKTlXoe9bGUOyuD1-7lUYNWtca4ryJW7uLZ_8eFP2UfbzJh51la3bKr7-xOf7PO92HuytUyva8Gj2AW7begNvjvhjcQ_g-qS-ImaN-z45nr9hAic5mNZuejLMouro6IO5rRLAo0V7Mlh9_fvtx1NTMM3iiQ86Klh03X9ipRajuqZwXzFyyLmqBenDAG_K00THA5rtmTrGYbOIL9cwvERQ_grP9yen4kK9KOPCSqOp5lRpjpXGIJIwyJhIODw2hTJZJh76xUqEthEXUZVFlpMqT2NkyNFVRSeHy0MrHMKqb2j4BhtpmEuEQcFiBUrJQoUmTNEfMVLg4rQLg_RbqcsVvTmU25tozMwtNq6uH1Q3g5SD_yTN7_FFykzRCIyYhYt2SIpDKVkdZliNaCmCrVxS9sv-FFmmISBed0yiA7aEb94x-xxS1bZYoozL6h4wILwDRacVf5qH3pkeT4enpvwzahDvUpo_iQm3BqP28tM8QVbXmeWc514cuHJY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcCgX_hGmBRYJxAG5tXfttX3gUKUpCU0iBKnU2-K11zQi2Ig4qoJ64MSZV-FVeASehBk7NgQJISH1wM0_Y2u9O-P9ZnfmG4CHaZrgNMaFHUnftxERh7b2PGFnGfeSQKS-JyhReDSW_SPv-bF_vAFfm1yYmh-iXXAjy6j-12TgtCC9-5M1lFKw0cGjTNFIBqu4ykOzPEWvbf50sI9D_Ijzg96k27dXhQXshAjU7TTQ2gid4fympdYuz1CVudRhKDL02KR0TMwNYgGDHyJk5HuZSRydxqngWeQYge-9ABepjDjR9e-_bBmrOJpDndAkhE117xueSIfvrrd3bR7sFGjPaxj3V6RcTXUHV-Bb00l1hMvbnUWpd5KPv_FH_le9eBUur4A326st5RpsmPw6bHabenc34HMvPyHykfwNG06fsJb1nU1zNh51Q9c9O3tG9N4I0lGiPJku3n3_9GVQ5KwmKZ2aOYtLNixO2cSgN1KzVc-ZXrIqMIPu4AMvaDEBfR88fFXMKNyU9epaRLMl4v6bcHQu3XALOnmRm9vA0KC0zzPEVIajlIilowM_iBAWxpkXpBbYjc6oZEXhTpVEZqomn-aKRlO1o2nB41b-fU1e8kfJLVJBhbCLuIMTCrJKSuWGYYSA0ILtRjPV6hc3VzxwEMyj_-1a8KC9jWNGO05xbooFysiQtskRxFrAKzX8SzvU3njQa8_u_MtD92GzPxkN1XAwPtyCS3Sd9gC43IZO-WFh7iKILPW9ymwZvD5vDf8BUdd6wA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRQIu_CNCCxgJxAGlTezESQ4cqv2hS7erClqpNxMnDl2xJBWbVbWoB06ceRRehVfgSZhJNoFFQkhIPXBL4nGU2DPxN_HMNwCP0zTBZYwLO5K-byMiDm3tecLOMu4lgUh9T1Ci8N5Y7hx6L4_8ozX42uTC1PwQ7Q83sozqe00GfpJmWz9JQykDG_07ShSNZLAMq9w1i1N02mbPhz2c4SecD_oH3R17WVfATog_3U4DrY3QGS5vWmrt8gw1mUsdhiJDh01Kx8TcIBQw-B5CRr6XmcTRaZwKnkWOEXjfC3DRk05ExSJ6r1rCKo7WUOczCWFT2fuGJtLhW6vPu7IMdgo05xWI-ytQrla6wTX41oxRHeDybnNe6s3k42_0kf_TIF6Hq0vYzbZrO7kBaya_CZe7TbW7W_C5nx8T9Uj-lo0mz1jL-c4mORvvdUPXPTt7QeTeCNFRojyezN9___RlWOSspiidmBmLSzYqTtmBQV-k5qqeMb1gVVgGtWCHffqVgJ4PHr4uphRsyvp1JaLpAlH_bTg8l2G4A528yM1dYGhO2ucZIirDUUrE0tGBH0QICuPMC1IL7EZlVLIkcKc6IlNVU09zRbOp2tm04Gkrf1JTl_xRcp00UCHoIubghEKsklK5YRghHLRgo1FMtfzAzRQPHITy6H27Fjxqm3HOaL8pzk0xRxkZ0iY5QlgLeKWFf3kOtT0e9tuze__S6SFc2u8N1Gg43l2HK3SZNgC43IBO-WFu7iOCLPWDymgZvDlvBf8BVXl5bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Li%2B+Transport+in+NMC811%7C%7CGraphite+Lithium%E2%80%90Ion+Batteries+at+Low+Temperatures+by+Using+Low%E2%80%90Polarity%E2%80%90Solvent+Electrolytes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Nan%2C+Bo&rft.au=Long%2C+Chen&rft.au=Rodrigo%2C+Nuwanthi+D&rft.au=Borodin%2C+Oleg&rft.date=2022-08-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=35&rft_id=info:doi/10.1002%2Fanie.202205967&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon