Buildup from birth onward of short telomeres in human hematopoietic cells
Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiolog...
Saved in:
Published in | Aging cell Vol. 22; no. 6; pp. e13844 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.06.2023
Wiley Open Access John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere‐Shortest‐Length‐Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age‐dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth‐89 years) from the general population, and 18 patients with dyskeratosis congenita‐telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL‐mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans.
Population studies have principally focused on the role of mean telomere length in human health and longevity. The availability of new telomere length measurement techniques enables examining the relations between the shortest telomeres and human diseases. |
---|---|
AbstractList | Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere‐Shortest‐Length‐Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age‐dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth‐89 years) from the general population, and 18 patients with dyskeratosis congenita‐telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL‐mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans. Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere-Shortest-Length-Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age-dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth-89 years) from the general population, and 18 patients with dyskeratosis congenita-telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL-mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans.Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere-Shortest-Length-Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age-dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth-89 years) from the general population, and 18 patients with dyskeratosis congenita-telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL-mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans. Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere‐Shortest‐Length‐Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age‐dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth‐89 years) from the general population, and 18 patients with dyskeratosis congenita‐telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL‐mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans. Population studies have principally focused on the role of mean telomere length in human health and longevity. The availability of new telomere length measurement techniques enables examining the relations between the shortest telomeres and human diseases. Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence.Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere-Shortest-Length-Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age-dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth-89 years) from the general population, and 18 patients with dyskeratosis congenitatelomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in |
Author | Savage, Sharon A. Factor‐Litvak, Pam Lai, Tsung‐Po Benetos, Athanase Aviv, Abraham Gadalla, Shahinaz M. Verhulst, Simon Susser, Ezra Toupance, Simon |
AuthorAffiliation | 1 Center of Human Development and Aging, New Jersey Medical School, Rutgers The State University of New Jersey Newark New Jersey USA 3 Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA 5 CHRU‐Nancy Pôle Maladies du vieillissement Gérontologie et Soins Palliatifs and Fédération Hospitalo‐Universitaire CARTAGE‐PROFILES Université de Lorraine Nancy France 7 Department of Psychiatry New York State Psychiatric Institute New York New York USA 2 Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands 4 INSERM DCAC Université de Lorraine Nancy France 6 Department of Epidemiology Mailman School of Public Health New York New York USA |
AuthorAffiliation_xml | – name: 1 Center of Human Development and Aging, New Jersey Medical School, Rutgers The State University of New Jersey Newark New Jersey USA – name: 4 INSERM DCAC Université de Lorraine Nancy France – name: 7 Department of Psychiatry New York State Psychiatric Institute New York New York USA – name: 3 Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA – name: 2 Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands – name: 6 Department of Epidemiology Mailman School of Public Health New York New York USA – name: 5 CHRU‐Nancy Pôle Maladies du vieillissement Gérontologie et Soins Palliatifs and Fédération Hospitalo‐Universitaire CARTAGE‐PROFILES Université de Lorraine Nancy France |
Author_xml | – sequence: 1 givenname: Tsung‐Po surname: Lai fullname: Lai, Tsung‐Po organization: The State University of New Jersey – sequence: 2 givenname: Simon surname: Verhulst fullname: Verhulst, Simon organization: University of Groningen – sequence: 3 givenname: Sharon A. surname: Savage fullname: Savage, Sharon A. organization: National Cancer Institute – sequence: 4 givenname: Shahinaz M. surname: Gadalla fullname: Gadalla, Shahinaz M. organization: National Cancer Institute – sequence: 5 givenname: Athanase surname: Benetos fullname: Benetos, Athanase organization: Gérontologie et Soins Palliatifs and Fédération Hospitalo‐Universitaire CARTAGE‐PROFILES Université de Lorraine – sequence: 6 givenname: Simon orcidid: 0000-0001-7441-567X surname: Toupance fullname: Toupance, Simon organization: INSERM DCAC Université de Lorraine – sequence: 7 givenname: Pam surname: Factor‐Litvak fullname: Factor‐Litvak, Pam organization: Mailman School of Public Health – sequence: 8 givenname: Ezra surname: Susser fullname: Susser, Ezra organization: New York State Psychiatric Institute – sequence: 9 givenname: Abraham orcidid: 0000-0002-7441-0227 surname: Aviv fullname: Aviv, Abraham email: avivab@njms.rutgers.edu organization: The State University of New Jersey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37118904$$D View this record in MEDLINE/PubMed https://hal.science/hal-05031580$$DView record in HAL |
BookMark | eNp9kc1u3CAUhVGVqvlpN32ACqmbNtKkXAM2XkXTUdpEGimbdo0A45rINlPAifL2xXUSpaMqLADBd87lco7RwehHi9B7IGeQxxdlbH8GVDD2Ch0Bq9iqrory4GkP4hAdx3hDCFQ1oW_QIa0ARE3YEbr6Orm-mXa4DX7A2oXUYT_eqdBg3-LY-ZBwsr0fbLARuxF306DybAeV_M47m5zBuX4f36LXreqjffewnqCf3y5-bC5X2-vvV5v1dmWYoGyljSoZlDWloAltDdG6LI3lRGgDWjBqtWmaVldCGF0TwWnBBeNF2whTF5rTE3S--O4mPdjG2DEF1ctdcIMK99IrJ_-9GV0nf_lbCaQoOXDIDp8Xh25Pd7neyvmMcEKBC3I7s58eqgX_e7IxycHFuV81Wj9FWQhS1SDKSmT04x5646cw5r_IVMFpJYAVmfrw_PlP9R8jyQBZABN8jMG20rikkvNzN67Pbcg5dTmnLv-mniWne5JH1__CsMB3rrf3L5ByvbnYLpo_pbe8Pw |
CitedBy_id | crossref_primary_10_1111_bjh_18945 crossref_primary_10_3389_fimmu_2024_1356638 crossref_primary_10_1093_nar_gkae812 crossref_primary_10_1038_s41467_024_49007_4 crossref_primary_10_1111_acel_70030 crossref_primary_10_1038_s41580_024_00800_5 crossref_primary_10_1111_acel_13997 crossref_primary_10_1186_s40364_024_00668_9 |
Cites_doi | 10.1038/s41588-021-00944-6 10.1016/j.exger.2013.12.004 10.1182/blood.2021013523 10.1038/ncomms2602 10.1158/2159‐8290.Cd‐16‐0062 10.1001/jamanetworkopen.2020.0023 10.3324/haematol.2011.055269 10.1161/circulationaha.118.038434 10.1093/hmg/ddaa187 10.1111/acel.12086 10.1038/s41467‐017‐01291‐z 10.1016/j.exphem.2010.06.010 10.18637/jss.v067.i01 10.1038/nprot.2010.124 10.18632/aging.101216 10.1371/journal.pgen.1002696 10.1038/nprot.2006.263 10.3389/fimmu.2022.966301 10.1093/nar/gkn1027 10.1093/aje/kwab025 10.1093/gerona/glab026 10.1542/peds.2015‐3927 10.1093/nar/26.16.3651 10.1128/mcb.24.10.4571‐4580.2004 10.1016/j.ebiom.2022.103978 10.1136/jmedgenet‐2014‐102736 10.1016/s2666‐7568(22)00072‐1 10.1091/mbc.e04-03-0207 10.1096/fj.201901275R 10.1093/nar/30.10.e47 10.1016/s0092‐8674(01)00504‐9 10.1098/rsos.180744 10.1038/s41598‐021‐84728‐2 10.1126/sciadv.abl6579 10.1098/rstb.2016.0436 10.1161/circresaha.117.311751 10.1038/nbt0898‐743 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: 2023 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. – notice: 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7X8 1XC VOOES 5PM |
DOI | 10.1111/acel.13844 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Lai et al |
EISSN | 1474-9726 1474-9728 |
EndPage | n/a |
ExternalDocumentID | PMC10265151 oai_HAL_hal_05031580v1 37118904 10_1111_acel_13844 ACEL13844 |
Genre | researchArticle Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: French PIA project Lorraine Université d’Excellence funderid: ANR‐15‐IDEX‐04‐LUE – fundername: French PIA project “Lorraine Université d’Excellence” funderid: ANR‐15‐IDEX‐04‐LUE; FHU project CARTAGE‐PROFILES – fundername: National Institutes of Health, National Institute of Child Health and Development funderid: R01 HD071180 – fundername: New Jersey Alliance for Clinical and Translational Science Career Development Award NJACTS KL2 funderid: TR003018 – fundername: National Institutes of Health, National Institute of Environmental Health Sciences funderid: 5P30 ES009089 – fundername: Investments for the Future program funderid: ANR‐15‐RHU‐0004 – fundername: National Cancer Institute, Division of Cancer Epidemiology and Genetics funderid: Intramural Research Program – fundername: National Institute on Aging funderid: U01AG066529 – fundername: French National Research Agency (ANR) funderid: Translationnelle: N°ID RCB: 2014‐A00298‐39: 2014 – fundername: Norwegian Research Council funderid: ES562296 – fundername: NICHD NIH HHS grantid: R01 HD071180 – fundername: NIEHS NIH HHS grantid: R21 ES023582 – fundername: NCATS NIH HHS grantid: KL2 TR003018 – fundername: NIEHS NIH HHS grantid: P30 ES009089 – fundername: NIA NIH HHS grantid: U01 AG066529 – fundername: ; grantid: Intramural Research Program – fundername: French PIA project Lorraine Université d’Excellence grantid: ANR‐15‐IDEX‐04‐LUE – fundername: ; grantid: U01AG066529 – fundername: ; grantid: ES562296 – fundername: ; grantid: R21 ES023582 – fundername: ClinicalTrials.gov grantid: NCT01391442 (STANISLAS); NCT02176941(TELARTA) – fundername: Investments for the Future program grantid: ANR‐15‐RHU‐0004 – fundername: French PIA project “Lorraine Université d’Excellence” grantid: ANR‐15‐IDEX‐04‐LUE; FHU project CARTAGE‐PROFILES – fundername: New Jersey Alliance for Clinical and Translational Science Career Development Award NJACTS KL2 grantid: TR003018 – fundername: ; grantid: R01 HD071180 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c4834-bca64169331b03fc0bb66ce508bc1b843ebcddfb788cb90853258452fd8c92b53 |
IEDL.DBID | M48 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 18:37:27 EDT 2025 Fri May 09 12:18:32 EDT 2025 Tue Aug 05 09:31:15 EDT 2025 Wed Aug 13 03:59:12 EDT 2025 Thu Apr 03 07:08:12 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Tue Jul 01 01:49:19 EDT 2025 Wed Jan 22 16:19:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | terminal restriction fragments sex telomeres lifetime TeSLA subtelomeric region Southern blotting telomere biology disorders age fluorescent in situ hybridization single gene product SB telomere length TRFs LTL SBmTL measured by TeSLA TeSmTL single gene product TRFs dyskeratosis congenita-related telomere biology disorders FISH TeSmTL bp Southern blotting SBmTL SB kilobase S SNP T proportion of telomeres less than 3 kb DC/TBD kilobase LTL kb amplified telomere product mean TL using TeSLA qPCR hematopoietic cell kb single-nucleotide polymorphism telomere length single-nucleotide polymorphism T measured by TeSLA amplified telomere product TeS3kb TeS3kb mean TL using SB quantitative polymerase chain reaction S mean TL using TeSLA TL quantitative polymerase chain reaction base pairs DC/TBD mean TL using SB SNP base pairs hematopoietic cell dyskeratosis congenita-related telomere biology disorders fluorescent in situ hybridization HC leukocyte telomere length qPCR TL FISH HC leukocyte telomere length |
Language | English |
License | Attribution 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4834-bca64169331b03fc0bb66ce508bc1b843ebcddfb788cb90853258452fd8c92b53 |
Notes | Tsung‐Po Lai and Simon Verhulst contributed equally to this research. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC10265151 |
ORCID | 0000-0002-7441-0227 0000-0001-7441-567X 0000-0002-5197-1515 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.13844 |
PMID | 37118904 |
PQID | 2825378142 |
PQPubID | 1036381 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10265151 hal_primary_oai_HAL_hal_05031580v1 proquest_miscellaneous_2807918678 proquest_journals_2825378142 pubmed_primary_37118904 crossref_citationtrail_10_1111_acel_13844 crossref_primary_10_1111_acel_13844 wiley_primary_10_1111_acel_13844_ACEL13844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Open Access John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Open Access – name: John Wiley and Sons Inc |
References | 1998; 26 2018; 122 2017; 8 2010; 38 2013; 4 2002; 30 2019; 33 2015; 52 2004; 24 2006; 1 2001; 107 2022; 139 2017; 9 2012; 97 2018; 373 1998; 16 2015; 67 2016; 6 2021; 76 2020; 3 2021; 53 2018; 5 2021; 11 2022; 3 2013; 12 2022; 8 2004; 15 2022; 78 2022; 13 2019 1994; 55 2019; 139 2016; 137 2014; 51 2010; 5 2009; 37 2012; 8 2020; 29 2021; 190 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 R Core Team (e_1_2_11_34_1) 2019 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 Slagboom P. E. (e_1_2_11_37_1) 1994; 55 |
References_xml | – volume: 1 start-page: 2365 issue: 5 year: 2006 end-page: 2376 article-title: Flow cytometry and FISH to measure the average length of telomeres (flow FISH) publication-title: Nature Protocols – volume: 8 issue: 14 year: 2022 article-title: Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential publication-title: Science Advances – volume: 12 start-page: 615 issue: 4 year: 2013 end-page: 621 article-title: Tracking and fixed ranking of leukocyte telomere length across the adult life course publication-title: Aging Cell – volume: 37 issue: 3 year: 2009 article-title: Telomere length measurement by a novel monochrome multiplex quantitative PCR method publication-title: Nucleic Acids Research – volume: 107 start-page: 67 issue: 1 year: 2001 end-page: 77 article-title: The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability publication-title: Cell – volume: 137 start-page: 1 issue: 4 year: 2016 end-page: 7 article-title: Leukocyte telomere length in newborns: Implications for the role of telomeres in human disease publication-title: Pediatrics – volume: 78 year: 2022 article-title: Telomere‐length dependent T‐cell clonal expansion: A model linking ageing to COVID‐19 T‐cell lymphopenia and mortality publication-title: eBioMedicine – volume: 3 issue: 2 year: 2020 article-title: Association of Leukocyte Telomere Length with Mortality among Adult Participants in 3 longitudinal studies publication-title: JAMA Network Open – volume: 53 start-page: 1425 issue: 10 year: 2021 end-page: 1433 article-title: Polygenic basis and biomedical consequences of telomere length variation publication-title: Nature Genetics – volume: 4 start-page: 1597 year: 2013 article-title: Telomeres shorten at equivalent rates in somatic tissues of adults publication-title: Nature Communications – volume: 33 start-page: 14248 issue: 12 year: 2019 end-page: 14253 article-title: Telomere length tracking in children and their parents: Implications for adult onset diseases publication-title: The FASEB Journal – volume: 122 start-page: 616 issue: 4 year: 2018 end-page: 623 article-title: Short leukocyte telomere length precedes clinical expression of atherosclerosis: The blood‐and‐muscle model publication-title: Circulation Research – volume: 97 start-page: 353 issue: 3 year: 2012 end-page: 359 article-title: Telomere length is associated with disease severity and declines with age in dyskeratosis congenita publication-title: Haematologica – volume: 30 start-page: 47e issue: 10 year: 2002 article-title: Telomere measurement by quantitative PCR publication-title: Nucleic Acids Research – volume: 26 start-page: 3651 issue: 16 year: 1998 end-page: 3656 article-title: Telomere analysis by fluorescence in situ hybridization and flow cytometry publication-title: Nucleic Acids Research – volume: 29 start-page: 3014 issue: 18 year: 2020 end-page: 3020 article-title: Genetics and geography of leukocyte telomere length in sub‐Saharan Africans publication-title: Human Molecular Genetics – volume: 373 issue: 1741 year: 2018 article-title: Reflections on telomere dynamics and ageing‐related diseases in humans publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 13 year: 2022 article-title: Decoupling blood telomere length from age in recipients of allogeneic hematopoietic cell transplant in the BMT‐CTN 1202 publication-title: Frontiers in Immunology – volume: 55 start-page: 876 issue: 5 year: 1994 end-page: 882 article-title: Genetic determination of telomere size in humans: A twin study of three age groups publication-title: American Journal of Human Genetics – volume: 190 start-page: 1406 issue: 7 year: 2021 end-page: 1413 article-title: Measurement of telomere length for longitudinal analysis: Implications of assay precision publication-title: American Journal of Epidemiology – volume: 9 start-page: 1130 issue: 4 year: 2017 end-page: 1142 article-title: Telomeres and the natural lifespan limit in humans publication-title: Aging (Albany NY) – volume: 139 start-page: 1807 issue: 12 year: 2022 end-page: 1819 article-title: Disease progression and clinical outcomes in telomere biology disorders publication-title: Blood – volume: 16 start-page: 743 issue: 8 year: 1998 end-page: 747 article-title: Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry publication-title: Nature Biotechnology – volume: 51 start-page: 15 year: 2014 end-page: 27 article-title: Gender and telomere length: Systematic review and meta‐analysis publication-title: Experimental Gerontology – volume: 8 issue: 5 year: 2012 article-title: Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes publication-title: PLoS Genetics – volume: 139 start-page: 7 issue: 1 year: 2019 end-page: 9 article-title: Hemothelium, clonal hematopoiesis of indeterminate potential, and atherosclerosis publication-title: Circulation – volume: 76 start-page: e97 issue: 8 year: 2021 end-page: e101 article-title: The nexus between telomere length and lymphocyte count in seniors hospitalized with COVID‐19 publication-title: The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences – volume: 24 start-page: 4571 issue: 10 year: 2004 end-page: 4580 article-title: Modification of subtelomeric DNA publication-title: Molecular and Cellular Biology – volume: 8 start-page: 1356 issue: 1 year: 2017 article-title: A method for measuring the distribution of the shortest telomeres in cells and tissues publication-title: Nature Communications – volume: 38 start-page: 854 issue: 10 year: 2010 end-page: 859 article-title: Synchrony of telomere length among hematopoietic cells publication-title: Experimental Hematology – volume: 11 start-page: 5115 issue: 1 year: 2021 article-title: Telomeres and replicative cellular aging of the human placenta and chorioamniotic membranes publication-title: Scientific Reports – volume: 15 start-page: 3709 issue: 8 year: 2004 end-page: 3718 article-title: Does a sentinel or a subset of short telomeres determine replicative senescence? publication-title: Molecular Biology of the Cell – volume: 5 start-page: 1596 issue: 9 year: 2010 end-page: 1607 article-title: Measurement of telomere length by the southern blot analysis of terminal restriction fragment lengths publication-title: Nature Protocols – volume: 3 start-page: e321 issue: 5 year: 2022 end-page: e331 article-title: Modifiable traits, healthy behaviours, and leukocyte telomere length: A population‐based study in UK biobank publication-title: Lancet Healthy Longev – volume: 67 start-page: 1 issue: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – year: 2019 – volume: 6 start-page: 584 issue: 6 year: 2016 end-page: 593 article-title: Role of telomeres and telomerase in aging and cancer publication-title: Cancer Discovery – volume: 5 issue: 8 year: 2018 article-title: Telomeres as integrative markers of exposure to stress and adversity: A systematic review and meta‐analysis publication-title: Royal Society Open Science – volume: 52 start-page: 297 issue: 5 year: 2015 end-page: 302 article-title: The heritability of leucocyte telomere length dynamics publication-title: Journal of Medical Genetics – ident: e_1_2_11_17_1 doi: 10.1038/s41588-021-00944-6 – ident: e_1_2_11_20_1 doi: 10.1016/j.exger.2013.12.004 – ident: e_1_2_11_32_1 doi: 10.1182/blood.2021013523 – ident: e_1_2_11_18_1 doi: 10.1038/ncomms2602 – ident: e_1_2_11_36_1 doi: 10.1158/2159‐8290.Cd‐16‐0062 – ident: e_1_2_11_4_1 doi: 10.1001/jamanetworkopen.2020.0023 – ident: e_1_2_11_2_1 doi: 10.3324/haematol.2011.055269 – ident: e_1_2_11_6_1 doi: 10.1161/circulationaha.118.038434 – ident: e_1_2_11_24_1 doi: 10.1093/hmg/ddaa187 – ident: e_1_2_11_10_1 doi: 10.1111/acel.12086 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_11_34_1 – ident: e_1_2_11_29_1 doi: 10.1038/s41467‐017‐01291‐z – ident: e_1_2_11_25_1 doi: 10.1016/j.exphem.2010.06.010 – ident: e_1_2_11_9_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_11_26_1 doi: 10.1038/nprot.2010.124 – ident: e_1_2_11_38_1 doi: 10.18632/aging.101216 – ident: e_1_2_11_5_1 doi: 10.1371/journal.pgen.1002696 – ident: e_1_2_11_8_1 doi: 10.1038/nprot.2006.263 – ident: e_1_2_11_28_1 doi: 10.3389/fimmu.2022.966301 – ident: e_1_2_11_16_1 doi: 10.1093/nar/gkn1027 – ident: e_1_2_11_31_1 doi: 10.1093/aje/kwab025 – ident: e_1_2_11_11_1 doi: 10.1093/gerona/glab026 – ident: e_1_2_11_19_1 doi: 10.1542/peds.2015‐3927 – ident: e_1_2_11_23_1 doi: 10.1093/nar/26.16.3651 – ident: e_1_2_11_39_1 doi: 10.1128/mcb.24.10.4571‐4580.2004 – ident: e_1_2_11_3_1 doi: 10.1016/j.ebiom.2022.103978 – ident: e_1_2_11_22_1 doi: 10.1136/jmedgenet‐2014‐102736 – ident: e_1_2_11_14_1 doi: 10.1016/s2666‐7568(22)00072‐1 – ident: e_1_2_11_40_1 doi: 10.1091/mbc.e04-03-0207 – ident: e_1_2_11_13_1 doi: 10.1096/fj.201901275R – ident: e_1_2_11_15_1 doi: 10.1093/nar/30.10.e47 – ident: e_1_2_11_21_1 doi: 10.1016/s0092‐8674(01)00504‐9 – ident: e_1_2_11_33_1 doi: 10.1098/rsos.180744 – ident: e_1_2_11_27_1 doi: 10.1038/s41598‐021‐84728‐2 – ident: e_1_2_11_30_1 doi: 10.1126/sciadv.abl6579 – ident: e_1_2_11_7_1 doi: 10.1098/rstb.2016.0436 – ident: e_1_2_11_12_1 doi: 10.1161/circresaha.117.311751 – volume: 55 start-page: 876 issue: 5 year: 1994 ident: e_1_2_11_37_1 article-title: Genetic determination of telomere size in humans: A twin study of three age groups publication-title: American Journal of Human Genetics – ident: e_1_2_11_35_1 doi: 10.1038/nbt0898‐743 |
SSID | ssj0017903 |
Score | 2.4454608 |
Snippet | Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13844 |
SubjectTerms | Age Aged, 80 and over Aging Biology Cell Division Chromosomes Dyskeratosis Enzymes Epidemiology Female Hematopoietic stem cells Humans Leukocytes Life Sciences Life span lifetime Longevity Male Males Measurement techniques Polymerase chain reaction Senescence sex Sex differences Somatic cells Southern blotting subtelomeric region Telomerase Telomere - genetics telomere biology disorders Telomere Shortening Telomeres terminal restriction fragments TeSLA Yeast |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UguCLWq-xVcbLi0KWJJPLDPiyLS2rFB_EQl8k5Ewm7NI1WbpZwf56z5lc7FoR9CWE5ITM5ZzkO8k33wF4IynxKbJS-2mVxH5clYlfpNrSRslCKdQlOpbvp3R2Fn88T8534P2wFqbThxg_uHFkuOc1B3iB62tBXhi7nIRSxSwGymQtRkSfR-0oVp5y7Po4i31NT-Bem5RpPL8u3Xob3ZozF_Im0LzJl7yOY92L6OQefB260PFPLiabFifm6jd1x__t43242yNUMe1cag92bP0Abnc1K388hA-HXEh7sxK8MEXg4rKdi6Zm7q1oKrGeE5wXrV023ywl8mJRC1cFUDht2GbVLHjRpODfBetHcHZy_OVo5vf1GHzDnxx9NEUas3iLDDGQlQkQ09RYgnhoQlSxtGjKskLKqg1qwnIyIniTRFWpjI4wkY9ht25q-xQEgaasCtOsTFiPPy3IJyhxUdqgoVS_0h68HeYlN71YOdfMWOZD0sJDk7uh8eD1aLvqJDr-aPWKpnc0YFXt2fQ052MsiRMmKvgeenAwzH7ex_I659W9kpXBIg9ejqcpCnmsito2G7YJMs3agMqDJ52zjLeicAiVDqgFasuNttqyfaZezJ3SN6E_LlVP7Xrn3OQv_cunR8enbu_Zvxjvw52IYFtHfjuA3fZyY58TzGrxhQunnyoBIvw priority: 102 providerName: Wiley-Blackwell |
Title | Buildup from birth onward of short telomeres in human hematopoietic cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13844 https://www.ncbi.nlm.nih.gov/pubmed/37118904 https://www.proquest.com/docview/2825378142 https://www.proquest.com/docview/2807918678 https://hal.science/hal-05031580 https://pubmed.ncbi.nlm.nih.gov/PMC10265151 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da9swFL00LRt9KV335a4NareXDVxiS7alh1Ky0pKVboyxQN-MJcskkNlZPsb673evbKcNLWUvwlgylq4k61z56hyADxwdnyzJlR8XkfBFkUd-FiuLieSZlFrl2kX5fosHQ3F1E91sQKvf2Rhw_qhrR3pSw9nk5O_v2zOc8KdtVE5m7OQk4FKIDmzhipSQksFXcfc3IVFOITkQifAVfowbmtL1Z7fhOVY8kKrRbGvXqM6IIiQfws-HUZT30a1bni53YafBlaxfD4QXsGHLPXhWK03evoQvn0n-ejlldJyE6fFsMWJVSRGzrCrYfITtZws7qX5ZdL_ZuGROu485RtdqWo3pqCOjTf75KxheXvw8H_iNioJvaKPQ1yaLBVGu8ED3eGF6WsexsQjMtAm0FNxqk-eFRl_YaIUIjIcISqKwyKVRoY74a9gsq9K-BYZQJymCOMkjYtGPM-xJdDekMtqgg14oDz62dktNQzFOSheTtHU1yNypM7cH71dlpzWxxqOljtH8qwLEhT3oX6d0j4hsgkj2_gQeHLS9k7YDKKUzuZz4vEIPjlbZOHfIVllpqyWV6SWKGP2kB2_qzly9qh0LHsi1bl6ry3pOOR45fm7EbCQwj_X65EbEE-1L--cX1-5q_39a-g62Se6-DlU7gM3FbGkPERQtdBc6ofjedVsKlP4Iu24O_ANepgoF |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAQX9sUQoNkOIHnk3d0HDkMWzZAhB5RIuTnudlszYrBHYw8o_BO_wjdR1V7IEITEIQculmWX5F6qqqvar18BvPQx8UnjTNhRHgZ2kGehnUZC44X7KedSZNKgfA-i0VHw_jg83oDv3VmYhh-i33AjyzD-mgycNqTPWHmq9Hzg-jwIWkzlvj79ihlb9Xa8g9P7yvP2dg-3R3ZbVMBWtG9mS5VGATGQ-K50_Fw5UkaR0hinSOVKHvhaqizLJaaGSgoMSHwP1-jQyzOuhCepSAR6_MtUQpyo-nc-9mxVxHVl8PxBHNgCfX7LhkrAoV9tXVv_Lk0JfXk-tD2P0DwbOZulb-8G_OgGrUG8fBqsajlQ337jk_xvRvUmXG-DcDZsrOYWbOjiNlxpynKe3oHxO6oVvlowOnvD5GxZT1lZELyYlTmrppixsFrPy896qSs2K5gpdMgM_W25KGd0LpTRH5HqLhxdSD_uwWZRFvoBMIwL49yN4iykkgNRimqPuRkXSiotvVxY8LpThES1fOxUFmSedHkZTUVipsKCF73somEh-aPUc9SnXoCIw0fDSULPiPXHDbnzxbVgq1O3pHVXVUIHmH0iP_MseNa_RkdDY5UWulyRjBMLoj_kFtxvtLP_FFq8y4WDLeBrervWlvU3xWxqyMwxwEVTCrFdb4xe_qV_yXB7d2LuHv6L8FO4Ojr8MEkm44P9R3DNwyi1wfptwWa9XOnHGFXW8omxZQYnF63mPwHr2IFW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXYG4IN4EFjCvA0hBeTiJfeBQdrdq2WrFgaIVl2zs2GqlklTbFrT_iR_JjJOGrRYhcdhLFMUjxRl77G-cmW8AXsfo-BRZKf3UJtzntkz8IpUGLyIuhFCyVC7K9zgdTvink-RkB35tcmEafojuwI0sw63XZOCL0l4w8kKb-fswFpy3IZVH5vwnOmzLD6MDHN03UTQ4_LI_9NuaAr6mYzNf6SLlREAShyqIrQ6USlNtEKYoHSrBY6N0WVqFnqFWEvFIHOEWnUS2FFpGimpE4IK_m-A2GPRgt_918m3S_bXIpKvEHPKM-xIX_ZYOlSKH_vR2awO8NqXwy8vY9nKI5kXo7Pa-wW241YJW1m9m2R3YMdVduN6UsTy_B6OPVFt7vWCUq8LU7Gw1ZXVF4bistmw5RYTPVmZefzfo27NZxVxhQOboYutFPaM8SkZ_EJb3YXIl6nwAvaquzCNgiKMyG6ZZmRBFf1rgNEFfRkitNHr_VnrwdqO3XLf85VRGY55v_BjSce507MGrTnbRsHb8Veolqr8TIKLtYX-c0zNiyQkTEfwIPdjbjE7emvcyp4TfmMjCIg9edM1omKSrojL1mmSCTBJdoPDgYTOY3avQQkIhA-yB2Brmrb5st1SzqSP_RkBI1euxX-_cjPjH9-X9_cOxu3v8P8LP4cbng0E-Hh0fPYGbEYK6JjRuD3qrs7V5iiBspZ61c5_B6VWb22_cPkEO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buildup+from+birth+onward+of+short+telomeres+in+human+hematopoietic+cells&rft.jtitle=Aging+cell&rft.au=Lai%2C+Tsung%E2%80%90po&rft.au=Verhulst%2C+Simon&rft.au=Savage%2C+Sharon+A&rft.au=Gadalla%2C+Shahinaz+M&rft.date=2023-06-01&rft.pub=Wiley+Open+Access&rft.issn=1474-9718&rft.eissn=1474-9728&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1111%2Facel.13844&rft_id=info%3Apmid%2F37118904&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_05031580v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |