PbWoxT1 mRNA from pear (Pyrus betulaefolia) undergoes long‐distance transport assisted by a polypyrimidine tract binding protein

Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety ‘Du Li’ (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WU...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 210; no. 2; pp. 511 - 524
Main Authors Duan, Xuwei, Zhang, Wenna, Huang, Jing, Hao, Li, Wang, Shengnan, Wang, Aide, Meng, Dong, Zhang, Qiulei, Chen, Qiuju, Li, Tianzhong
Format Journal Article
LanguageEnglish
Published England Academic Press 01.04.2016
New Phytologist Trust
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety ‘Du Li’ (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL‐RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548‐bp fragment of PbWoxT1 is critical in long‐distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild‐type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co‐overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long‐distance transport. We provide novel information that adds a new mechanism with which to explain the noncell‐autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
AbstractList Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants.We identified an mRNA in the pear variety ‘Du Li’ (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL‐RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1).A 548‐bp fragment of PbWoxT1 is critical in long‐distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild‐type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co‐overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long‐distance transport.We provide novel information that adds a new mechanism with which to explain the noncell‐autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety ‘Du Li’ (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL-RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548-bp fragment of PbWoxT1 is critical in long-distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild-type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co-overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long-distance transport. We provide novel information that adds a new mechanism with which to explain the noncell-autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety 'Du Li' (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL-RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548-bp fragment of PbWoxT1 is critical in long-distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild-type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co-overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long-distance transport. We provide novel information that adds a new mechanism with which to explain the noncell-autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety 'Du Li' (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL-RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548-bp fragment of PbWoxT1 is critical in long-distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild-type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co-overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long-distance transport. We provide novel information that adds a new mechanism with which to explain the noncell-autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
Little is known about the mechanisms by which mRNA s are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety ‘Du Li’ ( Pyrus betulaefolia ) that was shown to be transportable in the phloem. It contains a WUSCHEL ‐ RELATED HOMEOBOX ( WOX ) domain and was therefore named Wox Transport 1 ( PbWoxT1 ). A 548‐bp fragment of PbWoxT1 is critical in long‐distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNA s interact with a polypyrimidine tract binding protein, Pb PTB 3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild‐type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or Pb PTB 3 co‐overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that Pb PTB 3 mediates PbWoxT1 mRNA long‐distance transport. We provide novel information that adds a new mechanism with which to explain the noncell‐autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
Summary Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety ‘Du Li’ (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL‐RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548‐bp fragment of PbWoxT1 is critical in long‐distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild‐type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co‐overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long‐distance transport. We provide novel information that adds a new mechanism with which to explain the noncell‐autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
Author Hao, Li
Chen, Qiuju
Wang, Shengnan
Huang, Jing
Duan, Xuwei
Zhang, Wenna
Meng, Dong
Wang, Aide
Li, Tianzhong
Zhang, Qiulei
Author_xml – sequence: 1
  fullname: Duan, Xuwei
– sequence: 2
  fullname: Zhang, Wenna
– sequence: 3
  fullname: Huang, Jing
– sequence: 4
  fullname: Hao, Li
– sequence: 5
  fullname: Wang, Shengnan
– sequence: 6
  fullname: Wang, Aide
– sequence: 7
  fullname: Meng, Dong
– sequence: 8
  fullname: Zhang, Qiulei
– sequence: 9
  fullname: Chen, Qiuju
– sequence: 10
  fullname: Li, Tianzhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26661583$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi1URLeFAy8Alri0h7T-kzjJsaqAIlVlBa3gZjnJOPUqawfbUckN8QQ8I0-C6e5yqEDMZTTW7_tGnu8A7VlnAaHnlJzQVKd2vD2hvKz5I7SguaizKk17aEEIqzKRi8_76CCEFSGkLgR7gvaZEIIWFV-g78vmk_t6TfH6w9UZ1t6t8QjK46Pl7KeAG4jToEC7wahjPNkOfO8g4MHZ_ue3H50JUdkWcPTKhtH5iFUI6RE63MxY4dEN8zh7szadsfdYG3FjbJp6PHoXwdin6LFWQ4Bn236Ibt68vj6_yC7fv313fnaZtXnFeUZBFFVOmMqFopADqWlbqK4mheiIAqJFo6FQNacN0SrXUDdVx2netUq3hS74ITra-Ka9XyYIUa5NaGEYlAU3BUkrwinjoiz_j5ZVUbKqZHVCXz1AV27yNn1EsoLyvGaMVol6saWmZg2dHNNJlJ_lLogEnG6A1rsQPGjZmqiicTbdzAySEvk7apmilvdRJ8XxA8XO9G_s1v3ODDD_G5RXy4udItsoViE6_0dh4W68naMbXJ9Sliw5MFlQmviXG14rJ1XvTZA3HxmhghBKCc8p_wWzk9PG
CitedBy_id crossref_primary_10_1007_s00425_022_03863_w
crossref_primary_10_1111_pbi_13226
crossref_primary_10_1007_s00468_019_01847_0
crossref_primary_10_1007_s44281_023_00023_2
crossref_primary_10_1016_j_plantsci_2018_07_001
crossref_primary_10_3390_ijms24098051
crossref_primary_10_1111_tpj_15737
crossref_primary_10_3389_fcell_2021_651278
crossref_primary_10_1016_j_plantsci_2022_111232
crossref_primary_10_3390_ijms24010162
crossref_primary_10_1093_hr_uhac032
crossref_primary_10_1016_j_bse_2018_09_009
crossref_primary_10_1042_EBC20210069
crossref_primary_10_3390_horticulturae9060672
crossref_primary_10_3389_fpls_2020_590847
crossref_primary_10_3390_ijms25137402
crossref_primary_10_1111_nph_14383
crossref_primary_10_1016_j_plantsci_2019_01_008
crossref_primary_10_1038_s41588_024_01657_2
crossref_primary_10_3389_fmicb_2017_02113
crossref_primary_10_1016_j_plantsci_2019_03_019
crossref_primary_10_1038_s41438_019_0133_7
crossref_primary_10_3390_ijms22168398
crossref_primary_10_48130_opr_0024_0018
crossref_primary_10_1042_BST20200113
crossref_primary_10_1016_j_plantsci_2020_110419
crossref_primary_10_1016_j_plantsci_2023_111705
crossref_primary_10_3389_fpls_2020_613004
crossref_primary_10_1093_hr_uhab072
crossref_primary_10_1093_hr_uhae143
crossref_primary_10_1016_j_molp_2024_06_008
crossref_primary_10_15252_embr_202153698
crossref_primary_10_1111_nph_18789
crossref_primary_10_1093_plphys_kiab366
crossref_primary_10_1016_j_pbi_2024_102541
crossref_primary_10_1186_s12864_018_4502_7
crossref_primary_10_3390_biom9090397
crossref_primary_10_3389_fpls_2023_1121704
Cites_doi 10.1105/tpc.3.8.749
10.1111/nph.12470
10.1242/dev.122.1.87
10.1105/tpc.104.023614
10.1017/S1355838202015029
10.1016/S0092-8674(01)00384-1
10.1093/jxb/err163
10.1007/s11103-012-9931-0
10.1016/j.febslet.2004.04.043
10.1126/science.1059805
10.1111/j.1744-7909.2012.01155.x
10.1016/j.plantsci.2011.12.018
10.1242/dev.126.20.4405
10.1006/viro.2000.0724
10.1111/j.1365-3040.2004.01311.x
10.1111/j.1558-5646.1985.tb00420.x
10.1007/s00709-002-0027-6
10.1126/science.270.5244.1980
10.1111/j.1399-3054.1962.tb08052.x
10.1038/ng1618
10.1095/biolreprod.107.060079
10.1104/pp.006403
10.1111/j.1365-313X.2005.02351.x
10.1111/j.1365-313X.2009.03918.x
10.1007/s10535-012-0293-x
10.1093/mp/sst101
10.1093/mp/sst118
10.1093/nar/gkg595
10.1093/bioinformatics/8.3.275
10.1104/pp.111.188078
10.1186/1471-2229-13-89
10.1074/jbc.M111.244129
10.1126/science.283.5398.94
10.1104/pp.109.144428
10.1371/journal.pone.0009562
10.1073/pnas.250473797
10.1016/j.bbadis.2006.10.001
10.1093/molbev/msr121
10.1111/j.1744-7909.2010.00911.x
10.1105/tpc.112.103622
10.1016/j.gene.2014.05.041
10.1242/dev.00963
10.1101/gad.17258511
10.4161/psb.19793
10.1073/pnas.0408118101
10.1105/tpc.108.061317
10.1016/j.devcel.2015.04.024
10.1080/01140671.1995.9513913
10.1016/S0092-8674(01)00390-7
10.1007/s00299-011-1025-y
10.1016/j.molcel.2009.12.003
10.1146/annurev.arplant.56.032604.144145
10.1101/gad.1477006
10.1038/346035a0
10.21273/HORTSCI.25.2.172
10.21273/HORTSCI.42.2.225
10.1111/j.1365-3040.2010.02197.x
10.1021/bi6026133
10.1126/science.1114066
10.1016/S0960-9822(06)00361-7
10.1186/gb-2009-10-12-248
10.1007/s11295-010-0309-7
10.1093/nar/gkl198
10.1186/1752-0509-4-43
10.1105/tpc.106.042473
10.1186/1471-2229-13-165
10.1007/s11295-010-0279-9
10.1007/s11105-011-0365-7
10.1007/s11240-014-0685-z
10.1111/nph.12821
10.1038/nature05703
ContentType Journal Article
Copyright 2016 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Copyright © 2015 New Phytologist Trust
Copyright_xml – notice: 2016 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
– notice: Copyright © 2015 New Phytologist Trust
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.13793
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA

MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 524
ExternalDocumentID 26661583
10_1111_nph_13793
NPH13793
newphytologist.210.2.511
US201600110341
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Doctoral Program Special Fund of the Ministry of Education in China
  funderid: 20130008110006
– fundername: National Natural Science Foundation of China
  funderid: 31171941
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
24P
AEUQT
AFPWT
DOOOF
ESX
IPNFZ
JSODD
WRC
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4833-1e658402a46a1e4e091c5ad9056d0ae0f6bfe5a931b0fa4fe9b8d314dcafc5f53
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:27:28 EDT 2025
Fri Jul 11 11:26:19 EDT 2025
Fri Jul 25 12:07:27 EDT 2025
Thu Apr 03 07:07:07 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Tue Jul 01 03:09:23 EDT 2025
Wed Jan 22 17:04:58 EST 2025
Thu Jul 03 22:43:54 EDT 2025
Thu Apr 03 09:44:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords PbWoxT1
mRNA transport
phloem
PbPTB3
ribonucleoprotein (RNP) complex
Pyrus betulaefolia
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4833-1e658402a46a1e4e091c5ad9056d0ae0f6bfe5a931b0fa4fe9b8d314dcafc5f53
Notes http://dx.doi.org/10.1111/nph.13793
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.13793
PMID 26661583
PQID 2513492218
PQPubID 2026848
PageCount 14
ParticipantIDs proquest_miscellaneous_1803123677
proquest_miscellaneous_1785728729
proquest_journals_2513492218
pubmed_primary_26661583
crossref_citationtrail_10_1111_nph_13793
crossref_primary_10_1111_nph_13793
wiley_primary_10_1111_nph_13793_NPH13793
jstor_primary_newphytologist_210_2_511
fao_agris_US201600110341
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2016
Publisher Academic Press
New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: Academic Press
– name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2004; 566
1990; 346
2006; 34
1987; 4
2011; 62
2015; 33
2013; 200
1999; 283
2009; 151
2007; 76
2005; 28
1999; 126
2012; 54
1997; 7
2001; 105
2004; 30
1992; 8
2004; 131
2001; 293
2006; 20
2009; 10
2002; 220
2013; 13
2013; 57
1995; 23
2000; 97
2007; 1772
2005; 309
2012; 188–189
2011; 25
2011; 28
2005; 37
2012; 24
2010; 5
2014; 7
2010; 4
2009; 59
2010; 6
2014; 203
2011; 286
1989
2004; 101
1991; 3
2010; 33
2009; 21
2007; 446
2012
2006; 57
2002; 130
2015; 121
2002; 8
2011; 30
2006; 18
2005; 42
1962; 15
1996; 122
2012; 79
2003; 31
1995; 270
2012; 30
1985; 39
2009; 36
2014; 546
1990; 25
2004; 16
2007; 42
2012; 158
2012; 7
2010; 52
2007; 46
2001; 279
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
Sambrook J (e_1_2_7_53_1) 1989
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
Saitou N (e_1_2_7_52_1) 1987; 4
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
Raghavendra AS (e_1_2_7_49_1) 2012
e_1_2_7_59_1
e_1_2_7_38_1
Goren R (e_1_2_7_13_1) 2004; 30
References_xml – volume: 13
  start-page: 89
  year: 2013
  article-title: Analysis of the gene family in the conifer reveals extensive conservation as well as dynamic patterns
  publication-title: BMC Plant Biology
– volume: 7
  start-page: R705
  year: 1997
  end-page: R708
  article-title: Post‐transcriptional regulation: the dawn of PTB
  publication-title: Current Biology
– volume: 30
  start-page: 1
  year: 2004
  end-page: 36
  article-title: Girdling: physiological and horticultural aspects
  publication-title: Horticultural Reviews
– volume: 25
  start-page: 172
  year: 1990
  end-page: 173
  article-title: Rootstock influence on flower bud hardiness and yield of Redhaven peach
  publication-title: HortScience
– volume: 37
  start-page: 986
  year: 2005
  end-page: 990
  article-title: Intragenic tandem repeats generate functional variability
  publication-title: Nature Genetics
– volume: 309
  start-page: 2054
  year: 2005
  end-page: 2057
  article-title: Structure of PTB bound to RNA: specific binding and implications for splicing regulation
  publication-title: Science
– volume: 130
  start-page: 138
  year: 2002
  end-page: 146
  article-title: Movement of potato spindle tuber viroid reveals regulatory points of phloem‐mediated RNA traffic
  publication-title: Plant Physiology
– volume: 8
  start-page: 275
  year: 1992
  end-page: 282
  article-title: The rapid generation of mutation data matrices from protein sequences
  publication-title: Computer Applications in the Biosciences
– year: 1989
– volume: 220
  start-page: 51
  year: 2002
  end-page: 58
  article-title: The promoter drives companion‐cell‐specific gene expression in multiple organs of transgenic tobacco
  publication-title: Protoplasma
– volume: 101
  start-page: 18058
  year: 2004
  end-page: 18063
  article-title: Molecular origins of rapid and continuous morphological evolution
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 546
  start-page: 40
  year: 2014
  end-page: 49
  article-title: Cloning, expression and characterization of a gene encoding mitogen activated protein kinase 2 (MPK2) from
  publication-title: Gene
– volume: 283
  start-page: 94
  year: 1999
  end-page: 98
  article-title: Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem
  publication-title: Science
– volume: 188–189
  start-page: 97
  year: 2012
  end-page: 101
  article-title: has a role for sucrose retrieval along the phloem pathway: evidence from carbon‐11 tracer studies
  publication-title: Plant Science
– volume: 151
  start-page: 1831
  year: 2009
  end-page: 1843
  article-title: Untranslated regions of a mobile transcript mediate RNA metabolism
  publication-title: Plant Physiology
– volume: 76
  start-page: 1025
  year: 2007
  end-page: 1033
  article-title: Polypyrimidine tract binding protein 2 stabilizes phosphoglycerate kinase 2 mRNA in murine male germ cells by binding to its 3′UTR
  publication-title: Biology of Reproduction
– volume: 6
  start-page: 635
  year: 2010
  end-page: 642
  article-title: Apple phloem cells contain some mRNAs transported over long distances
  publication-title: Tree Genetics & Genomes
– volume: 122
  start-page: 87
  year: 1996
  end-page: 96
  article-title: The gene is required for shoot and floral meristem integrity in
  publication-title: Development
– volume: 7
  start-page: 218
  year: 2014
  end-page: 230
  article-title: Cloning and characterization of miRNAs and their targets, including a novel miRNA‐targeted NBS–LRR protein class gene in apple (Golden Delicious)
  publication-title: Molecular Plant
– volume: 10
  start-page: 248
  year: 2009
  article-title: The WUS homeobox‐containing (WOX) protein family
  publication-title: Genome Biology
– volume: 36
  start-page: 996
  year: 2009
  end-page: 1006
  article-title: Genome‐wide analysis of PTB‐RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping
  publication-title: Molecular Cell
– volume: 293
  start-page: 287
  year: 2001
  end-page: 289
  article-title: Developmental changes due to long‐distance movement of a homeobox fusion transcript in tomato
  publication-title: Science
– volume: 279
  start-page: 69
  year: 2001
  end-page: 77
  article-title: Cellular basis of potato spindle tuber viroid systemic movement
  publication-title: Virology
– volume: 346
  start-page: 35
  year: 1990
  end-page: 39
  article-title: The protein encoded by the homeotic gene agamous resembles transcription factors
  publication-title: Nature
– volume: 31
  start-page: 3406
  year: 2003
  end-page: 3415
  article-title: Mfold web server for nucleic acid folding and hybridization prediction
  publication-title: Nucleic Acids Research
– volume: 8
  start-page: 137
  year: 2002
  end-page: 149
  article-title: Mutations in RRM4 uncouple the splicing repression and RNA‐binding activities of polypyrimidine tract binding protein
  publication-title: RNA
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures
  publication-title: Physiologia Plantarum
– volume: 97
  start-page: 13979
  year: 2000
  end-page: 13984
  article-title: Genetic evidence for the in planta role of phloem‐specific plasma membrane sucrose transporters
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 24
  start-page: 4360
  year: 2012
  end-page: 4375
  article-title: Polypyrimidine tract binding protein homologs from are key regulators of alternative splicing with implications in fundamental developmental processes
  publication-title: Plant Cell
– volume: 126
  start-page: 4405
  year: 1999
  end-page: 4419
  article-title: Phloem long‐distance transport of mRNA: implications for supracellular regulation in plants
  publication-title: Development
– volume: 105
  start-page: 805
  year: 2001
  end-page: 814
  article-title: Termination of stem cell maintenance in floral meristems by interactions between and
  publication-title: Cell
– volume: 62
  start-page: 4561
  year: 2011
  end-page: 4570
  article-title: A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 1013
  year: 2010
  end-page: 1019
  article-title: mRNA transport in both directions between stock and scion in
  publication-title: Tree Genetics & Genomes
– volume: 18
  start-page: 3443
  year: 2006
  end-page: 3457
  article-title: Dynamics of a mobile RNA of potato involved in a long‐distance signaling pathway
  publication-title: Plant Cell
– volume: 30
  start-page: 1173
  year: 2011
  end-page: 1182
  article-title: Functional analysis of the gene promoter using transient Catharanthus roseus and stable transformation systems
  publication-title: Plant Cell Reports
– volume: 4
  start-page: 406
  year: 1987
  end-page: 425
  article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees
  publication-title: Molecular Biology and Evolution
– volume: 28
  start-page: 651
  year: 2005
  end-page: 659
  article-title: Fruit‐bearing branchlets are carbon autonomous in mature broad‐leaved temperate forest trees
  publication-title: Plant, Cell & Environment
– volume: 121
  start-page: 109
  year: 2015
  end-page: 119
  article-title: mRNA undergoes long‐distance transport and interacts with movement protein binding protein 2C in pear ( ).
  publication-title: Tissue and Organ Culture (PCTOC)
– volume: 566
  start-page: 223
  year: 2004
  end-page: 228
  article-title: Effectiveness of RNA interference in transgenic plants
  publication-title: FEBS Letters
– volume: 200
  start-page: 1000
  year: 2013
  end-page: 1008
  article-title: Retrotransposon displays strong tissue‐specific differences in expression
  publication-title: New Phytologist
– volume: 158
  start-page: 1329
  year: 2012
  end-page: 1341
  article-title: gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation
  publication-title: Plant Physiology
– volume: 25
  start-page: 2025
  year: 2011
  end-page: 2030
  article-title: WUSCHEL protein movement mediates stem cell homeostasis in the shoot apex
  publication-title: Genes & Development
– volume: 203
  start-page: 424
  year: 2014
  end-page: 436
  article-title: Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini‐exon splicing reporter and affect alternative splicing of endogenous genes differentially
  publication-title: New Phytologist
– volume: 39
  start-page: 783
  year: 1985
  end-page: 791
  article-title: Confidence limits on phylogenies: an approach using the bootstrap
  publication-title: Evolution
– volume: 59
  start-page: 921
  year: 2009
  end-page: 929
  article-title: The sequences of Arabidopsis RNA constitute the motifs that are necessary and sufficient for RNA long‐distance trafficking
  publication-title: Plant Journal
– volume: 79
  start-page: 595
  year: 2012
  end-page: 608
  article-title: The mRNA of a Knotted1‐like transcription factor of potato is phloem mobile
  publication-title: Plant Molecular Biology
– volume: 105
  start-page: 793
  year: 2001
  end-page: 803
  article-title: A molecular link between stem cell regulation and floral patterning in
  publication-title: Cell
– volume: 46
  start-page: 6500
  year: 2007
  end-page: 6512
  article-title: Mechanism and thermodynamics of binding of the polypyrimidine tract binding protein to RNA
  publication-title: Biochemistry
– volume: 270
  start-page: 1980
  year: 1995
  end-page: 1983
  article-title: Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata
  publication-title: Science
– volume: 54
  start-page: 760
  year: 2012
  end-page: 772
  article-title: Phloem‐mobile transcripts target to the root tip and modify root architecture
  publication-title: Journal of Integrative Plant Biology
– volume: 13
  start-page: 165
  year: 2013
  article-title: Long‐distance transport of mRNA in
  publication-title: BMC Plant Biology
– volume: 131
  start-page: 657
  year: 2004
  end-page: 668
  article-title: Expression dynamics of genes mark cell fate decisions during early embryonic patterning in
  publication-title: Development
– volume: 52
  start-page: 40
  year: 2010
  end-page: 52
  article-title: A model system of development regulated by the long‐distance transport of mRNA
  publication-title: Journal of Integrative Plant Biology
– volume: 7
  start-page: 277
  year: 2014
  end-page: 289
  article-title: WOX5‐IAA17 feedback circuit‐mediated cellular auxin response is crucial for the patterning of root stem cell niches in
  publication-title: Molecular Plant
– volume: 3
  start-page: 749
  year: 1991
  end-page: 758
  article-title: Expression of the Arabidopsis floral homeotic gene is restricted to specific cell types late in flower development
  publication-title: Plant Cell
– volume: 5
  start-page: e9562
  year: 2010
  article-title: Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation
  publication-title: PLoS ONE
– volume: 23
  start-page: 373
  year: 1995
  end-page: 382
  article-title: Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity
  publication-title: New Zealand Journal of Crop and Horticultural Science
– volume: 42
  start-page: 225
  year: 2007
  end-page: 226
  article-title: A graft‐transmissible RNA from tomato rootstock changes leaf morphology of potato scion
  publication-title: HortScience
– volume: 1772
  start-page: 60
  year: 2007
  end-page: 65
  article-title: Characterization of the molecular mechanisms involved in the increased insulin secretion in rats with acute liver failure
  publication-title: Biochimica et Biophysica Acta
– year: 2012
– volume: 33
  start-page: 576
  year: 2015
  end-page: 588
  article-title: Organizer‐derived WOX5 signal maintains root columella stem cells through chromatin‐mediated repression of expression
  publication-title: Developmental Cell
– volume: 7
  start-page: 592
  year: 2012
  end-page: 594
  article-title: WUSCHEL protein movement and stem cell homeostasis
  publication-title: Plant Signaling & Behavior
– volume: 30
  start-page: 614
  year: 2012
  end-page: 623
  article-title: mRNA transport in
  publication-title: Plant Molecular Biology Reporter
– volume: 57
  start-page: 203
  year: 2006
  end-page: 232
  article-title: Integrative plant biology: role of phloem long‐distance macromolecular trafficking
  publication-title: Annual Review of Plant Biology
– volume: 4
  start-page: 43
  year: 2010
  article-title: Low‐complexity regions within protein sequences have position‐dependent roles
  publication-title: BMC Systems Biology
– volume: 42
  start-page: 49
  year: 2005
  end-page: 68
  article-title: Phloem long‐distance trafficking of RNA regulates leaf development
  publication-title: Plant Journal
– volume: 57
  start-page: 224
  year: 2013
  end-page: 230
  article-title: Transport of mRNA molecules coding domain protein in grafted pear and transgenic tobacco
  publication-title: Biologia Plantarum
– volume: 20
  start-page: 2922
  year: 2006
  end-page: 2936
  article-title: Phosphorylation and functions of the RNA polymerase II CTD
  publication-title: Genes & Development
– volume: 34
  start-page: 369
  year: 2006
  end-page: 373
  article-title: MEME: discovering and analyzing DNA and protein sequence motifs
  publication-title: Nucleic Acids Research
– volume: 28
  start-page: 2731
  year: 2011
  end-page: 2739
  article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
  publication-title: Molecular Biology and Evolution
– volume: 33
  start-page: 1949
  year: 2010
  end-page: 1958
  article-title: Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants
  publication-title: Plant, Cell & Environment
– volume: 446
  start-page: 811
  year: 2007
  end-page: 814
  article-title: Conserved factors regulate signalling in shoot and root stem cell organizers
  publication-title: Nature
– volume: 21
  start-page: 197
  year: 2009
  end-page: 215
  article-title: A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem‐mobile ribonucleoprotein complex
  publication-title: Plant Cell
– volume: 286
  start-page: 23142
  year: 2011
  end-page: 23149
  article-title: CmRBP50 protein phosphorylation is essential for assembly of a stable phloem‐mobile high‐affinity ribonucleoprotein complex
  publication-title: Journal of Biological Chemistry
– volume: 16
  start-page: 1979
  year: 2004
  end-page: 2000
  article-title: A systemic small RNA signaling system in plants
  publication-title: Plant Cell
– ident: e_1_2_7_7_1
  doi: 10.1105/tpc.3.8.749
– ident: e_1_2_7_24_1
  doi: 10.1111/nph.12470
– ident: e_1_2_7_32_1
  doi: 10.1242/dev.122.1.87
– ident: e_1_2_7_71_1
  doi: 10.1105/tpc.104.023614
– ident: e_1_2_7_35_1
  doi: 10.1017/S1355838202015029
– ident: e_1_2_7_36_1
  doi: 10.1016/S0092-8674(01)00384-1
– ident: e_1_2_7_3_1
  doi: 10.1093/jxb/err163
– ident: e_1_2_7_40_1
  doi: 10.1007/s11103-012-9931-0
– ident: e_1_2_7_28_1
  doi: 10.1016/j.febslet.2004.04.043
– ident: e_1_2_7_29_1
  doi: 10.1126/science.1059805
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1744-7909.2012.01155.x
– ident: e_1_2_7_15_1
  doi: 10.1016/j.plantsci.2011.12.018
– volume-title: Molecular cloning
  year: 1989
  ident: e_1_2_7_53_1
– ident: e_1_2_7_51_1
  doi: 10.1242/dev.126.20.4405
– ident: e_1_2_7_74_1
  doi: 10.1006/viro.2000.0724
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-3040.2004.01311.x
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1558-5646.1985.tb00420.x
– ident: e_1_2_7_42_1
  doi: 10.1007/s00709-002-0027-6
– ident: e_1_2_7_38_1
  doi: 10.1126/science.270.5244.1980
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: e_1_2_7_61_1
  doi: 10.1038/ng1618
– ident: e_1_2_7_66_1
  doi: 10.1095/biolreprod.107.060079
– ident: e_1_2_7_75_1
  doi: 10.1104/pp.006403
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-313X.2005.02351.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-313X.2009.03918.x
– ident: e_1_2_7_72_1
  doi: 10.1007/s10535-012-0293-x
– ident: e_1_2_7_39_1
  doi: 10.1093/mp/sst101
– ident: e_1_2_7_59_1
  doi: 10.1093/mp/sst118
– ident: e_1_2_7_76_1
  doi: 10.1093/nar/gkg595
– ident: e_1_2_7_25_1
  doi: 10.1093/bioinformatics/8.3.275
– ident: e_1_2_7_46_1
  doi: 10.1104/pp.111.188078
– ident: e_1_2_7_21_1
  doi: 10.1186/1471-2229-13-89
– ident: e_1_2_7_34_1
  doi: 10.1074/jbc.M111.244129
– ident: e_1_2_7_63_1
  doi: 10.1126/science.283.5398.94
– ident: e_1_2_7_6_1
  doi: 10.1104/pp.109.144428
– ident: e_1_2_7_27_1
  doi: 10.1371/journal.pone.0009562
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.250473797
– volume: 4
  start-page: 406
  year: 1987
  ident: e_1_2_7_52_1
  article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees
  publication-title: Molecular Biology and Evolution
– ident: e_1_2_7_31_1
  doi: 10.1016/j.bbadis.2006.10.001
– ident: e_1_2_7_58_1
  doi: 10.1093/molbev/msr121
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1744-7909.2010.00911.x
– ident: e_1_2_7_50_1
  doi: 10.1105/tpc.112.103622
– ident: e_1_2_7_2_1
  doi: 10.1016/j.gene.2014.05.041
– ident: e_1_2_7_17_1
  doi: 10.1242/dev.00963
– ident: e_1_2_7_68_1
  doi: 10.1101/gad.17258511
– ident: e_1_2_7_69_1
  doi: 10.4161/psb.19793
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.0408118101
– ident: e_1_2_7_18_1
  doi: 10.1105/tpc.108.061317
– ident: e_1_2_7_48_1
  doi: 10.1016/j.devcel.2015.04.024
– ident: e_1_2_7_62_1
  doi: 10.1080/01140671.1995.9513913
– ident: e_1_2_7_33_1
  doi: 10.1016/S0092-8674(01)00390-7
– ident: e_1_2_7_41_1
  doi: 10.1007/s00299-011-1025-y
– ident: e_1_2_7_67_1
  doi: 10.1016/j.molcel.2009.12.003
– ident: e_1_2_7_37_1
  doi: 10.1146/annurev.arplant.56.032604.144145
– ident: e_1_2_7_47_1
  doi: 10.1101/gad.1477006
– volume-title: Tree crop physiology
  year: 2012
  ident: e_1_2_7_49_1
– volume: 30
  start-page: 1
  year: 2004
  ident: e_1_2_7_13_1
  article-title: Girdling: physiological and horticultural aspects
  publication-title: Horticultural Reviews
– ident: e_1_2_7_70_1
  doi: 10.1038/346035a0
– ident: e_1_2_7_10_1
  doi: 10.21273/HORTSCI.25.2.172
– ident: e_1_2_7_30_1
  doi: 10.21273/HORTSCI.42.2.225
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1365-3040.2010.02197.x
– ident: e_1_2_7_56_1
  doi: 10.1021/bi6026133
– ident: e_1_2_7_45_1
  doi: 10.1126/science.1114066
– ident: e_1_2_7_60_1
  doi: 10.1016/S0960-9822(06)00361-7
– ident: e_1_2_7_16_1
  doi: 10.1186/gb-2009-10-12-248
– ident: e_1_2_7_65_1
  doi: 10.1007/s11295-010-0309-7
– ident: e_1_2_7_4_1
  doi: 10.1093/nar/gkl198
– ident: e_1_2_7_8_1
  doi: 10.1186/1752-0509-4-43
– ident: e_1_2_7_5_1
  doi: 10.1105/tpc.106.042473
– ident: e_1_2_7_64_1
  doi: 10.1186/1471-2229-13-165
– ident: e_1_2_7_26_1
  doi: 10.1007/s11295-010-0279-9
– ident: e_1_2_7_73_1
  doi: 10.1007/s11105-011-0365-7
– ident: e_1_2_7_9_1
  doi: 10.1007/s11240-014-0685-z
– ident: e_1_2_7_57_1
  doi: 10.1111/nph.12821
– ident: e_1_2_7_54_1
  doi: 10.1038/nature05703
SSID ssj0009562
Score 2.384622
Snippet Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody...
Summary Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted...
Little is known about the mechanisms by which mRNA s are transported over long distances in the phloem between the rootstock and the scion in grafted woody...
SourceID proquest
pubmed
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 511
SubjectTerms Base Sequence
binding proteins
Cloning, Molecular
Cluster Analysis
Distance
Domains
Fruit trees
Gene Expression Regulation, Plant
gene overexpression
Genes
Grafting
Homeobox
messenger RNA
mRNA
mRNA transport
Nicotiana - genetics
PbPTB3
PbWoxT1
pears
Phloem
Phloem - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
Polypyrimidine Tract-Binding Protein - genetics
Polypyrimidine Tract-Binding Protein - metabolism
Protein Binding
Proteins
Pyrus betulaefolia
Pyrus betulifolia
ribonucleoprotein (RNP) complex
RNA transport
RNA Transport - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rootstocks
scions
stems
Tobacco
Transport
Woody plants
Title PbWoxT1 mRNA from pear (Pyrus betulaefolia) undergoes long‐distance transport assisted by a polypyrimidine tract binding protein
URI https://www.jstor.org/stable/newphytologist.210.2.511
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13793
https://www.ncbi.nlm.nih.gov/pubmed/26661583
https://www.proquest.com/docview/2513492218
https://www.proquest.com/docview/1785728729
https://www.proquest.com/docview/1803123677
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1di9QwFIbDunjhjd-61VWiiIwXHdo0_cKrVVwGwWFYd3AuhJA0yexgbcu0A9Yr8Rf4G_0lnqQf7Moq4l1hUmgy70me0568QegZ6CSjsQzdhKeBawy53MQPuSuVFpFIiSbWZ_bdPJot6dtVuNpDL4e9MJ0_xPjCzUSGna9NgHNRnwvyojqb-gHIC-ZfU6tlgOiEnDPcjcjgwBzRaNW7CpkqnvHOC2vRFc3LoSjxMty8SK92-Tm-gT4OD95VnXya7hoxzb7-5un4nz27ia73WIqPOh3dQnuquI2uvioBHds76PtCfCi_nPr488n8CJsdKbiCCMGTRbvd1VioZpdzpct8w19gsyttuy5VjfOyWP_89kMaRAVt4WYwUsdA7EZeEosWc1yVeVu15nwxWEhts6zBYmP322BrJLEp7qLl8ZvT1zO3P7zBzWgSBK6vDNt4hNOI-4oq4JIs5DIF4JIeV56OhFYhCMQXnuZUq1QkMvCpzLjOQh0G99B-URbqAOE0lcCtRJHE11RQnUDKKgiPhSdlID3toMnwN7KsdzY3B2zkbMhwYESZHVEHPR2bVp2dx2WNDkALjK9hmmXL98SY8BlMggXfQc-tQMabIfeBcLBHDcO4MUigGWEAsQ46HBTE-lmhZsCSxgwSqMpBT8afIZ7NRxpeqHJXMz9OwhjSWJL-pU0CIWas92IH3e_UOT4QABdAagKdmFiN_bmbbL6Y2YsH_970IbpmhqMrXTpE-812px4BlTXisQ2_XyJdM6E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aBhK8cIcFBhiEUHlIlTiXJhIv4zIV2KpqtFpfkGXHdqkoSdWmEuEJ8Qv4jfwSjp0m2tBAiLdIOZZs5zv2d5zj7wA8QZxkYU9GbsLTwDWCXG7iR9yVSotYpFRTqzN7NIj74_DtJJpswfPmLkytD9EeuBnPsOu1cXBzIH3Ky_PFx64fIL624YKp6G2U818d01OSuzFtNJjjMJ5sdIVMHk_b9MxutK150aQlnkc4z_JXuwEdXIUPTdfrvJNP3XUputnX31Qd_3ds1-DKhpmS_RpK12FL5Tfg4osC2WN1E74PxUnxZeSTz8eDfWIupZAFOgnpDKvlekWEKtdzrnQxn_FnxFxMW04LtSLzIp_-_PZDGpaK8CJlo6VOkLQbhEkiKsLJophXi8qUGMO91JplJREze-WGWC2JWX4LxgevRy_77qZ-g5uFSRC4vjL0xqM8jLmvQoXUJIu4TJFzSY8rT8dCqwgx4gtP81CrVCQy8EOZcZ1FOgpuw05e5GoXSJpKpK5U0cTXoQh1glGroLwnPCkD6WkHOs13ZNlG3NzU2JizJsjBGWV2Rh143JouakWP84x2EQyMT3GlZeP31OjwGaaEe74DTy1C2sYY_qBH2GrDOG8MY2hGGfJYB_YaCLHNwrBiSCeNHiQSKwceta_Rpc1_Gp6rYr1ifi-JehjJ0vQvNgl6mVHf6zlwp4Zn2yHkXMhTExxEx4Lsz8Nkg2HfPtz9d9OHcKk_Ojpkh28G7-7BZTM1dSbTHuyUy7W6jyStFA-sL_4CN-o3vQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2gRAv3GGBAQYhVB5SJY6TJuJpMKpyq6qxij4gWXZsd9VKErWpRHhC_AJ-I7-EY-eiDQ2EeIuUYyk--Y7PdxL7Owg9AZykdCBDN-ZJ4BpBLjf2Q-5KpUUkEqKJ1Zl9P45GU_pmFs620PP2LEytD9F9cDORYddrE-CF1KeCPCuO-34A8NpGF2jkJaZvw8EhOaW4G5FWgjmi0ayRFTLbeLqhZ5LRtuZ5uyvxPL55lr7a_DO8ij61T15vOznpb0rRT7_-Jur4n1O7hq40vBTv10C6jrZUdgNdfJEDd6xuou8T8TH_cuTjz4fjfWyOpOACQgT3JtVqs8ZClZslVzpfLvgzbI6lrea5WuNlns1_fvshDUcFcOGyVVLHQNkNviQWFea4yJdVUZkGY5BJrVlaYrGwB26wVZJYZLfQdPjq6OXIbbo3uCmNg8D1lSE3HuE04r6iCohJGnKZAOOSHleejoRWISDEF57mVKtExDLwqUy5TkMdBrfRTpZnahfhJJFAXIkisa-poDqGmlUQPhCelIH0tIN67WtkaSNtbjpsLFlb4oBHmfWogx53pkWt53Ge0S5ggfE5rLNs-oEYFT7DkyDjO-ipBUg3GIofiAfbaxj8xqCCZoQBi3XQXosg1iwLawZk0qhBAq1y0KPuNgS0-UvDM5Vv1swfxOEA6liS_MUmhhgz2nsDB92p0dk9EDAuYKkxTKJnMfbnabLxZGQv7v676UN0aXIwZO9ej9_eQ5eNZ-ptTHtop1xt1H1gaKV4YCPxF2vMNmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PbWoxT1+mRNA+from+pear+%28Pyrus+betulaefolia%29+undergoes+long%E2%80%90distance+transport+assisted+by+a+polypyrimidine+tract+binding+protein&rft.jtitle=The+New+phytologist&rft.au=Duan%2C+Xuwei&rft.au=Zhang%2C+Wenna&rft.au=Huang%2C+Jing&rft.au=Li%2C+Hao&rft.date=2016-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=210&rft.issue=2&rft.spage=511&rft.epage=524&rft_id=info:doi/10.1111%2Fnph.13793&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon