Reactive Oxygen Species: A Breath of Life or Death?

New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the r...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 13; no. 3; pp. 789 - 794
Main Authors Fruehauf, John P., Meyskens, Frank L.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.02.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1α, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.
AbstractList New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1α, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.
New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1α, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.
New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.
New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.
Author Frank L. Meyskens, Jr
John P. Fruehauf
Author_xml – sequence: 1
  givenname: John P.
  surname: Fruehauf
  fullname: Fruehauf, John P.
– sequence: 2
  givenname: Frank L.
  surname: Meyskens
  fullname: Meyskens, Frank L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18548431$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17289868$$D View this record in MEDLINE/PubMed
BookMark eNqFkMlOwzAQhi0EYn8EUC7AKcV7HDggKKtUqRLL2XKcMTVKk2KnLG9PohaQuHCa0ej7Z-xvC63WTQ0I7RE8IESoY4IzlWLO6GA4vE-xTClWdAVtEiGylFEpVrv-m9lAWzG-YEw4wXwdbZCMqlxJtYnYPRjb-jdIxh-fz1AnDzOwHuJJcp5cBDDtJGlcMvIOkiYkl_3gbAetOVNF2F3WbfR0ffU4vE1H45u74fkotVzRNnUUl6bkzqrSOJlxysHkpSwtLXJLcqOYc1xa4gR2HDLCZWGoKDkpJC0Lwdk2OlzsnYXmdQ6x1VMfLVSVqaGZRy1VnrOckg7cX4LzYgqlngU_NeFTf3-zAw6WgInWVC6Y2vr4yynBFWf9otMFZ0MTYwCnrW9N65u6DcZXmmDdy9e9WN2L1Z18jaXu5Xdp8Sf9c-Cf3NEiN_HPk3cfQNvufRACRDDBTjRhmulM5ewLNWiTIg
CitedBy_id crossref_primary_10_3389_fonc_2023_1209156
crossref_primary_10_1073_pnas_1212802109
crossref_primary_10_3390_ijms18010165
crossref_primary_10_1016_j_bbcan_2012_03_004
crossref_primary_10_1016_j_ygyno_2014_11_015
crossref_primary_10_1007_s11418_012_0722_3
crossref_primary_10_1007_s13277_016_5128_5
crossref_primary_10_1016_j_freeradbiomed_2013_12_016
crossref_primary_10_3390_biom13040707
crossref_primary_10_1016_j_tet_2015_05_025
crossref_primary_10_1016_j_bbrc_2009_06_039
crossref_primary_10_1021_acs_molpharmaceut_9b00467
crossref_primary_10_1177_09731296231184539
crossref_primary_10_1158_1535_7163_MCT_08_0541
crossref_primary_10_1016_j_tiv_2008_03_002
crossref_primary_10_1016_j_critrevonc_2020_103061
crossref_primary_10_3389_fnut_2023_1222908
crossref_primary_10_1016_j_jbiotec_2017_03_007
crossref_primary_10_1155_2012_605302
crossref_primary_10_1111_j_1440_1681_2011_05586_x
crossref_primary_10_1007_s12274_019_2327_6
crossref_primary_10_1016_j_steroids_2024_109555
crossref_primary_10_1039_D4DT00759J
crossref_primary_10_1089_ars_2017_7158
crossref_primary_10_1186_1471_2407_12_564
crossref_primary_10_1007_s00280_007_0627_0
crossref_primary_10_1016_j_bbamcr_2013_06_029
crossref_primary_10_1002_ijch_201200019
crossref_primary_10_1016_j_freeradbiomed_2013_12_024
crossref_primary_10_1016_j_pharmthera_2008_01_005
crossref_primary_10_1371_journal_pcbi_1000292
crossref_primary_10_1155_2017_2467940
crossref_primary_10_18632_oncotarget_13454
crossref_primary_10_3389_fonc_2023_1088878
crossref_primary_10_1016_j_bbcan_2014_07_002
crossref_primary_10_1016_j_biopha_2024_117595
crossref_primary_10_3892_ijo_2020_5032
crossref_primary_10_1080_01635580802710733
crossref_primary_10_3103_S0095452716040034
crossref_primary_10_1016_j_canlet_2012_02_025
crossref_primary_10_1016_j_ygyno_2017_02_033
crossref_primary_10_1089_ars_2011_4414
crossref_primary_10_3892_ijo_2017_3885
crossref_primary_10_1016_j_biocel_2012_06_008
crossref_primary_10_1039_C6AN01178K
crossref_primary_10_1111_j_1742_4658_2007_06044_x
crossref_primary_10_3390_endocrines3010013
crossref_primary_10_3892_ol_2017_6212
crossref_primary_10_1093_carcin_bgu097
crossref_primary_10_3390_molecules171011839
crossref_primary_10_1016_j_addr_2022_114360
crossref_primary_10_18632_oncotarget_3717
crossref_primary_10_1021_acs_nanolett_8b03905
crossref_primary_10_1158_1078_0432_CCR_11_0816
crossref_primary_10_1016_j_bmcl_2013_07_032
crossref_primary_10_1016_j_cbi_2013_12_009
crossref_primary_10_1007_s11883_014_0452_y
crossref_primary_10_1002_smll_201401915
crossref_primary_10_1039_c2fo30152k
crossref_primary_10_1111_j_1440_1797_2008_00977_x
crossref_primary_10_1007_s10059_011_1021_7
crossref_primary_10_1016_j_freeradbiomed_2012_03_017
crossref_primary_10_3390_pharmaceutics13091452
crossref_primary_10_1091_mbc_e12_10_0747
crossref_primary_10_1016_j_canlet_2009_10_013
crossref_primary_10_1016_j_jinsphys_2020_104022
crossref_primary_10_1016_j_leukres_2012_07_021
crossref_primary_10_1016_j_fct_2008_03_032
crossref_primary_10_1016_j_phanu_2015_11_002
crossref_primary_10_1039_D2TB00968D
crossref_primary_10_2174_1381612829666230417110032
crossref_primary_10_1016_j_bbabio_2017_01_005
crossref_primary_10_1515_CCLM_2008_023
crossref_primary_10_1016_j_ymgme_2008_11_164
crossref_primary_10_1016_j_ijpharm_2019_118893
crossref_primary_10_1038_bjc_2011_399
crossref_primary_10_3390_polym8070268
crossref_primary_10_1186_bcr3691
crossref_primary_10_1016_j_biomaterials_2023_122127
crossref_primary_10_1039_C9CC01747J
crossref_primary_10_1038_onc_2010_441
crossref_primary_10_1586_17474124_2014_913478
crossref_primary_10_3390_cancers2020338
crossref_primary_10_1016_j_xphs_2023_11_027
crossref_primary_10_1186_s13287_020_01643_5
crossref_primary_10_1016_j_cbpa_2008_06_002
crossref_primary_10_1089_ars_2009_2541
crossref_primary_10_1002_anie_202006941
crossref_primary_10_1186_s40580_022_00313_x
crossref_primary_10_5667_tang_2012_0018
crossref_primary_10_1089_ars_2009_2788
crossref_primary_10_1089_ars_2011_3990
crossref_primary_10_1111_jcmm_13424
crossref_primary_10_3390_ijms21186792
crossref_primary_10_1039_D2NJ02618J
crossref_primary_10_1016_j_freeradbiomed_2011_01_015
crossref_primary_10_1016_j_ejphar_2010_05_009
crossref_primary_10_1039_c2ob26571k
crossref_primary_10_33483_jfpau_978805
crossref_primary_10_1186_s13046_018_0797_0
crossref_primary_10_1158_1541_7786_MCR_19_0894
crossref_primary_10_4137_BMI_S2557
crossref_primary_10_2174_1871530319666190206124120
crossref_primary_10_1097_CAD_0b013e3283140c6f
crossref_primary_10_1016_j_eplepsyres_2011_09_022
crossref_primary_10_1016_j_ejphar_2014_04_023
crossref_primary_10_1021_acs_analchem_3c03233
crossref_primary_10_1021_acs_jpcb_5b12347
crossref_primary_10_3390_ijms21186521
crossref_primary_10_1016_j_fct_2014_02_004
crossref_primary_10_1038_s41419_017_0166_5
crossref_primary_10_1002_14651858_CD012690
crossref_primary_10_1016_j_pan_2016_12_010
crossref_primary_10_2174_1389450124666221104094918
crossref_primary_10_1002_cbic_201200724
crossref_primary_10_1016_j_mito_2012_07_112
crossref_primary_10_3892_or_2016_5303
crossref_primary_10_1016_j_canlet_2021_06_015
crossref_primary_10_2119_molmed_2009_00162
crossref_primary_10_1371_journal_pone_0078751
crossref_primary_10_1016_j_bmcl_2024_130043
crossref_primary_10_3390_jcm8020235
crossref_primary_10_3892_or_2016_4690
crossref_primary_10_1038_srep24582
crossref_primary_10_1007_s00604_021_05153_w
crossref_primary_10_1186_1477_7819_12_78
crossref_primary_10_1007_s10495_015_1159_4
crossref_primary_10_1016_j_dyepig_2019_02_042
crossref_primary_10_1016_j_jphotochem_2015_11_014
crossref_primary_10_1039_D3CC03590E
crossref_primary_10_1016_j_isci_2024_111553
crossref_primary_10_1016_j_canlet_2015_01_013
crossref_primary_10_1016_j_rbmo_2012_03_016
crossref_primary_10_1186_s12906_015_0563_1
crossref_primary_10_1002_bmb_20349
crossref_primary_10_1111_ceo_13731
crossref_primary_10_1159_000360090
crossref_primary_10_3390_molecules18089382
crossref_primary_10_1586_14737140_8_11_1751
crossref_primary_10_3390_antiox9050359
crossref_primary_10_1002_mog2_67
crossref_primary_10_1016_j_fct_2013_05_028
crossref_primary_10_3109_10715762_2010_526766
crossref_primary_10_3390_cancers2020420
crossref_primary_10_1038_onc_2015_60
crossref_primary_10_1016_j_molmed_2014_02_007
crossref_primary_10_1002_ange_202006941
crossref_primary_10_1021_acs_jmedchem_7b01463
crossref_primary_10_1186_1479_5876_9_171
crossref_primary_10_1186_s12885_015_1173_5
crossref_primary_10_1371_journal_pone_0130357
crossref_primary_10_1039_C9PY00892F
crossref_primary_10_1016_j_bcp_2009_04_016
crossref_primary_10_1016_j_toxrep_2014_05_011
crossref_primary_10_1016_j_ejmech_2017_04_040
crossref_primary_10_1080_14737140_2024_2352506
crossref_primary_10_1371_journal_pone_0141206
crossref_primary_10_1074_jbc_M113_450353
crossref_primary_10_1016_j_snb_2024_135560
crossref_primary_10_1038_s41419_021_04447_4
crossref_primary_10_1096_fj_10_155846
crossref_primary_10_1158_0008_5472_CAN_08_2010
crossref_primary_10_1111_j_1349_7006_2008_00892_x
crossref_primary_10_18632_oncotarget_19605
crossref_primary_10_1016_j_yexcr_2016_12_018
crossref_primary_10_1021_ar200126t
crossref_primary_10_3390_ijms160817394
crossref_primary_10_1016_j_bios_2019_111983
crossref_primary_10_1039_D3TB00505D
crossref_primary_10_1002_adhm_202301230
crossref_primary_10_1039_C8NJ03259A
crossref_primary_10_1039_C8NJ04421J
crossref_primary_10_4236_ns_2015_712057
crossref_primary_10_62347_RYSQ1416
crossref_primary_10_1016_j_febslet_2008_04_021
crossref_primary_10_1016_j_nantod_2021_101156
crossref_primary_10_1152_ajpendo_00433_2009
crossref_primary_10_1021_ja505988g
crossref_primary_10_1016_j_bios_2021_113077
crossref_primary_10_3390_molecules201019406
crossref_primary_10_1038_jid_2008_374
crossref_primary_10_1002_med_21734
crossref_primary_10_1111_jfbc_12369
crossref_primary_10_1002_em_20554
crossref_primary_10_1016_j_fertnstert_2016_02_009
crossref_primary_10_1177_1535370214532755
crossref_primary_10_1007_s00432_017_2464_9
crossref_primary_10_3736_jintegrmed2013014
crossref_primary_10_1002_advs_202000915
crossref_primary_10_3389_fonc_2022_911615
crossref_primary_10_1093_jb_mvab045
crossref_primary_10_1371_journal_pone_0012262
crossref_primary_10_3390_cancers11010025
crossref_primary_10_1111_j_1365_2591_2007_01337_x
crossref_primary_10_1007_s11010_008_9839_9
crossref_primary_10_1249_MSS_0b013e3181667435
crossref_primary_10_1007_s10103_017_2263_1
crossref_primary_10_1002_adhm_202001974
crossref_primary_10_1164_rccm_200806_851OC
crossref_primary_10_1371_journal_pone_0025564
crossref_primary_10_1016_j_fct_2014_03_017
crossref_primary_10_1016_j_colsurfb_2015_04_002
crossref_primary_10_1177_1010428317700159
crossref_primary_10_1016_j_jconrel_2021_12_016
crossref_primary_10_1016_j_saa_2017_09_034
crossref_primary_10_1039_C8TB02882F
crossref_primary_10_1039_D1RA04026J
crossref_primary_10_1016_j_phymed_2020_153441
crossref_primary_10_1016_j_mam_2010_02_008
crossref_primary_10_1021_acs_nanolett_1c02073
crossref_primary_10_4161_cbt_11_2_13959
crossref_primary_10_1039_c0cc01560a
crossref_primary_10_3390_antiox12091749
crossref_primary_10_1021_acs_accounts_5b00009
crossref_primary_10_1038_emm_2017_255
crossref_primary_10_1155_2012_839298
crossref_primary_10_1016_j_mrfmmm_2009_05_009
crossref_primary_10_1155_2013_972913
crossref_primary_10_1158_1078_0432_CCR_12_3751
crossref_primary_10_1158_1078_0432_CCR_18_2380
crossref_primary_10_1080_01635580701613772
crossref_primary_10_1007_s13277_015_3702_x
crossref_primary_10_1016_j_aca_2017_02_025
crossref_primary_10_1021_acsami_5b12523
crossref_primary_10_1016_j_cryobiol_2020_07_008
crossref_primary_10_1021_acs_analchem_9b01294
crossref_primary_10_1007_s00204_013_1110_9
crossref_primary_10_1097_CMR_0b013e3282f1d312
crossref_primary_10_1111_j_1439_0531_2011_01756_x
crossref_primary_10_1124_mol_108_048405
crossref_primary_10_1002_bkcs_12650
crossref_primary_10_3389_fphar_2022_906625
crossref_primary_10_2174_0929867330666230609110455
crossref_primary_10_1016_j_carbpol_2021_117685
crossref_primary_10_1016_j_snb_2017_05_151
crossref_primary_10_1038_s41419_019_1441_4
crossref_primary_10_1016_j_bcp_2008_03_008
crossref_primary_10_1074_jbc_M113_484576
crossref_primary_10_1038_s41598_020_59623_x
crossref_primary_10_1039_C9CC06043J
crossref_primary_10_1155_2021_1208690
crossref_primary_10_1016_j_cclet_2021_02_015
crossref_primary_10_1021_acs_analchem_1c01690
crossref_primary_10_3109_10715762_2013_869588
crossref_primary_10_1007_s12274_020_3241_7
crossref_primary_10_1016_j_biomaterials_2018_02_011
crossref_primary_10_1016_j_tox_2008_03_009
crossref_primary_10_33380_2305_2066_2025_14_1_1852
crossref_primary_10_3389_fonc_2022_852424
crossref_primary_10_1172_JCI32559
crossref_primary_10_1039_c0dt00770f
crossref_primary_10_1002_tox_23372
crossref_primary_10_1111_joim_12229
crossref_primary_10_1021_acsnano_3c02964
crossref_primary_10_1245_s10434_013_3043_1
crossref_primary_10_3390_antiox9060560
crossref_primary_10_1038_nrd2803
crossref_primary_10_1016_j_cclet_2021_10_074
crossref_primary_10_1016_j_canlet_2008_02_031
crossref_primary_10_1016_j_critrevonc_2024_104361
crossref_primary_10_1016_j_humpath_2008_06_030
crossref_primary_10_1186_s11671_019_2887_0
crossref_primary_10_1136_jclinpath_2013_201692
crossref_primary_10_1016_j_fct_2012_09_005
crossref_primary_10_1016_j_cbpa_2010_10_016
crossref_primary_10_1016_j_freeradbiomed_2009_09_006
crossref_primary_10_1016_j_tiv_2013_04_006
crossref_primary_10_1021_acs_bioconjchem_6b00683
crossref_primary_10_1021_acsami_7b08347
crossref_primary_10_1210_en_2018_00014
crossref_primary_10_1016_j_bbagrm_2014_04_004
crossref_primary_10_1016_j_nano_2019_02_016
crossref_primary_10_1038_s41598_021_96857_9
crossref_primary_10_1016_j_semcancer_2017_05_004
crossref_primary_10_1667_RR1729_1
crossref_primary_10_1089_ars_2009_2599
crossref_primary_10_1007_s10895_018_2231_6
crossref_primary_10_1016_j_prp_2018_11_020
crossref_primary_10_1002_cncr_24126
crossref_primary_10_1016_j_toxlet_2012_01_007
crossref_primary_10_1080_03602532_2023_2206065
crossref_primary_10_1158_1055_9965_EPI_14_0064
crossref_primary_10_1158_0008_5472_CAN_08_4533
crossref_primary_10_1089_jmf_2009_1359
crossref_primary_10_1007_s10495_016_1294_6
crossref_primary_10_1016_j_canlet_2023_216348
crossref_primary_10_1016_j_jcis_2021_09_160
crossref_primary_10_1158_0008_5472_CAN_11_3213
crossref_primary_10_3390_pharmaceutics14061203
crossref_primary_10_1080_10715760801993076
crossref_primary_10_1097_MED_0b013e32833cf354
crossref_primary_10_1089_ars_2012_4785
crossref_primary_10_1016_j_joen_2018_08_002
crossref_primary_10_1016_j_sajb_2020_09_040
crossref_primary_10_1021_acscentsci_8b00336
crossref_primary_10_1111_lam_12224
crossref_primary_10_3390_ijms17040616
crossref_primary_10_1016_j_taap_2014_10_008
crossref_primary_10_1093_abbs_gmv102
crossref_primary_10_3390_biom9080298
crossref_primary_10_1016_j_freeradbiomed_2008_07_015
crossref_primary_10_1016_j_semcancer_2015_02_007
crossref_primary_10_1016_j_semcancer_2017_12_011
crossref_primary_10_1002_slct_201803185
crossref_primary_10_1021_ja100117u
crossref_primary_10_1038_ncomms7907
crossref_primary_10_1002_jbm_a_35432
crossref_primary_10_1038_srep43373
crossref_primary_10_1158_0008_5472_CAN_15_1512
crossref_primary_10_1177_1010428317749676
crossref_primary_10_1371_journal_pone_0137589
crossref_primary_10_1186_1471_2407_11_191
crossref_primary_10_1194_jlr_R046797
crossref_primary_10_1016_j_bbrc_2017_03_008
crossref_primary_10_1080_01635581_2017_1359321
crossref_primary_10_1007_s13258_020_00994_w
crossref_primary_10_1016_j_matchemphys_2021_124684
crossref_primary_10_1016_j_ejogrb_2018_07_031
crossref_primary_10_3892_ol_2013_1524
crossref_primary_10_29235_1029_8940_2023_68_3_197_205
crossref_primary_10_1007_s42764_022_00081_2
crossref_primary_10_2174_1389450120666191021110208
crossref_primary_10_1177_0885328221989539
crossref_primary_10_1016_j_mtener_2020_100571
crossref_primary_10_4155_tde_11_151
crossref_primary_10_3390_cancers10020034
crossref_primary_10_1016_j_freeradbiomed_2015_04_017
crossref_primary_10_1016_j_biochi_2009_01_010
crossref_primary_10_1093_carcin_bgs253
crossref_primary_10_1016_j_canlet_2015_04_027
crossref_primary_10_1016_j_cbi_2018_11_003
crossref_primary_10_1038_nrc2981
crossref_primary_10_1038_bjc_2012_442
crossref_primary_10_1039_c3cs60048c
crossref_primary_10_1021_acs_macromol_6b02063
crossref_primary_10_1128_MCB_00307_08
crossref_primary_10_1111_pcmr_12398
crossref_primary_10_1021_acs_analchem_0c05364
crossref_primary_10_1039_c2pp25064k
crossref_primary_10_1021_acs_analchem_5b04424
crossref_primary_10_1089_ars_2008_2331
crossref_primary_10_1038_cddis_2014_543
crossref_primary_10_1155_2014_696107
crossref_primary_10_1242_jeb_238147
crossref_primary_10_1039_C7OB00211D
crossref_primary_10_1016_j_snb_2024_135839
crossref_primary_10_1177_1933719114522524
crossref_primary_10_1016_j_freeradbiomed_2015_04_001
crossref_primary_10_1128_JVI_02534_12
crossref_primary_10_3724_SP_J_1008_2012_00935
crossref_primary_10_1371_journal_pone_0092599
crossref_primary_10_2217_thy_10_20
crossref_primary_10_1016_j_febslet_2010_04_048
crossref_primary_10_3390_molecules24132455
crossref_primary_10_1039_C8TB00791H
crossref_primary_10_1016_j_jphs_2015_04_003
crossref_primary_10_1016_j_bios_2022_114964
crossref_primary_10_1002_mgg3_910
crossref_primary_10_1016_j_biopha_2008_01_001
crossref_primary_10_1142_S0192415X14500955
crossref_primary_10_2147_JIR_S348850
crossref_primary_10_1186_1476_4598_13_131
crossref_primary_10_1039_C6RA27334C
crossref_primary_10_1128_mBio_02767_19
crossref_primary_10_1007_s10616_015_9897_2
crossref_primary_10_1007_s10637_018_0704_8
crossref_primary_10_1021_acsmacrolett_3c00323
crossref_primary_10_1016_j_freeradbiomed_2016_05_009
crossref_primary_10_1038_s41467_020_20243_8
crossref_primary_10_3390_futurepharmacol4030035
crossref_primary_10_1016_j_mtener_2022_101085
crossref_primary_10_1038_ncomms10500
crossref_primary_10_1177_1933719114522552
crossref_primary_10_1016_j_talanta_2017_02_059
crossref_primary_10_1007_s11051_013_1492_x
crossref_primary_10_3892_ol_2023_13913
crossref_primary_10_1371_journal_pone_0056169
crossref_primary_10_3389_fcell_2021_722412
crossref_primary_10_1016_j_freeradbiomed_2014_02_029
crossref_primary_10_1002_biof_1577
crossref_primary_10_1016_j_bbamcr_2012_07_012
crossref_primary_10_1093_toxsci_kfy259
crossref_primary_10_1097_CMR_0b013e32832c6324
crossref_primary_10_1016_j_drup_2011_03_001
crossref_primary_10_1186_s12906_016_1130_0
crossref_primary_10_1002_anse_202200058
crossref_primary_10_1111_j_1749_6632_2009_04695_x
crossref_primary_10_1002_mnfr_201500822
crossref_primary_10_1002_admi_202300028
crossref_primary_10_1586_17512433_2014_966816
crossref_primary_10_3892_etm_2023_11911
crossref_primary_10_4142_jvs_2013_14_3_249
crossref_primary_10_1016_j_molmed_2009_02_004
crossref_primary_10_1016_j_canlet_2013_08_017
crossref_primary_10_1016_j_jddst_2023_104803
crossref_primary_10_1158_1078_0432_CCR_14_0424
crossref_primary_10_1016_j_bios_2021_113216
crossref_primary_10_3923_ijp_2009_333_345
crossref_primary_10_1007_s43440_020_00143_w
crossref_primary_10_1158_0008_5472_CAN_09_4414
crossref_primary_10_1039_C9AY02263E
crossref_primary_10_1039_C4IB00170B
crossref_primary_10_1007_s10495_011_0625_x
crossref_primary_10_3109_10715762_2010_492831
crossref_primary_10_1038_s41598_018_24628_0
crossref_primary_10_1158_0008_5472_CAN_15_2921
crossref_primary_10_1634_stemcells_2007_0885
crossref_primary_10_3389_fonc_2022_842496
crossref_primary_10_1016_j_mrfmmm_2011_02_015
crossref_primary_10_1016_j_bbcan_2013_02_005
crossref_primary_10_1155_2010_740472
crossref_primary_10_3390_ijms14036306
crossref_primary_10_1039_C8PY00865E
crossref_primary_10_1016_j_ejphar_2012_06_045
crossref_primary_10_1016_j_bios_2016_07_039
crossref_primary_10_1016_j_freeradbiomed_2017_01_004
crossref_primary_10_3390_jcm8050611
crossref_primary_10_1016_j_snb_2022_132936
crossref_primary_10_1021_acsanm_8b00307
crossref_primary_10_1038_jid_2014_65
crossref_primary_10_18632_genesandcancer_26
crossref_primary_10_1002_advs_202003732
crossref_primary_10_1089_ars_2007_1957
crossref_primary_10_1038_nrc2945
crossref_primary_10_1292_jvms_12_0105
crossref_primary_10_1016_j_jdermsci_2012_06_006
crossref_primary_10_1002_sca_21332
crossref_primary_10_3109_10715762_2013_821200
crossref_primary_10_1002_em_22240
crossref_primary_10_1021_acsanm_4c02263
crossref_primary_10_3390_ijms18122589
crossref_primary_10_1002_wnan_1750
crossref_primary_10_1080_01635581_2011_539315
crossref_primary_10_3892_ijo_2020_4970
crossref_primary_10_1016_j_jhep_2009_03_024
crossref_primary_10_3892_ijmm_2015_2430
crossref_primary_10_1007_s10495_012_0749_7
crossref_primary_10_1038_s41568_021_00417_2
crossref_primary_10_1016_j_ctrv_2008_07_004
crossref_primary_10_1016_j_ijpharm_2014_10_019
crossref_primary_10_1016_j_bbcan_2014_04_008
crossref_primary_10_3934_genet_2017_2_103
crossref_primary_10_1016_j_canlet_2015_05_016
crossref_primary_10_1080_03008200802143166
crossref_primary_10_1088_1742_6596_2494_1_012007
crossref_primary_10_1016_j_ajpath_2011_08_007
crossref_primary_10_1016_j_dyepig_2017_06_011
crossref_primary_10_1016_j_phymed_2018_05_001
crossref_primary_10_2217_thy_11_72
crossref_primary_10_3390_cryst12010108
crossref_primary_10_1016_j_cclet_2020_08_039
crossref_primary_10_1021_jacs_6b07890
crossref_primary_10_1016_j_tiv_2024_105974
crossref_primary_10_1016_j_biopha_2016_03_031
crossref_primary_10_1186_1471_2407_11_170
crossref_primary_10_1016_j_freeradbiomed_2018_05_084
crossref_primary_10_1039_C5SC03488D
crossref_primary_10_3109_10428194_2011_604752
crossref_primary_10_1016_j_jphotochem_2023_114837
crossref_primary_10_1016_j_mito_2010_08_001
crossref_primary_10_1002_jcb_21522
crossref_primary_10_32604_oncologie_2022_022299
crossref_primary_10_1074_jbc_M109_088781
crossref_primary_10_3109_10799893_2014_970276
crossref_primary_10_1002_admi_201700573
crossref_primary_10_3390_metabo14010028
crossref_primary_10_1021_acsami_8b14717
crossref_primary_10_1002_prca_201600089
crossref_primary_10_3390_antiox9070633
crossref_primary_10_1111_jfbc_12439
crossref_primary_10_1182_blood_2011_10_387332
crossref_primary_10_3389_fphar_2020_570939
crossref_primary_10_1186_s43042_025_00647_1
crossref_primary_10_1002_prp2_632
crossref_primary_10_1371_journal_pone_0007033
crossref_primary_10_1016_j_nut_2024_112427
crossref_primary_10_1016_j_toxlet_2016_06_002
crossref_primary_10_1186_1471_2407_10_157
crossref_primary_10_1021_jacs_7b05920
crossref_primary_10_1007_s00109_012_0857_4
crossref_primary_10_1016_j_critrevonc_2016_03_004
crossref_primary_10_1002_adfm_201908865
crossref_primary_10_3390_antiox4020304
crossref_primary_10_1016_j_jconrel_2014_09_017
crossref_primary_10_1016_j_febslet_2014_10_011
crossref_primary_10_1182_blood_2011_12_395541
crossref_primary_10_1016_j_bioorg_2022_105798
crossref_primary_10_1021_acsbiomaterials_1c01304
crossref_primary_10_1021_ja100610m
crossref_primary_10_2174_1871520619666190731152942
crossref_primary_10_1002_bkcs_11190
crossref_primary_10_1016_j_mito_2014_06_001
crossref_primary_10_1002_hep_30962
crossref_primary_10_3389_fimmu_2022_1035451
crossref_primary_10_1016_j_smim_2013_12_005
crossref_primary_10_1155_2014_906804
crossref_primary_10_1111_acer_13071
crossref_primary_10_1039_D1BM00526J
crossref_primary_10_1186_s12951_021_00848_x
crossref_primary_10_1039_D1AN01705E
crossref_primary_10_1016_j_ddmec_2008_12_001
crossref_primary_10_1021_pr5011873
crossref_primary_10_1007_s12013_015_0558_z
crossref_primary_10_1042_BJ20112019
crossref_primary_10_1128_AAC_05131_14
crossref_primary_10_1016_j_ejmech_2018_02_033
crossref_primary_10_4028_www_scientific_net_AMR_1006_1007_821
crossref_primary_10_1371_journal_pone_0008575
crossref_primary_10_1016_j_phymed_2017_08_006
crossref_primary_10_1080_10715762_2022_2061967
crossref_primary_10_3390_cancers3010531
crossref_primary_10_1074_jbc_M111_309062
crossref_primary_10_1007_s11434_009_0239_7
crossref_primary_10_1084_jem_20151208
crossref_primary_10_1039_C6CC09127J
crossref_primary_10_1016_j_heliyon_2018_e01055
crossref_primary_10_1158_1541_7786_MCR_11_0378
crossref_primary_10_1016_j_cell_2013_07_031
crossref_primary_10_1371_journal_pone_0022753
crossref_primary_10_1016_j_colsurfb_2020_111067
crossref_primary_10_1016_j_phrs_2016_12_001
crossref_primary_10_1038_nature10167
crossref_primary_10_1016_j_mtphys_2022_100838
crossref_primary_10_2147_IJN_S309062
crossref_primary_10_1039_D0BM01802C
crossref_primary_10_1158_0008_5472_CAN_08_1839
crossref_primary_10_1002_cmdc_201100381
crossref_primary_10_1002_mc_23215
crossref_primary_10_1016_j_bbabio_2012_09_009
crossref_primary_10_1039_C6QO00448B
crossref_primary_10_1007_s13530_023_00198_1
crossref_primary_10_1021_acs_analchem_8b05098
crossref_primary_10_1021_ja111589a
crossref_primary_10_1158_1055_9965_EPI_07_2827
crossref_primary_10_3390_cells11152294
crossref_primary_10_1039_c3cc43265c
crossref_primary_10_1039_D0NR05501H
crossref_primary_10_2165_11592590_000000000_00000
crossref_primary_10_4103_pm_pm_674_18
crossref_primary_10_1155_2014_209845
crossref_primary_10_1089_ars_2011_4367
crossref_primary_10_61927_igmin129
crossref_primary_10_1038_cddis_2016_330
crossref_primary_10_3892_or_2016_4745
crossref_primary_10_1016_j_prp_2020_153218
crossref_primary_10_1016_j_snb_2019_03_052
crossref_primary_10_1038_bjc_2011_126
crossref_primary_10_1080_10715760701579314
crossref_primary_10_18632_oncotarget_13612
crossref_primary_10_1007_s00432_015_1941_2
crossref_primary_10_1073_pnas_0903015106
crossref_primary_10_1016_j_snb_2016_08_048
crossref_primary_10_1182_blood_2011_09_381970
crossref_primary_10_1007_s00216_022_04503_8
crossref_primary_10_1631_jzus_B2000455
crossref_primary_10_3389_fmolb_2022_838006
crossref_primary_10_1002_jcb_22898
crossref_primary_10_3390_antiox5010007
crossref_primary_10_1016_j_lungcan_2008_05_005
crossref_primary_10_1016_j_bbrc_2012_06_115
crossref_primary_10_1593_neo_81352
crossref_primary_10_1038_s41388_018_0459_x
crossref_primary_10_1177_1534735411403477
crossref_primary_10_4331_wjbc_v6_i3_148
crossref_primary_10_1002_tox_21801
crossref_primary_10_1007_s10456_010_9187_8
crossref_primary_10_3389_fonc_2019_01345
crossref_primary_10_1021_acs_jpcc_3c08298
crossref_primary_10_1016_j_ces_2014_11_010
crossref_primary_10_1371_journal_pone_0122275
crossref_primary_10_2139_ssrn_4167515
crossref_primary_10_1002_mnfr_200900125
crossref_primary_10_1093_cvr_cvq330
crossref_primary_10_1111_j_1600_0625_2008_00740_x
crossref_primary_10_1007_s00204_012_0856_9
crossref_primary_10_1016_j_taap_2018_05_026
crossref_primary_10_1007_s12274_022_4427_y
crossref_primary_10_1111_j_1440_1681_2010_05358_x
crossref_primary_10_1016_j_cellsig_2014_07_029
crossref_primary_10_1080_01635581_2012_713539
crossref_primary_10_3892_or_2013_2629
crossref_primary_10_1038_cddis_2012_25
crossref_primary_10_3892_ijo_2014_2566
crossref_primary_10_1016_j_aca_2023_342050
crossref_primary_10_1111_cpr_12869
crossref_primary_10_1038_s41392_023_01440_5
crossref_primary_10_1016_j_biomaterials_2020_120474
crossref_primary_10_1371_journal_pone_0096418
crossref_primary_10_1038_oncsis_2017_13
crossref_primary_10_1021_acs_inorgchem_8b02240
crossref_primary_10_1021_acsami_6b01348
crossref_primary_10_1128_MCB_01602_13
crossref_primary_10_1016_j_drudis_2021_01_015
crossref_primary_10_1021_nl4028507
crossref_primary_10_3727_096504016X14816352324532
crossref_primary_10_1016_S2225_4110_16_30112_2
crossref_primary_10_1016_j_bcp_2012_03_010
crossref_primary_10_1038_s44319_024_00110_z
crossref_primary_10_1021_acs_analchem_7b00306
crossref_primary_10_1080_01635580802567158
crossref_primary_10_1002_biof_1324
crossref_primary_10_4142_jvs_2021_22_e54
crossref_primary_10_1016_j_bbagen_2013_07_030
crossref_primary_10_1051_fopen_2018008
crossref_primary_10_1016_j_jcyt_2022_07_006
crossref_primary_10_1093_carcin_bgq149
crossref_primary_10_3389_fonc_2021_630972
crossref_primary_10_1016_j_oraloncology_2013_09_011
crossref_primary_10_1515_bnm_2015_0001
crossref_primary_10_1038_onc_2013_134
crossref_primary_10_1016_j_freeradbiomed_2008_10_025
crossref_primary_10_1016_j_redox_2014_06_006
crossref_primary_10_1155_2012_595976
crossref_primary_10_1038_leu_2008_8
crossref_primary_10_1038_srep18669
crossref_primary_10_1210_er_2011_1015
crossref_primary_10_1016_j_canlet_2013_05_027
crossref_primary_10_3390_molecules18021418
crossref_primary_10_4028_www_scientific_net_AMR_1061_1062_978
crossref_primary_10_3390_ijms21196992
crossref_primary_10_1111_bph_15504
crossref_primary_10_1128_JVI_01681_18
crossref_primary_10_1002_adhm_202101634
crossref_primary_10_1002_ijc_27656
crossref_primary_10_1038_aps_2013_162
crossref_primary_10_1177_1091581809352011
crossref_primary_10_1016_j_abb_2014_04_007
crossref_primary_10_1124_mol_116_106245
crossref_primary_10_1111_j_1755_148X_2010_00694_x
crossref_primary_10_1186_1743_7075_7_74
crossref_primary_10_18632_aging_102106
crossref_primary_10_1016_j_bbrc_2015_02_131
crossref_primary_10_3390_molecules23123267
crossref_primary_10_1021_pr1009542
crossref_primary_10_1186_1756_9966_30_34
crossref_primary_10_3109_10428194_2011_584253
crossref_primary_10_1002_smll_201600986
crossref_primary_10_1177_1010428317694565
crossref_primary_10_3390_jfb13040260
crossref_primary_10_1021_acs_chemrestox_5b00001
crossref_primary_10_1089_ars_2023_0298
crossref_primary_10_1177_1177391X0700100006
crossref_primary_10_1002_jsfa_7153
crossref_primary_10_1016_j_bbamcr_2008_01_005
crossref_primary_10_2174_1389201021666200227121144
crossref_primary_10_1111_j_1600_0625_2009_00912_x
crossref_primary_10_1016_j_canlet_2007_10_005
crossref_primary_10_1021_ja8040477
crossref_primary_10_1269_jrr_07092
crossref_primary_10_1016_j_bbrc_2011_05_074
crossref_primary_10_3892_ijo_2014_2536
crossref_primary_10_1007_s10815_013_0029_7
crossref_primary_10_1016_j_phrs_2024_107386
crossref_primary_10_1038_onc_2008_132
crossref_primary_10_4155_fmc_2021_0114
crossref_primary_10_1007_s12274_009_9046_3
crossref_primary_10_1016_j_freeradbiomed_2010_12_034
crossref_primary_10_1007_s00411_009_0237_9
crossref_primary_10_1007_s10637_011_9668_7
crossref_primary_10_1186_s12645_017_0034_0
crossref_primary_10_1186_s13045_020_01030_w
crossref_primary_10_1186_1471_2164_9_73
crossref_primary_10_3390_ijms19041013
crossref_primary_10_1016_j_bbcan_2014_06_003
crossref_primary_10_1002_bem_21731
crossref_primary_10_1002_bem_21732
crossref_primary_10_1021_acssensors_1c02322
crossref_primary_10_1038_onc_2008_23
crossref_primary_10_1080_10408398_2020_1847030
crossref_primary_10_1007_s13402_015_0237_5
crossref_primary_10_1016_j_canlet_2018_04_029
crossref_primary_10_18632_oncotarget_5674
crossref_primary_10_1016_j_dld_2022_01_131
crossref_primary_10_1111_cbdd_13666
crossref_primary_10_1021_jacs_5b11784
crossref_primary_10_1111_jphp_12403
crossref_primary_10_1002_iub_226
crossref_primary_10_1089_ars_2008_2270
crossref_primary_10_1128_JVI_01742_10
crossref_primary_10_1158_1541_7786_MCR_18_1109
crossref_primary_10_1016_j_cpme_2015_05_003
crossref_primary_10_1186_s12943_018_0828_7
crossref_primary_10_1016_j_redox_2014_12_003
crossref_primary_10_3892_or_2017_5466
crossref_primary_10_1158_1078_0432_CCR_18_0204
Cites_doi 10.1074/jbc.272.1.217
10.1101/sqb.2005.70.035
10.1158/1078-0432.CCR-06-0171
10.1002/ijc.11708
10.1074/jbc.275.19.14624
10.1111/j.1745-7254.2006.00345.x
10.1093/embo-reports/kvf094
10.1158/1055-9965.EPI-04-0666
10.1196/annals.1354.022
10.1016/j.freeradbiomed.2005.10.036
10.1152/ajplung.2000.279.6.L1005
10.1093/jnci/92.2.143
10.1016/0002-9343(91)90279-7
10.1074/jbc.M210269200
10.1016/S0008-6363(03)00533-9
10.1089/hum.2006.17.105
10.1093/emboj/cdg513
10.1080/10715760400017376
10.1038/nm0703-822
10.1016/j.bcp.2005.10.044
10.1126/science.270.5234.296
10.1074/jbc.M511373200
10.1080/10408360500523878
10.1038/sj.onc.1208145
10.1097/01.mco.0000232895.28674.79
10.1091/mbc.e02-12-0791
10.1073/pnas.95.14.7987
10.2174/0929867033456477
10.1038/20459
10.1006/abbi.1996.0112
10.1152/ajpcell.1996.271.4.C1172
10.1200/JCO.1994.12.1.194
10.1016/j.cbi.2005.12.009
10.1016/S0009-2797(97)00166-X
10.1016/S0070-2137(01)80001-7
10.1038/sj.onc.1203299
10.1083/jcb.147.7.1493
10.1038/sj.cdd.4401431
10.1016/j.semcdb.2005.03.010
10.1038/sj.cdd.4401950
10.1034/j.1600-0749.2001.140303.x
10.1073/pnas.93.13.6610
10.1016/j.cmet.2005.05.003
10.2174/0929867033456341
10.1158/1535-7163.1049.3.9
10.1158/1541-7786.MCR-05-0234
10.1038/nrc704
10.1016/S0006-291X(03)00615-6
10.1016/j.freeradbiomed.2005.04.025
10.1016/j.freeradbiomed.2005.08.043
10.1038/nature04871
10.1016/S0300-9084(02)01369-X
10.1096/fj.02-0097fje
10.1016/S0092-8674(00)81683-9
10.1016/S0898-6568(98)00037-0
10.1042/bj20021342
10.1021/jm049568z
10.1097/01.cco.0000142073.29850.98
10.1089/15230860260196209
10.2174/138161206777585111
10.1038/sj.onc.1207205
10.1113/expphysiol.2006.033506
10.1016/j.cmet.2005.05.002
10.1080/07853890310017062
10.1158/0008-5472.CAN-05-3310
10.4161/cbt.4.1.1434
10.1158/1078-0432.CCR-03-0638
10.1083/jcb.200105057
10.1038/sj.onc.1209609
10.1016/S0009-2797(97)00167-1
10.1016/j.freeradbiomed.2003.12.010
10.1002/9780470035009.ch2
10.1196/annals.1354.008
10.1016/j.mito.2005.06.005
10.1016/S0891-5849(01)00480-4
10.1074/jbc.M314259200
10.1074/jbc.M412424200
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/1078-0432.CCR-06-2082
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 794
ExternalDocumentID 17289868
18548431
10_1158_1078_0432_CCR_06_2082
13_3_789
Genre Journal Article
Review
GroupedDBID -
08R
29B
2WC
34G
39C
3O-
4H-
53G
55
5GY
5RE
5VS
AAPBV
ABFLS
ABOCM
ACIWK
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H13
H~9
IH2
KQ8
L7B
LSO
MVM
O0-
OHT
OK1
P0W
P2P
RCR
RHF
RHI
RNS
SJN
UDS
VH1
W2D
WOQ
X7M
XFK
XJT
ZA5
ZCG
ZGI
---
.55
18M
2FS
6J9
AAFWJ
AAJMC
AAYXX
ACGFO
ACSVP
ADCOW
AFHIN
AFOSN
AFUMD
AI.
BR6
BTFSW
CITATION
QTD
TR2
W8F
WHG
YKV
.GJ
1CY
ADNWM
IQODW
J5H
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c482t-f20dad4fc8daf67424ea9d6dc2b9c19a83ff46c1f50f4e7146ba25d41b62db543
ISSN 1078-0432
IngestDate Mon Jul 21 09:37:15 EDT 2025
Mon Jul 21 05:50:10 EDT 2025
Mon Jul 21 09:11:36 EDT 2025
Tue Jul 01 03:06:06 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
Fri Jan 15 20:06:57 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Oxidative stress
Death
Reactive oxygen species
Mortality
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c482t-f20dad4fc8daf67424ea9d6dc2b9c19a83ff46c1f50f4e7146ba25d41b62db543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/13/3/789/1972050/789.pdf
PMID 17289868
PQID 68993921
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_68993921
pubmed_primary_17289868
pascalfrancis_primary_18548431
crossref_citationtrail_10_1158_1078_0432_CCR_06_2082
crossref_primary_10_1158_1078_0432_CCR_06_2082
highwire_cancerresearch_13_3_789
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2007
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061105271788400_B51
2022061105271788400_B50
2022061105271788400_B49
2022061105271788400_B44
2022061105271788400_B43
2022061105271788400_B42
2022061105271788400_B41
2022061105271788400_B48
2022061105271788400_B47
2022061105271788400_B46
2022061105271788400_B45
2022061105271788400_B80
2022061105271788400_B40
2022061105271788400_B39
2022061105271788400_B38
2022061105271788400_B33
2022061105271788400_B77
2022061105271788400_B32
2022061105271788400_B76
2022061105271788400_B31
2022061105271788400_B75
2022061105271788400_B30
2022061105271788400_B74
2022061105271788400_B37
2022061105271788400_B36
2022061105271788400_B35
2022061105271788400_B79
2022061105271788400_B34
2022061105271788400_B78
2022061105271788400_B2
2022061105271788400_B1
2022061105271788400_B73
2022061105271788400_B72
2022061105271788400_B71
2022061105271788400_B70
2022061105271788400_B29
2022061105271788400_B28
2022061105271788400_B27
2022061105271788400_B8
2022061105271788400_B22
2022061105271788400_B66
2022061105271788400_B7
2022061105271788400_B21
2022061105271788400_B65
2022061105271788400_B20
2022061105271788400_B64
2022061105271788400_B9
2022061105271788400_B63
2022061105271788400_B4
2022061105271788400_B26
2022061105271788400_B3
2022061105271788400_B25
2022061105271788400_B69
2022061105271788400_B6
2022061105271788400_B24
2022061105271788400_B68
2022061105271788400_B5
2022061105271788400_B23
2022061105271788400_B67
2022061105271788400_B62
2022061105271788400_B61
2022061105271788400_B60
2022061105271788400_B19
2022061105271788400_B18
2022061105271788400_B17
2022061105271788400_B16
2022061105271788400_B11
2022061105271788400_B55
2022061105271788400_B10
2022061105271788400_B54
2022061105271788400_B53
2022061105271788400_B52
2022061105271788400_B15
2022061105271788400_B59
2022061105271788400_B14
2022061105271788400_B58
2022061105271788400_B13
2022061105271788400_B57
2022061105271788400_B12
2022061105271788400_B56
References_xml – ident: 2022061105271788400_B20
  doi: 10.1074/jbc.272.1.217
– ident: 2022061105271788400_B35
  doi: 10.1101/sqb.2005.70.035
– ident: 2022061105271788400_B71
  doi: 10.1158/1078-0432.CCR-06-0171
– ident: 2022061105271788400_B17
  doi: 10.1002/ijc.11708
– ident: 2022061105271788400_B23
  doi: 10.1074/jbc.275.19.14624
– ident: 2022061105271788400_B56
  doi: 10.1111/j.1745-7254.2006.00345.x
– ident: 2022061105271788400_B24
  doi: 10.1093/embo-reports/kvf094
– ident: 2022061105271788400_B80
  doi: 10.1158/1055-9965.EPI-04-0666
– ident: 2022061105271788400_B15
  doi: 10.1196/annals.1354.022
– ident: 2022061105271788400_B46
  doi: 10.1016/j.freeradbiomed.2005.10.036
– ident: 2022061105271788400_B10
  doi: 10.1152/ajplung.2000.279.6.L1005
– ident: 2022061105271788400_B25
  doi: 10.1093/jnci/92.2.143
– ident: 2022061105271788400_B3
  doi: 10.1016/0002-9343(91)90279-7
– ident: 2022061105271788400_B54
  doi: 10.1074/jbc.M210269200
– ident: 2022061105271788400_B58
  doi: 10.1016/S0008-6363(03)00533-9
– ident: 2022061105271788400_B45
  doi: 10.1089/hum.2006.17.105
– ident: 2022061105271788400_B22
  doi: 10.1093/emboj/cdg513
– ident: 2022061105271788400_B43
  doi: 10.1080/10715760400017376
– ident: 2022061105271788400_B4
  doi: 10.1038/nm0703-822
– ident: 2022061105271788400_B12
  doi: 10.1016/j.bcp.2005.10.044
– ident: 2022061105271788400_B19
  doi: 10.1126/science.270.5234.296
– ident: 2022061105271788400_B78
  doi: 10.1074/jbc.M511373200
– ident: 2022061105271788400_B62
  doi: 10.1080/10408360500523878
– ident: 2022061105271788400_B44
  doi: 10.1038/sj.onc.1208145
– ident: 2022061105271788400_B28
  doi: 10.1097/01.mco.0000232895.28674.79
– ident: 2022061105271788400_B33
  doi: 10.1091/mbc.e02-12-0791
– ident: 2022061105271788400_B31
  doi: 10.1073/pnas.95.14.7987
– ident: 2022061105271788400_B6
  doi: 10.2174/0929867033456477
– ident: 2022061105271788400_B67
– ident: 2022061105271788400_B30
  doi: 10.1038/20459
– ident: 2022061105271788400_B61
  doi: 10.1006/abbi.1996.0112
– ident: 2022061105271788400_B32
  doi: 10.1152/ajpcell.1996.271.4.C1172
– ident: 2022061105271788400_B66
  doi: 10.1200/JCO.1994.12.1.194
– ident: 2022061105271788400_B14
  doi: 10.1016/j.cbi.2005.12.009
– ident: 2022061105271788400_B63
  doi: 10.1016/S0009-2797(97)00166-X
– ident: 2022061105271788400_B11
  doi: 10.1016/S0070-2137(01)80001-7
– ident: 2022061105271788400_B57
  doi: 10.1038/sj.onc.1203299
– ident: 2022061105271788400_B50
  doi: 10.1083/jcb.147.7.1493
– ident: 2022061105271788400_B64
  doi: 10.1038/sj.cdd.4401431
– ident: 2022061105271788400_B39
  doi: 10.1016/j.semcdb.2005.03.010
– ident: 2022061105271788400_B55
  doi: 10.1038/sj.cdd.4401950
– ident: 2022061105271788400_B42
  doi: 10.1034/j.1600-0749.2001.140303.x
– ident: 2022061105271788400_B76
  doi: 10.1073/pnas.93.13.6610
– ident: 2022061105271788400_B37
  doi: 10.1016/j.cmet.2005.05.003
– ident: 2022061105271788400_B16
  doi: 10.2174/0929867033456341
– ident: 2022061105271788400_B70
  doi: 10.1158/1535-7163.1049.3.9
– ident: 2022061105271788400_B26
  doi: 10.1158/1541-7786.MCR-05-0234
– ident: 2022061105271788400_B5
  doi: 10.1038/nrc704
– ident: 2022061105271788400_B51
  doi: 10.1016/S0006-291X(03)00615-6
– ident: 2022061105271788400_B79
  doi: 10.1016/j.freeradbiomed.2005.04.025
– ident: 2022061105271788400_B47
  doi: 10.1016/j.freeradbiomed.2005.08.043
– ident: 2022061105271788400_B41
– ident: 2022061105271788400_B7
  doi: 10.1038/nature04871
– ident: 2022061105271788400_B40
  doi: 10.1016/S0300-9084(02)01369-X
– ident: 2022061105271788400_B59
  doi: 10.1096/fj.02-0097fje
– ident: 2022061105271788400_B18
  doi: 10.1016/S0092-8674(00)81683-9
– ident: 2022061105271788400_B1
  doi: 10.1016/S0898-6568(98)00037-0
– ident: 2022061105271788400_B60
  doi: 10.1042/bj20021342
– ident: 2022061105271788400_B69
  doi: 10.1021/jm049568z
– ident: 2022061105271788400_B77
  doi: 10.1097/01.cco.0000142073.29850.98
– ident: 2022061105271788400_B2
  doi: 10.1089/15230860260196209
– ident: 2022061105271788400_B52
  doi: 10.2174/138161206777585111
– ident: 2022061105271788400_B68
  doi: 10.1038/sj.onc.1207205
– ident: 2022061105271788400_B36
  doi: 10.1113/expphysiol.2006.033506
– ident: 2022061105271788400_B38
  doi: 10.1016/j.cmet.2005.05.002
– ident: 2022061105271788400_B27
  doi: 10.1080/07853890310017062
– ident: 2022061105271788400_B75
  doi: 10.1158/0008-5472.CAN-05-3310
– ident: 2022061105271788400_B74
  doi: 10.4161/cbt.4.1.1434
– ident: 2022061105271788400_B73
  doi: 10.1158/1078-0432.CCR-03-0638
– ident: 2022061105271788400_B72
– ident: 2022061105271788400_B53
  doi: 10.1083/jcb.200105057
– ident: 2022061105271788400_B48
  doi: 10.1038/sj.onc.1209609
– ident: 2022061105271788400_B65
  doi: 10.1016/S0009-2797(97)00167-1
– ident: 2022061105271788400_B9
  doi: 10.1016/j.freeradbiomed.2003.12.010
– ident: 2022061105271788400_B29
  doi: 10.1002/9780470035009.ch2
– ident: 2022061105271788400_B8
  doi: 10.1196/annals.1354.008
– ident: 2022061105271788400_B34
  doi: 10.1016/j.mito.2005.06.005
– ident: 2022061105271788400_B13
  doi: 10.1016/S0891-5849(01)00480-4
– ident: 2022061105271788400_B49
  doi: 10.1074/jbc.M314259200
– ident: 2022061105271788400_B21
  doi: 10.1074/jbc.M412424200
SSID ssj0014104
Score 2.4728117
SecondaryResourceType review_article
Snippet New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen...
New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen...
New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 789
SubjectTerms Antineoplastic agents
Apoptosis
Biological and medical sciences
Cell Death and Senescence
Cell Proliferation
Cell Survival
Cell Transformation, Neoplastic
Gene Expression Regulation, Neoplastic
Glutathione metabolism
Humans
Hydrogen Peroxide - pharmacology
Hypoxia - metabolism
hypoxia inducible factor
Medical sciences
Mitochondria - metabolism
mitochondrial permeability pore
Models, Biological
Neoplasms - metabolism
Novel antitumor agents
Permeability
Pharmacology. Drug treatments
Reactive oxygen and carcinogenesis
Reactive Oxygen Species
Signal Transduction
tyrosine kinase signaling
Title Reactive Oxygen Species: A Breath of Life or Death?
URI http://clincancerres.aacrjournals.org/content/13/3/789.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17289868
https://www.proquest.com/docview/68993921
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiFeEDfhKPvAW-Rg7-HYvKDIApVCAEWt1LfVngIBSZUmEvDrmT3sOKWowIsVWd5D8307mdmdnUHomaylUZQXGVeTMmOlVZmUmmbcyrx0TOqYYmP2vjw4Zocn_GQw2PRvl6zVWP-88F7J_6AK7wBXf0v2H5DtOoUX8BvwhScgDM-_wnhuZVBXow_ff8BHsZh8DHKbAmreugtnAJ-dL98EugVenIvka9qbkdrDvxql5D_dJnGIrPk4BgN3Yz_Jjevw9sXeR-_GoxlQ4YuN1vjhamcTYdLGHbewt6dDPU6EMMcmjj3vjx0VZe4z87K0N2mT8uSgsEis_dBpV9pjEe2pykksHfS7CudV2E1I_Y-bZu5Ds0geixT1YD39FnD1FbbqKhbn2U2ofe6Prgs_LKigAsa_gq4S8C6CJ_7mbXf4xIpQdbKbQrr4BRN7fuG0fOLZNIdd66bNOO0DbuUZYOlisZQ_ezPBqjm6iW4kdwRPI7duoYFd3EbXZing4g6iLcVwpBhOFHuBpzgSDC8d9gTDyxUOBHt5Fx2_fnXUHGSpzkamWUXWmSO5kYY5XRnpygkjzMralEYTVeuilhV1jpW6cDx3DNYuK5Uk3LBClcQozug9tLdYLuwDhE2tuFT5xIBXzBQxNa2cLmiVU6OVInaIWCsfoVMSel8L5asIziivhJew8BIWIGGRl8JLeIjGXbPTmIXlsga4Fb6I66ddPqIFf4j2d0DZdlyBFw929RA9bVESoHP9QZpc2OXmTJQVWPU1gS_uR_C2bRMPHl4-_iN0fbsSH6O9NazjJ2DgrtV-oOMv4bKdQw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Oxygen+Species%3A+A+Breath+of+Life+or+Death%3F&rft.jtitle=Clinical+cancer+research&rft.au=John+P.+Fruehauf&rft.au=Frank+L.+Meyskens%2C+Jr&rft.date=2007-02-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=13&rft.issue=3&rft.spage=789&rft_id=info:doi/10.1158%2F1078-0432.CCR-06-2082&rft_id=info%3Apmid%2F17289868&rft.externalDBID=n%2Fa&rft.externalDocID=13_3_789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon