Reactive Oxygen Species: A Breath of Life or Death?
New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the r...
Saved in:
Published in | Clinical cancer research Vol. 13; no. 3; pp. 789 - 794 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.02.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted
therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia
are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing
and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular
masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers
a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism,
and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate
increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1α, that promote cancer
cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction,
the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been
the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery
of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel
avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as
a target for developmental therapeutics. |
---|---|
AbstractList | New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1α, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics. New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1α, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics. New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics. New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics. |
Author | Frank L. Meyskens, Jr John P. Fruehauf |
Author_xml | – sequence: 1 givenname: John P. surname: Fruehauf fullname: Fruehauf, John P. – sequence: 2 givenname: Frank L. surname: Meyskens fullname: Meyskens, Frank L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18548431$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17289868$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMlOwzAQhi0EYn8EUC7AKcV7HDggKKtUqRLL2XKcMTVKk2KnLG9PohaQuHCa0ej7Z-xvC63WTQ0I7RE8IESoY4IzlWLO6GA4vE-xTClWdAVtEiGylFEpVrv-m9lAWzG-YEw4wXwdbZCMqlxJtYnYPRjb-jdIxh-fz1AnDzOwHuJJcp5cBDDtJGlcMvIOkiYkl_3gbAetOVNF2F3WbfR0ffU4vE1H45u74fkotVzRNnUUl6bkzqrSOJlxysHkpSwtLXJLcqOYc1xa4gR2HDLCZWGoKDkpJC0Lwdk2OlzsnYXmdQ6x1VMfLVSVqaGZRy1VnrOckg7cX4LzYgqlngU_NeFTf3-zAw6WgInWVC6Y2vr4yynBFWf9otMFZ0MTYwCnrW9N65u6DcZXmmDdy9e9WN2L1Z18jaXu5Xdp8Sf9c-Cf3NEiN_HPk3cfQNvufRACRDDBTjRhmulM5ewLNWiTIg |
CitedBy_id | crossref_primary_10_3389_fonc_2023_1209156 crossref_primary_10_1073_pnas_1212802109 crossref_primary_10_3390_ijms18010165 crossref_primary_10_1016_j_bbcan_2012_03_004 crossref_primary_10_1016_j_ygyno_2014_11_015 crossref_primary_10_1007_s11418_012_0722_3 crossref_primary_10_1007_s13277_016_5128_5 crossref_primary_10_1016_j_freeradbiomed_2013_12_016 crossref_primary_10_3390_biom13040707 crossref_primary_10_1016_j_tet_2015_05_025 crossref_primary_10_1016_j_bbrc_2009_06_039 crossref_primary_10_1021_acs_molpharmaceut_9b00467 crossref_primary_10_1177_09731296231184539 crossref_primary_10_1158_1535_7163_MCT_08_0541 crossref_primary_10_1016_j_tiv_2008_03_002 crossref_primary_10_1016_j_critrevonc_2020_103061 crossref_primary_10_3389_fnut_2023_1222908 crossref_primary_10_1016_j_jbiotec_2017_03_007 crossref_primary_10_1155_2012_605302 crossref_primary_10_1111_j_1440_1681_2011_05586_x crossref_primary_10_1007_s12274_019_2327_6 crossref_primary_10_1016_j_steroids_2024_109555 crossref_primary_10_1039_D4DT00759J crossref_primary_10_1089_ars_2017_7158 crossref_primary_10_1186_1471_2407_12_564 crossref_primary_10_1007_s00280_007_0627_0 crossref_primary_10_1016_j_bbamcr_2013_06_029 crossref_primary_10_1002_ijch_201200019 crossref_primary_10_1016_j_freeradbiomed_2013_12_024 crossref_primary_10_1016_j_pharmthera_2008_01_005 crossref_primary_10_1371_journal_pcbi_1000292 crossref_primary_10_1155_2017_2467940 crossref_primary_10_18632_oncotarget_13454 crossref_primary_10_3389_fonc_2023_1088878 crossref_primary_10_1016_j_bbcan_2014_07_002 crossref_primary_10_1016_j_biopha_2024_117595 crossref_primary_10_3892_ijo_2020_5032 crossref_primary_10_1080_01635580802710733 crossref_primary_10_3103_S0095452716040034 crossref_primary_10_1016_j_canlet_2012_02_025 crossref_primary_10_1016_j_ygyno_2017_02_033 crossref_primary_10_1089_ars_2011_4414 crossref_primary_10_3892_ijo_2017_3885 crossref_primary_10_1016_j_biocel_2012_06_008 crossref_primary_10_1039_C6AN01178K crossref_primary_10_1111_j_1742_4658_2007_06044_x crossref_primary_10_3390_endocrines3010013 crossref_primary_10_3892_ol_2017_6212 crossref_primary_10_1093_carcin_bgu097 crossref_primary_10_3390_molecules171011839 crossref_primary_10_1016_j_addr_2022_114360 crossref_primary_10_18632_oncotarget_3717 crossref_primary_10_1021_acs_nanolett_8b03905 crossref_primary_10_1158_1078_0432_CCR_11_0816 crossref_primary_10_1016_j_bmcl_2013_07_032 crossref_primary_10_1016_j_cbi_2013_12_009 crossref_primary_10_1007_s11883_014_0452_y crossref_primary_10_1002_smll_201401915 crossref_primary_10_1039_c2fo30152k crossref_primary_10_1111_j_1440_1797_2008_00977_x crossref_primary_10_1007_s10059_011_1021_7 crossref_primary_10_1016_j_freeradbiomed_2012_03_017 crossref_primary_10_3390_pharmaceutics13091452 crossref_primary_10_1091_mbc_e12_10_0747 crossref_primary_10_1016_j_canlet_2009_10_013 crossref_primary_10_1016_j_jinsphys_2020_104022 crossref_primary_10_1016_j_leukres_2012_07_021 crossref_primary_10_1016_j_fct_2008_03_032 crossref_primary_10_1016_j_phanu_2015_11_002 crossref_primary_10_1039_D2TB00968D crossref_primary_10_2174_1381612829666230417110032 crossref_primary_10_1016_j_bbabio_2017_01_005 crossref_primary_10_1515_CCLM_2008_023 crossref_primary_10_1016_j_ymgme_2008_11_164 crossref_primary_10_1016_j_ijpharm_2019_118893 crossref_primary_10_1038_bjc_2011_399 crossref_primary_10_3390_polym8070268 crossref_primary_10_1186_bcr3691 crossref_primary_10_1016_j_biomaterials_2023_122127 crossref_primary_10_1039_C9CC01747J crossref_primary_10_1038_onc_2010_441 crossref_primary_10_1586_17474124_2014_913478 crossref_primary_10_3390_cancers2020338 crossref_primary_10_1016_j_xphs_2023_11_027 crossref_primary_10_1186_s13287_020_01643_5 crossref_primary_10_1016_j_cbpa_2008_06_002 crossref_primary_10_1089_ars_2009_2541 crossref_primary_10_1002_anie_202006941 crossref_primary_10_1186_s40580_022_00313_x crossref_primary_10_5667_tang_2012_0018 crossref_primary_10_1089_ars_2009_2788 crossref_primary_10_1089_ars_2011_3990 crossref_primary_10_1111_jcmm_13424 crossref_primary_10_3390_ijms21186792 crossref_primary_10_1039_D2NJ02618J crossref_primary_10_1016_j_freeradbiomed_2011_01_015 crossref_primary_10_1016_j_ejphar_2010_05_009 crossref_primary_10_1039_c2ob26571k crossref_primary_10_33483_jfpau_978805 crossref_primary_10_1186_s13046_018_0797_0 crossref_primary_10_1158_1541_7786_MCR_19_0894 crossref_primary_10_4137_BMI_S2557 crossref_primary_10_2174_1871530319666190206124120 crossref_primary_10_1097_CAD_0b013e3283140c6f crossref_primary_10_1016_j_eplepsyres_2011_09_022 crossref_primary_10_1016_j_ejphar_2014_04_023 crossref_primary_10_1021_acs_analchem_3c03233 crossref_primary_10_1021_acs_jpcb_5b12347 crossref_primary_10_3390_ijms21186521 crossref_primary_10_1016_j_fct_2014_02_004 crossref_primary_10_1038_s41419_017_0166_5 crossref_primary_10_1002_14651858_CD012690 crossref_primary_10_1016_j_pan_2016_12_010 crossref_primary_10_2174_1389450124666221104094918 crossref_primary_10_1002_cbic_201200724 crossref_primary_10_1016_j_mito_2012_07_112 crossref_primary_10_3892_or_2016_5303 crossref_primary_10_1016_j_canlet_2021_06_015 crossref_primary_10_2119_molmed_2009_00162 crossref_primary_10_1371_journal_pone_0078751 crossref_primary_10_1016_j_bmcl_2024_130043 crossref_primary_10_3390_jcm8020235 crossref_primary_10_3892_or_2016_4690 crossref_primary_10_1038_srep24582 crossref_primary_10_1007_s00604_021_05153_w crossref_primary_10_1186_1477_7819_12_78 crossref_primary_10_1007_s10495_015_1159_4 crossref_primary_10_1016_j_dyepig_2019_02_042 crossref_primary_10_1016_j_jphotochem_2015_11_014 crossref_primary_10_1039_D3CC03590E crossref_primary_10_1016_j_isci_2024_111553 crossref_primary_10_1016_j_canlet_2015_01_013 crossref_primary_10_1016_j_rbmo_2012_03_016 crossref_primary_10_1186_s12906_015_0563_1 crossref_primary_10_1002_bmb_20349 crossref_primary_10_1111_ceo_13731 crossref_primary_10_1159_000360090 crossref_primary_10_3390_molecules18089382 crossref_primary_10_1586_14737140_8_11_1751 crossref_primary_10_3390_antiox9050359 crossref_primary_10_1002_mog2_67 crossref_primary_10_1016_j_fct_2013_05_028 crossref_primary_10_3109_10715762_2010_526766 crossref_primary_10_3390_cancers2020420 crossref_primary_10_1038_onc_2015_60 crossref_primary_10_1016_j_molmed_2014_02_007 crossref_primary_10_1002_ange_202006941 crossref_primary_10_1021_acs_jmedchem_7b01463 crossref_primary_10_1186_1479_5876_9_171 crossref_primary_10_1186_s12885_015_1173_5 crossref_primary_10_1371_journal_pone_0130357 crossref_primary_10_1039_C9PY00892F crossref_primary_10_1016_j_bcp_2009_04_016 crossref_primary_10_1016_j_toxrep_2014_05_011 crossref_primary_10_1016_j_ejmech_2017_04_040 crossref_primary_10_1080_14737140_2024_2352506 crossref_primary_10_1371_journal_pone_0141206 crossref_primary_10_1074_jbc_M113_450353 crossref_primary_10_1016_j_snb_2024_135560 crossref_primary_10_1038_s41419_021_04447_4 crossref_primary_10_1096_fj_10_155846 crossref_primary_10_1158_0008_5472_CAN_08_2010 crossref_primary_10_1111_j_1349_7006_2008_00892_x crossref_primary_10_18632_oncotarget_19605 crossref_primary_10_1016_j_yexcr_2016_12_018 crossref_primary_10_1021_ar200126t crossref_primary_10_3390_ijms160817394 crossref_primary_10_1016_j_bios_2019_111983 crossref_primary_10_1039_D3TB00505D crossref_primary_10_1002_adhm_202301230 crossref_primary_10_1039_C8NJ03259A crossref_primary_10_1039_C8NJ04421J crossref_primary_10_4236_ns_2015_712057 crossref_primary_10_62347_RYSQ1416 crossref_primary_10_1016_j_febslet_2008_04_021 crossref_primary_10_1016_j_nantod_2021_101156 crossref_primary_10_1152_ajpendo_00433_2009 crossref_primary_10_1021_ja505988g crossref_primary_10_1016_j_bios_2021_113077 crossref_primary_10_3390_molecules201019406 crossref_primary_10_1038_jid_2008_374 crossref_primary_10_1002_med_21734 crossref_primary_10_1111_jfbc_12369 crossref_primary_10_1002_em_20554 crossref_primary_10_1016_j_fertnstert_2016_02_009 crossref_primary_10_1177_1535370214532755 crossref_primary_10_1007_s00432_017_2464_9 crossref_primary_10_3736_jintegrmed2013014 crossref_primary_10_1002_advs_202000915 crossref_primary_10_3389_fonc_2022_911615 crossref_primary_10_1093_jb_mvab045 crossref_primary_10_1371_journal_pone_0012262 crossref_primary_10_3390_cancers11010025 crossref_primary_10_1111_j_1365_2591_2007_01337_x crossref_primary_10_1007_s11010_008_9839_9 crossref_primary_10_1249_MSS_0b013e3181667435 crossref_primary_10_1007_s10103_017_2263_1 crossref_primary_10_1002_adhm_202001974 crossref_primary_10_1164_rccm_200806_851OC crossref_primary_10_1371_journal_pone_0025564 crossref_primary_10_1016_j_fct_2014_03_017 crossref_primary_10_1016_j_colsurfb_2015_04_002 crossref_primary_10_1177_1010428317700159 crossref_primary_10_1016_j_jconrel_2021_12_016 crossref_primary_10_1016_j_saa_2017_09_034 crossref_primary_10_1039_C8TB02882F crossref_primary_10_1039_D1RA04026J crossref_primary_10_1016_j_phymed_2020_153441 crossref_primary_10_1016_j_mam_2010_02_008 crossref_primary_10_1021_acs_nanolett_1c02073 crossref_primary_10_4161_cbt_11_2_13959 crossref_primary_10_1039_c0cc01560a crossref_primary_10_3390_antiox12091749 crossref_primary_10_1021_acs_accounts_5b00009 crossref_primary_10_1038_emm_2017_255 crossref_primary_10_1155_2012_839298 crossref_primary_10_1016_j_mrfmmm_2009_05_009 crossref_primary_10_1155_2013_972913 crossref_primary_10_1158_1078_0432_CCR_12_3751 crossref_primary_10_1158_1078_0432_CCR_18_2380 crossref_primary_10_1080_01635580701613772 crossref_primary_10_1007_s13277_015_3702_x crossref_primary_10_1016_j_aca_2017_02_025 crossref_primary_10_1021_acsami_5b12523 crossref_primary_10_1016_j_cryobiol_2020_07_008 crossref_primary_10_1021_acs_analchem_9b01294 crossref_primary_10_1007_s00204_013_1110_9 crossref_primary_10_1097_CMR_0b013e3282f1d312 crossref_primary_10_1111_j_1439_0531_2011_01756_x crossref_primary_10_1124_mol_108_048405 crossref_primary_10_1002_bkcs_12650 crossref_primary_10_3389_fphar_2022_906625 crossref_primary_10_2174_0929867330666230609110455 crossref_primary_10_1016_j_carbpol_2021_117685 crossref_primary_10_1016_j_snb_2017_05_151 crossref_primary_10_1038_s41419_019_1441_4 crossref_primary_10_1016_j_bcp_2008_03_008 crossref_primary_10_1074_jbc_M113_484576 crossref_primary_10_1038_s41598_020_59623_x crossref_primary_10_1039_C9CC06043J crossref_primary_10_1155_2021_1208690 crossref_primary_10_1016_j_cclet_2021_02_015 crossref_primary_10_1021_acs_analchem_1c01690 crossref_primary_10_3109_10715762_2013_869588 crossref_primary_10_1007_s12274_020_3241_7 crossref_primary_10_1016_j_biomaterials_2018_02_011 crossref_primary_10_1016_j_tox_2008_03_009 crossref_primary_10_33380_2305_2066_2025_14_1_1852 crossref_primary_10_3389_fonc_2022_852424 crossref_primary_10_1172_JCI32559 crossref_primary_10_1039_c0dt00770f crossref_primary_10_1002_tox_23372 crossref_primary_10_1111_joim_12229 crossref_primary_10_1021_acsnano_3c02964 crossref_primary_10_1245_s10434_013_3043_1 crossref_primary_10_3390_antiox9060560 crossref_primary_10_1038_nrd2803 crossref_primary_10_1016_j_cclet_2021_10_074 crossref_primary_10_1016_j_canlet_2008_02_031 crossref_primary_10_1016_j_critrevonc_2024_104361 crossref_primary_10_1016_j_humpath_2008_06_030 crossref_primary_10_1186_s11671_019_2887_0 crossref_primary_10_1136_jclinpath_2013_201692 crossref_primary_10_1016_j_fct_2012_09_005 crossref_primary_10_1016_j_cbpa_2010_10_016 crossref_primary_10_1016_j_freeradbiomed_2009_09_006 crossref_primary_10_1016_j_tiv_2013_04_006 crossref_primary_10_1021_acs_bioconjchem_6b00683 crossref_primary_10_1021_acsami_7b08347 crossref_primary_10_1210_en_2018_00014 crossref_primary_10_1016_j_bbagrm_2014_04_004 crossref_primary_10_1016_j_nano_2019_02_016 crossref_primary_10_1038_s41598_021_96857_9 crossref_primary_10_1016_j_semcancer_2017_05_004 crossref_primary_10_1667_RR1729_1 crossref_primary_10_1089_ars_2009_2599 crossref_primary_10_1007_s10895_018_2231_6 crossref_primary_10_1016_j_prp_2018_11_020 crossref_primary_10_1002_cncr_24126 crossref_primary_10_1016_j_toxlet_2012_01_007 crossref_primary_10_1080_03602532_2023_2206065 crossref_primary_10_1158_1055_9965_EPI_14_0064 crossref_primary_10_1158_0008_5472_CAN_08_4533 crossref_primary_10_1089_jmf_2009_1359 crossref_primary_10_1007_s10495_016_1294_6 crossref_primary_10_1016_j_canlet_2023_216348 crossref_primary_10_1016_j_jcis_2021_09_160 crossref_primary_10_1158_0008_5472_CAN_11_3213 crossref_primary_10_3390_pharmaceutics14061203 crossref_primary_10_1080_10715760801993076 crossref_primary_10_1097_MED_0b013e32833cf354 crossref_primary_10_1089_ars_2012_4785 crossref_primary_10_1016_j_joen_2018_08_002 crossref_primary_10_1016_j_sajb_2020_09_040 crossref_primary_10_1021_acscentsci_8b00336 crossref_primary_10_1111_lam_12224 crossref_primary_10_3390_ijms17040616 crossref_primary_10_1016_j_taap_2014_10_008 crossref_primary_10_1093_abbs_gmv102 crossref_primary_10_3390_biom9080298 crossref_primary_10_1016_j_freeradbiomed_2008_07_015 crossref_primary_10_1016_j_semcancer_2015_02_007 crossref_primary_10_1016_j_semcancer_2017_12_011 crossref_primary_10_1002_slct_201803185 crossref_primary_10_1021_ja100117u crossref_primary_10_1038_ncomms7907 crossref_primary_10_1002_jbm_a_35432 crossref_primary_10_1038_srep43373 crossref_primary_10_1158_0008_5472_CAN_15_1512 crossref_primary_10_1177_1010428317749676 crossref_primary_10_1371_journal_pone_0137589 crossref_primary_10_1186_1471_2407_11_191 crossref_primary_10_1194_jlr_R046797 crossref_primary_10_1016_j_bbrc_2017_03_008 crossref_primary_10_1080_01635581_2017_1359321 crossref_primary_10_1007_s13258_020_00994_w crossref_primary_10_1016_j_matchemphys_2021_124684 crossref_primary_10_1016_j_ejogrb_2018_07_031 crossref_primary_10_3892_ol_2013_1524 crossref_primary_10_29235_1029_8940_2023_68_3_197_205 crossref_primary_10_1007_s42764_022_00081_2 crossref_primary_10_2174_1389450120666191021110208 crossref_primary_10_1177_0885328221989539 crossref_primary_10_1016_j_mtener_2020_100571 crossref_primary_10_4155_tde_11_151 crossref_primary_10_3390_cancers10020034 crossref_primary_10_1016_j_freeradbiomed_2015_04_017 crossref_primary_10_1016_j_biochi_2009_01_010 crossref_primary_10_1093_carcin_bgs253 crossref_primary_10_1016_j_canlet_2015_04_027 crossref_primary_10_1016_j_cbi_2018_11_003 crossref_primary_10_1038_nrc2981 crossref_primary_10_1038_bjc_2012_442 crossref_primary_10_1039_c3cs60048c crossref_primary_10_1021_acs_macromol_6b02063 crossref_primary_10_1128_MCB_00307_08 crossref_primary_10_1111_pcmr_12398 crossref_primary_10_1021_acs_analchem_0c05364 crossref_primary_10_1039_c2pp25064k crossref_primary_10_1021_acs_analchem_5b04424 crossref_primary_10_1089_ars_2008_2331 crossref_primary_10_1038_cddis_2014_543 crossref_primary_10_1155_2014_696107 crossref_primary_10_1242_jeb_238147 crossref_primary_10_1039_C7OB00211D crossref_primary_10_1016_j_snb_2024_135839 crossref_primary_10_1177_1933719114522524 crossref_primary_10_1016_j_freeradbiomed_2015_04_001 crossref_primary_10_1128_JVI_02534_12 crossref_primary_10_3724_SP_J_1008_2012_00935 crossref_primary_10_1371_journal_pone_0092599 crossref_primary_10_2217_thy_10_20 crossref_primary_10_1016_j_febslet_2010_04_048 crossref_primary_10_3390_molecules24132455 crossref_primary_10_1039_C8TB00791H crossref_primary_10_1016_j_jphs_2015_04_003 crossref_primary_10_1016_j_bios_2022_114964 crossref_primary_10_1002_mgg3_910 crossref_primary_10_1016_j_biopha_2008_01_001 crossref_primary_10_1142_S0192415X14500955 crossref_primary_10_2147_JIR_S348850 crossref_primary_10_1186_1476_4598_13_131 crossref_primary_10_1039_C6RA27334C crossref_primary_10_1128_mBio_02767_19 crossref_primary_10_1007_s10616_015_9897_2 crossref_primary_10_1007_s10637_018_0704_8 crossref_primary_10_1021_acsmacrolett_3c00323 crossref_primary_10_1016_j_freeradbiomed_2016_05_009 crossref_primary_10_1038_s41467_020_20243_8 crossref_primary_10_3390_futurepharmacol4030035 crossref_primary_10_1016_j_mtener_2022_101085 crossref_primary_10_1038_ncomms10500 crossref_primary_10_1177_1933719114522552 crossref_primary_10_1016_j_talanta_2017_02_059 crossref_primary_10_1007_s11051_013_1492_x crossref_primary_10_3892_ol_2023_13913 crossref_primary_10_1371_journal_pone_0056169 crossref_primary_10_3389_fcell_2021_722412 crossref_primary_10_1016_j_freeradbiomed_2014_02_029 crossref_primary_10_1002_biof_1577 crossref_primary_10_1016_j_bbamcr_2012_07_012 crossref_primary_10_1093_toxsci_kfy259 crossref_primary_10_1097_CMR_0b013e32832c6324 crossref_primary_10_1016_j_drup_2011_03_001 crossref_primary_10_1186_s12906_016_1130_0 crossref_primary_10_1002_anse_202200058 crossref_primary_10_1111_j_1749_6632_2009_04695_x crossref_primary_10_1002_mnfr_201500822 crossref_primary_10_1002_admi_202300028 crossref_primary_10_1586_17512433_2014_966816 crossref_primary_10_3892_etm_2023_11911 crossref_primary_10_4142_jvs_2013_14_3_249 crossref_primary_10_1016_j_molmed_2009_02_004 crossref_primary_10_1016_j_canlet_2013_08_017 crossref_primary_10_1016_j_jddst_2023_104803 crossref_primary_10_1158_1078_0432_CCR_14_0424 crossref_primary_10_1016_j_bios_2021_113216 crossref_primary_10_3923_ijp_2009_333_345 crossref_primary_10_1007_s43440_020_00143_w crossref_primary_10_1158_0008_5472_CAN_09_4414 crossref_primary_10_1039_C9AY02263E crossref_primary_10_1039_C4IB00170B crossref_primary_10_1007_s10495_011_0625_x crossref_primary_10_3109_10715762_2010_492831 crossref_primary_10_1038_s41598_018_24628_0 crossref_primary_10_1158_0008_5472_CAN_15_2921 crossref_primary_10_1634_stemcells_2007_0885 crossref_primary_10_3389_fonc_2022_842496 crossref_primary_10_1016_j_mrfmmm_2011_02_015 crossref_primary_10_1016_j_bbcan_2013_02_005 crossref_primary_10_1155_2010_740472 crossref_primary_10_3390_ijms14036306 crossref_primary_10_1039_C8PY00865E crossref_primary_10_1016_j_ejphar_2012_06_045 crossref_primary_10_1016_j_bios_2016_07_039 crossref_primary_10_1016_j_freeradbiomed_2017_01_004 crossref_primary_10_3390_jcm8050611 crossref_primary_10_1016_j_snb_2022_132936 crossref_primary_10_1021_acsanm_8b00307 crossref_primary_10_1038_jid_2014_65 crossref_primary_10_18632_genesandcancer_26 crossref_primary_10_1002_advs_202003732 crossref_primary_10_1089_ars_2007_1957 crossref_primary_10_1038_nrc2945 crossref_primary_10_1292_jvms_12_0105 crossref_primary_10_1016_j_jdermsci_2012_06_006 crossref_primary_10_1002_sca_21332 crossref_primary_10_3109_10715762_2013_821200 crossref_primary_10_1002_em_22240 crossref_primary_10_1021_acsanm_4c02263 crossref_primary_10_3390_ijms18122589 crossref_primary_10_1002_wnan_1750 crossref_primary_10_1080_01635581_2011_539315 crossref_primary_10_3892_ijo_2020_4970 crossref_primary_10_1016_j_jhep_2009_03_024 crossref_primary_10_3892_ijmm_2015_2430 crossref_primary_10_1007_s10495_012_0749_7 crossref_primary_10_1038_s41568_021_00417_2 crossref_primary_10_1016_j_ctrv_2008_07_004 crossref_primary_10_1016_j_ijpharm_2014_10_019 crossref_primary_10_1016_j_bbcan_2014_04_008 crossref_primary_10_3934_genet_2017_2_103 crossref_primary_10_1016_j_canlet_2015_05_016 crossref_primary_10_1080_03008200802143166 crossref_primary_10_1088_1742_6596_2494_1_012007 crossref_primary_10_1016_j_ajpath_2011_08_007 crossref_primary_10_1016_j_dyepig_2017_06_011 crossref_primary_10_1016_j_phymed_2018_05_001 crossref_primary_10_2217_thy_11_72 crossref_primary_10_3390_cryst12010108 crossref_primary_10_1016_j_cclet_2020_08_039 crossref_primary_10_1021_jacs_6b07890 crossref_primary_10_1016_j_tiv_2024_105974 crossref_primary_10_1016_j_biopha_2016_03_031 crossref_primary_10_1186_1471_2407_11_170 crossref_primary_10_1016_j_freeradbiomed_2018_05_084 crossref_primary_10_1039_C5SC03488D crossref_primary_10_3109_10428194_2011_604752 crossref_primary_10_1016_j_jphotochem_2023_114837 crossref_primary_10_1016_j_mito_2010_08_001 crossref_primary_10_1002_jcb_21522 crossref_primary_10_32604_oncologie_2022_022299 crossref_primary_10_1074_jbc_M109_088781 crossref_primary_10_3109_10799893_2014_970276 crossref_primary_10_1002_admi_201700573 crossref_primary_10_3390_metabo14010028 crossref_primary_10_1021_acsami_8b14717 crossref_primary_10_1002_prca_201600089 crossref_primary_10_3390_antiox9070633 crossref_primary_10_1111_jfbc_12439 crossref_primary_10_1182_blood_2011_10_387332 crossref_primary_10_3389_fphar_2020_570939 crossref_primary_10_1186_s43042_025_00647_1 crossref_primary_10_1002_prp2_632 crossref_primary_10_1371_journal_pone_0007033 crossref_primary_10_1016_j_nut_2024_112427 crossref_primary_10_1016_j_toxlet_2016_06_002 crossref_primary_10_1186_1471_2407_10_157 crossref_primary_10_1021_jacs_7b05920 crossref_primary_10_1007_s00109_012_0857_4 crossref_primary_10_1016_j_critrevonc_2016_03_004 crossref_primary_10_1002_adfm_201908865 crossref_primary_10_3390_antiox4020304 crossref_primary_10_1016_j_jconrel_2014_09_017 crossref_primary_10_1016_j_febslet_2014_10_011 crossref_primary_10_1182_blood_2011_12_395541 crossref_primary_10_1016_j_bioorg_2022_105798 crossref_primary_10_1021_acsbiomaterials_1c01304 crossref_primary_10_1021_ja100610m crossref_primary_10_2174_1871520619666190731152942 crossref_primary_10_1002_bkcs_11190 crossref_primary_10_1016_j_mito_2014_06_001 crossref_primary_10_1002_hep_30962 crossref_primary_10_3389_fimmu_2022_1035451 crossref_primary_10_1016_j_smim_2013_12_005 crossref_primary_10_1155_2014_906804 crossref_primary_10_1111_acer_13071 crossref_primary_10_1039_D1BM00526J crossref_primary_10_1186_s12951_021_00848_x crossref_primary_10_1039_D1AN01705E crossref_primary_10_1016_j_ddmec_2008_12_001 crossref_primary_10_1021_pr5011873 crossref_primary_10_1007_s12013_015_0558_z crossref_primary_10_1042_BJ20112019 crossref_primary_10_1128_AAC_05131_14 crossref_primary_10_1016_j_ejmech_2018_02_033 crossref_primary_10_4028_www_scientific_net_AMR_1006_1007_821 crossref_primary_10_1371_journal_pone_0008575 crossref_primary_10_1016_j_phymed_2017_08_006 crossref_primary_10_1080_10715762_2022_2061967 crossref_primary_10_3390_cancers3010531 crossref_primary_10_1074_jbc_M111_309062 crossref_primary_10_1007_s11434_009_0239_7 crossref_primary_10_1084_jem_20151208 crossref_primary_10_1039_C6CC09127J crossref_primary_10_1016_j_heliyon_2018_e01055 crossref_primary_10_1158_1541_7786_MCR_11_0378 crossref_primary_10_1016_j_cell_2013_07_031 crossref_primary_10_1371_journal_pone_0022753 crossref_primary_10_1016_j_colsurfb_2020_111067 crossref_primary_10_1016_j_phrs_2016_12_001 crossref_primary_10_1038_nature10167 crossref_primary_10_1016_j_mtphys_2022_100838 crossref_primary_10_2147_IJN_S309062 crossref_primary_10_1039_D0BM01802C crossref_primary_10_1158_0008_5472_CAN_08_1839 crossref_primary_10_1002_cmdc_201100381 crossref_primary_10_1002_mc_23215 crossref_primary_10_1016_j_bbabio_2012_09_009 crossref_primary_10_1039_C6QO00448B crossref_primary_10_1007_s13530_023_00198_1 crossref_primary_10_1021_acs_analchem_8b05098 crossref_primary_10_1021_ja111589a crossref_primary_10_1158_1055_9965_EPI_07_2827 crossref_primary_10_3390_cells11152294 crossref_primary_10_1039_c3cc43265c crossref_primary_10_1039_D0NR05501H crossref_primary_10_2165_11592590_000000000_00000 crossref_primary_10_4103_pm_pm_674_18 crossref_primary_10_1155_2014_209845 crossref_primary_10_1089_ars_2011_4367 crossref_primary_10_61927_igmin129 crossref_primary_10_1038_cddis_2016_330 crossref_primary_10_3892_or_2016_4745 crossref_primary_10_1016_j_prp_2020_153218 crossref_primary_10_1016_j_snb_2019_03_052 crossref_primary_10_1038_bjc_2011_126 crossref_primary_10_1080_10715760701579314 crossref_primary_10_18632_oncotarget_13612 crossref_primary_10_1007_s00432_015_1941_2 crossref_primary_10_1073_pnas_0903015106 crossref_primary_10_1016_j_snb_2016_08_048 crossref_primary_10_1182_blood_2011_09_381970 crossref_primary_10_1007_s00216_022_04503_8 crossref_primary_10_1631_jzus_B2000455 crossref_primary_10_3389_fmolb_2022_838006 crossref_primary_10_1002_jcb_22898 crossref_primary_10_3390_antiox5010007 crossref_primary_10_1016_j_lungcan_2008_05_005 crossref_primary_10_1016_j_bbrc_2012_06_115 crossref_primary_10_1593_neo_81352 crossref_primary_10_1038_s41388_018_0459_x crossref_primary_10_1177_1534735411403477 crossref_primary_10_4331_wjbc_v6_i3_148 crossref_primary_10_1002_tox_21801 crossref_primary_10_1007_s10456_010_9187_8 crossref_primary_10_3389_fonc_2019_01345 crossref_primary_10_1021_acs_jpcc_3c08298 crossref_primary_10_1016_j_ces_2014_11_010 crossref_primary_10_1371_journal_pone_0122275 crossref_primary_10_2139_ssrn_4167515 crossref_primary_10_1002_mnfr_200900125 crossref_primary_10_1093_cvr_cvq330 crossref_primary_10_1111_j_1600_0625_2008_00740_x crossref_primary_10_1007_s00204_012_0856_9 crossref_primary_10_1016_j_taap_2018_05_026 crossref_primary_10_1007_s12274_022_4427_y crossref_primary_10_1111_j_1440_1681_2010_05358_x crossref_primary_10_1016_j_cellsig_2014_07_029 crossref_primary_10_1080_01635581_2012_713539 crossref_primary_10_3892_or_2013_2629 crossref_primary_10_1038_cddis_2012_25 crossref_primary_10_3892_ijo_2014_2566 crossref_primary_10_1016_j_aca_2023_342050 crossref_primary_10_1111_cpr_12869 crossref_primary_10_1038_s41392_023_01440_5 crossref_primary_10_1016_j_biomaterials_2020_120474 crossref_primary_10_1371_journal_pone_0096418 crossref_primary_10_1038_oncsis_2017_13 crossref_primary_10_1021_acs_inorgchem_8b02240 crossref_primary_10_1021_acsami_6b01348 crossref_primary_10_1128_MCB_01602_13 crossref_primary_10_1016_j_drudis_2021_01_015 crossref_primary_10_1021_nl4028507 crossref_primary_10_3727_096504016X14816352324532 crossref_primary_10_1016_S2225_4110_16_30112_2 crossref_primary_10_1016_j_bcp_2012_03_010 crossref_primary_10_1038_s44319_024_00110_z crossref_primary_10_1021_acs_analchem_7b00306 crossref_primary_10_1080_01635580802567158 crossref_primary_10_1002_biof_1324 crossref_primary_10_4142_jvs_2021_22_e54 crossref_primary_10_1016_j_bbagen_2013_07_030 crossref_primary_10_1051_fopen_2018008 crossref_primary_10_1016_j_jcyt_2022_07_006 crossref_primary_10_1093_carcin_bgq149 crossref_primary_10_3389_fonc_2021_630972 crossref_primary_10_1016_j_oraloncology_2013_09_011 crossref_primary_10_1515_bnm_2015_0001 crossref_primary_10_1038_onc_2013_134 crossref_primary_10_1016_j_freeradbiomed_2008_10_025 crossref_primary_10_1016_j_redox_2014_06_006 crossref_primary_10_1155_2012_595976 crossref_primary_10_1038_leu_2008_8 crossref_primary_10_1038_srep18669 crossref_primary_10_1210_er_2011_1015 crossref_primary_10_1016_j_canlet_2013_05_027 crossref_primary_10_3390_molecules18021418 crossref_primary_10_4028_www_scientific_net_AMR_1061_1062_978 crossref_primary_10_3390_ijms21196992 crossref_primary_10_1111_bph_15504 crossref_primary_10_1128_JVI_01681_18 crossref_primary_10_1002_adhm_202101634 crossref_primary_10_1002_ijc_27656 crossref_primary_10_1038_aps_2013_162 crossref_primary_10_1177_1091581809352011 crossref_primary_10_1016_j_abb_2014_04_007 crossref_primary_10_1124_mol_116_106245 crossref_primary_10_1111_j_1755_148X_2010_00694_x crossref_primary_10_1186_1743_7075_7_74 crossref_primary_10_18632_aging_102106 crossref_primary_10_1016_j_bbrc_2015_02_131 crossref_primary_10_3390_molecules23123267 crossref_primary_10_1021_pr1009542 crossref_primary_10_1186_1756_9966_30_34 crossref_primary_10_3109_10428194_2011_584253 crossref_primary_10_1002_smll_201600986 crossref_primary_10_1177_1010428317694565 crossref_primary_10_3390_jfb13040260 crossref_primary_10_1021_acs_chemrestox_5b00001 crossref_primary_10_1089_ars_2023_0298 crossref_primary_10_1177_1177391X0700100006 crossref_primary_10_1002_jsfa_7153 crossref_primary_10_1016_j_bbamcr_2008_01_005 crossref_primary_10_2174_1389201021666200227121144 crossref_primary_10_1111_j_1600_0625_2009_00912_x crossref_primary_10_1016_j_canlet_2007_10_005 crossref_primary_10_1021_ja8040477 crossref_primary_10_1269_jrr_07092 crossref_primary_10_1016_j_bbrc_2011_05_074 crossref_primary_10_3892_ijo_2014_2536 crossref_primary_10_1007_s10815_013_0029_7 crossref_primary_10_1016_j_phrs_2024_107386 crossref_primary_10_1038_onc_2008_132 crossref_primary_10_4155_fmc_2021_0114 crossref_primary_10_1007_s12274_009_9046_3 crossref_primary_10_1016_j_freeradbiomed_2010_12_034 crossref_primary_10_1007_s00411_009_0237_9 crossref_primary_10_1007_s10637_011_9668_7 crossref_primary_10_1186_s12645_017_0034_0 crossref_primary_10_1186_s13045_020_01030_w crossref_primary_10_1186_1471_2164_9_73 crossref_primary_10_3390_ijms19041013 crossref_primary_10_1016_j_bbcan_2014_06_003 crossref_primary_10_1002_bem_21731 crossref_primary_10_1002_bem_21732 crossref_primary_10_1021_acssensors_1c02322 crossref_primary_10_1038_onc_2008_23 crossref_primary_10_1080_10408398_2020_1847030 crossref_primary_10_1007_s13402_015_0237_5 crossref_primary_10_1016_j_canlet_2018_04_029 crossref_primary_10_18632_oncotarget_5674 crossref_primary_10_1016_j_dld_2022_01_131 crossref_primary_10_1111_cbdd_13666 crossref_primary_10_1021_jacs_5b11784 crossref_primary_10_1111_jphp_12403 crossref_primary_10_1002_iub_226 crossref_primary_10_1089_ars_2008_2270 crossref_primary_10_1128_JVI_01742_10 crossref_primary_10_1158_1541_7786_MCR_18_1109 crossref_primary_10_1016_j_cpme_2015_05_003 crossref_primary_10_1186_s12943_018_0828_7 crossref_primary_10_1016_j_redox_2014_12_003 crossref_primary_10_3892_or_2017_5466 crossref_primary_10_1158_1078_0432_CCR_18_0204 |
Cites_doi | 10.1074/jbc.272.1.217 10.1101/sqb.2005.70.035 10.1158/1078-0432.CCR-06-0171 10.1002/ijc.11708 10.1074/jbc.275.19.14624 10.1111/j.1745-7254.2006.00345.x 10.1093/embo-reports/kvf094 10.1158/1055-9965.EPI-04-0666 10.1196/annals.1354.022 10.1016/j.freeradbiomed.2005.10.036 10.1152/ajplung.2000.279.6.L1005 10.1093/jnci/92.2.143 10.1016/0002-9343(91)90279-7 10.1074/jbc.M210269200 10.1016/S0008-6363(03)00533-9 10.1089/hum.2006.17.105 10.1093/emboj/cdg513 10.1080/10715760400017376 10.1038/nm0703-822 10.1016/j.bcp.2005.10.044 10.1126/science.270.5234.296 10.1074/jbc.M511373200 10.1080/10408360500523878 10.1038/sj.onc.1208145 10.1097/01.mco.0000232895.28674.79 10.1091/mbc.e02-12-0791 10.1073/pnas.95.14.7987 10.2174/0929867033456477 10.1038/20459 10.1006/abbi.1996.0112 10.1152/ajpcell.1996.271.4.C1172 10.1200/JCO.1994.12.1.194 10.1016/j.cbi.2005.12.009 10.1016/S0009-2797(97)00166-X 10.1016/S0070-2137(01)80001-7 10.1038/sj.onc.1203299 10.1083/jcb.147.7.1493 10.1038/sj.cdd.4401431 10.1016/j.semcdb.2005.03.010 10.1038/sj.cdd.4401950 10.1034/j.1600-0749.2001.140303.x 10.1073/pnas.93.13.6610 10.1016/j.cmet.2005.05.003 10.2174/0929867033456341 10.1158/1535-7163.1049.3.9 10.1158/1541-7786.MCR-05-0234 10.1038/nrc704 10.1016/S0006-291X(03)00615-6 10.1016/j.freeradbiomed.2005.04.025 10.1016/j.freeradbiomed.2005.08.043 10.1038/nature04871 10.1016/S0300-9084(02)01369-X 10.1096/fj.02-0097fje 10.1016/S0092-8674(00)81683-9 10.1016/S0898-6568(98)00037-0 10.1042/bj20021342 10.1021/jm049568z 10.1097/01.cco.0000142073.29850.98 10.1089/15230860260196209 10.2174/138161206777585111 10.1038/sj.onc.1207205 10.1113/expphysiol.2006.033506 10.1016/j.cmet.2005.05.002 10.1080/07853890310017062 10.1158/0008-5472.CAN-05-3310 10.4161/cbt.4.1.1434 10.1158/1078-0432.CCR-03-0638 10.1083/jcb.200105057 10.1038/sj.onc.1209609 10.1016/S0009-2797(97)00167-1 10.1016/j.freeradbiomed.2003.12.010 10.1002/9780470035009.ch2 10.1196/annals.1354.008 10.1016/j.mito.2005.06.005 10.1016/S0891-5849(01)00480-4 10.1074/jbc.M314259200 10.1074/jbc.M412424200 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/1078-0432.CCR-06-2082 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 794 |
ExternalDocumentID | 17289868 18548431 10_1158_1078_0432_CCR_06_2082 13_3_789 |
Genre | Journal Article Review |
GroupedDBID | - 08R 29B 2WC 34G 39C 3O- 4H- 53G 55 5GY 5RE 5VS AAPBV ABFLS ABOCM ACIWK ACPRK ADACO ADBBV ADBIT AENEX AETEA AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FH7 FRP GX1 H13 H~9 IH2 KQ8 L7B LSO MVM O0- OHT OK1 P0W P2P RCR RHF RHI RNS SJN UDS VH1 W2D WOQ X7M XFK XJT ZA5 ZCG ZGI --- .55 18M 2FS 6J9 AAFWJ AAJMC AAYXX ACGFO ACSVP ADCOW AFHIN AFOSN AFUMD AI. BR6 BTFSW CITATION QTD TR2 W8F WHG YKV .GJ 1CY ADNWM IQODW J5H CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c482t-f20dad4fc8daf67424ea9d6dc2b9c19a83ff46c1f50f4e7146ba25d41b62db543 |
ISSN | 1078-0432 |
IngestDate | Mon Jul 21 09:37:15 EDT 2025 Mon Jul 21 05:50:10 EDT 2025 Mon Jul 21 09:11:36 EDT 2025 Tue Jul 01 03:06:06 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 Fri Jan 15 20:06:57 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Oxidative stress Death Reactive oxygen species Mortality |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c482t-f20dad4fc8daf67424ea9d6dc2b9c19a83ff46c1f50f4e7146ba25d41b62db543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://aacrjournals.org/clincancerres/article-pdf/13/3/789/1972050/789.pdf |
PMID | 17289868 |
PQID | 68993921 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_68993921 pubmed_primary_17289868 pascalfrancis_primary_18548431 crossref_citationtrail_10_1158_1078_0432_CCR_06_2082 crossref_primary_10_1158_1078_0432_CCR_06_2082 highwire_cancerresearch_13_3_789 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-02-01 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2007 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061105271788400_B51 2022061105271788400_B50 2022061105271788400_B49 2022061105271788400_B44 2022061105271788400_B43 2022061105271788400_B42 2022061105271788400_B41 2022061105271788400_B48 2022061105271788400_B47 2022061105271788400_B46 2022061105271788400_B45 2022061105271788400_B80 2022061105271788400_B40 2022061105271788400_B39 2022061105271788400_B38 2022061105271788400_B33 2022061105271788400_B77 2022061105271788400_B32 2022061105271788400_B76 2022061105271788400_B31 2022061105271788400_B75 2022061105271788400_B30 2022061105271788400_B74 2022061105271788400_B37 2022061105271788400_B36 2022061105271788400_B35 2022061105271788400_B79 2022061105271788400_B34 2022061105271788400_B78 2022061105271788400_B2 2022061105271788400_B1 2022061105271788400_B73 2022061105271788400_B72 2022061105271788400_B71 2022061105271788400_B70 2022061105271788400_B29 2022061105271788400_B28 2022061105271788400_B27 2022061105271788400_B8 2022061105271788400_B22 2022061105271788400_B66 2022061105271788400_B7 2022061105271788400_B21 2022061105271788400_B65 2022061105271788400_B20 2022061105271788400_B64 2022061105271788400_B9 2022061105271788400_B63 2022061105271788400_B4 2022061105271788400_B26 2022061105271788400_B3 2022061105271788400_B25 2022061105271788400_B69 2022061105271788400_B6 2022061105271788400_B24 2022061105271788400_B68 2022061105271788400_B5 2022061105271788400_B23 2022061105271788400_B67 2022061105271788400_B62 2022061105271788400_B61 2022061105271788400_B60 2022061105271788400_B19 2022061105271788400_B18 2022061105271788400_B17 2022061105271788400_B16 2022061105271788400_B11 2022061105271788400_B55 2022061105271788400_B10 2022061105271788400_B54 2022061105271788400_B53 2022061105271788400_B52 2022061105271788400_B15 2022061105271788400_B59 2022061105271788400_B14 2022061105271788400_B58 2022061105271788400_B13 2022061105271788400_B57 2022061105271788400_B12 2022061105271788400_B56 |
References_xml | – ident: 2022061105271788400_B20 doi: 10.1074/jbc.272.1.217 – ident: 2022061105271788400_B35 doi: 10.1101/sqb.2005.70.035 – ident: 2022061105271788400_B71 doi: 10.1158/1078-0432.CCR-06-0171 – ident: 2022061105271788400_B17 doi: 10.1002/ijc.11708 – ident: 2022061105271788400_B23 doi: 10.1074/jbc.275.19.14624 – ident: 2022061105271788400_B56 doi: 10.1111/j.1745-7254.2006.00345.x – ident: 2022061105271788400_B24 doi: 10.1093/embo-reports/kvf094 – ident: 2022061105271788400_B80 doi: 10.1158/1055-9965.EPI-04-0666 – ident: 2022061105271788400_B15 doi: 10.1196/annals.1354.022 – ident: 2022061105271788400_B46 doi: 10.1016/j.freeradbiomed.2005.10.036 – ident: 2022061105271788400_B10 doi: 10.1152/ajplung.2000.279.6.L1005 – ident: 2022061105271788400_B25 doi: 10.1093/jnci/92.2.143 – ident: 2022061105271788400_B3 doi: 10.1016/0002-9343(91)90279-7 – ident: 2022061105271788400_B54 doi: 10.1074/jbc.M210269200 – ident: 2022061105271788400_B58 doi: 10.1016/S0008-6363(03)00533-9 – ident: 2022061105271788400_B45 doi: 10.1089/hum.2006.17.105 – ident: 2022061105271788400_B22 doi: 10.1093/emboj/cdg513 – ident: 2022061105271788400_B43 doi: 10.1080/10715760400017376 – ident: 2022061105271788400_B4 doi: 10.1038/nm0703-822 – ident: 2022061105271788400_B12 doi: 10.1016/j.bcp.2005.10.044 – ident: 2022061105271788400_B19 doi: 10.1126/science.270.5234.296 – ident: 2022061105271788400_B78 doi: 10.1074/jbc.M511373200 – ident: 2022061105271788400_B62 doi: 10.1080/10408360500523878 – ident: 2022061105271788400_B44 doi: 10.1038/sj.onc.1208145 – ident: 2022061105271788400_B28 doi: 10.1097/01.mco.0000232895.28674.79 – ident: 2022061105271788400_B33 doi: 10.1091/mbc.e02-12-0791 – ident: 2022061105271788400_B31 doi: 10.1073/pnas.95.14.7987 – ident: 2022061105271788400_B6 doi: 10.2174/0929867033456477 – ident: 2022061105271788400_B67 – ident: 2022061105271788400_B30 doi: 10.1038/20459 – ident: 2022061105271788400_B61 doi: 10.1006/abbi.1996.0112 – ident: 2022061105271788400_B32 doi: 10.1152/ajpcell.1996.271.4.C1172 – ident: 2022061105271788400_B66 doi: 10.1200/JCO.1994.12.1.194 – ident: 2022061105271788400_B14 doi: 10.1016/j.cbi.2005.12.009 – ident: 2022061105271788400_B63 doi: 10.1016/S0009-2797(97)00166-X – ident: 2022061105271788400_B11 doi: 10.1016/S0070-2137(01)80001-7 – ident: 2022061105271788400_B57 doi: 10.1038/sj.onc.1203299 – ident: 2022061105271788400_B50 doi: 10.1083/jcb.147.7.1493 – ident: 2022061105271788400_B64 doi: 10.1038/sj.cdd.4401431 – ident: 2022061105271788400_B39 doi: 10.1016/j.semcdb.2005.03.010 – ident: 2022061105271788400_B55 doi: 10.1038/sj.cdd.4401950 – ident: 2022061105271788400_B42 doi: 10.1034/j.1600-0749.2001.140303.x – ident: 2022061105271788400_B76 doi: 10.1073/pnas.93.13.6610 – ident: 2022061105271788400_B37 doi: 10.1016/j.cmet.2005.05.003 – ident: 2022061105271788400_B16 doi: 10.2174/0929867033456341 – ident: 2022061105271788400_B70 doi: 10.1158/1535-7163.1049.3.9 – ident: 2022061105271788400_B26 doi: 10.1158/1541-7786.MCR-05-0234 – ident: 2022061105271788400_B5 doi: 10.1038/nrc704 – ident: 2022061105271788400_B51 doi: 10.1016/S0006-291X(03)00615-6 – ident: 2022061105271788400_B79 doi: 10.1016/j.freeradbiomed.2005.04.025 – ident: 2022061105271788400_B47 doi: 10.1016/j.freeradbiomed.2005.08.043 – ident: 2022061105271788400_B41 – ident: 2022061105271788400_B7 doi: 10.1038/nature04871 – ident: 2022061105271788400_B40 doi: 10.1016/S0300-9084(02)01369-X – ident: 2022061105271788400_B59 doi: 10.1096/fj.02-0097fje – ident: 2022061105271788400_B18 doi: 10.1016/S0092-8674(00)81683-9 – ident: 2022061105271788400_B1 doi: 10.1016/S0898-6568(98)00037-0 – ident: 2022061105271788400_B60 doi: 10.1042/bj20021342 – ident: 2022061105271788400_B69 doi: 10.1021/jm049568z – ident: 2022061105271788400_B77 doi: 10.1097/01.cco.0000142073.29850.98 – ident: 2022061105271788400_B2 doi: 10.1089/15230860260196209 – ident: 2022061105271788400_B52 doi: 10.2174/138161206777585111 – ident: 2022061105271788400_B68 doi: 10.1038/sj.onc.1207205 – ident: 2022061105271788400_B36 doi: 10.1113/expphysiol.2006.033506 – ident: 2022061105271788400_B38 doi: 10.1016/j.cmet.2005.05.002 – ident: 2022061105271788400_B27 doi: 10.1080/07853890310017062 – ident: 2022061105271788400_B75 doi: 10.1158/0008-5472.CAN-05-3310 – ident: 2022061105271788400_B74 doi: 10.4161/cbt.4.1.1434 – ident: 2022061105271788400_B73 doi: 10.1158/1078-0432.CCR-03-0638 – ident: 2022061105271788400_B72 – ident: 2022061105271788400_B53 doi: 10.1083/jcb.200105057 – ident: 2022061105271788400_B48 doi: 10.1038/sj.onc.1209609 – ident: 2022061105271788400_B65 doi: 10.1016/S0009-2797(97)00167-1 – ident: 2022061105271788400_B9 doi: 10.1016/j.freeradbiomed.2003.12.010 – ident: 2022061105271788400_B29 doi: 10.1002/9780470035009.ch2 – ident: 2022061105271788400_B8 doi: 10.1196/annals.1354.008 – ident: 2022061105271788400_B34 doi: 10.1016/j.mito.2005.06.005 – ident: 2022061105271788400_B13 doi: 10.1016/S0891-5849(01)00480-4 – ident: 2022061105271788400_B49 doi: 10.1074/jbc.M314259200 – ident: 2022061105271788400_B21 doi: 10.1074/jbc.M412424200 |
SSID | ssj0014104 |
Score | 2.4728117 |
SecondaryResourceType | review_article |
Snippet | New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted
therapeutics. Reactive oxygen... New insights into cancer cell–specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen... New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 789 |
SubjectTerms | Antineoplastic agents Apoptosis Biological and medical sciences Cell Death and Senescence Cell Proliferation Cell Survival Cell Transformation, Neoplastic Gene Expression Regulation, Neoplastic Glutathione metabolism Humans Hydrogen Peroxide - pharmacology Hypoxia - metabolism hypoxia inducible factor Medical sciences Mitochondria - metabolism mitochondrial permeability pore Models, Biological Neoplasms - metabolism Novel antitumor agents Permeability Pharmacology. Drug treatments Reactive oxygen and carcinogenesis Reactive Oxygen Species Signal Transduction tyrosine kinase signaling |
Title | Reactive Oxygen Species: A Breath of Life or Death? |
URI | http://clincancerres.aacrjournals.org/content/13/3/789.abstract https://www.ncbi.nlm.nih.gov/pubmed/17289868 https://www.proquest.com/docview/68993921 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiFeEDfhKPvAW-Rg7-HYvKDIApVCAEWt1LfVngIBSZUmEvDrmT3sOKWowIsVWd5D8307mdmdnUHomaylUZQXGVeTMmOlVZmUmmbcyrx0TOqYYmP2vjw4Zocn_GQw2PRvl6zVWP-88F7J_6AK7wBXf0v2H5DtOoUX8BvwhScgDM-_wnhuZVBXow_ff8BHsZh8DHKbAmreugtnAJ-dL98EugVenIvka9qbkdrDvxql5D_dJnGIrPk4BgN3Yz_Jjevw9sXeR-_GoxlQ4YuN1vjhamcTYdLGHbewt6dDPU6EMMcmjj3vjx0VZe4z87K0N2mT8uSgsEis_dBpV9pjEe2pykksHfS7CudV2E1I_Y-bZu5Ds0geixT1YD39FnD1FbbqKhbn2U2ofe6Prgs_LKigAsa_gq4S8C6CJ_7mbXf4xIpQdbKbQrr4BRN7fuG0fOLZNIdd66bNOO0DbuUZYOlisZQ_ezPBqjm6iW4kdwRPI7duoYFd3EbXZing4g6iLcVwpBhOFHuBpzgSDC8d9gTDyxUOBHt5Fx2_fnXUHGSpzkamWUXWmSO5kYY5XRnpygkjzMralEYTVeuilhV1jpW6cDx3DNYuK5Uk3LBClcQozug9tLdYLuwDhE2tuFT5xIBXzBQxNa2cLmiVU6OVInaIWCsfoVMSel8L5asIziivhJew8BIWIGGRl8JLeIjGXbPTmIXlsga4Fb6I66ddPqIFf4j2d0DZdlyBFw929RA9bVESoHP9QZpc2OXmTJQVWPU1gS_uR_C2bRMPHl4-_iN0fbsSH6O9NazjJ2DgrtV-oOMv4bKdQw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Oxygen+Species%3A+A+Breath+of+Life+or+Death%3F&rft.jtitle=Clinical+cancer+research&rft.au=John+P.+Fruehauf&rft.au=Frank+L.+Meyskens%2C+Jr&rft.date=2007-02-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=13&rft.issue=3&rft.spage=789&rft_id=info:doi/10.1158%2F1078-0432.CCR-06-2082&rft_id=info%3Apmid%2F17289868&rft.externalDBID=n%2Fa&rft.externalDocID=13_3_789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |