Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks

Abstract Objective Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, w...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Medical Informatics Association : JAMIA Vol. 27; no. 5; pp. 757 - 769
Main Authors Yu, Kun-Hsing, Wang, Feiran, Berry, Gerald J, Ré, Christopher, Altman, Russ B, Snyder, Michael, Kohane, Isaac S
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Objective Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively. Materials and Methods We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125). Results To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists’ diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01). Discussion Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.
AbstractList Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively.OBJECTIVENon-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively.We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125).MATERIALS AND METHODSWe processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125).To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01).RESULTSTo establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01).Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.DISCUSSIONOur study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.
Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively. We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125). To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01). Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.
Abstract Objective Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively. Materials and Methods We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125). Results To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists’ diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01). Discussion Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.
Author Wang, Feiran
Kohane, Isaac S
Yu, Kun-Hsing
Altman, Russ B
Snyder, Michael
Berry, Gerald J
Ré, Christopher
AuthorAffiliation 7 Department of Genetics , Stanford University, Stanford, California, USA
1 Department of Biomedical Informatics , Harvard Medical School, Boston, Massachusetts, USA
3 Department of Pathology , Stanford University, Stanford, California, USA
4 Department of Computer Science , Stanford University, Stanford, California, USA
6 Department of Bioengineering , Stanford University, Stanford, California, USA
2 Department of Electrical Engineering , Stanford University, Stanford, California, USA
5 Biomedical Informatics Program , Stanford University, Stanford, California, USA
AuthorAffiliation_xml – name: 6 Department of Bioengineering , Stanford University, Stanford, California, USA
– name: 5 Biomedical Informatics Program , Stanford University, Stanford, California, USA
– name: 3 Department of Pathology , Stanford University, Stanford, California, USA
– name: 2 Department of Electrical Engineering , Stanford University, Stanford, California, USA
– name: 4 Department of Computer Science , Stanford University, Stanford, California, USA
– name: 1 Department of Biomedical Informatics , Harvard Medical School, Boston, Massachusetts, USA
– name: 7 Department of Genetics , Stanford University, Stanford, California, USA
Author_xml – sequence: 1
  givenname: Kun-Hsing
  orcidid: 0000-0001-9892-8218
  surname: Yu
  fullname: Yu, Kun-Hsing
  email: Kun-Hsing_Yu@hms.harvard.edu
  organization: Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 2
  givenname: Feiran
  surname: Wang
  fullname: Wang, Feiran
  organization: Department of Electrical Engineering, Stanford University, Stanford, California, USA
– sequence: 3
  givenname: Gerald J
  surname: Berry
  fullname: Berry, Gerald J
  organization: Department of Pathology, Stanford University, Stanford, California, USA
– sequence: 4
  givenname: Christopher
  surname:
  fullname: Ré, Christopher
  organization: Department of Computer Science, Stanford University, Stanford, California, USA
– sequence: 5
  givenname: Russ B
  surname: Altman
  fullname: Altman, Russ B
  organization: Biomedical Informatics Program, Stanford University, Stanford, California, USA
– sequence: 6
  givenname: Michael
  surname: Snyder
  fullname: Snyder, Michael
  organization: Department of Genetics, Stanford University, Stanford, California, USA
– sequence: 7
  givenname: Isaac S
  surname: Kohane
  fullname: Kohane, Isaac S
  organization: Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32364237$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1LxDAUDLLirh83z9KbHqzmo03biyCLX7DgRcFbSGOq0TSpSaOsv97sVhcV9JL3yJuZ95jZBCNjjQRgF8EjBCty_MRbxY-teMcEroEJynGRVkV2N_rWj8Gm908QIopJvgHGBBOaYVJMgJ5q7r1q5so8JFE59S3XOhEyPjrEP8GNkC7p5530CTf3Se-48cKprretEokP9TALfiEhrHm1OvTKGq4TI4Nblv7Nume_DdYbrr3c-axb4Pb87GZ6mc6uL66mp7NUZCXuUylKQrHgEIsMVRiXsSUFhJJmNKe4RhUtSCMoJWVNsyZDMssFrSsSeRCVmGyBk0G3C3Ur74U08WjNOqda7ubMcsV-Tox6ZA_2lRUEVpiSKHDwKeDsS5C-Z63yC0-4kTZ4hklVopzmZR6he993rZZ8WRwBhwNAOOu9k80KgiBbJMiWCbIhwQjHv-BC9XzhZ7xU6b9I-wPJhu5_-Q-M7LHm
CitedBy_id crossref_primary_10_1158_1078_0432_CCR_20_4119
crossref_primary_10_1016_j_cmpb_2022_107108
crossref_primary_10_3390_jpm12122022
crossref_primary_10_1002_path_5966
crossref_primary_10_1016_j_medj_2023_06_002
crossref_primary_10_1016_j_jpi_2023_100348
crossref_primary_10_1016_j_jpi_2022_100184
crossref_primary_10_1038_s43018_022_00436_4
crossref_primary_10_3390_cancers15153981
crossref_primary_10_1016_j_compbiomed_2023_106594
crossref_primary_10_1016_j_modpat_2023_100350
crossref_primary_10_1016_j_semcancer_2022_12_009
crossref_primary_10_3390_cancers14081964
crossref_primary_10_1002_aps3_11559
crossref_primary_10_1109_JBHI_2021_3071276
crossref_primary_10_1016_j_bspc_2023_105151
crossref_primary_10_1038_s41746_024_01106_8
crossref_primary_10_3390_diagnostics12071589
crossref_primary_10_1038_s41598_021_03206_x
crossref_primary_10_2196_16709
crossref_primary_10_1038_s41467_020_20030_5
crossref_primary_10_3389_fonc_2022_850363
crossref_primary_10_1016_j_cmpb_2021_106464
crossref_primary_10_1111_his_15058
crossref_primary_10_1016_j_media_2024_103097
crossref_primary_10_3389_fmolb_2023_1128320
crossref_primary_10_7759_cureus_49533
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_1186_s13073_021_00968_x
crossref_primary_10_3389_fped_2022_953399
crossref_primary_10_1038_s41467_023_43172_8
crossref_primary_10_3389_fonc_2022_1044026
crossref_primary_10_1016_j_labinv_2024_102060
crossref_primary_10_3390_app13116571
crossref_primary_10_1038_s43018_024_00793_2
crossref_primary_10_1186_s12916_021_01953_2
crossref_primary_10_1177_20552076241277735
crossref_primary_10_1016_j_bspc_2020_102388
crossref_primary_10_1016_j_compbiomed_2022_105209
crossref_primary_10_1177_00220345221134605
crossref_primary_10_12677_acm_2025_152423
crossref_primary_10_1007_s00432_023_05216_w
crossref_primary_10_1016_j_bspc_2023_104768
crossref_primary_10_3389_fphys_2022_946099
crossref_primary_10_1007_s00432_023_04795_y
crossref_primary_10_1038_s41551_020_0578_x
crossref_primary_10_3390_s21237996
crossref_primary_10_1038_s41523_021_00357_y
crossref_primary_10_3390_healthcare10122395
crossref_primary_10_1007_s11227_020_03575_6
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_1002_ima_70066
crossref_primary_10_1016_j_compbiomed_2024_109469
crossref_primary_10_1038_s41467_023_37179_4
crossref_primary_10_3390_cancers14071740
crossref_primary_10_1186_s12916_020_01684_w
crossref_primary_10_3350_cmh_2021_0394
crossref_primary_10_1038_s41586_024_07894_z
crossref_primary_10_5858_arpa_2020_0510_OA
crossref_primary_10_1016_j_modpat_2023_100302
crossref_primary_10_1101_cshperspect_a037812
crossref_primary_10_3390_cancers14102515
crossref_primary_10_1007_s11042_023_16119_w
crossref_primary_10_1016_j_compbiomed_2023_107274
crossref_primary_10_1016_j_sjbs_2023_103596
crossref_primary_10_1038_s41379_021_00911_w
Cites_doi 10.1001/jama.2016.17438
10.1016/j.media.2016.06.037
10.4103/2153-3539.83746
10.1038/nature11404
10.1038/modpathol.2015.71
10.1001/jama.2016.17216
10.1126/scitranslmed.3002564
10.1038/nmeth.3968
10.1200/JCO.2012.46.9270
10.1056/NEJMp1500523
10.1093/wentk/9780190234775.001.0001
10.1038/s41591-018-0177-5
10.1111/j.1365-2559.2011.03814.x
10.1016/S0025-6196(11)60735-0
10.3322/caac.21332
10.1093/database/bar026
10.1200/JCO.2007.15.0375
10.1371/journal.pone.0036530
10.1001/jama.2017.14585
10.1007/s11263-015-0816-y
10.1038/nature21056
10.1136/amiajnl-2012-001540
10.1001/jama.2015.3595
10.1158/1078-0432.CCR-09-2638
10.4103/2153-3539.82050
10.1001/jamainternmed.2018.3763
10.1126/scitranslmed.3004330
10.1109/72.554195
10.1038/s41551-018-0305-z
10.1097/PAS.0b013e31815a04f5
10.1016/j.ebiom.2017.12.026
10.5858/arpa.2013-0200-OA
10.1183/09031936.06.00043506
10.1109/TMI.2016.2528162
10.1016/j.lungcan.2005.11.012
10.1200/JCO.2004.11.022
10.5858/arpa.2012-0033-OA
10.1038/nature08987
10.1109/TKDE.2009.191
10.3322/caac.21262
10.1038/nature13385
10.1038/ncomms12474
10.1074/mcp.O116.059253
10.1378/chest.12-2351
10.1136/bmjqs-2018-008551
10.1038/nature14539
10.1634/theoncologist.12-6-713
10.4103/2153-3539.119005
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/jamia/ocz230
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
EndPage 769
ExternalDocumentID PMC7309263
32364237
10_1093_jamia_ocz230
10.1093/jamia/ocz230
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: P50 HG007735
– fundername: NCI NIH HHS
  grantid: U24 CA160036
– fundername: ; ;
  grantid: 5U24CA160036
– fundername: ; ;
– fundername: ; ;
  grantid: 5P50HG007735
GroupedDBID ---
--K
.DC
.GJ
0R~
18M
1B1
1TH
29L
2WC
3V.
4.4
48X
53G
5GY
5RE
5WD
6PF
7RV
7X7
7~T
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AABZA
AACZT
AAEDT
AAJQQ
AALRI
AAMVS
AAOGV
AAPGJ
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAXUO
ABEUO
ABIXL
ABJNI
ABNHQ
ABOCM
ABPTD
ABQLI
ABQNK
ABSAR
ABSMQ
ABUWG
ABWST
ABXVV
ACFRR
ACGFO
ACGFS
ACGOD
ACHQT
ACUFI
ACUTJ
ACYHN
ACZBC
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADJOM
ADJQC
ADMUD
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFKRA
AFOFC
AFXEN
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AJEEA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
ATGXG
AVNTJ
AVWKF
AXUDD
AYCSE
AZQEC
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BGLVJ
BHONS
BKEYQ
BPHCQ
BTRTY
BVRKM
BVXVI
BZKNY
C1A
C45
CCPQU
CDBKE
CS3
DAKXR
DIK
DILTD
DU5
DWQXO
E3Z
EBD
EBS
EIHJH
EJD
EMOBN
ENERS
EO8
EX3
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
G-Q
GAUVT
GJXCC
GNUQQ
GX1
H13
HAR
HCIFZ
HMCUK
IH2
IHE
J21
K6V
K7-
KBUDW
KOP
KSI
KSN
LSO
M0N
M0T
M1P
M2P
M2Q
M41
MBLQV
MHKGH
NAPCQ
NOMLY
NOYVH
NQ-
NVLIB
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P62
PAFKI
PCD
PEELM
PQQKQ
PROAC
PSQYO
Q5Y
R53
RIG
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
S0X
SSZ
SV3
TAE
TEORI
TJX
TMA
UKHRP
WOQ
WOW
YAYTL
YHZ
YKOAZ
YXANX
ZGI
~S-
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ADNBA
AEMQT
AFXAL
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c482t-ec8362ca02c419228ca03700e646562b19673fc6638b64f41e45c6b93c8301823
ISSN 1527-974X
1067-5027
IngestDate Thu Aug 21 18:32:43 EDT 2025
Fri Jul 11 08:32:53 EDT 2025
Mon Jul 21 05:48:58 EDT 2025
Tue Jul 01 02:01:52 EDT 2025
Thu Apr 24 23:03:10 EDT 2025
Wed Aug 28 03:18:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords non-small cell lung cancer
quantitative pathology
convolutional neural networks
machine learning
transcriptomic subtypes
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c482t-ec8362ca02c419228ca03700e646562b19673fc6638b64f41e45c6b93c8301823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9892-8218
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7309263
PMID 32364237
PQID 2398156585
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7309263
proquest_miscellaneous_2398156585
pubmed_primary_32364237
crossref_primary_10_1093_jamia_ocz230
crossref_citationtrail_10_1093_jamia_ocz230
oup_primary_10_1093_jamia_ocz230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Pan (2020110613093994800_ocz230-B52) 2010; 22
Robboy (2020110613093994800_ocz230-B50) 2013; 137
Shin (2020110613093994800_ocz230-B27) 2016; 35
Gulshan (2020110613093994800_ocz230-B18) 2016; 316
Pantanowitz (2020110613093994800_ocz230-B61) 2011; 2
Szegedy (2020110613093994800_ocz230-B41) 2015
Ronneberger (2020110613093994800_ocz230-B56) 2015
Esteva (2020110613093994800_ocz230-B19) 2017; 542
(2020110613093994800_ocz230-B34) 2012; 489
Khosravi (2020110613093994800_ocz230-B48) 2018; 27
Zhang (2020110613093994800_ocz230-B35) 2011; 2011
Goodfellow (2020110613093994800_ocz230-B57) 2014
(2020110613093994800_ocz230-B33) 2014; 511
Al-Janabi (2020110613093994800_ocz230-B23) 2012; 61
Molina (2020110613093994800_ocz230-B1) 2008; 83
Yu (2020110613093994800_ocz230-B59) 2019; 28
Yuan (2020110613093994800_ocz230-B25) 2012; 4
LeCun (2020110613093994800_ocz230-B53) 2015; 521
Snyder (2020110613093994800_ocz230-B6) 2016
Johnson (2020110613093994800_ocz230-B9) 2004; 22
Wilkerson (2020110613093994800_ocz230-B15) 2010
Wilkerson (2020110613093994800_ocz230-B16) 2012; 7
Lever (2020110613093994800_ocz230-B45) 2016; 13
Yu (2020110613093994800_ocz230-B47) 2016; 7
Thunnissen (2020110613093994800_ocz230-B13) 2006; 28
Beck (2020110613093994800_ocz230-B24) 2011; 3
Travis (2020110613093994800_ocz230-B4) 2013; 31
Yu (2020110613093994800_ocz230-B5) 2016; 15
Zugazagoitia (2020110613093994800_ocz230-B60) 2014; 6 Suppl 5
Trejo Bittar (2020110613093994800_ocz230-B14) 2015; 28
Coudray (2020110613093994800_ocz230-B21) 2018; 24
Yu (2020110613093994800_ocz230-B28)
Jia (2020110613093994800_ocz230-B39) 2014
Selvaraju (2020110613093994800_ocz230-B43) 2016. ://.//1610.02391
Stang (2020110613093994800_ocz230-B11) 2006; 52
Hudson (2020110613093994800_ocz230-B36) 2010; 464
Yu (2020110613093994800_ocz230-B51) 2018; 2
Goode (2020110613093994800_ocz230-B38) 2013; 4
Grilley-Olson (2020110613093994800_ocz230-B12) 2013; 137
Kothari (2020110613093994800_ocz230-B30) 2013; 20
Hipp (2020110613093994800_ocz230-B22) 2011; 2
Torre (2020110613093994800_ocz230-B2) 2015; 65
Collins (2020110613093994800_ocz230-B31) 2015; 372
Manion (2020110613093994800_ocz230-B49) 2008; 32
Bishop (2020110613093994800_ocz230-B10) 2010; 16
Ashley (2020110613093994800_ocz230-B32) 2015; 313
Ehteshami Bejnordi (2020110613093994800_ocz230-B20) 2017; 318
Selvaraju (2020110613093994800_ocz230-B46) 2016
Siegel (2020110613093994800_ocz230-B3) 2016; 66
Scagliotti (2020110613093994800_ocz230-B7) 2008; 26
Russakovsky (2020110613093994800_ocz230-B44) 2015; 115
Jha (2020110613093994800_ocz230-B29) 2016; 316
Cohen (2020110613093994800_ocz230-B8) 2007; 12
O’Connor (2020110613093994800_ocz230-B55) 2017; 6
Gianfrancesco (2020110613093994800_ocz230-B58) 2018; 178
Lawrence (2020110613093994800_ocz230-B17) 1997; 8
Chatfield (2020110613093994800_ocz230-B42) 2014
Krizhevsky (2020110613093994800_ocz230-B40) 2012
Yu (2020110613093994800_ocz230-B26) 2017; 5
Madabhushi (2020110613093994800_ocz230-B54) 2016; 33
Gould (2020110613093994800_ocz230-B37) 2013; 143 Suppl 5
References_xml – volume: 316
  start-page: 2353
  issue: 22
  year: 2016
  ident: 2020110613093994800_ocz230-B29
  article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists
  publication-title: JAMA
  doi: 10.1001/jama.2016.17438
– volume: 33
  start-page: 170
  year: 2016
  ident: 2020110613093994800_ocz230-B54
  article-title: Image analysis and machine learning in digital pathology: challenges and opportunities
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.037
– volume: 2
  start-page: 36
  issue: 1
  year: 2011
  ident: 2020110613093994800_ocz230-B61
  article-title: Review of the current state of whole slide imaging in pathology
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.83746
– volume: 489
  start-page: 519
  issue: 7417
  year: 2012
  ident: 2020110613093994800_ocz230-B34
  article-title: Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers
  publication-title: Nature
  doi: 10.1038/nature11404
– volume: 28
  start-page: 1058
  issue: 8
  year: 2015
  ident: 2020110613093994800_ocz230-B14
  article-title: Accuracy of the IASLC/ATS/ERS histological subtyping of stage I lung adenocarcinoma on intraoperative frozen sections
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2015.71
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 2020110613093994800_ocz230-B18
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 3
  start-page: 108ra13
  issue: 108
  year: 2011
  ident: 2020110613093994800_ocz230-B24
  article-title: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002564
– volume: 13
  start-page: 703
  issue: 9
  year: 2016
  ident: 2020110613093994800_ocz230-B45
  article-title: Model selection and overfitting
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3968
– volume: 31
  start-page: 992
  issue: 8
  year: 2013
  ident: 2020110613093994800_ocz230-B4
  article-title: New pathologic classification of lung cancer: relevance for clinical practice and clinical trials
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.46.9270
– volume: 372
  start-page: 793
  issue: 9
  year: 2015
  ident: 2020110613093994800_ocz230-B31
  article-title: A new initiative on precision medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1500523
– volume-title: Genomics and Personalized Medicine: What Everyone Needs to Know
  year: 2016
  ident: 2020110613093994800_ocz230-B6
  doi: 10.1093/wentk/9780190234775.001.0001
– volume: 24
  start-page: 1559
  issue: 10
  year: 2018
  ident: 2020110613093994800_ocz230-B21
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0177-5
– volume: 61
  start-page: 1
  issue: 1
  year: 2012
  ident: 2020110613093994800_ocz230-B23
  article-title: Digital pathology: current status and future perspectives
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2011.03814.x
– start-page: 4864
  year: 2010
  ident: 2020110613093994800_ocz230-B15
  article-title: Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin Cancer Res
– volume: 83
  start-page: 584
  issue: 5
  year: 2008
  ident: 2020110613093994800_ocz230-B1
  article-title: Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship
  publication-title: Mayo Clin Proc
  doi: 10.1016/S0025-6196(11)60735-0
– volume: 6 Suppl 5
  start-page: S526
  year: 2014
  ident: 2020110613093994800_ocz230-B60
  article-title: The new IASLC/ATS/ERS lung adenocarcinoma classification from a clinical perspective: current concepts and future prospects
  publication-title: J Thorac Dis
– volume: 66
  start-page: 7
  issue: 1
  year: 2016
  ident: 2020110613093994800_ocz230-B3
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21332
– volume: 2011
  start-page: bar026
  year: 2011
  ident: 2020110613093994800_ocz230-B35
  article-title: International Cancer Genome Consortium Data Portal–a one-stop shop for cancer genomics data
  publication-title: Database (Oxford)
  doi: 10.1093/database/bar026
– volume: 26
  start-page: 3543
  issue: 21
  year: 2008
  ident: 2020110613093994800_ocz230-B7
  article-title: Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2007.15.0375
– ident: 2020110613093994800_ocz230-B28
  article-title: Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction
  publication-title: Bioinformatics
– year: 2016. ://.//1610.02391
  ident: 2020110613093994800_ocz230-B43
– volume: 7
  issue: 5
  year: 2012
  ident: 2020110613093994800_ocz230-B16
  article-title: Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036530
– year: 2012
  ident: 2020110613093994800_ocz230-B40
– start-page: 234
  volume-title: International Conference on Medical Image Computing and Computer-assisted Intervention
  year: 2015
  ident: 2020110613093994800_ocz230-B56
– volume: 318
  start-page: 2199
  issue: 22
  year: 2017
  ident: 2020110613093994800_ocz230-B20
  article-title: Diagnostic Assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 2020110613093994800_ocz230-B44
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 2020110613093994800_ocz230-B19
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 20
  start-page: 1099
  issue: 6
  year: 2013
  ident: 2020110613093994800_ocz230-B30
  article-title: Pathology imaging informatics for quantitative analysis of whole-slide images
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001540
– volume: 313
  start-page: 2119
  issue: 21
  year: 2015
  ident: 2020110613093994800_ocz230-B32
  article-title: The precision medicine initiative: a new national effort
  publication-title: JAMA
  doi: 10.1001/jama.2015.3595
– volume: 16
  start-page: 610
  issue: 2
  year: 2010
  ident: 2020110613093994800_ocz230-B10
  article-title: Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-2638
– volume: 2
  start-page: 25.
  year: 2011
  ident: 2020110613093994800_ocz230-B22
  article-title: Computer aided diagnostic tools aim to empower rather than replace pathologists: lessons learned from computational chess
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.82050
– year: 2014
  ident: 2020110613093994800_ocz230-B42
– volume: 178
  start-page: 1544–7
  issue: 11
  year: 2018
  ident: 2020110613093994800_ocz230-B58
  article-title: Potential biases in machine learning algorithms using electronic health record data
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2018.3763
– volume: 4
  issue: 157
  year: 2012
  ident: 2020110613093994800_ocz230-B25
  article-title: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3004330
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  ident: 2020110613093994800_ocz230-B17
  article-title: Face recognition: a convolutional neural-network approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554195
– volume: 2
  start-page: 719
  issue: 10
  year: 2018
  ident: 2020110613093994800_ocz230-B51
  article-title: Artificial intelligence in healthcare
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0305-z
– volume: 32
  start-page: 732
  issue: 5
  year: 2008
  ident: 2020110613093994800_ocz230-B49
  article-title: Mandatory second opinion in surgical pathology referral material: clinical consequences of major disagreements
  publication-title: Am J Surg Pathol
  doi: 10.1097/PAS.0b013e31815a04f5
– volume: 27
  start-page: 317
  year: 2018
  ident: 2020110613093994800_ocz230-B48
  article-title: Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.12.026
– volume: 137
  start-page: 1723
  issue: 12
  year: 2013
  ident: 2020110613093994800_ocz230-B50
  article-title: Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2013-0200-OA
– year: 2016
  ident: 2020110613093994800_ocz230-B46
– volume: 28
  start-page: 1186
  issue: 6
  year: 2006
  ident: 2020110613093994800_ocz230-B13
  article-title: EU-USA pathology panel for uniform diagnosis in randomised controlled trials for HRCT screening in lung cancer
  publication-title: Eur Respir J
  doi: 10.1183/09031936.06.00043506
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 2020110613093994800_ocz230-B27
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 52
  start-page: 29
  issue: 1
  year: 2006
  ident: 2020110613093994800_ocz230-B11
  article-title: Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case-control study
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2005.11.012
– volume: 22
  start-page: 2184
  issue: 11
  year: 2004
  ident: 2020110613093994800_ocz230-B9
  article-title: Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2004.11.022
– volume: 137
  start-page: 32
  issue: 1
  year: 2013
  ident: 2020110613093994800_ocz230-B12
  article-title: Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 World Health Organization classification and therapeutically relevant subsets
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2012-0033-OA
– volume: 5
  issue: 6
  year: 2017
  ident: 2020110613093994800_ocz230-B26
  article-title: Association of omics features with histopathology patterns in lung adenocarcinoma
  publication-title: Cell Syst
– year: 2015
  ident: 2020110613093994800_ocz230-B41
– start-page: 2672
  year: 2014
  ident: 2020110613093994800_ocz230-B57
  article-title: Generative adversarial networks
  publication-title: Adv Neural Inform Proc Syst
– volume: 464
  start-page: 993
  issue: 7291
  year: 2010
  ident: 2020110613093994800_ocz230-B36
  article-title: International network of cancer genome projects
  publication-title: Nature
  doi: 10.1038/nature08987
– year: 2014
  ident: 2020110613093994800_ocz230-B39
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 2020110613093994800_ocz230-B52
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 65
  start-page: 87
  issue: 2
  year: 2015
  ident: 2020110613093994800_ocz230-B2
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– volume: 511
  start-page: 543
  issue: 7511
  year: 2014
  ident: 2020110613093994800_ocz230-B33
  article-title: Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma
  publication-title: Nature
  doi: 10.1038/nature13385
– volume: 7
  start-page: 12474
  issue: 1
  year: 2016
  ident: 2020110613093994800_ocz230-B47
  article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
  publication-title: Nat Commun
  doi: 10.1038/ncomms12474
– volume: 15
  start-page: 2525
  issue: 8
  year: 2016
  ident: 2020110613093994800_ocz230-B5
  article-title: Omics profiling in precision oncology
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.O116.059253
– volume: 6
  year: 2017
  ident: 2020110613093994800_ocz230-B55
  article-title: Rethinking the role of clinical imaging
  publication-title: Elife
– volume: 143 Suppl 5
  start-page: e93S
  year: 2013
  ident: 2020110613093994800_ocz230-B37
  article-title: Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines
  publication-title: Chest
  doi: 10.1378/chest.12-2351
– volume: 28
  start-page: 238
  issue: 3
  year: 2019
  ident: 2020110613093994800_ocz230-B59
  article-title: Framing the challenges of artificial intelligence in medicine
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2018-008551
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2020110613093994800_ocz230-B53
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 713
  issue: 6
  year: 2007
  ident: 2020110613093994800_ocz230-B8
  article-title: FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer
  publication-title: Oncologist
  doi: 10.1634/theoncologist.12-6-713
– volume: 4
  start-page: 27.
  year: 2013
  ident: 2020110613093994800_ocz230-B38
  article-title: OpenSlide: a vendor-neutral software foundation for digital pathology
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.119005
SSID ssj0016235
Score 2.5634348
Snippet Abstract Objective Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its...
Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 757
SubjectTerms Adenocarcinoma of Lung - genetics
Adenocarcinoma of Lung - pathology
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - pathology
Carcinoma, Squamous Cell - genetics
Carcinoma, Squamous Cell - pathology
Humans
Lung Neoplasms - genetics
Lung Neoplasms - pathology
Machine Learning
Neural Networks, Computer
Research and Applications
ROC Curve
Transcriptome
Title Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/32364237
https://www.proquest.com/docview/2398156585
https://pubmed.ncbi.nlm.nih.gov/PMC7309263
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9IMa1wCYjwVPlLbFzcR5hWleQhhDapPIUJa6jFbXZ1CQ87N_yTzi-JHEG47KXNEqcOMn39Zxjn4sRepOB1geuCFJ4eUICmlGSRZIS6RXhouAwKCp0gOynaHYefJyH89HohxO11NT5gbj-bV7JXVCFY4CrypL9D2S7m8IB2Ad8YQsIw_afMNYrWi5NphIM40m1Vo5mNRc_WTUqmVZButHTrKYUc600k5YTKhl5UjW5OdfY3Nvyu31eAE5VutQ_Ok68usWKdTJTeq-PzXHSFaAd_PX0A0j5Dx1rvjZa0DQlmVWtDtWz-0YCTeVy07P3vdwYn_-JmUfrZri_GG__jVoJ7nwG9frowT_lSToiGvQrCT1TUeBAWrFNYwIjo7kr122Lpes510I6DmNH38dmqZhfVIkps_UtW6ug5emluKbGgeTw6mqticVUEX7K4l6ldoGOn0-PQIQmNGL30H0KIxm1yMbJvItC8sH6DLVD3r6Uzc2Azg9114em4x203fYyMKAGSZnO2OhmiK9jM509RA8sTfA7w9xdNJLlI7R9asM5HqOVQ2DcERgrAmNFYGwIjDVJMRAYDwmMWwJjTWA8IDA2BMYtgZ-g8-nx2dGM2OU_iAg4rYkUHKwrkXlUqFAFymGXxZ4nI1Xjj-agO2JWCDCZeR4FReDLIBRRnjC4zoNhM3uKtuDR5XOEEy9aSOHnPgt4QCXjXLIi4ZxlCV2wPB6jSftNU2Fr46slWlapidFgqQYjNWCM0duu9ZWpCXNLOwzw_KXJ6xa7FOS6-r5ZKS-bKlV1OX0YbfFwjJ4ZLLs7tVQYo3iActdA1YwfnimXF7p2vGXjiztf-RLt9P_aV2ir3jRyD-zyOt_XzP4Jfz7tTg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+non-small+cell+lung+cancer+types+and+transcriptomic+subtypes+using+convolutional+neural+networks&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Yu%2C+Kun-Hsing&rft.au=Wang%2C+Feiran&rft.au=Berry%2C+Gerald+J&rft.au=R%C3%A9%2C+Christopher&rft.date=2020-05-01&rft.pub=Oxford+University+Press&rft.issn=1067-5027&rft.eissn=1527-974X&rft.volume=27&rft.issue=5&rft.spage=757&rft.epage=769&rft_id=info:doi/10.1093%2Fjamia%2Focz230&rft_id=info%3Apmid%2F32364237&rft.externalDocID=PMC7309263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon