Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks
Abstract Objective Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, w...
Saved in:
Published in | Journal of the American Medical Informatics Association : JAMIA Vol. 27; no. 5; pp. 757 - 769 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Objective
Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively.
Materials and Methods
We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125).
Results
To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists’ diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01).
Discussion
Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases. |
---|---|
AbstractList | Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively.OBJECTIVENon-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively.We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125).MATERIALS AND METHODSWe processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125).To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01).RESULTSTo establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01).Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.DISCUSSIONOur study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases. Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively. We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125). To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01). Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases. Abstract Objective Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively. Materials and Methods We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125). Results To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists’ diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01). Discussion Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases. |
Author | Wang, Feiran Kohane, Isaac S Yu, Kun-Hsing Altman, Russ B Snyder, Michael Berry, Gerald J Ré, Christopher |
AuthorAffiliation | 7 Department of Genetics , Stanford University, Stanford, California, USA 1 Department of Biomedical Informatics , Harvard Medical School, Boston, Massachusetts, USA 3 Department of Pathology , Stanford University, Stanford, California, USA 4 Department of Computer Science , Stanford University, Stanford, California, USA 6 Department of Bioengineering , Stanford University, Stanford, California, USA 2 Department of Electrical Engineering , Stanford University, Stanford, California, USA 5 Biomedical Informatics Program , Stanford University, Stanford, California, USA |
AuthorAffiliation_xml | – name: 6 Department of Bioengineering , Stanford University, Stanford, California, USA – name: 5 Biomedical Informatics Program , Stanford University, Stanford, California, USA – name: 3 Department of Pathology , Stanford University, Stanford, California, USA – name: 2 Department of Electrical Engineering , Stanford University, Stanford, California, USA – name: 4 Department of Computer Science , Stanford University, Stanford, California, USA – name: 1 Department of Biomedical Informatics , Harvard Medical School, Boston, Massachusetts, USA – name: 7 Department of Genetics , Stanford University, Stanford, California, USA |
Author_xml | – sequence: 1 givenname: Kun-Hsing orcidid: 0000-0001-9892-8218 surname: Yu fullname: Yu, Kun-Hsing email: Kun-Hsing_Yu@hms.harvard.edu organization: Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA – sequence: 2 givenname: Feiran surname: Wang fullname: Wang, Feiran organization: Department of Electrical Engineering, Stanford University, Stanford, California, USA – sequence: 3 givenname: Gerald J surname: Berry fullname: Berry, Gerald J organization: Department of Pathology, Stanford University, Stanford, California, USA – sequence: 4 givenname: Christopher surname: Ré fullname: Ré, Christopher organization: Department of Computer Science, Stanford University, Stanford, California, USA – sequence: 5 givenname: Russ B surname: Altman fullname: Altman, Russ B organization: Biomedical Informatics Program, Stanford University, Stanford, California, USA – sequence: 6 givenname: Michael surname: Snyder fullname: Snyder, Michael organization: Department of Genetics, Stanford University, Stanford, California, USA – sequence: 7 givenname: Isaac S surname: Kohane fullname: Kohane, Isaac S organization: Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32364237$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1LxDAUDLLirh83z9KbHqzmo03biyCLX7DgRcFbSGOq0TSpSaOsv97sVhcV9JL3yJuZ95jZBCNjjQRgF8EjBCty_MRbxY-teMcEroEJynGRVkV2N_rWj8Gm908QIopJvgHGBBOaYVJMgJ5q7r1q5so8JFE59S3XOhEyPjrEP8GNkC7p5530CTf3Se-48cKprretEokP9TALfiEhrHm1OvTKGq4TI4Nblv7Nume_DdYbrr3c-axb4Pb87GZ6mc6uL66mp7NUZCXuUylKQrHgEIsMVRiXsSUFhJJmNKe4RhUtSCMoJWVNsyZDMssFrSsSeRCVmGyBk0G3C3Ur74U08WjNOqda7ubMcsV-Tox6ZA_2lRUEVpiSKHDwKeDsS5C-Z63yC0-4kTZ4hklVopzmZR6he993rZZ8WRwBhwNAOOu9k80KgiBbJMiWCbIhwQjHv-BC9XzhZ7xU6b9I-wPJhu5_-Q-M7LHm |
CitedBy_id | crossref_primary_10_1158_1078_0432_CCR_20_4119 crossref_primary_10_1016_j_cmpb_2022_107108 crossref_primary_10_3390_jpm12122022 crossref_primary_10_1002_path_5966 crossref_primary_10_1016_j_medj_2023_06_002 crossref_primary_10_1016_j_jpi_2023_100348 crossref_primary_10_1016_j_jpi_2022_100184 crossref_primary_10_1038_s43018_022_00436_4 crossref_primary_10_3390_cancers15153981 crossref_primary_10_1016_j_compbiomed_2023_106594 crossref_primary_10_1016_j_modpat_2023_100350 crossref_primary_10_1016_j_semcancer_2022_12_009 crossref_primary_10_3390_cancers14081964 crossref_primary_10_1002_aps3_11559 crossref_primary_10_1109_JBHI_2021_3071276 crossref_primary_10_1016_j_bspc_2023_105151 crossref_primary_10_1038_s41746_024_01106_8 crossref_primary_10_3390_diagnostics12071589 crossref_primary_10_1038_s41598_021_03206_x crossref_primary_10_2196_16709 crossref_primary_10_1038_s41467_020_20030_5 crossref_primary_10_3389_fonc_2022_850363 crossref_primary_10_1016_j_cmpb_2021_106464 crossref_primary_10_1111_his_15058 crossref_primary_10_1016_j_media_2024_103097 crossref_primary_10_3389_fmolb_2023_1128320 crossref_primary_10_7759_cureus_49533 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_1186_s13073_021_00968_x crossref_primary_10_3389_fped_2022_953399 crossref_primary_10_1038_s41467_023_43172_8 crossref_primary_10_3389_fonc_2022_1044026 crossref_primary_10_1016_j_labinv_2024_102060 crossref_primary_10_3390_app13116571 crossref_primary_10_1038_s43018_024_00793_2 crossref_primary_10_1186_s12916_021_01953_2 crossref_primary_10_1177_20552076241277735 crossref_primary_10_1016_j_bspc_2020_102388 crossref_primary_10_1016_j_compbiomed_2022_105209 crossref_primary_10_1177_00220345221134605 crossref_primary_10_12677_acm_2025_152423 crossref_primary_10_1007_s00432_023_05216_w crossref_primary_10_1016_j_bspc_2023_104768 crossref_primary_10_3389_fphys_2022_946099 crossref_primary_10_1007_s00432_023_04795_y crossref_primary_10_1038_s41551_020_0578_x crossref_primary_10_3390_s21237996 crossref_primary_10_1038_s41523_021_00357_y crossref_primary_10_3390_healthcare10122395 crossref_primary_10_1007_s11227_020_03575_6 crossref_primary_10_3389_fonc_2022_908873 crossref_primary_10_1002_ima_70066 crossref_primary_10_1016_j_compbiomed_2024_109469 crossref_primary_10_1038_s41467_023_37179_4 crossref_primary_10_3390_cancers14071740 crossref_primary_10_1186_s12916_020_01684_w crossref_primary_10_3350_cmh_2021_0394 crossref_primary_10_1038_s41586_024_07894_z crossref_primary_10_5858_arpa_2020_0510_OA crossref_primary_10_1016_j_modpat_2023_100302 crossref_primary_10_1101_cshperspect_a037812 crossref_primary_10_3390_cancers14102515 crossref_primary_10_1007_s11042_023_16119_w crossref_primary_10_1016_j_compbiomed_2023_107274 crossref_primary_10_1016_j_sjbs_2023_103596 crossref_primary_10_1038_s41379_021_00911_w |
Cites_doi | 10.1001/jama.2016.17438 10.1016/j.media.2016.06.037 10.4103/2153-3539.83746 10.1038/nature11404 10.1038/modpathol.2015.71 10.1001/jama.2016.17216 10.1126/scitranslmed.3002564 10.1038/nmeth.3968 10.1200/JCO.2012.46.9270 10.1056/NEJMp1500523 10.1093/wentk/9780190234775.001.0001 10.1038/s41591-018-0177-5 10.1111/j.1365-2559.2011.03814.x 10.1016/S0025-6196(11)60735-0 10.3322/caac.21332 10.1093/database/bar026 10.1200/JCO.2007.15.0375 10.1371/journal.pone.0036530 10.1001/jama.2017.14585 10.1007/s11263-015-0816-y 10.1038/nature21056 10.1136/amiajnl-2012-001540 10.1001/jama.2015.3595 10.1158/1078-0432.CCR-09-2638 10.4103/2153-3539.82050 10.1001/jamainternmed.2018.3763 10.1126/scitranslmed.3004330 10.1109/72.554195 10.1038/s41551-018-0305-z 10.1097/PAS.0b013e31815a04f5 10.1016/j.ebiom.2017.12.026 10.5858/arpa.2013-0200-OA 10.1183/09031936.06.00043506 10.1109/TMI.2016.2528162 10.1016/j.lungcan.2005.11.012 10.1200/JCO.2004.11.022 10.5858/arpa.2012-0033-OA 10.1038/nature08987 10.1109/TKDE.2009.191 10.3322/caac.21262 10.1038/nature13385 10.1038/ncomms12474 10.1074/mcp.O116.059253 10.1378/chest.12-2351 10.1136/bmjqs-2018-008551 10.1038/nature14539 10.1634/theoncologist.12-6-713 10.4103/2153-3539.119005 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/jamia/ocz230 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-974X |
EndPage | 769 |
ExternalDocumentID | PMC7309263 32364237 10_1093_jamia_ocz230 10.1093/jamia/ocz230 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: P50 HG007735 – fundername: NCI NIH HHS grantid: U24 CA160036 – fundername: ; ; grantid: 5U24CA160036 – fundername: ; ; – fundername: ; ; grantid: 5P50HG007735 |
GroupedDBID | --- --K .DC .GJ 0R~ 18M 1B1 1TH 29L 2WC 3V. 4.4 48X 53G 5GY 5RE 5WD 6PF 7RV 7X7 7~T 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8FW AABZA AACZT AAEDT AAJQQ AALRI AAMVS AAOGV AAPGJ AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT AAWTL AAXUO ABEUO ABIXL ABJNI ABNHQ ABOCM ABPTD ABQLI ABQNK ABSAR ABSMQ ABUWG ABWST ABXVV ACFRR ACGFO ACGFS ACGOD ACHQT ACUFI ACUTJ ACYHN ACZBC ADBBV ADGZP ADHKW ADHZD ADIPN ADJOM ADJQC ADMUD ADQBN ADRIX ADRTK ADVEK ADYVW AEGPL AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFKRA AFOFC AFXEN AFYAG AGINJ AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AJEEA ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APJGH AQDSO AQKUS AQUVI ARAPS ATGXG AVNTJ AVWKF AXUDD AYCSE AZQEC BAWUL BAYMD BCRHZ BENPR BEYMZ BGLVJ BHONS BKEYQ BPHCQ BTRTY BVRKM BVXVI BZKNY C1A C45 CCPQU CDBKE CS3 DAKXR DIK DILTD DU5 DWQXO E3Z EBD EBS EIHJH EJD EMOBN ENERS EO8 EX3 F5P FDB FECEO FLUFQ FOEOM FOTVD FQBLK FYUFA G-Q GAUVT GJXCC GNUQQ GX1 H13 HAR HCIFZ HMCUK IH2 IHE J21 K6V K7- KBUDW KOP KSI KSN LSO M0N M0T M1P M2P M2Q M41 MBLQV MHKGH NAPCQ NOMLY NOYVH NQ- NVLIB O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P62 PAFKI PCD PEELM PQQKQ PROAC PSQYO Q5Y R53 RIG ROL ROX ROZ RPM RPZ RUSNO RWL RXO S0X SSZ SV3 TAE TEORI TJX TMA UKHRP WOQ WOW YAYTL YHZ YKOAZ YXANX ZGI ~S- AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ADNBA AEMQT AFXAL AGORE AHGBF AHMMS AJBYB AJNCP ALXQX CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c482t-ec8362ca02c419228ca03700e646562b19673fc6638b64f41e45c6b93c8301823 |
ISSN | 1527-974X 1067-5027 |
IngestDate | Thu Aug 21 18:32:43 EDT 2025 Fri Jul 11 08:32:53 EDT 2025 Mon Jul 21 05:48:58 EDT 2025 Tue Jul 01 02:01:52 EDT 2025 Thu Apr 24 23:03:10 EDT 2025 Wed Aug 28 03:18:41 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | non-small cell lung cancer quantitative pathology convolutional neural networks machine learning transcriptomic subtypes |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c482t-ec8362ca02c419228ca03700e646562b19673fc6638b64f41e45c6b93c8301823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9892-8218 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7309263 |
PMID | 32364237 |
PQID | 2398156585 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7309263 proquest_miscellaneous_2398156585 pubmed_primary_32364237 crossref_primary_10_1093_jamia_ocz230 crossref_citationtrail_10_1093_jamia_ocz230 oup_primary_10_1093_jamia_ocz230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of the American Medical Informatics Association : JAMIA |
PublicationTitleAlternate | J Am Med Inform Assoc |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Pan (2020110613093994800_ocz230-B52) 2010; 22 Robboy (2020110613093994800_ocz230-B50) 2013; 137 Shin (2020110613093994800_ocz230-B27) 2016; 35 Gulshan (2020110613093994800_ocz230-B18) 2016; 316 Pantanowitz (2020110613093994800_ocz230-B61) 2011; 2 Szegedy (2020110613093994800_ocz230-B41) 2015 Ronneberger (2020110613093994800_ocz230-B56) 2015 Esteva (2020110613093994800_ocz230-B19) 2017; 542 (2020110613093994800_ocz230-B34) 2012; 489 Khosravi (2020110613093994800_ocz230-B48) 2018; 27 Zhang (2020110613093994800_ocz230-B35) 2011; 2011 Goodfellow (2020110613093994800_ocz230-B57) 2014 (2020110613093994800_ocz230-B33) 2014; 511 Al-Janabi (2020110613093994800_ocz230-B23) 2012; 61 Molina (2020110613093994800_ocz230-B1) 2008; 83 Yu (2020110613093994800_ocz230-B59) 2019; 28 Yuan (2020110613093994800_ocz230-B25) 2012; 4 LeCun (2020110613093994800_ocz230-B53) 2015; 521 Snyder (2020110613093994800_ocz230-B6) 2016 Johnson (2020110613093994800_ocz230-B9) 2004; 22 Wilkerson (2020110613093994800_ocz230-B15) 2010 Wilkerson (2020110613093994800_ocz230-B16) 2012; 7 Lever (2020110613093994800_ocz230-B45) 2016; 13 Yu (2020110613093994800_ocz230-B47) 2016; 7 Thunnissen (2020110613093994800_ocz230-B13) 2006; 28 Beck (2020110613093994800_ocz230-B24) 2011; 3 Travis (2020110613093994800_ocz230-B4) 2013; 31 Yu (2020110613093994800_ocz230-B5) 2016; 15 Zugazagoitia (2020110613093994800_ocz230-B60) 2014; 6 Suppl 5 Trejo Bittar (2020110613093994800_ocz230-B14) 2015; 28 Coudray (2020110613093994800_ocz230-B21) 2018; 24 Yu (2020110613093994800_ocz230-B28) Jia (2020110613093994800_ocz230-B39) 2014 Selvaraju (2020110613093994800_ocz230-B43) 2016. ://.//1610.02391 Stang (2020110613093994800_ocz230-B11) 2006; 52 Hudson (2020110613093994800_ocz230-B36) 2010; 464 Yu (2020110613093994800_ocz230-B51) 2018; 2 Goode (2020110613093994800_ocz230-B38) 2013; 4 Grilley-Olson (2020110613093994800_ocz230-B12) 2013; 137 Kothari (2020110613093994800_ocz230-B30) 2013; 20 Hipp (2020110613093994800_ocz230-B22) 2011; 2 Torre (2020110613093994800_ocz230-B2) 2015; 65 Collins (2020110613093994800_ocz230-B31) 2015; 372 Manion (2020110613093994800_ocz230-B49) 2008; 32 Bishop (2020110613093994800_ocz230-B10) 2010; 16 Ashley (2020110613093994800_ocz230-B32) 2015; 313 Ehteshami Bejnordi (2020110613093994800_ocz230-B20) 2017; 318 Selvaraju (2020110613093994800_ocz230-B46) 2016 Siegel (2020110613093994800_ocz230-B3) 2016; 66 Scagliotti (2020110613093994800_ocz230-B7) 2008; 26 Russakovsky (2020110613093994800_ocz230-B44) 2015; 115 Jha (2020110613093994800_ocz230-B29) 2016; 316 Cohen (2020110613093994800_ocz230-B8) 2007; 12 O’Connor (2020110613093994800_ocz230-B55) 2017; 6 Gianfrancesco (2020110613093994800_ocz230-B58) 2018; 178 Lawrence (2020110613093994800_ocz230-B17) 1997; 8 Chatfield (2020110613093994800_ocz230-B42) 2014 Krizhevsky (2020110613093994800_ocz230-B40) 2012 Yu (2020110613093994800_ocz230-B26) 2017; 5 Madabhushi (2020110613093994800_ocz230-B54) 2016; 33 Gould (2020110613093994800_ocz230-B37) 2013; 143 Suppl 5 |
References_xml | – volume: 316 start-page: 2353 issue: 22 year: 2016 ident: 2020110613093994800_ocz230-B29 article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists publication-title: JAMA doi: 10.1001/jama.2016.17438 – volume: 33 start-page: 170 year: 2016 ident: 2020110613093994800_ocz230-B54 article-title: Image analysis and machine learning in digital pathology: challenges and opportunities publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.037 – volume: 2 start-page: 36 issue: 1 year: 2011 ident: 2020110613093994800_ocz230-B61 article-title: Review of the current state of whole slide imaging in pathology publication-title: J Pathol Inform doi: 10.4103/2153-3539.83746 – volume: 489 start-page: 519 issue: 7417 year: 2012 ident: 2020110613093994800_ocz230-B34 article-title: Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers publication-title: Nature doi: 10.1038/nature11404 – volume: 28 start-page: 1058 issue: 8 year: 2015 ident: 2020110613093994800_ocz230-B14 article-title: Accuracy of the IASLC/ATS/ERS histological subtyping of stage I lung adenocarcinoma on intraoperative frozen sections publication-title: Mod Pathol doi: 10.1038/modpathol.2015.71 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 2020110613093994800_ocz230-B18 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 3 start-page: 108ra13 issue: 108 year: 2011 ident: 2020110613093994800_ocz230-B24 article-title: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002564 – volume: 13 start-page: 703 issue: 9 year: 2016 ident: 2020110613093994800_ocz230-B45 article-title: Model selection and overfitting publication-title: Nat Methods doi: 10.1038/nmeth.3968 – volume: 31 start-page: 992 issue: 8 year: 2013 ident: 2020110613093994800_ocz230-B4 article-title: New pathologic classification of lung cancer: relevance for clinical practice and clinical trials publication-title: J Clin Oncol doi: 10.1200/JCO.2012.46.9270 – volume: 372 start-page: 793 issue: 9 year: 2015 ident: 2020110613093994800_ocz230-B31 article-title: A new initiative on precision medicine publication-title: N Engl J Med doi: 10.1056/NEJMp1500523 – volume-title: Genomics and Personalized Medicine: What Everyone Needs to Know year: 2016 ident: 2020110613093994800_ocz230-B6 doi: 10.1093/wentk/9780190234775.001.0001 – volume: 24 start-page: 1559 issue: 10 year: 2018 ident: 2020110613093994800_ocz230-B21 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat Med doi: 10.1038/s41591-018-0177-5 – volume: 61 start-page: 1 issue: 1 year: 2012 ident: 2020110613093994800_ocz230-B23 article-title: Digital pathology: current status and future perspectives publication-title: Histopathology doi: 10.1111/j.1365-2559.2011.03814.x – start-page: 4864 year: 2010 ident: 2020110613093994800_ocz230-B15 article-title: Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin Cancer Res – volume: 83 start-page: 584 issue: 5 year: 2008 ident: 2020110613093994800_ocz230-B1 article-title: Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship publication-title: Mayo Clin Proc doi: 10.1016/S0025-6196(11)60735-0 – volume: 6 Suppl 5 start-page: S526 year: 2014 ident: 2020110613093994800_ocz230-B60 article-title: The new IASLC/ATS/ERS lung adenocarcinoma classification from a clinical perspective: current concepts and future prospects publication-title: J Thorac Dis – volume: 66 start-page: 7 issue: 1 year: 2016 ident: 2020110613093994800_ocz230-B3 article-title: Cancer statistics, 2016 publication-title: CA Cancer J Clin doi: 10.3322/caac.21332 – volume: 2011 start-page: bar026 year: 2011 ident: 2020110613093994800_ocz230-B35 article-title: International Cancer Genome Consortium Data Portal–a one-stop shop for cancer genomics data publication-title: Database (Oxford) doi: 10.1093/database/bar026 – volume: 26 start-page: 3543 issue: 21 year: 2008 ident: 2020110613093994800_ocz230-B7 article-title: Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2007.15.0375 – ident: 2020110613093994800_ocz230-B28 article-title: Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction publication-title: Bioinformatics – year: 2016. ://.//1610.02391 ident: 2020110613093994800_ocz230-B43 – volume: 7 issue: 5 year: 2012 ident: 2020110613093994800_ocz230-B16 article-title: Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation publication-title: PLoS One doi: 10.1371/journal.pone.0036530 – year: 2012 ident: 2020110613093994800_ocz230-B40 – start-page: 234 volume-title: International Conference on Medical Image Computing and Computer-assisted Intervention year: 2015 ident: 2020110613093994800_ocz230-B56 – volume: 318 start-page: 2199 issue: 22 year: 2017 ident: 2020110613093994800_ocz230-B20 article-title: Diagnostic Assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 2020110613093994800_ocz230-B44 article-title: ImageNet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 2020110613093994800_ocz230-B19 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 20 start-page: 1099 issue: 6 year: 2013 ident: 2020110613093994800_ocz230-B30 article-title: Pathology imaging informatics for quantitative analysis of whole-slide images publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001540 – volume: 313 start-page: 2119 issue: 21 year: 2015 ident: 2020110613093994800_ocz230-B32 article-title: The precision medicine initiative: a new national effort publication-title: JAMA doi: 10.1001/jama.2015.3595 – volume: 16 start-page: 610 issue: 2 year: 2010 ident: 2020110613093994800_ocz230-B10 article-title: Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2638 – volume: 2 start-page: 25. year: 2011 ident: 2020110613093994800_ocz230-B22 article-title: Computer aided diagnostic tools aim to empower rather than replace pathologists: lessons learned from computational chess publication-title: J Pathol Inform doi: 10.4103/2153-3539.82050 – year: 2014 ident: 2020110613093994800_ocz230-B42 – volume: 178 start-page: 1544–7 issue: 11 year: 2018 ident: 2020110613093994800_ocz230-B58 article-title: Potential biases in machine learning algorithms using electronic health record data publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2018.3763 – volume: 4 issue: 157 year: 2012 ident: 2020110613093994800_ocz230-B25 article-title: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3004330 – volume: 8 start-page: 98 issue: 1 year: 1997 ident: 2020110613093994800_ocz230-B17 article-title: Face recognition: a convolutional neural-network approach publication-title: IEEE Trans Neural Netw doi: 10.1109/72.554195 – volume: 2 start-page: 719 issue: 10 year: 2018 ident: 2020110613093994800_ocz230-B51 article-title: Artificial intelligence in healthcare publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0305-z – volume: 32 start-page: 732 issue: 5 year: 2008 ident: 2020110613093994800_ocz230-B49 article-title: Mandatory second opinion in surgical pathology referral material: clinical consequences of major disagreements publication-title: Am J Surg Pathol doi: 10.1097/PAS.0b013e31815a04f5 – volume: 27 start-page: 317 year: 2018 ident: 2020110613093994800_ocz230-B48 article-title: Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.12.026 – volume: 137 start-page: 1723 issue: 12 year: 2013 ident: 2020110613093994800_ocz230-B50 article-title: Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2013-0200-OA – year: 2016 ident: 2020110613093994800_ocz230-B46 – volume: 28 start-page: 1186 issue: 6 year: 2006 ident: 2020110613093994800_ocz230-B13 article-title: EU-USA pathology panel for uniform diagnosis in randomised controlled trials for HRCT screening in lung cancer publication-title: Eur Respir J doi: 10.1183/09031936.06.00043506 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 2020110613093994800_ocz230-B27 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528162 – volume: 52 start-page: 29 issue: 1 year: 2006 ident: 2020110613093994800_ocz230-B11 article-title: Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case-control study publication-title: Lung Cancer doi: 10.1016/j.lungcan.2005.11.012 – volume: 22 start-page: 2184 issue: 11 year: 2004 ident: 2020110613093994800_ocz230-B9 article-title: Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2004.11.022 – volume: 137 start-page: 32 issue: 1 year: 2013 ident: 2020110613093994800_ocz230-B12 article-title: Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 World Health Organization classification and therapeutically relevant subsets publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2012-0033-OA – volume: 5 issue: 6 year: 2017 ident: 2020110613093994800_ocz230-B26 article-title: Association of omics features with histopathology patterns in lung adenocarcinoma publication-title: Cell Syst – year: 2015 ident: 2020110613093994800_ocz230-B41 – start-page: 2672 year: 2014 ident: 2020110613093994800_ocz230-B57 article-title: Generative adversarial networks publication-title: Adv Neural Inform Proc Syst – volume: 464 start-page: 993 issue: 7291 year: 2010 ident: 2020110613093994800_ocz230-B36 article-title: International network of cancer genome projects publication-title: Nature doi: 10.1038/nature08987 – year: 2014 ident: 2020110613093994800_ocz230-B39 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 2020110613093994800_ocz230-B52 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 65 start-page: 87 issue: 2 year: 2015 ident: 2020110613093994800_ocz230-B2 article-title: Global cancer statistics, 2012 publication-title: CA Cancer J Clin doi: 10.3322/caac.21262 – volume: 511 start-page: 543 issue: 7511 year: 2014 ident: 2020110613093994800_ocz230-B33 article-title: Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma publication-title: Nature doi: 10.1038/nature13385 – volume: 7 start-page: 12474 issue: 1 year: 2016 ident: 2020110613093994800_ocz230-B47 article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features publication-title: Nat Commun doi: 10.1038/ncomms12474 – volume: 15 start-page: 2525 issue: 8 year: 2016 ident: 2020110613093994800_ocz230-B5 article-title: Omics profiling in precision oncology publication-title: Mol Cell Proteomics doi: 10.1074/mcp.O116.059253 – volume: 6 year: 2017 ident: 2020110613093994800_ocz230-B55 article-title: Rethinking the role of clinical imaging publication-title: Elife – volume: 143 Suppl 5 start-page: e93S year: 2013 ident: 2020110613093994800_ocz230-B37 article-title: Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines publication-title: Chest doi: 10.1378/chest.12-2351 – volume: 28 start-page: 238 issue: 3 year: 2019 ident: 2020110613093994800_ocz230-B59 article-title: Framing the challenges of artificial intelligence in medicine publication-title: BMJ Qual Saf doi: 10.1136/bmjqs-2018-008551 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2020110613093994800_ocz230-B53 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 713 issue: 6 year: 2007 ident: 2020110613093994800_ocz230-B8 article-title: FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer publication-title: Oncologist doi: 10.1634/theoncologist.12-6-713 – volume: 4 start-page: 27. year: 2013 ident: 2020110613093994800_ocz230-B38 article-title: OpenSlide: a vendor-neutral software foundation for digital pathology publication-title: J Pathol Inform doi: 10.4103/2153-3539.119005 |
SSID | ssj0016235 |
Score | 2.5634348 |
Snippet | Abstract
Objective
Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its... Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 757 |
SubjectTerms | Adenocarcinoma of Lung - genetics Adenocarcinoma of Lung - pathology Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - pathology Carcinoma, Squamous Cell - genetics Carcinoma, Squamous Cell - pathology Humans Lung Neoplasms - genetics Lung Neoplasms - pathology Machine Learning Neural Networks, Computer Research and Applications ROC Curve Transcriptome |
Title | Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32364237 https://www.proquest.com/docview/2398156585 https://pubmed.ncbi.nlm.nih.gov/PMC7309263 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9IMa1wCYjwVPlLbFzcR5hWleQhhDapPIUJa6jFbXZ1CQ87N_yTzi-JHEG47KXNEqcOMn39Zxjn4sRepOB1geuCFJ4eUICmlGSRZIS6RXhouAwKCp0gOynaHYefJyH89HohxO11NT5gbj-bV7JXVCFY4CrypL9D2S7m8IB2Ad8YQsIw_afMNYrWi5NphIM40m1Vo5mNRc_WTUqmVZButHTrKYUc600k5YTKhl5UjW5OdfY3Nvyu31eAE5VutQ_Ok68usWKdTJTeq-PzXHSFaAd_PX0A0j5Dx1rvjZa0DQlmVWtDtWz-0YCTeVy07P3vdwYn_-JmUfrZri_GG__jVoJ7nwG9frowT_lSToiGvQrCT1TUeBAWrFNYwIjo7kr122Lpes510I6DmNH38dmqZhfVIkps_UtW6ug5emluKbGgeTw6mqticVUEX7K4l6ldoGOn0-PQIQmNGL30H0KIxm1yMbJvItC8sH6DLVD3r6Uzc2Azg9114em4x203fYyMKAGSZnO2OhmiK9jM509RA8sTfA7w9xdNJLlI7R9asM5HqOVQ2DcERgrAmNFYGwIjDVJMRAYDwmMWwJjTWA8IDA2BMYtgZ-g8-nx2dGM2OU_iAg4rYkUHKwrkXlUqFAFymGXxZ4nI1Xjj-agO2JWCDCZeR4FReDLIBRRnjC4zoNhM3uKtuDR5XOEEy9aSOHnPgt4QCXjXLIi4ZxlCV2wPB6jSftNU2Fr46slWlapidFgqQYjNWCM0duu9ZWpCXNLOwzw_KXJ6xa7FOS6-r5ZKS-bKlV1OX0YbfFwjJ4ZLLs7tVQYo3iActdA1YwfnimXF7p2vGXjiztf-RLt9P_aV2ir3jRyD-zyOt_XzP4Jfz7tTg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+non-small+cell+lung+cancer+types+and+transcriptomic+subtypes+using+convolutional+neural+networks&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Yu%2C+Kun-Hsing&rft.au=Wang%2C+Feiran&rft.au=Berry%2C+Gerald+J&rft.au=R%C3%A9%2C+Christopher&rft.date=2020-05-01&rft.pub=Oxford+University+Press&rft.issn=1067-5027&rft.eissn=1527-974X&rft.volume=27&rft.issue=5&rft.spage=757&rft.epage=769&rft_id=info:doi/10.1093%2Fjamia%2Focz230&rft_id=info%3Apmid%2F32364237&rft.externalDocID=PMC7309263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon |