TAAC - TMS Adaptable Auditory Control: A universal tool to mask TMS clicks
Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represent...
Saved in:
Published in | Journal of neuroscience methods Vol. 370; p. 109491 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones.
Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains.
We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click.
Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises.
At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements.
•Auditory evoked potentials are the main confounding of the EEG responses to TMS.•We release TAAC, a flexible open-source tool that generates customized masking noises.•TAAC generates masking noises effective at lower volume compared to existing methods. |
---|---|
AbstractList | Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones.BACKGROUNDCoupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones.Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains.NEW METHODHere we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains.We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click.RESULTSWe showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click.Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises.COMPARISON WITH EXISTING METHODSHere, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises.At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements.CONCLUSIONSAt odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements. Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones. Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains. We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click. Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises. At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements. •Auditory evoked potentials are the main confounding of the EEG responses to TMS.•We release TAAC, a flexible open-source tool that generates customized masking noises.•TAAC generates masking noises effective at lower volume compared to existing methods. Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones. Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains. We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click. Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises. At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements. |
ArticleNumber | 109491 |
Author | Massimini, M. Russo, S. Rosanova, M. Fecchio, M. Casarotto, S. D’Ambrosio, S. Puglisi, G.E. Pigorini, A. Astolfi, A. Dal Palù, D. Sarasso, S. |
Author_xml | – sequence: 1 givenname: S. surname: Russo fullname: Russo, S. email: simone.russo@unimi.it organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy – sequence: 2 givenname: S. surname: Sarasso fullname: Sarasso, S. organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy – sequence: 3 givenname: G.E. surname: Puglisi fullname: Puglisi, G.E. organization: Department of Energy, Politecnico di Torino, Torino, Italy – sequence: 4 givenname: D. surname: Dal Palù fullname: Dal Palù, D. organization: Department of Architecture and Design, Politecnico di Torino, Torino, Italy – sequence: 5 givenname: A. surname: Pigorini fullname: Pigorini, A. organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy – sequence: 6 givenname: S. surname: Casarotto fullname: Casarotto, S. organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy – sequence: 7 givenname: S. surname: D’Ambrosio fullname: D’Ambrosio, S. organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy – sequence: 8 givenname: A. surname: Astolfi fullname: Astolfi, A. organization: Department of Energy, Politecnico di Torino, Torino, Italy – sequence: 9 givenname: M. surname: Massimini fullname: Massimini, M. organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy – sequence: 10 givenname: M. surname: Rosanova fullname: Rosanova, M. organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy – sequence: 11 givenname: M. surname: Fecchio fullname: Fecchio, M. email: mfecchio@mgh.harvard.edu organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35101524$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOwzAQRS0EgvL4BeQlmxTbcZwEsSCqeArEgiKxsxxnIlySuNhOJf4el9INGzYz0ujcOzP3EO0OdgCETimZUkLF-WK6GGDsIbxPGWEsDkte0h00oUXOEpEXb7toEsEsISwnB-jQ-wUhhJdE7KODNIsmGeMT9DCvqhlO8PzpBVeNWgZVd4CrsTHBui88s0NwtrvAFR4HswLnVYeDteuCe-U_foS6M_rDH6O9VnUeTn77EXq9uZ7P7pLH59v7WfWYaF6wkEBW5ELwNqPxgrTVBROF4mXJU8JrrbkmIhVFm9OalnWWx5LSPIMm3lwWmeDpETrb-C6d_RzBB9kbr6Hr1AB29JIJxoUgJC0jevqLjnUPjVw60yv3Jbf_R-ByA2hnvXfQSm2CCmb9tjKdpESu45YLuY1bruOWm7ijXPyRbzf8K7zaCCEGtTLgpNcGBg2NcaCDbKz5z-Ibch-ZwQ |
CitedBy_id | crossref_primary_10_1002_hbm_25990 crossref_primary_10_1523_JNEUROSCI_0406_23_2023 crossref_primary_10_1016_j_neuroimage_2024_120874 crossref_primary_10_1016_j_neurot_2024_e00496 crossref_primary_10_1016_j_neurot_2024_e00497 crossref_primary_10_1016_j_xcrm_2023_101060 crossref_primary_10_1016_j_brs_2022_01_016 crossref_primary_10_1016_j_bpsc_2024_07_013 crossref_primary_10_1016_j_clinph_2022_07_495 crossref_primary_10_1016_j_jneumeth_2022_109486 crossref_primary_10_1162_jocn_a_02058 crossref_primary_10_1523_JNEUROSCI_1016_23_2023 crossref_primary_10_1016_j_bpsc_2022_12_005 crossref_primary_10_1016_j_brs_2025_02_015 crossref_primary_10_1002_hbm_26679 crossref_primary_10_1016_j_neuroimage_2023_120427 crossref_primary_10_1016_j_brs_2024_05_002 crossref_primary_10_1186_s12883_022_02958_x crossref_primary_10_1007_s12028_023_01795_1 crossref_primary_10_1016_j_dib_2025_111467 crossref_primary_10_1038_s41531_024_00792_1 crossref_primary_10_1113_JP283986 crossref_primary_10_1016_j_brs_2023_02_009 crossref_primary_10_1111_ejn_16299 crossref_primary_10_1016_j_nbd_2023_106073 crossref_primary_10_1016_j_jneumeth_2022_109494 crossref_primary_10_1097_j_pain_0000000000003488 crossref_primary_10_1038_s41467_022_28451_0 crossref_primary_10_3390_brainsci13060866 crossref_primary_10_1016_j_clinph_2024_06_008 crossref_primary_10_1016_j_jneumeth_2022_109735 crossref_primary_10_1016_j_brs_2024_06_008 crossref_primary_10_1007_s12028_023_01706_4 crossref_primary_10_1002_hbm_26022 crossref_primary_10_1162_imag_a_00349 crossref_primary_10_1523_ENEURO_0309_23_2024 crossref_primary_10_1016_j_brs_2024_12_004 crossref_primary_10_1016_j_clinph_2023_03_010 crossref_primary_10_3390_app13021047 crossref_primary_10_1016_j_nicl_2023_103463 crossref_primary_10_12688_openreseurope_14634_1 crossref_primary_10_3390_brainsci14050432 crossref_primary_10_12688_openreseurope_14634_2 crossref_primary_10_1007_s10548_023_01018_y crossref_primary_10_1016_j_clinph_2024_10_018 crossref_primary_10_1016_j_neubiorev_2023_105434 crossref_primary_10_3390_brainsci13030418 crossref_primary_10_1016_j_xpro_2025_103622 crossref_primary_10_1016_j_clinph_2025_02_268 crossref_primary_10_1016_j_neurom_2024_04_007 crossref_primary_10_1016_j_clinph_2025_03_020 crossref_primary_10_1007_s12264_025_01375_7 crossref_primary_10_1016_j_neucli_2024_103012 crossref_primary_10_3390_brainsci13040534 crossref_primary_10_3390_brainsci13060921 crossref_primary_10_1016_j_jneumeth_2022_109631 crossref_primary_10_1016_j_brs_2024_02_006 crossref_primary_10_1093_cercor_bhad259 crossref_primary_10_1523_JNEUROSCI_2201_23_2024 |
Cites_doi | 10.1016/j.neuroimage.2014.07.037 10.1007/s10548-009-0083-8 10.1016/j.jneumeth.2022.109486 10.1016/j.neuroimage.2018.10.052 10.1007/s10548-013-0312-z 10.1371/journal.pone.0184910 10.1016/j.brs.2020.10.011 10.1126/science.1117256 10.1152/jn.2001.86.4.1983 10.1016/S1388-2457(99)00070-X 10.1109/EMBC.2015.7318341 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2022.109491 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 35101524 10_1016_j_jneumeth_2022_109491 S0165027022000188 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 6I. 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c482t-e587664f511523fc8268a4994304bcc4c06368f71b19b5719b3175ed351985643 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Jul 11 10:26:57 EDT 2025 Wed Feb 19 02:26:50 EST 2025 Tue Jul 01 02:57:15 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 Fri Feb 23 02:39:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | WBN TMS-EEG EEG Noise masking CN AEP AN CBN SPL Auditory evoked potential WN HATS TMS TEP |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-e587664f511523fc8268a4994304bcc4c06368f71b19b5719b3175ed351985643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0165027022000188 |
PMID | 35101524 |
PQID | 2624660039 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2624660039 pubmed_primary_35101524 crossref_citationtrail_10_1016_j_jneumeth_2022_109491 crossref_primary_10_1016_j_jneumeth_2022_109491 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Casarotto, Fecchio, Rosanova, Varone, D’Ambrosio, Sarasso, Pigorini, Russo, Comanducci, Ilmoniemi, Massimini (bib3) 2022; 370 Rocchi, Di Santo, Brown, Ibáñez, Casula, Rawji, Di Lazzaro, Koch, Rothwell (bib13) 2021; 14 Belardinelli, Biabani, Blumberger, Bortoletto, Casarotto, David, Desideri, Etkin, Ferrarelli, Fitzgerald, Fornito, Gordon, Gosseries, Harquel, Julkunen, Keller, Kimiskidis, Lioumis, Miniussi, Rosanova, Rossi, Sarasso, Wu, Zrenner, Daskalakis, Rogasch, Massimini, Ziemann, Ilmoniemi (bib1) 2019; 12 Fecchio, Pigorini, Comanducci, Sarasso, Casarotto, Premoli, Derchi, Mazza, Russo, Resta, Ferrarelli, Mariotti, Ziemann, Massimini, Rosanova (bib5) 2017; 12 Paus, Sipila, Strafella (bib11) 2001; 86 Massimini, Ferrarelli, Huber, Esser, Singh, Tononi (bib7) 2005; 309 Ozdemir, Tadayon, Boucher, Sun, Momi, Ganglberger, Westover, Pascual-Leone, Santarnecchi, Shafi (bib10) 2021; 14 Conde, Tomasevic, Akopian, Stanek, Saturnino, Thielscher, Bergmann, Siebner (bib4) 2019; 185 ter Braack, de Vos, van Putten (bib2) 2015; 28 Koponen, Goetz, Tucci, Peterchev (bib6) 2020; 13 Rogasch, Thomson, Farzan, Fitzgibbon, Bailey, Hernandez-Pavon, Daskalakis, Fitzgerald (bib14) 2014; 101 Nikouline, Ruohonen, Ilmoniemi (bib9) 1999; 110 Peterchev, A.V., Murphy, D.L.K., Goetz, S.M., 2015. Quiet transcranial magnetic stimulation: Status and future directions, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 226–229. https://doi.org/10.1109/EMBC.2015.7318341. Miniussi, Thut (bib8) 2010; 22 Ozdemir (10.1016/j.jneumeth.2022.109491_bib10) 2021; 14 Massimini (10.1016/j.jneumeth.2022.109491_bib7) 2005; 309 ter Braack (10.1016/j.jneumeth.2022.109491_bib2) 2015; 28 Rocchi (10.1016/j.jneumeth.2022.109491_bib13) 2021; 14 Nikouline (10.1016/j.jneumeth.2022.109491_bib9) 1999; 110 Koponen (10.1016/j.jneumeth.2022.109491_bib6) 2020; 13 Belardinelli (10.1016/j.jneumeth.2022.109491_bib1) 2019; 12 Casarotto (10.1016/j.jneumeth.2022.109491_bib3) 2022; 370 Rogasch (10.1016/j.jneumeth.2022.109491_bib14) 2014; 101 Conde (10.1016/j.jneumeth.2022.109491_bib4) 2019; 185 10.1016/j.jneumeth.2022.109491_bib12 Miniussi (10.1016/j.jneumeth.2022.109491_bib8) 2010; 22 Paus (10.1016/j.jneumeth.2022.109491_bib11) 2001; 86 Fecchio (10.1016/j.jneumeth.2022.109491_bib5) 2017; 12 |
References_xml | – volume: 309 start-page: 2228 year: 2005 end-page: 2232 ident: bib7 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science – volume: 14 start-page: 391 year: 2021 end-page: 403 ident: bib10 article-title: Cortical responses to noninvasive perturbations enable individual brain fingerprinting publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation – volume: 185 start-page: 300 year: 2019 end-page: 312 ident: bib4 article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies publication-title: NeuroImage – volume: 13 start-page: 873 year: 2020 end-page: 880 ident: bib6 article-title: Sound comparison of seven TMS coils at matched stimulation strength publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation – volume: 110 start-page: 1325 year: 1999 end-page: 1328 ident: bib9 article-title: The role of the coil click in TMS assessed with simultaneous EEG publication-title: Clin. Neurophysiol. J. Int. Fed. Clin. Neurophysiol. – volume: 101 start-page: 425 year: 2014 end-page: 439 ident: bib14 article-title: Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties publication-title: NeuroImage – volume: 12 start-page: 787 year: 2019 end-page: 790 ident: bib1 article-title: Reproducibility in TMS–EEG studies: a call for data sharing, standard procedures and effective experimental control publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation – volume: 14 start-page: 4 year: 2021 end-page: 18 ident: bib13 article-title: Disentangling EEG responses to TMS due to cortical and peripheral activations publication-title: Brain Stimul. – volume: 22 start-page: 249 year: 2010 end-page: 256 ident: bib8 article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience publication-title: Brain Topogr. – volume: 370 year: 2022 ident: bib3 article-title: The rt-TEP tool: real-time visualization of TMS-evoked potentials to maximize cortical activation and minimize artifacts publication-title: Journal of Neuroscience Methods – volume: 12 year: 2017 ident: bib5 article-title: The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials publication-title: PLOS ONE – volume: 28 start-page: 520 year: 2015 end-page: 528 ident: bib2 article-title: Masking the auditory evoked potential in TMS-EEG: a comparison of various methods publication-title: Brain Topogr. – volume: 86 start-page: 1983 year: 2001 end-page: 1990 ident: bib11 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J. Neurophysiol. – reference: Peterchev, A.V., Murphy, D.L.K., Goetz, S.M., 2015. Quiet transcranial magnetic stimulation: Status and future directions, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 226–229. https://doi.org/10.1109/EMBC.2015.7318341. – volume: 101 start-page: 425 year: 2014 ident: 10.1016/j.jneumeth.2022.109491_bib14 article-title: Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.037 – volume: 13 start-page: 873 year: 2020 ident: 10.1016/j.jneumeth.2022.109491_bib6 article-title: Sound comparison of seven TMS coils at matched stimulation strength publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation – volume: 12 start-page: 787 year: 2019 ident: 10.1016/j.jneumeth.2022.109491_bib1 article-title: Reproducibility in TMS–EEG studies: a call for data sharing, standard procedures and effective experimental control publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation – volume: 22 start-page: 249 year: 2010 ident: 10.1016/j.jneumeth.2022.109491_bib8 article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience publication-title: Brain Topogr. doi: 10.1007/s10548-009-0083-8 – volume: 370 year: 2022 ident: 10.1016/j.jneumeth.2022.109491_bib3 article-title: The rt-TEP tool: real-time visualization of TMS-evoked potentials to maximize cortical activation and minimize artifacts publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2022.109486 – volume: 185 start-page: 300 year: 2019 ident: 10.1016/j.jneumeth.2022.109491_bib4 article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.10.052 – volume: 28 start-page: 520 year: 2015 ident: 10.1016/j.jneumeth.2022.109491_bib2 article-title: Masking the auditory evoked potential in TMS-EEG: a comparison of various methods publication-title: Brain Topogr. doi: 10.1007/s10548-013-0312-z – volume: 12 year: 2017 ident: 10.1016/j.jneumeth.2022.109491_bib5 article-title: The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials publication-title: PLOS ONE doi: 10.1371/journal.pone.0184910 – volume: 14 start-page: 391 year: 2021 ident: 10.1016/j.jneumeth.2022.109491_bib10 article-title: Cortical responses to noninvasive perturbations enable individual brain fingerprinting publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation – volume: 14 start-page: 4 year: 2021 ident: 10.1016/j.jneumeth.2022.109491_bib13 article-title: Disentangling EEG responses to TMS due to cortical and peripheral activations publication-title: Brain Stimul. doi: 10.1016/j.brs.2020.10.011 – volume: 309 start-page: 2228 year: 2005 ident: 10.1016/j.jneumeth.2022.109491_bib7 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science doi: 10.1126/science.1117256 – volume: 86 start-page: 1983 year: 2001 ident: 10.1016/j.jneumeth.2022.109491_bib11 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.4.1983 – volume: 110 start-page: 1325 year: 1999 ident: 10.1016/j.jneumeth.2022.109491_bib9 article-title: The role of the coil click in TMS assessed with simultaneous EEG publication-title: Clin. Neurophysiol. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00070-X – ident: 10.1016/j.jneumeth.2022.109491_bib12 doi: 10.1109/EMBC.2015.7318341 |
SSID | ssj0004906 |
Score | 2.5654263 |
Snippet | Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109491 |
SubjectTerms | AEP Auditory evoked potential Electroencephalography - methods Evoked Potentials - physiology Evoked Potentials, Auditory - physiology Healthy Volunteers Humans Noise masking TEP TMS-EEG Transcranial Magnetic Stimulation - methods |
Title | TAAC - TMS Adaptable Auditory Control: A universal tool to mask TMS clicks |
URI | https://dx.doi.org/10.1016/j.jneumeth.2022.109491 https://www.ncbi.nlm.nih.gov/pubmed/35101524 https://www.proquest.com/docview/2624660039 |
Volume | 370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hVkJ7WbGwj7KAjIS4hTap7TjcogpUQOVCkbhZtuNILZBUND1w4bfvTB48DogDl0iJMrI1dma-ycznATikzJnIMgxLLJcBN9IFiIpsoKjtNvoMEedETp5cyfENv7gVt2sw6rgwVFbZ2v7GptfWun3Sb7XZX8xm_Wsi4gyITkVsk1AR4ZfzmHb58fNrmQdP6v6a9DLlKwdvWMLz43nhV9SpGePEKKKTlXgSfuSgPgKgtSM624QfLYJkaTPJn7Dmiy3YTguMnh-e2BGrazrrn-VbsDFpU-fbcDFN0xEL2HRyzdLMLCriTLGUSBnl4xMbNSXrJyxlq6ZWA8eoypIu7MEs72pBdz9zd8tfcHN2Oh2Ng7aRQuC4iqrAC7R5kucIrjDuzB2GFMpgqMOHA26d4w5xilR5HNowsSLGC6EKn1HzPiUQs_yG9aIs_F9gkRtmFvU-yBLFbSaNMt5LlVkl46ExeQ9Epz3t2lPGqdnFve7Kyea607omretG6z3ov8gtmnM2PpVIusXR73aMRmfwqexBt5oaPyfKkZjCl6uljmTEpSTGcg_-NMv8Mp8h2S8R8Z0vjPwPvtMdVbGFYhfWq8eV30NYU9n9et_uw7f0_HJ89R-FGPKW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4CJgGXaYMNujEwEuIW2qS26-wWVUOFUS4UiZtlO47UFpKKpgcu-9v3Xn7AdkAcuPiQ5MnWs_38vbz3-QGcUORMpCm6JZbLgBvpAkRFNlBUdhvPDDHIiJw8vpajW355J-7WYNhyYSitsrH9tU2vrHXzpNtos7uYTrs3RMTpEZ2K2CahUuvwgeP2pTIGZ39e8jx4XBXYpK8pYNn7hyY8O5vlfkWlmtFRjCK6WonH4Wsn1GsItDqJzj_BxwZCsqQe5WdY8_kO7CY5us8PT-yUVUmd1d_yHdgcN7HzXbicJMmQBWwyvmFJahYlkaZYQqyM4vGJDeuc9Z8sYas6WQP7KIuCGvZglvNK0N1P3Xz5BW7Pf02Go6CppBA4rqIy8AKNnuQZoit0PDOHPoUy6Ovwfo9b57hDoCJVNghtGFsxwIZghU-pep8SCFq-wkZe5H4fWOT6qUXF99JYcZtKo4z3UqVWyUHfmKwDotWeds0141Tt4l63-WQz3Wpdk9Z1rfUOdJ_lFvVFG29KxO3k6P-WjMbT4E3Z43Y2Ne4nCpKY3BerpY5kxKUkynIH9uppfh5PnwyYiPi3d_R8BFujyfhKX11c__4O2_SGUtpCcQAb5ePK_0CMU9rDag3_BRQm9CQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAAC+-+TMS+Adaptable+Auditory+Control%3A+A+universal+tool+to+mask+TMS+clicks&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Russo%2C+S&rft.au=Sarasso%2C+S&rft.au=Puglisi%2C+G+E&rft.au=Dal+Pal%C3%B9%2C+D&rft.date=2022-03-15&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=370&rft.spage=109491&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109491&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |