TAAC - TMS Adaptable Auditory Control: A universal tool to mask TMS clicks

Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represent...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 370; p. 109491
Main Authors Russo, S., Sarasso, S., Puglisi, G.E., Dal Palù, D., Pigorini, A., Casarotto, S., D’Ambrosio, S., Astolfi, A., Massimini, M., Rosanova, M., Fecchio, M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones. Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains. We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click. Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises. At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements. •Auditory evoked potentials are the main confounding of the EEG responses to TMS.•We release TAAC, a flexible open-source tool that generates customized masking noises.•TAAC generates masking noises effective at lower volume compared to existing methods.
AbstractList Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones.BACKGROUNDCoupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones.Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains.NEW METHODHere we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains.We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click.RESULTSWe showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click.Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises.COMPARISON WITH EXISTING METHODSHere, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises.At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements.CONCLUSIONSAt odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements.
Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones. Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains. We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click. Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises. At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements. •Auditory evoked potentials are the main confounding of the EEG responses to TMS.•We release TAAC, a flexible open-source tool that generates customized masking noises.•TAAC generates masking noises effective at lower volume compared to existing methods.
Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical perturbation. However, obtaining a genuine TMS-evoked EEG potential requires controlling for several confounds, among which a main source is represented by the auditory evoked potentials (AEPs) associated to the TMS discharge noise (TMS click). This contaminating factor can be in principle prevented by playing a masking noise through earphones. Here we release TMS Adaptable Auditory Control (TAAC), a highly flexible, open-source, Matlab®-based interface that generates in real-time customized masking noises. TAAC creates noises starting from the stimulator-specific TMS click and tailors them to fit the individual, subject-specific click perception by mixing and manipulating the standard noises in both time and frequency domains. We showed that TAAC allows us to provide standard as well as customized noises able to effectively and safely mask the TMS click. Here, we showcased two customized noises by comparing them to two standard noises previously used in the TMS literature (i.e., a white noise and a noise generated from the stimulator-specific TMS click only). For each, we quantified the Sound Pressure Level (SPL; measured by a Head and Torso Simulator - HATS) required to mask the TMS click in a population of 20 healthy subjects. Both customized noises were effective at safe (according to OSHA and NIOSH safety guidelines) and lower SPLs with respect to standard noises. At odds with previous methods, TAAC allows creating effective and safe masking noises specifically tailored on each TMS device and subject. The combination of TAAC with tools for the real-time visualization of TEPs can help control the influence of auditory confounds also in non-compliant patients. Finally, TAAC is a highly flexible and open-source tool, so it can be further extended to meet different experimental requirements.
ArticleNumber 109491
Author Massimini, M.
Russo, S.
Rosanova, M.
Fecchio, M.
Casarotto, S.
D’Ambrosio, S.
Puglisi, G.E.
Pigorini, A.
Astolfi, A.
Dal Palù, D.
Sarasso, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Russo
  fullname: Russo, S.
  email: simone.russo@unimi.it
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
– sequence: 2
  givenname: S.
  surname: Sarasso
  fullname: Sarasso, S.
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
– sequence: 3
  givenname: G.E.
  surname: Puglisi
  fullname: Puglisi, G.E.
  organization: Department of Energy, Politecnico di Torino, Torino, Italy
– sequence: 4
  givenname: D.
  surname: Dal Palù
  fullname: Dal Palù, D.
  organization: Department of Architecture and Design, Politecnico di Torino, Torino, Italy
– sequence: 5
  givenname: A.
  surname: Pigorini
  fullname: Pigorini, A.
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
– sequence: 6
  givenname: S.
  surname: Casarotto
  fullname: Casarotto, S.
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
– sequence: 7
  givenname: S.
  surname: D’Ambrosio
  fullname: D’Ambrosio, S.
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
– sequence: 8
  givenname: A.
  surname: Astolfi
  fullname: Astolfi, A.
  organization: Department of Energy, Politecnico di Torino, Torino, Italy
– sequence: 9
  givenname: M.
  surname: Massimini
  fullname: Massimini, M.
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
– sequence: 10
  givenname: M.
  surname: Rosanova
  fullname: Rosanova, M.
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
– sequence: 11
  givenname: M.
  surname: Fecchio
  fullname: Fecchio, M.
  email: mfecchio@mgh.harvard.edu
  organization: Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35101524$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS0EgvL4BeQlmxTbcZwEsSCqeArEgiKxsxxnIlySuNhOJf4el9INGzYz0ujcOzP3EO0OdgCETimZUkLF-WK6GGDsIbxPGWEsDkte0h00oUXOEpEXb7toEsEsISwnB-jQ-wUhhJdE7KODNIsmGeMT9DCvqhlO8PzpBVeNWgZVd4CrsTHBui88s0NwtrvAFR4HswLnVYeDteuCe-U_foS6M_rDH6O9VnUeTn77EXq9uZ7P7pLH59v7WfWYaF6wkEBW5ELwNqPxgrTVBROF4mXJU8JrrbkmIhVFm9OalnWWx5LSPIMm3lwWmeDpETrb-C6d_RzBB9kbr6Hr1AB29JIJxoUgJC0jevqLjnUPjVw60yv3Jbf_R-ByA2hnvXfQSm2CCmb9tjKdpESu45YLuY1bruOWm7ijXPyRbzf8K7zaCCEGtTLgpNcGBg2NcaCDbKz5z-Ibch-ZwQ
CitedBy_id crossref_primary_10_1002_hbm_25990
crossref_primary_10_1523_JNEUROSCI_0406_23_2023
crossref_primary_10_1016_j_neuroimage_2024_120874
crossref_primary_10_1016_j_neurot_2024_e00496
crossref_primary_10_1016_j_neurot_2024_e00497
crossref_primary_10_1016_j_xcrm_2023_101060
crossref_primary_10_1016_j_brs_2022_01_016
crossref_primary_10_1016_j_bpsc_2024_07_013
crossref_primary_10_1016_j_clinph_2022_07_495
crossref_primary_10_1016_j_jneumeth_2022_109486
crossref_primary_10_1162_jocn_a_02058
crossref_primary_10_1523_JNEUROSCI_1016_23_2023
crossref_primary_10_1016_j_bpsc_2022_12_005
crossref_primary_10_1016_j_brs_2025_02_015
crossref_primary_10_1002_hbm_26679
crossref_primary_10_1016_j_neuroimage_2023_120427
crossref_primary_10_1016_j_brs_2024_05_002
crossref_primary_10_1186_s12883_022_02958_x
crossref_primary_10_1007_s12028_023_01795_1
crossref_primary_10_1016_j_dib_2025_111467
crossref_primary_10_1038_s41531_024_00792_1
crossref_primary_10_1113_JP283986
crossref_primary_10_1016_j_brs_2023_02_009
crossref_primary_10_1111_ejn_16299
crossref_primary_10_1016_j_nbd_2023_106073
crossref_primary_10_1016_j_jneumeth_2022_109494
crossref_primary_10_1097_j_pain_0000000000003488
crossref_primary_10_1038_s41467_022_28451_0
crossref_primary_10_3390_brainsci13060866
crossref_primary_10_1016_j_clinph_2024_06_008
crossref_primary_10_1016_j_jneumeth_2022_109735
crossref_primary_10_1016_j_brs_2024_06_008
crossref_primary_10_1007_s12028_023_01706_4
crossref_primary_10_1002_hbm_26022
crossref_primary_10_1162_imag_a_00349
crossref_primary_10_1523_ENEURO_0309_23_2024
crossref_primary_10_1016_j_brs_2024_12_004
crossref_primary_10_1016_j_clinph_2023_03_010
crossref_primary_10_3390_app13021047
crossref_primary_10_1016_j_nicl_2023_103463
crossref_primary_10_12688_openreseurope_14634_1
crossref_primary_10_3390_brainsci14050432
crossref_primary_10_12688_openreseurope_14634_2
crossref_primary_10_1007_s10548_023_01018_y
crossref_primary_10_1016_j_clinph_2024_10_018
crossref_primary_10_1016_j_neubiorev_2023_105434
crossref_primary_10_3390_brainsci13030418
crossref_primary_10_1016_j_xpro_2025_103622
crossref_primary_10_1016_j_clinph_2025_02_268
crossref_primary_10_1016_j_neurom_2024_04_007
crossref_primary_10_1016_j_clinph_2025_03_020
crossref_primary_10_1007_s12264_025_01375_7
crossref_primary_10_1016_j_neucli_2024_103012
crossref_primary_10_3390_brainsci13040534
crossref_primary_10_3390_brainsci13060921
crossref_primary_10_1016_j_jneumeth_2022_109631
crossref_primary_10_1016_j_brs_2024_02_006
crossref_primary_10_1093_cercor_bhad259
crossref_primary_10_1523_JNEUROSCI_2201_23_2024
Cites_doi 10.1016/j.neuroimage.2014.07.037
10.1007/s10548-009-0083-8
10.1016/j.jneumeth.2022.109486
10.1016/j.neuroimage.2018.10.052
10.1007/s10548-013-0312-z
10.1371/journal.pone.0184910
10.1016/j.brs.2020.10.011
10.1126/science.1117256
10.1152/jn.2001.86.4.1983
10.1016/S1388-2457(99)00070-X
10.1109/EMBC.2015.7318341
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2022.109491
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 35101524
10_1016_j_jneumeth_2022_109491
S0165027022000188
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c482t-e587664f511523fc8268a4994304bcc4c06368f71b19b5719b3175ed351985643
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Fri Jul 11 10:26:57 EDT 2025
Wed Feb 19 02:26:50 EST 2025
Tue Jul 01 02:57:15 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
Fri Feb 23 02:39:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords WBN
TMS-EEG
EEG
Noise masking
CN
AEP
AN
CBN
SPL
Auditory evoked potential
WN
HATS
TMS
TEP
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-e587664f511523fc8268a4994304bcc4c06368f71b19b5719b3175ed351985643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0165027022000188
PMID 35101524
PQID 2624660039
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2624660039
pubmed_primary_35101524
crossref_citationtrail_10_1016_j_jneumeth_2022_109491
crossref_primary_10_1016_j_jneumeth_2022_109491
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Casarotto, Fecchio, Rosanova, Varone, D’Ambrosio, Sarasso, Pigorini, Russo, Comanducci, Ilmoniemi, Massimini (bib3) 2022; 370
Rocchi, Di Santo, Brown, Ibáñez, Casula, Rawji, Di Lazzaro, Koch, Rothwell (bib13) 2021; 14
Belardinelli, Biabani, Blumberger, Bortoletto, Casarotto, David, Desideri, Etkin, Ferrarelli, Fitzgerald, Fornito, Gordon, Gosseries, Harquel, Julkunen, Keller, Kimiskidis, Lioumis, Miniussi, Rosanova, Rossi, Sarasso, Wu, Zrenner, Daskalakis, Rogasch, Massimini, Ziemann, Ilmoniemi (bib1) 2019; 12
Fecchio, Pigorini, Comanducci, Sarasso, Casarotto, Premoli, Derchi, Mazza, Russo, Resta, Ferrarelli, Mariotti, Ziemann, Massimini, Rosanova (bib5) 2017; 12
Paus, Sipila, Strafella (bib11) 2001; 86
Massimini, Ferrarelli, Huber, Esser, Singh, Tononi (bib7) 2005; 309
Ozdemir, Tadayon, Boucher, Sun, Momi, Ganglberger, Westover, Pascual-Leone, Santarnecchi, Shafi (bib10) 2021; 14
Conde, Tomasevic, Akopian, Stanek, Saturnino, Thielscher, Bergmann, Siebner (bib4) 2019; 185
ter Braack, de Vos, van Putten (bib2) 2015; 28
Koponen, Goetz, Tucci, Peterchev (bib6) 2020; 13
Rogasch, Thomson, Farzan, Fitzgibbon, Bailey, Hernandez-Pavon, Daskalakis, Fitzgerald (bib14) 2014; 101
Nikouline, Ruohonen, Ilmoniemi (bib9) 1999; 110
Peterchev, A.V., Murphy, D.L.K., Goetz, S.M., 2015. Quiet transcranial magnetic stimulation: Status and future directions, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 226–229. https://doi.org/10.1109/EMBC.2015.7318341.
Miniussi, Thut (bib8) 2010; 22
Ozdemir (10.1016/j.jneumeth.2022.109491_bib10) 2021; 14
Massimini (10.1016/j.jneumeth.2022.109491_bib7) 2005; 309
ter Braack (10.1016/j.jneumeth.2022.109491_bib2) 2015; 28
Rocchi (10.1016/j.jneumeth.2022.109491_bib13) 2021; 14
Nikouline (10.1016/j.jneumeth.2022.109491_bib9) 1999; 110
Koponen (10.1016/j.jneumeth.2022.109491_bib6) 2020; 13
Belardinelli (10.1016/j.jneumeth.2022.109491_bib1) 2019; 12
Casarotto (10.1016/j.jneumeth.2022.109491_bib3) 2022; 370
Rogasch (10.1016/j.jneumeth.2022.109491_bib14) 2014; 101
Conde (10.1016/j.jneumeth.2022.109491_bib4) 2019; 185
10.1016/j.jneumeth.2022.109491_bib12
Miniussi (10.1016/j.jneumeth.2022.109491_bib8) 2010; 22
Paus (10.1016/j.jneumeth.2022.109491_bib11) 2001; 86
Fecchio (10.1016/j.jneumeth.2022.109491_bib5) 2017; 12
References_xml – volume: 309
  start-page: 2228
  year: 2005
  end-page: 2232
  ident: bib7
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
– volume: 14
  start-page: 391
  year: 2021
  end-page: 403
  ident: bib10
  article-title: Cortical responses to noninvasive perturbations enable individual brain fingerprinting
  publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation
– volume: 185
  start-page: 300
  year: 2019
  end-page: 312
  ident: bib4
  article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies
  publication-title: NeuroImage
– volume: 13
  start-page: 873
  year: 2020
  end-page: 880
  ident: bib6
  article-title: Sound comparison of seven TMS coils at matched stimulation strength
  publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation
– volume: 110
  start-page: 1325
  year: 1999
  end-page: 1328
  ident: bib9
  article-title: The role of the coil click in TMS assessed with simultaneous EEG
  publication-title: Clin. Neurophysiol. J. Int. Fed. Clin. Neurophysiol.
– volume: 101
  start-page: 425
  year: 2014
  end-page: 439
  ident: bib14
  article-title: Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties
  publication-title: NeuroImage
– volume: 12
  start-page: 787
  year: 2019
  end-page: 790
  ident: bib1
  article-title: Reproducibility in TMS–EEG studies: a call for data sharing, standard procedures and effective experimental control
  publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation
– volume: 14
  start-page: 4
  year: 2021
  end-page: 18
  ident: bib13
  article-title: Disentangling EEG responses to TMS due to cortical and peripheral activations
  publication-title: Brain Stimul.
– volume: 22
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib8
  article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience
  publication-title: Brain Topogr.
– volume: 370
  year: 2022
  ident: bib3
  article-title: The rt-TEP tool: real-time visualization of TMS-evoked potentials to maximize cortical activation and minimize artifacts
  publication-title: Journal of Neuroscience Methods
– volume: 12
  year: 2017
  ident: bib5
  article-title: The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials
  publication-title: PLOS ONE
– volume: 28
  start-page: 520
  year: 2015
  end-page: 528
  ident: bib2
  article-title: Masking the auditory evoked potential in TMS-EEG: a comparison of various methods
  publication-title: Brain Topogr.
– volume: 86
  start-page: 1983
  year: 2001
  end-page: 1990
  ident: bib11
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J. Neurophysiol.
– reference: Peterchev, A.V., Murphy, D.L.K., Goetz, S.M., 2015. Quiet transcranial magnetic stimulation: Status and future directions, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 226–229. https://doi.org/10.1109/EMBC.2015.7318341.
– volume: 101
  start-page: 425
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109491_bib14
  article-title: Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.037
– volume: 13
  start-page: 873
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109491_bib6
  article-title: Sound comparison of seven TMS coils at matched stimulation strength
  publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation
– volume: 12
  start-page: 787
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109491_bib1
  article-title: Reproducibility in TMS–EEG studies: a call for data sharing, standard procedures and effective experimental control
  publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation
– volume: 22
  start-page: 249
  year: 2010
  ident: 10.1016/j.jneumeth.2022.109491_bib8
  article-title: Combining TMS and EEG offers new prospects in cognitive neuroscience
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-009-0083-8
– volume: 370
  year: 2022
  ident: 10.1016/j.jneumeth.2022.109491_bib3
  article-title: The rt-TEP tool: real-time visualization of TMS-evoked potentials to maximize cortical activation and minimize artifacts
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2022.109486
– volume: 185
  start-page: 300
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109491_bib4
  article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.052
– volume: 28
  start-page: 520
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109491_bib2
  article-title: Masking the auditory evoked potential in TMS-EEG: a comparison of various methods
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-013-0312-z
– volume: 12
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109491_bib5
  article-title: The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0184910
– volume: 14
  start-page: 391
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109491_bib10
  article-title: Cortical responses to noninvasive perturbations enable individual brain fingerprinting
  publication-title: Brain Stimul. Basic Transl. Clin. Res. Neuromodulation
– volume: 14
  start-page: 4
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109491_bib13
  article-title: Disentangling EEG responses to TMS due to cortical and peripheral activations
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2020.10.011
– volume: 309
  start-page: 2228
  year: 2005
  ident: 10.1016/j.jneumeth.2022.109491_bib7
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
  doi: 10.1126/science.1117256
– volume: 86
  start-page: 1983
  year: 2001
  ident: 10.1016/j.jneumeth.2022.109491_bib11
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.4.1983
– volume: 110
  start-page: 1325
  year: 1999
  ident: 10.1016/j.jneumeth.2022.109491_bib9
  article-title: The role of the coil click in TMS assessed with simultaneous EEG
  publication-title: Clin. Neurophysiol. J. Int. Fed. Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00070-X
– ident: 10.1016/j.jneumeth.2022.109491_bib12
  doi: 10.1109/EMBC.2015.7318341
SSID ssj0004906
Score 2.5654263
Snippet Coupling transcranial magnetic stimulation with electroencephalography (TMS-EEG) allows recording the EEG response to a direct, non-invasive cortical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109491
SubjectTerms AEP
Auditory evoked potential
Electroencephalography - methods
Evoked Potentials - physiology
Evoked Potentials, Auditory - physiology
Healthy Volunteers
Humans
Noise masking
TEP
TMS-EEG
Transcranial Magnetic Stimulation - methods
Title TAAC - TMS Adaptable Auditory Control: A universal tool to mask TMS clicks
URI https://dx.doi.org/10.1016/j.jneumeth.2022.109491
https://www.ncbi.nlm.nih.gov/pubmed/35101524
https://www.proquest.com/docview/2624660039
Volume 370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hVkJ7WbGwj7KAjIS4hTap7TjcogpUQOVCkbhZtuNILZBUND1w4bfvTB48DogDl0iJMrI1dma-ycznATikzJnIMgxLLJcBN9IFiIpsoKjtNvoMEedETp5cyfENv7gVt2sw6rgwVFbZ2v7GptfWun3Sb7XZX8xm_Wsi4gyITkVsk1AR4ZfzmHb58fNrmQdP6v6a9DLlKwdvWMLz43nhV9SpGePEKKKTlXgSfuSgPgKgtSM624QfLYJkaTPJn7Dmiy3YTguMnh-e2BGrazrrn-VbsDFpU-fbcDFN0xEL2HRyzdLMLCriTLGUSBnl4xMbNSXrJyxlq6ZWA8eoypIu7MEs72pBdz9zd8tfcHN2Oh2Ng7aRQuC4iqrAC7R5kucIrjDuzB2GFMpgqMOHA26d4w5xilR5HNowsSLGC6EKn1HzPiUQs_yG9aIs_F9gkRtmFvU-yBLFbSaNMt5LlVkl46ExeQ9Epz3t2lPGqdnFve7Kyea607omretG6z3ov8gtmnM2PpVIusXR73aMRmfwqexBt5oaPyfKkZjCl6uljmTEpSTGcg_-NMv8Mp8h2S8R8Z0vjPwPvtMdVbGFYhfWq8eV30NYU9n9et_uw7f0_HJ89R-FGPKW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4CJgGXaYMNujEwEuIW2qS26-wWVUOFUS4UiZtlO47UFpKKpgcu-9v3Xn7AdkAcuPiQ5MnWs_38vbz3-QGcUORMpCm6JZbLgBvpAkRFNlBUdhvPDDHIiJw8vpajW355J-7WYNhyYSitsrH9tU2vrHXzpNtos7uYTrs3RMTpEZ2K2CahUuvwgeP2pTIGZ39e8jx4XBXYpK8pYNn7hyY8O5vlfkWlmtFRjCK6WonH4Wsn1GsItDqJzj_BxwZCsqQe5WdY8_kO7CY5us8PT-yUVUmd1d_yHdgcN7HzXbicJMmQBWwyvmFJahYlkaZYQqyM4vGJDeuc9Z8sYas6WQP7KIuCGvZglvNK0N1P3Xz5BW7Pf02Go6CppBA4rqIy8AKNnuQZoit0PDOHPoUy6Ovwfo9b57hDoCJVNghtGFsxwIZghU-pep8SCFq-wkZe5H4fWOT6qUXF99JYcZtKo4z3UqVWyUHfmKwDotWeds0141Tt4l63-WQz3Wpdk9Z1rfUOdJ_lFvVFG29KxO3k6P-WjMbT4E3Z43Y2Ne4nCpKY3BerpY5kxKUkynIH9uppfh5PnwyYiPi3d_R8BFujyfhKX11c__4O2_SGUtpCcQAb5ePK_0CMU9rDag3_BRQm9CQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAAC+-+TMS+Adaptable+Auditory+Control%3A+A+universal+tool+to+mask+TMS+clicks&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Russo%2C+S&rft.au=Sarasso%2C+S&rft.au=Puglisi%2C+G+E&rft.au=Dal+Pal%C3%B9%2C+D&rft.date=2022-03-15&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=370&rft.spage=109491&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109491&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon