Paclitaxel-Loaded Gelatin Nanoparticles for Intravesical Bladder Cancer Therapy
Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition acr...
Saved in:
Published in | Clinical cancer research Vol. 10; no. 22; pp. 7677 - 7684 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
15.11.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of
superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby
entraps the drug and reduces its partition across the urothelium.
Experimental Design: Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological
properties were characterized.
Results: The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under
optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the
entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state.
Identical, rapid drug release from nanoparticles was observed in PBS and urine, with ∼90% released at 37°C after 2 hours.
Treatment with a protease ( i.e ., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence
of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder
transitional cancer cells; the IC 50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e ., ∼30 nmol/L (equivalent to ∼25 ng/mL) for 2-hour treatments and ∼4 nmol/L for 96-hour treatments. In dogs given an intravesical
dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta
and T1 tumors would be located, were 7.4 ± 4.3 μg/g (mean ± SD; 3 dogs; 9 tissue sections), which were 2.6× the concentrations
we reported for dogs treated with the Cremophor formulation.
Conclusions: Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be
used for intravesical bladder cancer therapy. |
---|---|
AbstractList | The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium.
Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized.
The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with approximately 90% released at 37 degrees C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., approximately 30 nmol/L (equivalent to approximately 25 ng/mL) for 2-hour treatments and approximately 4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 +/- 4.3 mug/g (mean +/- SD; 3 dogs; 9 tissue sections), which were 2.6x the concentrations we reported for dogs treated with the Cremophor formulation.
Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy. Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium. Experimental Design: Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized. Results: The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with ∼90% released at 37°C after 2 hours. Treatment with a protease ( i.e ., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC 50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e ., ∼30 nmol/L (equivalent to ∼25 ng/mL) for 2-hour treatments and ∼4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 ± 4.3 μg/g (mean ± SD; 3 dogs; 9 tissue sections), which were 2.6× the concentrations we reported for dogs treated with the Cremophor formulation. Conclusions: Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy. Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium. Experimental Design: Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized. Results: The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with ∼90% released at 37°C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., ∼30 nmol/L (equivalent to ∼25 ng/mL) for 2-hour treatments and ∼4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 ± 4.3 μg/g (mean ± SD; 3 dogs; 9 tissue sections), which were 2.6× the concentrations we reported for dogs treated with the Cremophor formulation. Conclusions: Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy. The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium.PURPOSEThe present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium.Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized.EXPERIMENTAL DESIGNPaclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized.The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with approximately 90% released at 37 degrees C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., approximately 30 nmol/L (equivalent to approximately 25 ng/mL) for 2-hour treatments and approximately 4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 +/- 4.3 mug/g (mean +/- SD; 3 dogs; 9 tissue sections), which were 2.6x the concentrations we reported for dogs treated with the Cremophor formulation.RESULTSThe size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with approximately 90% released at 37 degrees C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., approximately 30 nmol/L (equivalent to approximately 25 ng/mL) for 2-hour treatments and approximately 4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 +/- 4.3 mug/g (mean +/- SD; 3 dogs; 9 tissue sections), which were 2.6x the concentrations we reported for dogs treated with the Cremophor formulation.Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy.CONCLUSIONSPaclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy. |
Author | Jessie L.-S. Au Max Tsai Ze Lu Teng-Kuang Yeh M. Guill Wientjes |
Author_xml | – sequence: 1 givenname: Ze surname: Lu fullname: Lu, Ze – sequence: 2 givenname: Teng-Kuang surname: Yeh fullname: Yeh, Teng-Kuang – sequence: 3 givenname: Max surname: Tsai fullname: Tsai, Max – sequence: 4 givenname: Jessie L.-S. surname: Au fullname: Au, Jessie L.-S. – sequence: 5 givenname: M. Guill surname: Wientjes fullname: Wientjes, M. Guill |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16287259$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15570001$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUha2qiL74CUXZgMQixc_YEasStaXSiFaorK0b54Yx8iSDnenj3-N0piCxYXWPpe_Yvucckf1hHJCQU0bPGFPmI6PalFQKftY037IomZRijxwypXQpeKX2s35hDshRSj8pZZJR-ZoczBDNx0Nycwsu-AkeMZSLETrsiisMMPmh-ArDuIY4eRcwFf0Yi-thinCPyTsIxecAXYexaGBwedwtMcL66YS86iEkfLObx-T75cVd86Vc3FxdN-eL0knDp7Kj0NZQu1aA6SiHSoBEylVr5n-JrhaK8woUr7Ks27YHaSoq-r5XTksjxDF5v713HcdfG0yTXfnkMAQYcNwkW2kmTF3rDL7dgZt2hZ1dR7-C-GRfIsjAux0AKe_Vx7yPT3-5ihvNVZ25T1vOxTGliL11ObfJj3MoPlhG7VyMnUO3c-g2F5OFnYvJbvWP-88D__F92PqW_sfywUe07jnviAkhuuVs59zqSmvxG-awnhA |
CitedBy_id | crossref_primary_10_1517_17425240903022758 crossref_primary_10_2217_nnm_12_150 crossref_primary_10_1007_s40846_015_0060_5 crossref_primary_10_1016_j_ejmech_2014_07_012 crossref_primary_10_3109_10611860903115290 crossref_primary_10_1002_jps_22006 crossref_primary_10_1021_am100840c crossref_primary_10_1007_s11095_009_9886_2 crossref_primary_10_2217_nnm_2016_0151 crossref_primary_10_3390_pharmaceutics14091909 crossref_primary_10_1002_btm2_10353 crossref_primary_10_1016_j_ejps_2014_04_016 crossref_primary_10_1016_j_ijpharm_2017_08_120 crossref_primary_10_1016_j_ijpharm_2009_04_045 crossref_primary_10_4155_tde_14_42 crossref_primary_10_1111_j_1464_410X_2008_08132_x crossref_primary_10_2174_1567201818666211214112710 crossref_primary_10_1016_j_colsurfb_2018_04_020 crossref_primary_10_1186_s12951_021_01104_y crossref_primary_10_1021_nn101000e crossref_primary_10_1016_j_urols_2012_07_005 crossref_primary_10_1186_s12885_015_1338_2 crossref_primary_10_1088_0957_4484_20_5_055102 crossref_primary_10_1016_j_juro_2010_11_091 crossref_primary_10_1016_j_jconrel_2010_08_031 crossref_primary_10_2174_1381612827666211102100118 crossref_primary_10_1142_S1793292015300042 crossref_primary_10_1016_j_biomaterials_2023_122464 crossref_primary_10_1038_s41467_022_32474_y crossref_primary_10_1007_s00345_008_0273_0 crossref_primary_10_1260_2040_2295_3_4_535 crossref_primary_10_1016_j_jconrel_2008_01_010 crossref_primary_10_1002_mabi_201400416 crossref_primary_10_1002_masy_201800114 crossref_primary_10_1002_ijc_24227 crossref_primary_10_1517_17425247_2015_1037272 crossref_primary_10_1021_bc800500a crossref_primary_10_1111_1541_4337_12360 crossref_primary_10_1016_j_biopha_2016_01_027 crossref_primary_10_1016_j_juro_2011_05_040 crossref_primary_10_2745_dds_21_46 crossref_primary_10_1007_s11051_014_2639_0 crossref_primary_10_1016_j_chemphyslip_2017_07_002 crossref_primary_10_3109_08982104_2015_1105820 crossref_primary_10_1007_s00289_018_2291_4 crossref_primary_10_3109_10837450_2014_999786 crossref_primary_10_1016_j_molliq_2020_114053 crossref_primary_10_17650_1726_9776_2019_15_1_92_100 crossref_primary_10_1158_1078_0432_CCR_07_4475 crossref_primary_10_1016_j_carbon_2018_06_020 crossref_primary_10_1163_092050610X492093 crossref_primary_10_1002_jbm_b_35179 crossref_primary_10_2147_IJN_S498729 crossref_primary_10_1021_mp1004383 crossref_primary_10_1007_s11095_013_1204_3 crossref_primary_10_1016_j_colsurfb_2014_12_041 crossref_primary_10_1007_s13346_012_0070_6 crossref_primary_10_1016_j_jconrel_2016_11_031 crossref_primary_10_1016_j_biopha_2014_11_023 crossref_primary_10_1021_bm800683f crossref_primary_10_1002_slct_201901728 crossref_primary_10_1016_j_ijbiomac_2015_02_038 crossref_primary_10_1016_j_progpolymsci_2015_07_005 crossref_primary_10_1021_acsbiomaterials_8b01098 crossref_primary_10_3390_molecules29051030 crossref_primary_10_1016_j_ijbiomac_2015_08_006 crossref_primary_10_1586_era_10_155 crossref_primary_10_1002_jbm_b_31266 crossref_primary_10_1016_j_eururo_2008_07_042 crossref_primary_10_1016_j_jconrel_2015_03_020 crossref_primary_10_1016_j_ultrasmedbio_2010_07_015 crossref_primary_10_4155_tde_15_28 crossref_primary_10_1002_adhm_201300090 crossref_primary_10_1021_acsami_4c12350 crossref_primary_10_1016_j_semcancer_2019_08_014 crossref_primary_10_1021_la500746e crossref_primary_10_1097_CAD_0b013e32834159b8 crossref_primary_10_1016_j_surfin_2024_104136 crossref_primary_10_1002_slct_202103495 crossref_primary_10_1155_2011_753705 crossref_primary_10_1016_j_jconrel_2016_07_024 crossref_primary_10_1016_j_ejpb_2012_07_016 crossref_primary_10_1002_mabi_201200382 crossref_primary_10_1016_j_ucl_2006_06_012 crossref_primary_10_3736_jcim20070118 crossref_primary_10_1016_j_chemphyslip_2021_105101 crossref_primary_10_1016_j_carbpol_2010_03_050 crossref_primary_10_3389_fphar_2022_899208 crossref_primary_10_1039_c2nr31592k crossref_primary_10_1080_14328917_2022_2130399 crossref_primary_10_5301_RU_2013_10620 crossref_primary_10_3390_molecules23092157 crossref_primary_10_1016_j_purol_2012_12_008 crossref_primary_10_1016_j_ucl_2009_02_005 crossref_primary_10_1155_2014_473823 crossref_primary_10_1049_mnl_2011_0580 crossref_primary_10_1016_j_biomaterials_2015_04_034 crossref_primary_10_1039_C5RA25518J crossref_primary_10_1111_iju_12085 crossref_primary_10_1016_j_biomaterials_2017_04_036 crossref_primary_10_1021_acsbiomaterials_7b00230 crossref_primary_10_1152_physrev_00041_2019 crossref_primary_10_3109_01913121003662304 crossref_primary_10_1016_j_jddst_2020_102221 crossref_primary_10_1016_j_nano_2007_08_001 crossref_primary_10_1021_jacs_4c15820 crossref_primary_10_1007_s12668_024_01317_z crossref_primary_10_1007_s13346_020_00744_1 crossref_primary_10_1002_mabi_201400214 crossref_primary_10_1111_j_1464_410X_2008_07571_x crossref_primary_10_1002_jps_22309 crossref_primary_10_1016_j_jphotochem_2005_05_030 crossref_primary_10_1021_acsphotonics_7b00122 crossref_primary_10_1016_j_jconrel_2013_09_019 crossref_primary_10_1016_j_eururo_2006_05_035 crossref_primary_10_3390_ijms22031097 crossref_primary_10_1016_j_peptides_2010_10_003 crossref_primary_10_1080_17425247_2020_1813713 crossref_primary_10_3390_polym13234078 crossref_primary_10_1007_s11095_014_1362_y crossref_primary_10_3390_pharmaceutics14081682 crossref_primary_10_1007_s00345_009_0474_1 crossref_primary_10_1007_s10934_014_9897_1 crossref_primary_10_1021_acs_biomac_3c01021 crossref_primary_10_1007_s11095_007_9298_0 crossref_primary_10_1016_j_nano_2005_12_003 crossref_primary_10_1208_s12249_013_0041_3 crossref_primary_10_1002_adtp_202100043 crossref_primary_10_2217_nnm_14_212 crossref_primary_10_1016_j_colsurfb_2015_08_004 crossref_primary_10_1016_j_powtec_2018_02_029 crossref_primary_10_1111_vco_12435 crossref_primary_10_1016_j_jmst_2016_04_009 crossref_primary_10_1016_j_colsurfb_2009_09_001 crossref_primary_10_3109_10717544_2015_1101791 crossref_primary_10_4155_tde_13_104 crossref_primary_10_3390_molecules29153482 crossref_primary_10_1007_s11095_017_2173_8 crossref_primary_10_4155_tde_14_25 crossref_primary_10_3390_jfb13030116 crossref_primary_10_1007_s11095_005_4581_4 crossref_primary_10_1080_17425247_2024_2307481 crossref_primary_10_1007_s00449_017_1825_8 crossref_primary_10_1002_anbr_202100138 crossref_primary_10_58692_jotcsb_1199436 crossref_primary_10_3390_pharmaceutics15051499 crossref_primary_10_1016_j_jmmm_2015_09_084 crossref_primary_10_1080_21691401_2017_1395344 crossref_primary_10_1039_C6RA19915A crossref_primary_10_1007_s00449_011_0591_2 crossref_primary_10_1016_j_ijpharm_2008_12_015 crossref_primary_10_2217_nnm_2018_0138 crossref_primary_10_15171_bi_2017_07 crossref_primary_10_1016_j_urolonc_2005_08_020 crossref_primary_10_1007_s11095_009_9947_6 crossref_primary_10_1021_acsomega_3c02901 crossref_primary_10_1515_ntrev_2016_0009 |
Cites_doi | 10.1007/BF00685595 10.1016/S0168-3659(97)00082-5 10.1007/s002800050709 10.1179/joc.1999.11.5.407 10.1007/BF03401588 10.1007/s002800050973 10.1093/jnci/93.8.597 10.1023/A:1015827700904 10.1016/0378-5173(81)90100-9 10.1038/385123b0 10.1163/156856294X00121 10.1007/BF00942093 10.1248/cpb.44.1935 10.1097/00001813-200006000-00003 10.1021/bi00514a041 10.1007/s002800050660 10.1200/JCO.1990.8.7.1263 10.1007/s002800050426 10.1016/0378-4347(94)00456-F 10.1016/S0142-9612(00)00040-5 10.1038/bjc.1992.333 10.1016/S0022-5347(17)32742-8 10.1002/(SICI)1097-4636(199811)42:2<331::AID-JBM19>3.0.CO;2-L |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/1078-0432.CCR-04-1443 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 7684 |
ExternalDocumentID | 15570001 16287259 10_1158_1078_0432_CCR_04_1443 10_22_7677 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R37CA49816 |
GroupedDBID | - 08R 29B 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS AAPBV ABFLS ABOCM ACIWK ACPRK ADACO ADBBV ADBIT AENEX AETEA AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FH7 FRP GJ GX1 H13 H~9 IH2 KQ8 L7B LSO MVM O0- OHT OK1 P0W P2P RCR RHF RHI RNS SJN UDS VH1 W2D WOQ X7M XFK XJT ZA5 ZCG ZGI --- .55 .GJ 18M 2FS 6J9 AAFWJ AAJMC AAYXX ACGFO ACSVP ADCOW AFHIN AFOSN AFUMD AI. BR6 BTFSW CITATION QTD TR2 W8F WHG YKV 1CY 4H- ADNWM IQODW J5H CGR CUY CVF ECM EIF NPM VXZ 7X8 |
ID | FETCH-LOGICAL-c482t-d0ab9a9cb3a8d02a63a4e025b870003d935226a526d939bbfa48603fff5c74833 |
ISSN | 1078-0432 |
IngestDate | Fri Jul 11 02:18:35 EDT 2025 Wed Feb 19 01:38:32 EST 2025 Mon Jul 21 09:12:38 EDT 2025 Tue Jul 01 03:05:56 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Fri Jan 15 20:06:52 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Antineoplastic agent Load Urinary system disease Nanoparticle Malignant tumor Urinary tract disease Bladder cancer Treatment Gelatin Taxane derivatives Paclitaxel Bladder disease Antimitotic |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c482t-d0ab9a9cb3a8d02a63a4e025b870003d935226a526d939bbfa48603fff5c74833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aacrjournals.org/clincancerres/article-pdf/10/22/7677/1953172/zdf02204007677.pdf |
PMID | 15570001 |
PQID | 67138997 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_67138997 pubmed_primary_15570001 pascalfrancis_primary_16287259 crossref_citationtrail_10_1158_1078_0432_CCR_04_1443 crossref_primary_10_1158_1078_0432_CCR_04_1443 highwire_cancerresearch_10_22_7677 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-11-15 |
PublicationDateYYYYMMDD | 2004-11-15 |
PublicationDate_xml | – month: 11 year: 2004 text: 2004-11-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2004 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061103572548400_B12 2022061103572548400_B34 2022061103572548400_B13 2022061103572548400_B35 2022061103572548400_B14 2022061103572548400_B36 2022061103572548400_B15 2022061103572548400_B37 2022061103572548400_B16 2022061103572548400_B38 2022061103572548400_B17 2022061103572548400_B39 2022061103572548400_B18 2022061103572548400_B19 2022061103572548400_B7 2022061103572548400_B8 2022061103572548400_B9 2022061103572548400_B30 2022061103572548400_B31 2022061103572548400_B10 2022061103572548400_B32 2022061103572548400_B11 2022061103572548400_B33 2022061103572548400_B1 2022061103572548400_B2 2022061103572548400_B3 2022061103572548400_B4 2022061103572548400_B5 2022061103572548400_B6 2022061103572548400_B23 2022061103572548400_B24 2022061103572548400_B25 2022061103572548400_B26 2022061103572548400_B27 2022061103572548400_B28 2022061103572548400_B29 2022061103572548400_B20 2022061103572548400_B21 2022061103572548400_B22 |
References_xml | – ident: 2022061103572548400_B27 doi: 10.1007/BF00685595 – ident: 2022061103572548400_B35 doi: 10.1016/S0168-3659(97)00082-5 – ident: 2022061103572548400_B12 doi: 10.1007/s002800050709 – ident: 2022061103572548400_B31 doi: 10.1179/joc.1999.11.5.407 – ident: 2022061103572548400_B6 – ident: 2022061103572548400_B19 doi: 10.1007/BF03401588 – ident: 2022061103572548400_B21 doi: 10.1007/s002800050973 – ident: 2022061103572548400_B9 doi: 10.1093/jnci/93.8.597 – ident: 2022061103572548400_B4 doi: 10.1023/A:1015827700904 – ident: 2022061103572548400_B33 – ident: 2022061103572548400_B16 – ident: 2022061103572548400_B18 – ident: 2022061103572548400_B24 doi: 10.1016/0378-5173(81)90100-9 – ident: 2022061103572548400_B20 doi: 10.1038/385123b0 – ident: 2022061103572548400_B1 – ident: 2022061103572548400_B39 doi: 10.1163/156856294X00121 – ident: 2022061103572548400_B10 doi: 10.1007/BF00942093 – ident: 2022061103572548400_B34 doi: 10.1248/cpb.44.1935 – ident: 2022061103572548400_B3 – ident: 2022061103572548400_B22 – ident: 2022061103572548400_B17 – ident: 2022061103572548400_B32 doi: 10.1097/00001813-200006000-00003 – ident: 2022061103572548400_B14 doi: 10.1021/bi00514a041 – ident: 2022061103572548400_B5 – ident: 2022061103572548400_B36 – ident: 2022061103572548400_B13 doi: 10.1007/s002800050660 – ident: 2022061103572548400_B11 – ident: 2022061103572548400_B15 – ident: 2022061103572548400_B30 doi: 10.1200/JCO.1990.8.7.1263 – ident: 2022061103572548400_B38 – ident: 2022061103572548400_B8 doi: 10.1007/s002800050426 – ident: 2022061103572548400_B28 doi: 10.1016/0378-4347(94)00456-F – ident: 2022061103572548400_B29 doi: 10.1016/S0142-9612(00)00040-5 – ident: 2022061103572548400_B23 – ident: 2022061103572548400_B26 doi: 10.1038/bjc.1992.333 – ident: 2022061103572548400_B2 – ident: 2022061103572548400_B7 doi: 10.1016/S0022-5347(17)32742-8 – ident: 2022061103572548400_B37 doi: 10.1002/(SICI)1097-4636(199811)42:2<331::AID-JBM19>3.0.CO;2-L – ident: 2022061103572548400_B25 |
SSID | ssj0014104 |
Score | 2.2866518 |
Snippet | Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of
superficial bladder cancer.... Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer.... The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7677 |
SubjectTerms | Animals Antineoplastic agents Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - pharmacokinetics Biological and medical sciences Chromatography, High Pressure Liquid Dogs Dose-Response Relationship, Drug Drug Delivery Systems Gelatin - chemistry Gelatin - pharmacokinetics Male Medical sciences Micelles Nanostructures - chemistry Nanotechnology Nephrology. Urinary tract diseases Paclitaxel - administration & dosage Paclitaxel - pharmacokinetics Pharmacology. Drug treatments Polyethylene Glycols Time Factors Tumors of the urinary system Urinary Bladder - metabolism Urinary Bladder Neoplasms - drug therapy Urinary system involvement in other diseases. Miscellaneous Urinary tract. Prostate gland X-Ray Diffraction |
Title | Paclitaxel-Loaded Gelatin Nanoparticles for Intravesical Bladder Cancer Therapy |
URI | http://clincancerres.aacrjournals.org/content/10/22/7677.abstract https://www.ncbi.nlm.nih.gov/pubmed/15570001 https://www.proquest.com/docview/67138997 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG-6wYgQb1VK6jhfj6N8bGwDNDpp8GLZjjMhlXRqGzTx9_CHcmc7bsqGGLxEURQ7F__O5zv7Pgh5nihV6TzLwjKnMmQFTKlcFHHIKqWFpqmKSuNt8T7dPWbvTpKTXu9nx2upWcqh-nFpXMn_oArPAFeMkv0HZH2n8ADuAV-4AsJwvRLGH4XCHNvnehoezEQJuuNb49tWo9AEa9g5vRlXwj3cxf2uLSgvpyhw5oMxYj5HtwufWqDNWtBGTCr7iksK5DePv-jBQePNfl2fhvuNqE8Hn7V_5VCcDyYL8dU76aDHLTQbhp-Gg51mbb-BYeCdjbjsuPiD7Omwj_kNR_FRlxwrUyNM4svcNqZ2cjYB2UZtmQgviKMOw9loZSdWs9TWerko75PcbD24LwzH4yM86gErMe6-D7CdfTNMgB9GvXa1_LVH_r-tit5XEawkSjlScI1cp2CMYJ2MV3v7_qyKjUyRSk-EixMD0l5cSpipBGWpWFeG2gTV6J8rFgBxZWur_Nn4MUrQ5Da55ayXYMcy1h3S0_VdcuPQ-WfcIx8ucGTgODJY48gAoAy6HBk4jgwsvoHjyPvk-M3ryXg3dCU7QsVyugzLSMhCFErGIi8jKtJYMA1qtczxf-OyMPq-SGgKt4WUlcAiaHFVVYnKWB7HD8hGPav1IxJUepRK0KYl1ZolkkkBi2usi2wkZMLKqE9YO3ZcuXz2WFZlyo1dm-QcR5_j6HMYfbjhOPp9MvTNzmxCl781eNYCw-2Ua2ccX7FGn2yvQbbqOqV5RpOiT562GHIQ4HgqJ2o9axY8zdBXoIAuHlpoV20dl2xehYItcnM1Wx-TjeW80U9AX17KbcOuvwBa4bpe |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paclitaxel-Loaded+Gelatin+Nanoparticles+for+Intravesical+Bladder+Cancer+Therapy&rft.jtitle=Clinical+cancer+research&rft.au=Ze+Lu&rft.au=Teng-Kuang+Yeh&rft.au=Max+Tsai&rft.au=Jessie+L.-S.+Au&rft.date=2004-11-15&rft.pub=American+Association+for+Cancer+Research&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=10&rft.issue=22&rft.spage=7677&rft_id=info:doi/10.1158%2F1078-0432.CCR-04-1443&rft_id=info%3Apmid%2F15570001&rft.externalDBID=n%2Fa&rft.externalDocID=10_22_7677 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |