Paclitaxel-Loaded Gelatin Nanoparticles for Intravesical Bladder Cancer Therapy

Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition acr...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 10; no. 22; pp. 7677 - 7684
Main Authors Lu, Ze, Yeh, Teng-Kuang, Tsai, Max, Au, Jessie L.-S., Wientjes, M. Guill
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.11.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium. Experimental Design: Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized. Results: The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with ∼90% released at 37°C after 2 hours. Treatment with a protease ( i.e ., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC 50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e ., ∼30 nmol/L (equivalent to ∼25 ng/mL) for 2-hour treatments and ∼4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 ± 4.3 μg/g (mean ± SD; 3 dogs; 9 tissue sections), which were 2.6× the concentrations we reported for dogs treated with the Cremophor formulation. Conclusions: Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy.
AbstractList The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium. Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized. The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with approximately 90% released at 37 degrees C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., approximately 30 nmol/L (equivalent to approximately 25 ng/mL) for 2-hour treatments and approximately 4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 +/- 4.3 mug/g (mean +/- SD; 3 dogs; 9 tissue sections), which were 2.6x the concentrations we reported for dogs treated with the Cremophor formulation. Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy.
Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium. Experimental Design: Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized. Results: The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with ∼90% released at 37°C after 2 hours. Treatment with a protease ( i.e ., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC 50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e ., ∼30 nmol/L (equivalent to ∼25 ng/mL) for 2-hour treatments and ∼4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 ± 4.3 μg/g (mean ± SD; 3 dogs; 9 tissue sections), which were 2.6× the concentrations we reported for dogs treated with the Cremophor formulation. Conclusions: Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy.
Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium. Experimental Design: Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized. Results: The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with ∼90% released at 37°C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., ∼30 nmol/L (equivalent to ∼25 ng/mL) for 2-hour treatments and ∼4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 ± 4.3 μg/g (mean ± SD; 3 dogs; 9 tissue sections), which were 2.6× the concentrations we reported for dogs treated with the Cremophor formulation. Conclusions: Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy.
The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium.PURPOSEThe present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium.Paclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized.EXPERIMENTAL DESIGNPaclitaxel-loaded gelatin nanoparticles were prepared using the desolvation method, and their physicochemical and biological properties were characterized.The size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with approximately 90% released at 37 degrees C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., approximately 30 nmol/L (equivalent to approximately 25 ng/mL) for 2-hour treatments and approximately 4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 +/- 4.3 mug/g (mean +/- SD; 3 dogs; 9 tissue sections), which were 2.6x the concentrations we reported for dogs treated with the Cremophor formulation.RESULTSThe size of the particles ranged from 600 to 1,000 nm and increased with the molecular weight of the gelatin polymer. Under optimal conditions, the yield was >80%, and the drug loading was 0.7%. Wide-angle X-ray diffraction analysis showed that the entrapped paclitaxel was present in an amorphous state, which has higher water solubility compared with the crystalline state. Identical, rapid drug release from nanoparticles was observed in PBS and urine, with approximately 90% released at 37 degrees C after 2 hours. Treatment with a protease (i.e., Pronase) rapidly degraded the nanoparticles, with half-lives of 23.8 minutes, 0.6 minute, and 0.4 minute in the presence of 0.01, 0.05, and 0.25 mg/mL Pronase, respectively. The paclitaxel-loaded nanoparticles were active against human RT4 bladder transitional cancer cells; the IC50 paclitaxel-equivalent concentrations were nearly identical to those of aqueous solutions of paclitaxel, i.e., approximately 30 nmol/L (equivalent to approximately 25 ng/mL) for 2-hour treatments and approximately 4 nmol/L for 96-hour treatments. In dogs given an intravesical dose of paclitaxel-loaded particles, the drug concentrations in the urothelium and lamina propria tissue layers, where Ta and T1 tumors would be located, were 7.4 +/- 4.3 mug/g (mean +/- SD; 3 dogs; 9 tissue sections), which were 2.6x the concentrations we reported for dogs treated with the Cremophor formulation.Paclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy.CONCLUSIONSPaclitaxel-loaded gelatin nanoparticles represent a rapid release, biologically active paclitaxel formulation that can be used for intravesical bladder cancer therapy.
Author Jessie L.-S. Au
Max Tsai
Ze Lu
Teng-Kuang Yeh
M. Guill Wientjes
Author_xml – sequence: 1
  givenname: Ze
  surname: Lu
  fullname: Lu, Ze
– sequence: 2
  givenname: Teng-Kuang
  surname: Yeh
  fullname: Yeh, Teng-Kuang
– sequence: 3
  givenname: Max
  surname: Tsai
  fullname: Tsai, Max
– sequence: 4
  givenname: Jessie L.-S.
  surname: Au
  fullname: Au, Jessie L.-S.
– sequence: 5
  givenname: M. Guill
  surname: Wientjes
  fullname: Wientjes, M. Guill
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16287259$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15570001$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUha2qiL74CUXZgMQixc_YEasStaXSiFaorK0b54Yx8iSDnenj3-N0piCxYXWPpe_Yvucckf1hHJCQU0bPGFPmI6PalFQKftY037IomZRijxwypXQpeKX2s35hDshRSj8pZZJR-ZoczBDNx0Nycwsu-AkeMZSLETrsiisMMPmh-ArDuIY4eRcwFf0Yi-thinCPyTsIxecAXYexaGBwedwtMcL66YS86iEkfLObx-T75cVd86Vc3FxdN-eL0knDp7Kj0NZQu1aA6SiHSoBEylVr5n-JrhaK8woUr7Ks27YHaSoq-r5XTksjxDF5v713HcdfG0yTXfnkMAQYcNwkW2kmTF3rDL7dgZt2hZ1dR7-C-GRfIsjAux0AKe_Vx7yPT3-5ihvNVZ25T1vOxTGliL11ObfJj3MoPlhG7VyMnUO3c-g2F5OFnYvJbvWP-88D__F92PqW_sfywUe07jnviAkhuuVs59zqSmvxG-awnhA
CitedBy_id crossref_primary_10_1517_17425240903022758
crossref_primary_10_2217_nnm_12_150
crossref_primary_10_1007_s40846_015_0060_5
crossref_primary_10_1016_j_ejmech_2014_07_012
crossref_primary_10_3109_10611860903115290
crossref_primary_10_1002_jps_22006
crossref_primary_10_1021_am100840c
crossref_primary_10_1007_s11095_009_9886_2
crossref_primary_10_2217_nnm_2016_0151
crossref_primary_10_3390_pharmaceutics14091909
crossref_primary_10_1002_btm2_10353
crossref_primary_10_1016_j_ejps_2014_04_016
crossref_primary_10_1016_j_ijpharm_2017_08_120
crossref_primary_10_1016_j_ijpharm_2009_04_045
crossref_primary_10_4155_tde_14_42
crossref_primary_10_1111_j_1464_410X_2008_08132_x
crossref_primary_10_2174_1567201818666211214112710
crossref_primary_10_1016_j_colsurfb_2018_04_020
crossref_primary_10_1186_s12951_021_01104_y
crossref_primary_10_1021_nn101000e
crossref_primary_10_1016_j_urols_2012_07_005
crossref_primary_10_1186_s12885_015_1338_2
crossref_primary_10_1088_0957_4484_20_5_055102
crossref_primary_10_1016_j_juro_2010_11_091
crossref_primary_10_1016_j_jconrel_2010_08_031
crossref_primary_10_2174_1381612827666211102100118
crossref_primary_10_1142_S1793292015300042
crossref_primary_10_1016_j_biomaterials_2023_122464
crossref_primary_10_1038_s41467_022_32474_y
crossref_primary_10_1007_s00345_008_0273_0
crossref_primary_10_1260_2040_2295_3_4_535
crossref_primary_10_1016_j_jconrel_2008_01_010
crossref_primary_10_1002_mabi_201400416
crossref_primary_10_1002_masy_201800114
crossref_primary_10_1002_ijc_24227
crossref_primary_10_1517_17425247_2015_1037272
crossref_primary_10_1021_bc800500a
crossref_primary_10_1111_1541_4337_12360
crossref_primary_10_1016_j_biopha_2016_01_027
crossref_primary_10_1016_j_juro_2011_05_040
crossref_primary_10_2745_dds_21_46
crossref_primary_10_1007_s11051_014_2639_0
crossref_primary_10_1016_j_chemphyslip_2017_07_002
crossref_primary_10_3109_08982104_2015_1105820
crossref_primary_10_1007_s00289_018_2291_4
crossref_primary_10_3109_10837450_2014_999786
crossref_primary_10_1016_j_molliq_2020_114053
crossref_primary_10_17650_1726_9776_2019_15_1_92_100
crossref_primary_10_1158_1078_0432_CCR_07_4475
crossref_primary_10_1016_j_carbon_2018_06_020
crossref_primary_10_1163_092050610X492093
crossref_primary_10_1002_jbm_b_35179
crossref_primary_10_2147_IJN_S498729
crossref_primary_10_1021_mp1004383
crossref_primary_10_1007_s11095_013_1204_3
crossref_primary_10_1016_j_colsurfb_2014_12_041
crossref_primary_10_1007_s13346_012_0070_6
crossref_primary_10_1016_j_jconrel_2016_11_031
crossref_primary_10_1016_j_biopha_2014_11_023
crossref_primary_10_1021_bm800683f
crossref_primary_10_1002_slct_201901728
crossref_primary_10_1016_j_ijbiomac_2015_02_038
crossref_primary_10_1016_j_progpolymsci_2015_07_005
crossref_primary_10_1021_acsbiomaterials_8b01098
crossref_primary_10_3390_molecules29051030
crossref_primary_10_1016_j_ijbiomac_2015_08_006
crossref_primary_10_1586_era_10_155
crossref_primary_10_1002_jbm_b_31266
crossref_primary_10_1016_j_eururo_2008_07_042
crossref_primary_10_1016_j_jconrel_2015_03_020
crossref_primary_10_1016_j_ultrasmedbio_2010_07_015
crossref_primary_10_4155_tde_15_28
crossref_primary_10_1002_adhm_201300090
crossref_primary_10_1021_acsami_4c12350
crossref_primary_10_1016_j_semcancer_2019_08_014
crossref_primary_10_1021_la500746e
crossref_primary_10_1097_CAD_0b013e32834159b8
crossref_primary_10_1016_j_surfin_2024_104136
crossref_primary_10_1002_slct_202103495
crossref_primary_10_1155_2011_753705
crossref_primary_10_1016_j_jconrel_2016_07_024
crossref_primary_10_1016_j_ejpb_2012_07_016
crossref_primary_10_1002_mabi_201200382
crossref_primary_10_1016_j_ucl_2006_06_012
crossref_primary_10_3736_jcim20070118
crossref_primary_10_1016_j_chemphyslip_2021_105101
crossref_primary_10_1016_j_carbpol_2010_03_050
crossref_primary_10_3389_fphar_2022_899208
crossref_primary_10_1039_c2nr31592k
crossref_primary_10_1080_14328917_2022_2130399
crossref_primary_10_5301_RU_2013_10620
crossref_primary_10_3390_molecules23092157
crossref_primary_10_1016_j_purol_2012_12_008
crossref_primary_10_1016_j_ucl_2009_02_005
crossref_primary_10_1155_2014_473823
crossref_primary_10_1049_mnl_2011_0580
crossref_primary_10_1016_j_biomaterials_2015_04_034
crossref_primary_10_1039_C5RA25518J
crossref_primary_10_1111_iju_12085
crossref_primary_10_1016_j_biomaterials_2017_04_036
crossref_primary_10_1021_acsbiomaterials_7b00230
crossref_primary_10_1152_physrev_00041_2019
crossref_primary_10_3109_01913121003662304
crossref_primary_10_1016_j_jddst_2020_102221
crossref_primary_10_1016_j_nano_2007_08_001
crossref_primary_10_1021_jacs_4c15820
crossref_primary_10_1007_s12668_024_01317_z
crossref_primary_10_1007_s13346_020_00744_1
crossref_primary_10_1002_mabi_201400214
crossref_primary_10_1111_j_1464_410X_2008_07571_x
crossref_primary_10_1002_jps_22309
crossref_primary_10_1016_j_jphotochem_2005_05_030
crossref_primary_10_1021_acsphotonics_7b00122
crossref_primary_10_1016_j_jconrel_2013_09_019
crossref_primary_10_1016_j_eururo_2006_05_035
crossref_primary_10_3390_ijms22031097
crossref_primary_10_1016_j_peptides_2010_10_003
crossref_primary_10_1080_17425247_2020_1813713
crossref_primary_10_3390_polym13234078
crossref_primary_10_1007_s11095_014_1362_y
crossref_primary_10_3390_pharmaceutics14081682
crossref_primary_10_1007_s00345_009_0474_1
crossref_primary_10_1007_s10934_014_9897_1
crossref_primary_10_1021_acs_biomac_3c01021
crossref_primary_10_1007_s11095_007_9298_0
crossref_primary_10_1016_j_nano_2005_12_003
crossref_primary_10_1208_s12249_013_0041_3
crossref_primary_10_1002_adtp_202100043
crossref_primary_10_2217_nnm_14_212
crossref_primary_10_1016_j_colsurfb_2015_08_004
crossref_primary_10_1016_j_powtec_2018_02_029
crossref_primary_10_1111_vco_12435
crossref_primary_10_1016_j_jmst_2016_04_009
crossref_primary_10_1016_j_colsurfb_2009_09_001
crossref_primary_10_3109_10717544_2015_1101791
crossref_primary_10_4155_tde_13_104
crossref_primary_10_3390_molecules29153482
crossref_primary_10_1007_s11095_017_2173_8
crossref_primary_10_4155_tde_14_25
crossref_primary_10_3390_jfb13030116
crossref_primary_10_1007_s11095_005_4581_4
crossref_primary_10_1080_17425247_2024_2307481
crossref_primary_10_1007_s00449_017_1825_8
crossref_primary_10_1002_anbr_202100138
crossref_primary_10_58692_jotcsb_1199436
crossref_primary_10_3390_pharmaceutics15051499
crossref_primary_10_1016_j_jmmm_2015_09_084
crossref_primary_10_1080_21691401_2017_1395344
crossref_primary_10_1039_C6RA19915A
crossref_primary_10_1007_s00449_011_0591_2
crossref_primary_10_1016_j_ijpharm_2008_12_015
crossref_primary_10_2217_nnm_2018_0138
crossref_primary_10_15171_bi_2017_07
crossref_primary_10_1016_j_urolonc_2005_08_020
crossref_primary_10_1007_s11095_009_9947_6
crossref_primary_10_1021_acsomega_3c02901
crossref_primary_10_1515_ntrev_2016_0009
Cites_doi 10.1007/BF00685595
10.1016/S0168-3659(97)00082-5
10.1007/s002800050709
10.1179/joc.1999.11.5.407
10.1007/BF03401588
10.1007/s002800050973
10.1093/jnci/93.8.597
10.1023/A:1015827700904
10.1016/0378-5173(81)90100-9
10.1038/385123b0
10.1163/156856294X00121
10.1007/BF00942093
10.1248/cpb.44.1935
10.1097/00001813-200006000-00003
10.1021/bi00514a041
10.1007/s002800050660
10.1200/JCO.1990.8.7.1263
10.1007/s002800050426
10.1016/0378-4347(94)00456-F
10.1016/S0142-9612(00)00040-5
10.1038/bjc.1992.333
10.1016/S0022-5347(17)32742-8
10.1002/(SICI)1097-4636(199811)42:2<331::AID-JBM19>3.0.CO;2-L
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright_xml – notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/1078-0432.CCR-04-1443
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 7684
ExternalDocumentID 15570001
16287259
10_1158_1078_0432_CCR_04_1443
10_22_7677
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R37CA49816
GroupedDBID -
08R
29B
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
AAPBV
ABFLS
ABOCM
ACIWK
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H13
H~9
IH2
KQ8
L7B
LSO
MVM
O0-
OHT
OK1
P0W
P2P
RCR
RHF
RHI
RNS
SJN
UDS
VH1
W2D
WOQ
X7M
XFK
XJT
ZA5
ZCG
ZGI
---
.55
.GJ
18M
2FS
6J9
AAFWJ
AAJMC
AAYXX
ACGFO
ACSVP
ADCOW
AFHIN
AFOSN
AFUMD
AI.
BR6
BTFSW
CITATION
QTD
TR2
W8F
WHG
YKV
1CY
4H-
ADNWM
IQODW
J5H
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7X8
ID FETCH-LOGICAL-c482t-d0ab9a9cb3a8d02a63a4e025b870003d935226a526d939bbfa48603fff5c74833
ISSN 1078-0432
IngestDate Fri Jul 11 02:18:35 EDT 2025
Wed Feb 19 01:38:32 EST 2025
Mon Jul 21 09:12:38 EDT 2025
Tue Jul 01 03:05:56 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Fri Jan 15 20:06:52 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Antineoplastic agent
Load
Urinary system disease
Nanoparticle
Malignant tumor
Urinary tract disease
Bladder cancer
Treatment
Gelatin
Taxane derivatives
Paclitaxel
Bladder disease
Antimitotic
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c482t-d0ab9a9cb3a8d02a63a4e025b870003d935226a526d939bbfa48603fff5c74833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/10/22/7677/1953172/zdf02204007677.pdf
PMID 15570001
PQID 67138997
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_67138997
pubmed_primary_15570001
pascalfrancis_primary_16287259
crossref_citationtrail_10_1158_1078_0432_CCR_04_1443
crossref_primary_10_1158_1078_0432_CCR_04_1443
highwire_cancerresearch_10_22_7677
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-11-15
PublicationDateYYYYMMDD 2004-11-15
PublicationDate_xml – month: 11
  year: 2004
  text: 2004-11-15
  day: 15
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2004
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061103572548400_B12
2022061103572548400_B34
2022061103572548400_B13
2022061103572548400_B35
2022061103572548400_B14
2022061103572548400_B36
2022061103572548400_B15
2022061103572548400_B37
2022061103572548400_B16
2022061103572548400_B38
2022061103572548400_B17
2022061103572548400_B39
2022061103572548400_B18
2022061103572548400_B19
2022061103572548400_B7
2022061103572548400_B8
2022061103572548400_B9
2022061103572548400_B30
2022061103572548400_B31
2022061103572548400_B10
2022061103572548400_B32
2022061103572548400_B11
2022061103572548400_B33
2022061103572548400_B1
2022061103572548400_B2
2022061103572548400_B3
2022061103572548400_B4
2022061103572548400_B5
2022061103572548400_B6
2022061103572548400_B23
2022061103572548400_B24
2022061103572548400_B25
2022061103572548400_B26
2022061103572548400_B27
2022061103572548400_B28
2022061103572548400_B29
2022061103572548400_B20
2022061103572548400_B21
2022061103572548400_B22
References_xml – ident: 2022061103572548400_B27
  doi: 10.1007/BF00685595
– ident: 2022061103572548400_B35
  doi: 10.1016/S0168-3659(97)00082-5
– ident: 2022061103572548400_B12
  doi: 10.1007/s002800050709
– ident: 2022061103572548400_B31
  doi: 10.1179/joc.1999.11.5.407
– ident: 2022061103572548400_B6
– ident: 2022061103572548400_B19
  doi: 10.1007/BF03401588
– ident: 2022061103572548400_B21
  doi: 10.1007/s002800050973
– ident: 2022061103572548400_B9
  doi: 10.1093/jnci/93.8.597
– ident: 2022061103572548400_B4
  doi: 10.1023/A:1015827700904
– ident: 2022061103572548400_B33
– ident: 2022061103572548400_B16
– ident: 2022061103572548400_B18
– ident: 2022061103572548400_B24
  doi: 10.1016/0378-5173(81)90100-9
– ident: 2022061103572548400_B20
  doi: 10.1038/385123b0
– ident: 2022061103572548400_B1
– ident: 2022061103572548400_B39
  doi: 10.1163/156856294X00121
– ident: 2022061103572548400_B10
  doi: 10.1007/BF00942093
– ident: 2022061103572548400_B34
  doi: 10.1248/cpb.44.1935
– ident: 2022061103572548400_B3
– ident: 2022061103572548400_B22
– ident: 2022061103572548400_B17
– ident: 2022061103572548400_B32
  doi: 10.1097/00001813-200006000-00003
– ident: 2022061103572548400_B14
  doi: 10.1021/bi00514a041
– ident: 2022061103572548400_B5
– ident: 2022061103572548400_B36
– ident: 2022061103572548400_B13
  doi: 10.1007/s002800050660
– ident: 2022061103572548400_B11
– ident: 2022061103572548400_B15
– ident: 2022061103572548400_B30
  doi: 10.1200/JCO.1990.8.7.1263
– ident: 2022061103572548400_B38
– ident: 2022061103572548400_B8
  doi: 10.1007/s002800050426
– ident: 2022061103572548400_B28
  doi: 10.1016/0378-4347(94)00456-F
– ident: 2022061103572548400_B29
  doi: 10.1016/S0142-9612(00)00040-5
– ident: 2022061103572548400_B23
– ident: 2022061103572548400_B26
  doi: 10.1038/bjc.1992.333
– ident: 2022061103572548400_B2
– ident: 2022061103572548400_B7
  doi: 10.1016/S0022-5347(17)32742-8
– ident: 2022061103572548400_B37
  doi: 10.1002/(SICI)1097-4636(199811)42:2<331::AID-JBM19>3.0.CO;2-L
– ident: 2022061103572548400_B25
SSID ssj0014104
Score 2.2866518
Snippet Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer....
Purpose: The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer....
The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7677
SubjectTerms Animals
Antineoplastic agents
Antineoplastic Agents, Phytogenic - administration & dosage
Antineoplastic Agents, Phytogenic - pharmacokinetics
Biological and medical sciences
Chromatography, High Pressure Liquid
Dogs
Dose-Response Relationship, Drug
Drug Delivery Systems
Gelatin - chemistry
Gelatin - pharmacokinetics
Male
Medical sciences
Micelles
Nanostructures - chemistry
Nanotechnology
Nephrology. Urinary tract diseases
Paclitaxel - administration & dosage
Paclitaxel - pharmacokinetics
Pharmacology. Drug treatments
Polyethylene Glycols
Time Factors
Tumors of the urinary system
Urinary Bladder - metabolism
Urinary Bladder Neoplasms - drug therapy
Urinary system involvement in other diseases. Miscellaneous
Urinary tract. Prostate gland
X-Ray Diffraction
Title Paclitaxel-Loaded Gelatin Nanoparticles for Intravesical Bladder Cancer Therapy
URI http://clincancerres.aacrjournals.org/content/10/22/7677.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15570001
https://www.proquest.com/docview/67138997
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG-6wYgQb1VK6jhfj6N8bGwDNDpp8GLZjjMhlXRqGzTx9_CHcmc7bsqGGLxEURQ7F__O5zv7Pgh5nihV6TzLwjKnMmQFTKlcFHHIKqWFpqmKSuNt8T7dPWbvTpKTXu9nx2upWcqh-nFpXMn_oArPAFeMkv0HZH2n8ADuAV-4AsJwvRLGH4XCHNvnehoezEQJuuNb49tWo9AEa9g5vRlXwj3cxf2uLSgvpyhw5oMxYj5HtwufWqDNWtBGTCr7iksK5DePv-jBQePNfl2fhvuNqE8Hn7V_5VCcDyYL8dU76aDHLTQbhp-Gg51mbb-BYeCdjbjsuPiD7Omwj_kNR_FRlxwrUyNM4svcNqZ2cjYB2UZtmQgviKMOw9loZSdWs9TWerko75PcbD24LwzH4yM86gErMe6-D7CdfTNMgB9GvXa1_LVH_r-tit5XEawkSjlScI1cp2CMYJ2MV3v7_qyKjUyRSk-EixMD0l5cSpipBGWpWFeG2gTV6J8rFgBxZWur_Nn4MUrQ5Da55ayXYMcy1h3S0_VdcuPQ-WfcIx8ucGTgODJY48gAoAy6HBk4jgwsvoHjyPvk-M3ryXg3dCU7QsVyugzLSMhCFErGIi8jKtJYMA1qtczxf-OyMPq-SGgKt4WUlcAiaHFVVYnKWB7HD8hGPav1IxJUepRK0KYl1ZolkkkBi2usi2wkZMLKqE9YO3ZcuXz2WFZlyo1dm-QcR5_j6HMYfbjhOPp9MvTNzmxCl781eNYCw-2Ua2ccX7FGn2yvQbbqOqV5RpOiT562GHIQ4HgqJ2o9axY8zdBXoIAuHlpoV20dl2xehYItcnM1Wx-TjeW80U9AX17KbcOuvwBa4bpe
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paclitaxel-Loaded+Gelatin+Nanoparticles+for+Intravesical+Bladder+Cancer+Therapy&rft.jtitle=Clinical+cancer+research&rft.au=Ze+Lu&rft.au=Teng-Kuang+Yeh&rft.au=Max+Tsai&rft.au=Jessie+L.-S.+Au&rft.date=2004-11-15&rft.pub=American+Association+for+Cancer+Research&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=10&rft.issue=22&rft.spage=7677&rft_id=info:doi/10.1158%2F1078-0432.CCR-04-1443&rft_id=info%3Apmid%2F15570001&rft.externalDBID=n%2Fa&rft.externalDocID=10_22_7677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon