Electrospun Nanofibrous Conduit Filled with a Collagen-Based Matrix (ColM) for Nerve Regeneration

Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneratio...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 22; p. 7675
Main Authors Hou, Yuanjing, Wang, Xinyu, Wang, Yiyu, Chen, Xia, Wei, Benmei, Zhang, Juntao, Zhu, Lian, Kou, Huizhi, Li, Wenyao, Wang, Haibo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.
AbstractList Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.
Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.
Audience Academic
Author Wei, Benmei
Wang, Xinyu
Chen, Xia
Hou, Yuanjing
Wang, Haibo
Li, Wenyao
Wang, Yiyu
Zhu, Lian
Kou, Huizhi
Zhang, Juntao
Author_xml – sequence: 1
  givenname: Yuanjing
  surname: Hou
  fullname: Hou, Yuanjing
– sequence: 2
  givenname: Xinyu
  surname: Wang
  fullname: Wang, Xinyu
– sequence: 3
  givenname: Yiyu
  surname: Wang
  fullname: Wang, Yiyu
– sequence: 4
  givenname: Xia
  surname: Chen
  fullname: Chen, Xia
– sequence: 5
  givenname: Benmei
  surname: Wei
  fullname: Wei, Benmei
– sequence: 6
  givenname: Juntao
  surname: Zhang
  fullname: Zhang, Juntao
– sequence: 7
  givenname: Lian
  surname: Zhu
  fullname: Zhu, Lian
– sequence: 8
  givenname: Huizhi
  surname: Kou
  fullname: Kou, Huizhi
– sequence: 9
  givenname: Wenyao
  surname: Li
  fullname: Li, Wenyao
– sequence: 10
  givenname: Haibo
  surname: Wang
  fullname: Wang, Haibo
BookMark eNp1Ustu1DAUjVCRaAsfwC4Sm7JI8SuJvSyjFiq1RUKwtjz29eBRxh5sp9C_7-0MCCggL2wdn3Pu86g5iClC07yk5JRzRd5s0gR2nqAwydg4jP2T5pAKRjpOhDr47f2sOSplTQijgvaHjTlHXc2pbOfY3piYfFjmNJd2kaKbQ20vwjSBa7-F-qU1iE6TWUHs3pqC6LWpOXxvTxC-ft36lNsbyLfQfgTkQDY1pPi8eerNVODFj_u4-Xxx_mnxvrv68O5ycXbVWSFZ7Sw3VI1UWUepEwMTRA6SguQDY5wpY6XxIyfjEiQ4_KHguB8sJdJL1Q-WHzeXe1-XzFpvc9iYfKeTCXoHpLzSJtdgJ9DEEecdV245GOGZV14IKtk4YrReWoNeJ3uvbU5fZyhVb0KxgLVHwOZoJhWXmCRVSH31iLpOc45Y6Y7Fhp4p_ou1Mhg_RJ9qNvbBVJ-No-BMCCKQdfoPFh4Hm2Bx4D4g_odg3AssTrBk8NqGuus6CsOkKdEP26H_2g5U0kfKnx37v-YezVC-9g
CitedBy_id crossref_primary_10_1111_jcmm_18544
crossref_primary_10_3389_fchem_2024_1417763
crossref_primary_10_3390_ijms25137088
Cites_doi 10.1002/adhm.201600236
10.1016/j.ijbiomac.2020.06.075
10.1016/j.pmatsci.2020.100721
10.1002/adfm.201705739
10.1016/j.actbio.2018.01.001
10.1016/j.carbpol.2017.01.052
10.1016/j.actbio.2019.03.047
10.1002/adfm.202010609
10.1016/j.actbio.2017.11.020
10.3390/nano12060962
10.1016/j.actbio.2020.09.037
10.3390/molecules27072374
10.1016/j.pneurobio.2010.11.002
10.1016/j.injury.2010.12.030
10.1002/adhm.202100427
10.1016/j.actbio.2017.12.010
10.1016/j.actbio.2016.07.022
10.1038/s41467-020-18265-3
10.1016/j.biomaterials.2019.03.040
10.1016/j.biomaterials.2015.01.055
10.1016/j.carbpol.2017.02.023
10.1016/j.pneurobio.2018.07.002
10.1016/j.addr.2014.11.010
10.1002/advs.202103875
10.1016/j.actbio.2018.02.009
10.1002/anie.200460587
10.1002/adhm.201701164
10.1016/j.pneurobio.2010.10.002
10.1016/j.mtbio.2023.100710
10.1002/adfm.201701713
10.1002/adfm.202010837
10.1016/j.biomaterials.2015.10.009
10.1016/j.progpolymsci.2019.01.002
10.1002/jbm.a.36330
10.1016/j.mtbio.2021.100158
10.1021/acs.chemrev.8b00593
10.1016/j.expneurol.2018.05.016
10.1016/S0022-4804(03)00255-5
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/molecules28227675
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_0d0dfd39db6a4f2f9f441827783658ca
A774324404
10_3390_molecules28227675
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c482t-c3a19719cd11d462408681e83622329ac8af7307be8ed6811ed3f6c108f8956c3
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:23:00 EDT 2025
Thu Jul 10 22:46:13 EDT 2025
Fri Jul 25 06:55:49 EDT 2025
Tue Jun 17 22:24:26 EDT 2025
Tue Jun 10 21:15:35 EDT 2025
Thu Apr 24 23:12:09 EDT 2025
Tue Jul 01 03:59:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-c3a19719cd11d462408681e83622329ac8af7307be8ed6811ed3f6c108f8956c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2893265293?pq-origsite=%requestingapplication%
PQID 2893265293
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_0d0dfd39db6a4f2f9f441827783658ca
proquest_miscellaneous_2893846219
proquest_journals_2893265293
gale_infotracmisc_A774324404
gale_infotracacademiconefile_A774324404
crossref_citationtrail_10_3390_molecules28227675
crossref_primary_10_3390_molecules28227675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gu (ref_39) 2011; 93
Adamiak (ref_26) 2020; 161
Giron (ref_10) 2021; 31
Deumens (ref_21) 2010; 92
Rahmati (ref_33) 2021; 117
Pinho (ref_8) 2016; 5
ref_36
ref_35
Yan (ref_38) 2022; 11
Hou (ref_25) 2018; 106
ref_34
Zou (ref_14) 2018; 28
Lu (ref_2) 2021; 10
Hoogenkamp (ref_19) 2016; 43
Sarker (ref_7) 2018; 171
Tao (ref_23) 2019; 90
Manoukian (ref_4) 2021; 6
Klemm (ref_28) 2005; 44
Kehoe (ref_16) 2012; 43
Kim (ref_41) 2017; 163
Borschel (ref_37) 2003; 114
Wang (ref_11) 2020; 117
Quan (ref_9) 2019; 207
ref_24
Brunelle (ref_12) 2018; 66
Huang (ref_15) 2018; 68
Xue (ref_32) 2019; 119
Collins (ref_31) 2021; 31
ref_40
Xi (ref_29) 2020; 11
Spearman (ref_5) 2018; 28
Li (ref_27) 2017; 165
Ding (ref_30) 2019; 90
Liu (ref_1) 2022; 9
Bozkurt (ref_20) 2016; 75
Yi (ref_3) 2019; 319
Pateman (ref_13) 2015; 49
Wieringa (ref_6) 2018; 7
Faroni (ref_22) 2015; 82–83
Ma (ref_17) 2018; 69
Brown (ref_18) 2018; 73
References_xml – volume: 5
  start-page: 2732
  year: 2016
  ident: ref_8
  article-title: Peripheral Nerve Regeneration: Current Status and New Strategies Using Polymeric Materials
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201600236
– volume: 161
  start-page: 550
  year: 2020
  ident: ref_26
  article-title: Current methods of collagen cross-linking: Review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.06.075
– volume: 117
  start-page: 100721
  year: 2021
  ident: ref_33
  article-title: Electrospinning for tissue engineering applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100721
– volume: 28
  start-page: 1705739
  year: 2018
  ident: ref_14
  article-title: Peripheral Nerve-Derived Matrix Hydrogel Promotes Remyelination and Inhibits Synapse Formation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705739
– volume: 69
  start-page: 146
  year: 2018
  ident: ref_17
  article-title: Sustained delivery of glial cell-derived neurotrophic factors in collagen conduits for facial nerve regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.01.001
– volume: 163
  start-page: 34
  year: 2017
  ident: ref_41
  article-title: Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.01.052
– volume: 90
  start-page: 49
  year: 2019
  ident: ref_23
  article-title: Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.03.047
– volume: 31
  start-page: 202010609
  year: 2021
  ident: ref_31
  article-title: Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010609
– volume: 66
  start-page: 166
  year: 2018
  ident: ref_12
  article-title: Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.020
– ident: ref_35
  doi: 10.3390/nano12060962
– ident: ref_40
– volume: 117
  start-page: 180
  year: 2020
  ident: ref_11
  article-title: Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.09.037
– ident: ref_36
  doi: 10.3390/molecules27072374
– volume: 93
  start-page: 204
  year: 2011
  ident: ref_39
  article-title: Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2010.11.002
– volume: 43
  start-page: 553
  year: 2012
  ident: ref_16
  article-title: FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy
  publication-title: Injury
  doi: 10.1016/j.injury.2010.12.030
– volume: 10
  start-page: 2100427
  year: 2021
  ident: ref_2
  article-title: Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202100427
– volume: 68
  start-page: 223
  year: 2018
  ident: ref_15
  article-title: A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.010
– volume: 43
  start-page: 112
  year: 2016
  ident: ref_19
  article-title: Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.07.022
– volume: 11
  start-page: 4504
  year: 2020
  ident: ref_29
  article-title: Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18265-3
– volume: 207
  start-page: 49
  year: 2019
  ident: ref_9
  article-title: Novel 3-D helix-flexible nerve guide conduits repair nerve defects
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.03.040
– volume: 49
  start-page: 77
  year: 2015
  ident: ref_13
  article-title: Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.055
– volume: 165
  start-page: 30
  year: 2017
  ident: ref_27
  article-title: Reinforced collagen with oxidized microcrystalline cellulose shows improved hemostatic effects
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.02.023
– volume: 171
  start-page: 125
  year: 2018
  ident: ref_7
  article-title: Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2018.07.002
– volume: 82–83
  start-page: 160
  year: 2015
  ident: ref_22
  article-title: Peripheral nerve regeneration: Experimental strategies and future perspectives
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2014.11.010
– volume: 9
  start-page: 2103875
  year: 2022
  ident: ref_1
  article-title: 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103875
– volume: 11
  start-page: 57
  year: 2022
  ident: ref_38
  article-title: Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations
  publication-title: Bioact. Mater.
– volume: 73
  start-page: 217
  year: 2018
  ident: ref_18
  article-title: Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.02.009
– volume: 44
  start-page: 3358
  year: 2005
  ident: ref_28
  article-title: Cellulose: Fascinating Biopolymer and Sustainable Raw Material
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200460587
– volume: 7
  start-page: 1701164
  year: 2018
  ident: ref_6
  article-title: Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201701164
– volume: 92
  start-page: 245
  year: 2010
  ident: ref_21
  article-title: Repairing injured peripheral nerves: Bridging the gap
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2010.10.002
– ident: ref_34
  doi: 10.1016/j.mtbio.2023.100710
– volume: 28
  start-page: 1701713
  year: 2018
  ident: ref_5
  article-title: Tissue-Engineered Peripheral Nerve Interfaces
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701713
– volume: 31
  start-page: 2010837
  year: 2021
  ident: ref_10
  article-title: Magnetic Assembly of a Multifunctional Guidance Conduit for Peripheral Nerve Repair
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010837
– volume: 75
  start-page: 112
  year: 2016
  ident: ref_20
  article-title: Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.10.009
– volume: 90
  start-page: 1
  year: 2019
  ident: ref_30
  article-title: Electrospun polymer biomaterials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.01.002
– volume: 106
  start-page: 1288
  year: 2018
  ident: ref_25
  article-title: Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.36330
– ident: ref_24
  doi: 10.1016/j.mtbio.2021.100158
– volume: 6
  start-page: 2881
  year: 2021
  ident: ref_4
  article-title: Biopolymer-nanotube nerve guidance conduit drug delivery for peripheral nerve regeneration: In vivo structural and functional assessment
  publication-title: Bioact. Mater.
– volume: 119
  start-page: 5298
  year: 2019
  ident: ref_32
  article-title: Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00593
– volume: 319
  start-page: 112761
  year: 2019
  ident: ref_3
  article-title: Scaffolds for peripheral nerve repair and reconstruction
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2018.05.016
– volume: 114
  start-page: 133
  year: 2003
  ident: ref_37
  article-title: Mechanical properties of acellular peripheral nerve
  publication-title: J. Surg. Res.
  doi: 10.1016/S0022-4804(03)00255-5
SSID ssj0021415
Score 2.4291618
Snippet Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7675
SubjectTerms Biocompatibility
biodegradability
Biodegradation
Cellulose
Collagen
Decomposition
electrospinning process
Mechanical properties
nanofibrous
Nervous system
Porosity
Schwann cells
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUll-RS8lXqNAkqBJIWFq925bV0tE1MCMSHkkBuQp-l0G5CbEN_ft7srk1MSHrpdSXBajTSe7M7esPYmau8DLJKmZVKZ4AAl2kbqwyuXKQKkG5Tk20xq67u5PX94P5FqS_KCWvlgVvD9fOQhxRKHVxlZSqSTgBwVQzp9sFA-YYaAfNWwVQXagngUvsPs0RQ3__TlpqNc0qaJPmSDRRqxPrfOpIbnJnuso8dQeSj9sX22IdY77Ptyaou2wGzl23lmvnjsuY4HOEd7gnxO5881GH5a8GndL0vcPrCyi2nLwM4M-psDLwK_IYk-f_yCzy--cbBWPmMch75j_izEaCmdTpkd9PL28lV1hVKyLxUxSLzpRV6KLQPQsDwpFpWKRFhIYB_oa1XNmEnD11UMaBFxFCmyotcJYX4yJef2Fb9UMfPjBfSw8pDxFXJSa2cjgkkRgSFME27UvZYvjKc8Z2KOBWz-G0QTZCtzStb99j39ZDHVkLjvc5jWo11R1K_bh7AJ0znE-ZfPtFj57SWhvYoXs7b7qoBpkhqV2YEzgsiKXNM53ijJ5bSbzavvMF0e3tuEKKC8w7Ak3rs67qZRlK-Wh2x4k0fMDvAwdH_mNAXtkNl7ts7kMdsa_G0jCcgQwt32vj9M-HsBsY
  priority: 102
  providerName: Directory of Open Access Journals
Title Electrospun Nanofibrous Conduit Filled with a Collagen-Based Matrix (ColM) for Nerve Regeneration
URI https://www.proquest.com/docview/2893265293
https://www.proquest.com/docview/2893846219
https://doaj.org/article/0d0dfd39db6a4f2f9f441827783658ca
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZtcmgvoU1b6jQ1ChT6gCX7kHelU4mNnVCIKaEB34RWj1Bo164f0J_fb7RrB1OSiw8rrdnVjGa-mR19w9iHurTCiTIkRkiVwAXUiTK-TKDKeSjh0k2I1RbT8upWfJsNZl3CbdWVVW5tYjTUbm4pR36OwABIYwDv9HXxJ6GuUfR1tWuh8ZQdEnUZlXRVs_uAK4N3ar9kFgjtz3-3DWf9ikonicRkzxdFyv6HDHP0NpMX7KiDifyiletL9sQ3x-zZaNud7RUz47Z_zWqxaThMJHSkXiKK56N54zY_13xCh_wcpzwrN5zyA7AcTTKE13L8moj5__JPuHz9mQO38ilVPvIbfxdpqElar9ntZPxjdJV07RISK2S-TmxhMlVlyrosw_ITd1kpMy_hogCblLHSBOznqvbSO4xk3hWhtFkqg0SUZIs37KCZN_4t47mwIuQVoqtQCyVr5QOgTOYkgjVVF6LH0u3CadtxiVNLi18aMQWttf5vrXvsy-6WRUuk8djkIUljN5E4sOOF-fJOd1tKpy51wRXK1aXB0wYVAO1kXtG5lIG0psc-kiw17VQ8nDXdgQO8InFe6QsgX8BJkeJ1TvdmQpR2f3irDbrb4St9r489drYbpjupaq3xkHicA3wHp3Dy-F-8Y8-pjX17xvGUHayXG_8eYGdd96NG41dOLvvscDiefr_px8TBP7sBAZo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOZQL4ikCBYwE4iGtug9nYx8QakNDSpscUCv1Zrx-VEiwCdlEwJ_iN_LNPoIiRG-92t6V7RnPfGPPg7HnRW6FE3mIjJAqggooImV8HoGV05BDpZtQe1tM8_GZ-HjeP99iv7tYGHKr7GRiLajdzNId-R4MAyCNPrTTu_n3iKpG0etqV0KjYYtj_-sHTLbq7dF70PdFmo4OT4fjqK0qEFkh02VkM5OoQaKsSxLMklJ85TLxEpIc6EIZK00A2w8KL71DT-JdFnKbxDJIGBM2w3-vsesiyxSdKDn6sDbwEmjD5uUUnfHet6bAra_IVZOSpmzovrpEwP8UQa3dRrfYzRaW8v2Gj26zLV_eYTvDrhrcXWYOm3o51XxVcohk8GSxmK0qPpyVbvVlyUcUVOg43etyw-k-ApKqjA6gJR2fUCGAn_wVmievOXAyn5KnJf_kL-q018Qd99jZlWzkfbZdzkr_gPFUWBHSAay5UAglC-UDoFPiJIxDVWSix-Ju47Rtc5dTCY2vGjYM7bX-Z6977M36k3mTuOOywQdEjfVAyrldN8wWF7o9wjp2sQsuU67IDWYbVACUlOmA4mD60poee0m01CQZMDlr2gAHLJFybOl9IG3AVxFjObsbI0FKu9ndcYNuJUql__J_jz1bd9OX5CVXelC8HgM8CSX08PJfPGU749PJiT45mh4_YjdSALcmvnKXbS8XK_8YQGtZPKm5m7PPV32c_gAflTlt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qBfVFvOJq1REULxA2k2STmQeRdtultXYRsbBvcTKXImiybnZR_5q_zu_ksmUR-9bXzCRM5ty-M3MujD0vUpPYJPWBTqQKYAKKQGmXBmDlyKcw6do30RbT9PA0eT8bzbbYnz4XhsIqe53YKGpbGTojH8IxANIYwToNfRcW8XF_8m7-I6AOUnTT2rfTaFnk2P3-Cfetfnu0D1q_iKLJwefxYdB1GAhMIqNlYGItVCaUsUJgxVTuK5XCSWh1IA2ljdQeIpAVTjqLEeFs7FMjQuklHAsT47tX2NUsHgmSsWx27uwJWMb2FjWOVTj83ja7dTWFbVIBlQ072LQL-J9RaCzd5Ba72UFUvtvy1G225co77Pq47wx3l-mDtndOPV-VHOoZ_FksqlXNx1VpV1-XfEIJhpbTGS_XnM4moLXKYA8W0_ITagrwi7_C45PXHJiZTynqkn9yZ00JbOKUe-z0UjbyPtsuq9I9YDxKTOKjDJ6dLxIlC-U8YJSwEo6iKuJkwMJ-43LT1TGndhrfcvgztNf5P3s9YG_Wr8zbIh4XTd4jaqwnUv3t5kG1OMs7cc5DG1pvY2WLVGO1XnnAShlllBMzkkYP2EuiZU5aAoszukt2wC9Sva18F6gbUDYJ8Ts7GzNBSrM53HND3mmXOj-XhQF7th6mNylirnSgeDMH2BIG6eHFn3jKrkGQ8g9H0-NH7EYEDNemWu6w7eVi5R4Dcy2LJw1zc_blsqXpL5IxPZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+Nanofibrous+Conduit+Filled+with+a+Collagen-Based+Matrix+%28ColM%29+for+Nerve+Regeneration&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Hou%2C+Yuanjing&rft.au=Wang%2C+Xinyu&rft.au=Wang%2C+Yiyu&rft.au=Chen%2C+Xia&rft.date=2023-11-01&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=22&rft_id=info:doi/10.3390%2Fmolecules28227675&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon