MicroCT-based finite element models as a tool for virtual testing of cortical bone
•Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models were validated using three point bending test.•Virtual testing propounded to predict elastic-plastic properties of cortical bone. The aim of...
Saved in:
Published in | Medical engineering & physics Vol. 46; pp. 12 - 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models were validated using three point bending test.•Virtual testing propounded to predict elastic-plastic properties of cortical bone.
The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments. |
---|---|
AbstractList | Highlights • Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature. • MicroCT based finite element models were validated using three point bending test. • Virtual testing propounded to predict elastic-plastic properties of cortical bone. •Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models were validated using three point bending test.•Virtual testing propounded to predict elastic-plastic properties of cortical bone. The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments. The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments. The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments.The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments. |
Author | Ramezanzadehkoldeh, Masoud Skallerud, Bjørn H. |
Author_xml | – sequence: 1 givenname: Masoud orcidid: 0000-0002-2450-3468 surname: Ramezanzadehkoldeh fullname: Ramezanzadehkoldeh, Masoud email: masoud.r.koldeh@ntnu.no – sequence: 2 givenname: Bjørn H. surname: Skallerud fullname: Skallerud, Bjørn H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28528791$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7If-Bc2lNzOefOzO5EKlLLUVKoLW65DNnNSss8maZAr7782wrRcFsSSQcHjfN4fn5JQchRiQkDcMWgZs-W7TbnHAcLv7uW85sK4F2QJjz8gJ6zvRSBBwVO9iAY1cCHFMTnPeAICUS_GCHPN-wftOsRPy7Yu3Ka5umrXJOFDngy9IccQthkK3ccAxU1M3LTGO1MVE73wqkxlpwVx8uKXRURtT8bbW1rXNl-S5M2PGV_fnGfnx6eJmddVcf738vDq_bqzseWkMlwNyJ6xTynLJZFeX4MIqlFYop0AOigvOOqFqza57w5adWYIDpzoYxBl5e8jdpfh7qs3orc8Wx9EEjFPWTAET0EMHVfr6XjqtKzi9S35r0l4_cKiC9wdBhZFzQqetL6b4GEoyftQM9Mxdb_Rf7nrmrkHqyr36u0f-hyf-7zw_OCtovPOYdLYeg8XBJ7RFD9E_IePDoww71kHWgfzCPeZNnFKok9BMZ65Bf5__xfwtKlpgHGY-H_8d8KQW_gCEZcue |
CitedBy_id | crossref_primary_10_1007_s10439_020_02719_2 crossref_primary_10_1016_j_bone_2020_115250 crossref_primary_10_1016_j_clinbiomech_2018_06_003 crossref_primary_10_3390_ma15155163 crossref_primary_10_1016_j_medengphy_2019_09_007 crossref_primary_10_3389_fbioe_2023_1082254 crossref_primary_10_3390_ma13010106 crossref_primary_10_1115_1_4047991 crossref_primary_10_1007_s10439_019_02238_9 crossref_primary_10_1007_s11831_019_09322_2 crossref_primary_10_1080_10255842_2022_2098016 crossref_primary_10_1016_j_jmbbm_2019_03_009 crossref_primary_10_1007_s42452_021_04760_9 crossref_primary_10_1016_j_bone_2020_115328 crossref_primary_10_1016_j_jbiomech_2018_05_042 crossref_primary_10_1016_j_mbs_2019_04_005 crossref_primary_10_1016_j_medntd_2020_100036 |
Cites_doi | 10.1007/BF00675623 10.1016/j.clinbiomech.2008.11.003 10.1016/j.jbiomech.2015.01.002 10.1016/j.bone.2014.05.019 10.1016/0021-9290(95)80008-5 10.1016/j.jbiomech.2009.10.047 10.1016/j.bone.2008.06.008 10.1002/jbmr.5650110218 10.1016/S0142-9612(97)00073-2 10.1098/rspb.1996.0044 10.1002/jbmr.1996 10.1016/j.medengphy.2010.01.004 10.1007/s10439-014-1027-3 10.1016/S8756-3282(01)00467-7 10.1016/j.jbiomech.2007.02.010 10.1016/S0268-0033(01)00110-3 10.1007/BF02406145 10.1016/8756-3282(95)00489-0 10.1002/jor.1100010409 10.1016/j.jbiomech.2014.12.024 10.1115/1.1763177 10.1016/S0021-9290(00)00149-4 10.1016/j.pmatsci.2007.06.001 10.1097/00005373-197204000-00005 10.1115/1.2796085 10.1080/10255842.2011.581236 10.1016/j.clinbiomech.2007.08.024 10.1016/j.jbiomech.2004.04.020 10.1016/j.medengphy.2005.06.003 10.1016/S8756-3282(02)00736-6 10.1016/S0021-9290(00)00069-5 10.1038/nmat3959 10.1002/cnm.2739 10.1016/j.jbiomech.2011.04.020 10.1302/0301-620X.78B3.0780363 10.1530/JOE-16-0017 10.1016/j.jbiomech.2003.10.002 10.1097/00004728-199001000-00020 10.1016/S0021-9290(99)00111-6 10.1016/0021-9290(91)90350-V 10.1016/S0021-9290(03)00071-X |
ContentType | Journal Article |
Copyright | 2017 IPEM IPEM Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 IPEM – notice: IPEM – notice: Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.medengphy.2017.04.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 20 |
ExternalDocumentID | 28528791 10_1016_j_medengphy_2017_04_011 S1350453317301200 1_s2_0_S1350453317301200 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c482t-a24de2f3cf99c24147474323c9e4c39f904d92321739c9ecb8a167a60f0f970d3 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Fri Jul 11 09:45:48 EDT 2025 Thu Apr 03 07:10:33 EDT 2025 Tue Jul 01 04:24:52 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Fri Feb 23 02:29:17 EST 2024 Sun Feb 23 10:19:58 EST 2025 Tue Aug 26 16:31:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Virtual testing Femur Biomechanical testing MicroCT-based FEM |
Language | English |
License | Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-a24de2f3cf99c24147474323c9e4c39f904d92321739c9ecb8a167a60f0f970d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2450-3468 |
PMID | 28528791 |
PQID | 1901308070 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1901308070 pubmed_primary_28528791 crossref_citationtrail_10_1016_j_medengphy_2017_04_011 crossref_primary_10_1016_j_medengphy_2017_04_011 elsevier_sciencedirect_doi_10_1016_j_medengphy_2017_04_011 elsevier_clinicalkeyesjournals_1_s2_0_S1350453317301200 elsevier_clinicalkey_doi_10_1016_j_medengphy_2017_04_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Parfitt (bib0003) 1984; 36 Hernandez, Beaupré, Keller, Carter (bib0027) 2001; 29 Hipp, Jansujwicz, Simmons, Snyder (bib0007) 1996; 11 Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0031) 2007; 40 Niebur, Feldstein, Yuen, Chen, Keaveny (bib0005) 2000; 33 Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0014) 2008; 23 Danielsen, Mosekilde, Svenstrup (bib0001) 1993; 52 Cory, Nazarian, Entezari, Vartanians, Müller, Snyder (bib0020) 2010; 43 Bourne, Van Der Meulen (bib0013) 2004; 37 Bayraktar, Gupta, Kwon, Papadopoulos, Keaveny (bib0032) 2004; 126 Pelker, Friedlaender, Markham, Panjabi, Moen (bib0037) 1984; 1 Aasarød, Ramezanzadehkoldeh, Shabestari, Mosti, Stunes, Reseland (bib0024) 2016 Carnelli, Lucchini, Ponzoni, Contro, Vena (bib0033) 2011; 44 Pettersen, Wik, Skallerud (bib0041) 2009; 24 Schwiedrzik, Gross, Bina, Pretterklieber, Zysset, Pahr (bib0023) 2016; 32 Kohles, Bowers, Vailas, Vanderby Jr (bib0029) 1997; 119 Wirtz, Schiffers, Pandorf, Radermacher, Weichert, Forst (bib0018) 2000; 33 Pistoia, Van Rietbergen, Lochmüller, Lill, Eckstein, Rüegsegger (bib0011) 2002; 30 Morgan, Bayraktar, Keaveny (bib0034) 2003; 36 Spatz -Ch, O'Leary, Vincent (bib0016) 1996; 263 Lotz, Gerhart, Hayes (bib0019) 1991; 24 van Rietbergen, Ito (bib0010) 2015; 48 Müller, Hahn, Vogel, Delling, Rüegsegger (bib0006) 1996; 18 Schwiedrzik, Raghavan, Bürki, Lenader, Wolfram, Michler (bib0012) 2014; 13 Lotz, Gerhart, Hayes (bib0035) 1990; 14 Abendschein, Hyatt (bib0026) 1972; 12 Kourtis, Carter, Beaupre (bib0022) 2014; 42 Peng, Bai, Zeng, Zhou (bib0038) 2006; 28 Zysset, Edward Guo, Edward Hoffler, Moore, Goldstein (bib0009) 1999; 32 Van Rietbergen, Weinans, Huiskes, Odgaard (bib0004) 1995; 28 Yang, Ma, Guo (bib0025) 2010; 32 Van Rietbergen, Majumdar, Newitt, MacDonald (bib0002) 2002; 17 Van Lenthe, Voide, Boyd, Müller (bib0028) 2008; 43 Hamer, Strachan, Black, Ibbotson, Stockley, Elson (bib0036) 1996; 78 Rho, Tsui, Pharr (bib0008) 1997; 18 Schriefer, Robling, Warden, Fournier, Mason, Turner (bib0021) 2005; 38 Gross, Pahr, Peyrin, Zysset (bib0030) 2012; 15 Christen, Melton Iii, Zwahlen, Amin, Khosla, Müller (bib0042) 2013; 28 Zysset (bib0040) 1994 Lekadir, Hazrati-Marangalou, Hoogendoorn, Taylor, van Rietbergen, Frangi (bib0015) 2015; 48 Yang, Butz, Duffy, Niebur, Nauman, Main (bib0017) 2014; 66 Fratzl, Weinkamer (bib0039) 2007; 52 Kourtis (10.1016/j.medengphy.2017.04.011_bib0022) 2014; 42 Schileo (10.1016/j.medengphy.2017.04.011_bib0031) 2007; 40 Fratzl (10.1016/j.medengphy.2017.04.011_bib0039) 2007; 52 Zysset (10.1016/j.medengphy.2017.04.011_bib0040) 1994 Pistoia (10.1016/j.medengphy.2017.04.011_bib0011) 2002; 30 Lekadir (10.1016/j.medengphy.2017.04.011_bib0015) 2015; 48 Zysset (10.1016/j.medengphy.2017.04.011_bib0009) 1999; 32 Helgason (10.1016/j.medengphy.2017.04.011_bib0014) 2008; 23 Müller (10.1016/j.medengphy.2017.04.011_bib0006) 1996; 18 Schwiedrzik (10.1016/j.medengphy.2017.04.011_bib0012) 2014; 13 Hernandez (10.1016/j.medengphy.2017.04.011_bib0027) 2001; 29 Van Rietbergen (10.1016/j.medengphy.2017.04.011_bib0004) 1995; 28 Schriefer (10.1016/j.medengphy.2017.04.011_bib0021) 2005; 38 Bayraktar (10.1016/j.medengphy.2017.04.011_bib0032) 2004; 126 Aasarød (10.1016/j.medengphy.2017.04.011_bib0024) 2016 Bourne (10.1016/j.medengphy.2017.04.011_bib0013) 2004; 37 Hamer (10.1016/j.medengphy.2017.04.011_bib0036) 1996; 78 Christen (10.1016/j.medengphy.2017.04.011_bib0042) 2013; 28 Danielsen (10.1016/j.medengphy.2017.04.011_bib0001) 1993; 52 Morgan (10.1016/j.medengphy.2017.04.011_bib0034) 2003; 36 Wirtz (10.1016/j.medengphy.2017.04.011_bib0018) 2000; 33 Yang (10.1016/j.medengphy.2017.04.011_bib0017) 2014; 66 Kohles (10.1016/j.medengphy.2017.04.011_bib0029) 1997; 119 Spatz -Ch (10.1016/j.medengphy.2017.04.011_bib0016) 1996; 263 van Rietbergen (10.1016/j.medengphy.2017.04.011_bib0010) 2015; 48 Peng (10.1016/j.medengphy.2017.04.011_bib0038) 2006; 28 Parfitt (10.1016/j.medengphy.2017.04.011_bib0003) 1984; 36 Rho (10.1016/j.medengphy.2017.04.011_bib0008) 1997; 18 Yang (10.1016/j.medengphy.2017.04.011_bib0025) 2010; 32 Van Lenthe (10.1016/j.medengphy.2017.04.011_bib0028) 2008; 43 Lotz (10.1016/j.medengphy.2017.04.011_bib0019) 1991; 24 Lotz (10.1016/j.medengphy.2017.04.011_bib0035) 1990; 14 Cory (10.1016/j.medengphy.2017.04.011_bib0020) 2010; 43 Pelker (10.1016/j.medengphy.2017.04.011_bib0037) 1984; 1 Hipp (10.1016/j.medengphy.2017.04.011_bib0007) 1996; 11 Van Rietbergen (10.1016/j.medengphy.2017.04.011_bib0002) 2002; 17 Abendschein (10.1016/j.medengphy.2017.04.011_bib0026) 1972; 12 Carnelli (10.1016/j.medengphy.2017.04.011_bib0033) 2011; 44 Niebur (10.1016/j.medengphy.2017.04.011_bib0005) 2000; 33 Gross (10.1016/j.medengphy.2017.04.011_bib0030) 2012; 15 Pettersen (10.1016/j.medengphy.2017.04.011_bib0041) 2009; 24 Schwiedrzik (10.1016/j.medengphy.2017.04.011_bib0023) 2016; 32 |
References_xml | – volume: 48 start-page: 598 year: 2015 end-page: 603 ident: bib0015 article-title: Statistical estimation of femur micro-architecture using optimal shape and density predictors publication-title: J Biomech – volume: 66 start-page: 131 year: 2014 end-page: 139 ident: bib0017 article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis publication-title: Bone – volume: 42 start-page: 1773 year: 2014 end-page: 1780 ident: bib0022 article-title: Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones publication-title: Ann Biomed Eng – year: 1994 ident: bib0040 article-title: A constitutive law for trabecular bone – volume: 36 start-page: S123 year: 1984 end-page: S128 ident: bib0003 article-title: Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences publication-title: Calcif Tissue Int – volume: 18 start-page: 215 year: 1996 end-page: 220 ident: bib0006 article-title: Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections publication-title: Bone – volume: 78 start-page: 363 year: 1996 end-page: 368 ident: bib0036 article-title: Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: A comparison of fresh, fresh-frozen and irradiated bone publication-title: J Bone Joint Surg - Ser B – volume: 43 start-page: 717 year: 2008 end-page: 723 ident: bib0028 article-title: Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus publication-title: Bone – volume: 1 start-page: 405 year: 1984 end-page: 411 ident: bib0037 article-title: Effects of freezing and freeze-drying on the biomechanical properties of rat bone publication-title: J Orthop Res – volume: 52 start-page: 1263 year: 2007 end-page: 1334 ident: bib0039 article-title: Nature's hierarchical materials publication-title: Prog Mater Sci – volume: 32 start-page: e02739 year: 2016 ident: bib0023 article-title: Experimental validation of a nonlinear µFE model based on cohesive-frictional plasticity for trabecular bone publication-title: Int J Numer Methods Biomed Eng – volume: 43 start-page: 953 year: 2010 end-page: 960 ident: bib0020 article-title: Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-CT based mineral density publication-title: J Biomech – volume: 37 start-page: 613 year: 2004 end-page: 621 ident: bib0013 article-title: Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation publication-title: J Biomech – volume: 28 start-page: 227 year: 2006 end-page: 233 ident: bib0038 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med Eng Phys – volume: 32 start-page: 1005 year: 1999 end-page: 1012 ident: bib0009 article-title: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur publication-title: J Biomech – volume: 32 start-page: 553 year: 2010 end-page: 560 ident: bib0025 article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur publication-title: Med Eng Phys – volume: 14 start-page: 107 year: 1990 end-page: 114 ident: bib0035 article-title: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study publication-title: J Comput Assisted Tomogr – volume: 263 start-page: 287 year: 1996 end-page: 294 ident: bib0016 article-title: Young's moduli and shear moduli in cortical bone publication-title: Proc R Soc B – volume: 29 start-page: 74 year: 2001 end-page: 78 ident: bib0027 article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus publication-title: Bone – volume: 17 start-page: 81 year: 2002 end-page: 88 ident: bib0002 article-title: High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment publication-title: Clin Biomech – volume: 24 start-page: 196 year: 2009 end-page: 202 ident: bib0041 article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem publication-title: Clin Biomech – volume: 40 start-page: 2982 year: 2007 end-page: 2989 ident: bib0031 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech – volume: 44 start-page: 1852 year: 2011 end-page: 1858 ident: bib0033 article-title: Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response publication-title: J Biomech – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: bib0014 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech – volume: 33 start-page: 1575 year: 2000 end-page: 1583 ident: bib0005 article-title: High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone publication-title: J Biomech – volume: 12 start-page: 297 year: 1972 end-page: 301 ident: bib0026 article-title: Ultrasonics and physical properties of healing bone publication-title: J Trauma: Inj, Infect, Crit Care – volume: 13 start-page: 740 year: 2014 end-page: 747 ident: bib0012 article-title: In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone publication-title: Nat Mater – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib0034 article-title: Trabecular bone modulus-density relationships depend on anatomic site publication-title: J Biomech – volume: 33 start-page: 1325 year: 2000 end-page: 1330 ident: bib0018 article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur publication-title: J Biomech – volume: 24 start-page: 317 year: 1991 end-page: 329 ident: bib0019 article-title: Mechanical properties of metaphyseal bone in the proximal femur publication-title: J Biomech – volume: 48 start-page: 832 year: 2015 end-page: 841 ident: bib0010 article-title: A survey of micro-finite element analysis for clinical assessment of bone strength: The first decade publication-title: J Biomech – volume: 28 start-page: 69 year: 1995 end-page: 81 ident: bib0004 article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models publication-title: J Biomech – volume: 11 start-page: 286 year: 1996 end-page: 292 ident: bib0007 article-title: Trabecular bone morphology from micro-magnetic resonance imaging publication-title: J Bone Miner Res – volume: 18 start-page: 1325 year: 1997 end-page: 1330 ident: bib0008 article-title: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation publication-title: Biomaterials – volume: 52 start-page: 26 year: 1993 end-page: 33 ident: bib0001 article-title: Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution publication-title: Calcif Tissue Int – volume: 30 start-page: 842 year: 2002 end-page: 848 ident: bib0011 article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images publication-title: Bone – volume: 38 start-page: 467 year: 2005 end-page: 475 ident: bib0021 article-title: A comparison of mechanical properties derived from multiple skeletal sites in mice publication-title: J Biomech – year: 2016 ident: bib0024 article-title: Skeletal effects of a gastrin receptor antagonist in H+/K+ATPase beta subunit KO mice publication-title: J Endocrinol – volume: 119 start-page: 232 year: 1997 end-page: 236 ident: bib0029 article-title: Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens publication-title: J Biomech Eng – volume: 15 start-page: 1137 year: 2012 end-page: 1144 ident: bib0030 article-title: Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SRµCT-based finite element study publication-title: Comput Methods Biomech Biomed Eng – volume: 28 start-page: 2601 year: 2013 end-page: 2608 ident: bib0042 article-title: Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius publication-title: J Bone Miner Res – volume: 126 start-page: 677 year: 2004 end-page: 684 ident: bib0032 article-title: The modified super-ellipsoid yield criterion for human trabecular bone publication-title: J Biomech Eng – volume: 52 start-page: 26 issue: 1 year: 1993 ident: 10.1016/j.medengphy.2017.04.011_bib0001 article-title: Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution publication-title: Calcif Tissue Int doi: 10.1007/BF00675623 – volume: 24 start-page: 196 issue: 2 year: 2009 ident: 10.1016/j.medengphy.2017.04.011_bib0041 article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2008.11.003 – volume: 48 start-page: 598 issue: 4 year: 2015 ident: 10.1016/j.medengphy.2017.04.011_bib0015 article-title: Statistical estimation of femur micro-architecture using optimal shape and density predictors publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.01.002 – volume: 66 start-page: 131 year: 2014 ident: 10.1016/j.medengphy.2017.04.011_bib0017 article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis publication-title: Bone doi: 10.1016/j.bone.2014.05.019 – volume: 28 start-page: 69 issue: 1 year: 1995 ident: 10.1016/j.medengphy.2017.04.011_bib0004 article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models publication-title: J Biomech doi: 10.1016/0021-9290(95)80008-5 – volume: 43 start-page: 953 issue: 5 year: 2010 ident: 10.1016/j.medengphy.2017.04.011_bib0020 article-title: Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-CT based mineral density publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.10.047 – volume: 43 start-page: 717 issue: 4 year: 2008 ident: 10.1016/j.medengphy.2017.04.011_bib0028 article-title: Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus publication-title: Bone doi: 10.1016/j.bone.2008.06.008 – volume: 11 start-page: 286 issue: 2 year: 1996 ident: 10.1016/j.medengphy.2017.04.011_bib0007 article-title: Trabecular bone morphology from micro-magnetic resonance imaging publication-title: J Bone Miner Res doi: 10.1002/jbmr.5650110218 – volume: 18 start-page: 1325 issue: 20 year: 1997 ident: 10.1016/j.medengphy.2017.04.011_bib0008 article-title: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation publication-title: Biomaterials doi: 10.1016/S0142-9612(97)00073-2 – volume: 263 start-page: 287 issue: 1368 year: 1996 ident: 10.1016/j.medengphy.2017.04.011_bib0016 article-title: Young's moduli and shear moduli in cortical bone publication-title: Proc R Soc B doi: 10.1098/rspb.1996.0044 – volume: 28 start-page: 2601 issue: 12 year: 2013 ident: 10.1016/j.medengphy.2017.04.011_bib0042 article-title: Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius publication-title: J Bone Miner Res doi: 10.1002/jbmr.1996 – volume: 32 start-page: 553 issue: 6 year: 2010 ident: 10.1016/j.medengphy.2017.04.011_bib0025 article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.01.004 – volume: 42 start-page: 1773 issue: 8 year: 2014 ident: 10.1016/j.medengphy.2017.04.011_bib0022 article-title: Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones publication-title: Ann Biomed Eng doi: 10.1007/s10439-014-1027-3 – volume: 29 start-page: 74 issue: 1 year: 2001 ident: 10.1016/j.medengphy.2017.04.011_bib0027 article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus publication-title: Bone doi: 10.1016/S8756-3282(01)00467-7 – volume: 40 start-page: 2982 issue: 13 year: 2007 ident: 10.1016/j.medengphy.2017.04.011_bib0031 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.02.010 – volume: 17 start-page: 81 issue: 2 year: 2002 ident: 10.1016/j.medengphy.2017.04.011_bib0002 article-title: High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment publication-title: Clin Biomech doi: 10.1016/S0268-0033(01)00110-3 – volume: 36 start-page: S123 issue: 1 Supplement year: 1984 ident: 10.1016/j.medengphy.2017.04.011_bib0003 article-title: Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences publication-title: Calcif Tissue Int doi: 10.1007/BF02406145 – volume: 18 start-page: 215 issue: 3 year: 1996 ident: 10.1016/j.medengphy.2017.04.011_bib0006 article-title: Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections publication-title: Bone doi: 10.1016/8756-3282(95)00489-0 – volume: 1 start-page: 405 issue: 4 year: 1984 ident: 10.1016/j.medengphy.2017.04.011_bib0037 article-title: Effects of freezing and freeze-drying on the biomechanical properties of rat bone publication-title: J Orthop Res doi: 10.1002/jor.1100010409 – year: 1994 ident: 10.1016/j.medengphy.2017.04.011_bib0040 – volume: 48 start-page: 832 issue: 5 year: 2015 ident: 10.1016/j.medengphy.2017.04.011_bib0010 article-title: A survey of micro-finite element analysis for clinical assessment of bone strength: The first decade publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.12.024 – volume: 126 start-page: 677 issue: 6 year: 2004 ident: 10.1016/j.medengphy.2017.04.011_bib0032 article-title: The modified super-ellipsoid yield criterion for human trabecular bone publication-title: J Biomech Eng doi: 10.1115/1.1763177 – volume: 33 start-page: 1575 issue: 12 year: 2000 ident: 10.1016/j.medengphy.2017.04.011_bib0005 article-title: High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone publication-title: J Biomech doi: 10.1016/S0021-9290(00)00149-4 – volume: 52 start-page: 1263 issue: 8 year: 2007 ident: 10.1016/j.medengphy.2017.04.011_bib0039 article-title: Nature's hierarchical materials publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2007.06.001 – volume: 12 start-page: 297 issue: 4 year: 1972 ident: 10.1016/j.medengphy.2017.04.011_bib0026 article-title: Ultrasonics and physical properties of healing bone publication-title: J Trauma: Inj, Infect, Crit Care doi: 10.1097/00005373-197204000-00005 – volume: 119 start-page: 232 issue: 3 year: 1997 ident: 10.1016/j.medengphy.2017.04.011_bib0029 article-title: Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens publication-title: J Biomech Eng doi: 10.1115/1.2796085 – volume: 15 start-page: 1137 issue: 11 year: 2012 ident: 10.1016/j.medengphy.2017.04.011_bib0030 article-title: Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SRµCT-based finite element study publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2011.581236 – volume: 23 start-page: 135 issue: 2 year: 2008 ident: 10.1016/j.medengphy.2017.04.011_bib0014 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 38 start-page: 467 issue: 3 year: 2005 ident: 10.1016/j.medengphy.2017.04.011_bib0021 article-title: A comparison of mechanical properties derived from multiple skeletal sites in mice publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.04.020 – volume: 28 start-page: 227 issue: 3 year: 2006 ident: 10.1016/j.medengphy.2017.04.011_bib0038 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2005.06.003 – volume: 30 start-page: 842 issue: 6 year: 2002 ident: 10.1016/j.medengphy.2017.04.011_bib0011 article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images publication-title: Bone doi: 10.1016/S8756-3282(02)00736-6 – volume: 33 start-page: 1325 issue: 10 year: 2000 ident: 10.1016/j.medengphy.2017.04.011_bib0018 article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur publication-title: J Biomech doi: 10.1016/S0021-9290(00)00069-5 – volume: 13 start-page: 740 issue: 7 year: 2014 ident: 10.1016/j.medengphy.2017.04.011_bib0012 article-title: In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone publication-title: Nat Mater doi: 10.1038/nmat3959 – volume: 32 start-page: e02739 issue: 4 year: 2016 ident: 10.1016/j.medengphy.2017.04.011_bib0023 article-title: Experimental validation of a nonlinear µFE model based on cohesive-frictional plasticity for trabecular bone publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.2739 – volume: 44 start-page: 1852 issue: 10 year: 2011 ident: 10.1016/j.medengphy.2017.04.011_bib0033 article-title: Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.04.020 – volume: 78 start-page: 363 issue: 3 year: 1996 ident: 10.1016/j.medengphy.2017.04.011_bib0036 article-title: Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: A comparison of fresh, fresh-frozen and irradiated bone publication-title: J Bone Joint Surg - Ser B doi: 10.1302/0301-620X.78B3.0780363 – year: 2016 ident: 10.1016/j.medengphy.2017.04.011_bib0024 article-title: Skeletal effects of a gastrin receptor antagonist in H+/K+ATPase beta subunit KO mice publication-title: J Endocrinol doi: 10.1530/JOE-16-0017 – volume: 37 start-page: 613 issue: 5 year: 2004 ident: 10.1016/j.medengphy.2017.04.011_bib0013 article-title: Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation publication-title: J Biomech doi: 10.1016/j.jbiomech.2003.10.002 – volume: 14 start-page: 107 issue: 1 year: 1990 ident: 10.1016/j.medengphy.2017.04.011_bib0035 article-title: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study publication-title: J Comput Assisted Tomogr doi: 10.1097/00004728-199001000-00020 – volume: 32 start-page: 1005 issue: 10 year: 1999 ident: 10.1016/j.medengphy.2017.04.011_bib0009 article-title: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur publication-title: J Biomech doi: 10.1016/S0021-9290(99)00111-6 – volume: 24 start-page: 317 issue: 5 year: 1991 ident: 10.1016/j.medengphy.2017.04.011_bib0019 article-title: Mechanical properties of metaphyseal bone in the proximal femur publication-title: J Biomech doi: 10.1016/0021-9290(91)90350-V – volume: 36 start-page: 897 issue: 7 year: 2003 ident: 10.1016/j.medengphy.2017.04.011_bib0034 article-title: Trabecular bone modulus-density relationships depend on anatomic site publication-title: J Biomech doi: 10.1016/S0021-9290(03)00071-X |
SSID | ssj0004463 |
Score | 2.273815 |
Snippet | •Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models... Highlights • Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature. • MicroCT based finite... The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12 |
SubjectTerms | Animals Biomechanical Phenomena Biomechanical testing Cortical Bone - diagnostic imaging Elastic Modulus Femur Femur - diagnostic imaging Finite Element Analysis Materials Testing - methods Mechanical Phenomena Mice MicroCT-based FEM Nonlinear Dynamics Radiology Stress, Mechanical User-Computer Interface Virtual testing X-Ray Microtomography |
Title | MicroCT-based finite element models as a tool for virtual testing of cortical bone |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453317301200 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453317301200 https://dx.doi.org/10.1016/j.medengphy.2017.04.011 https://www.ncbi.nlm.nih.gov/pubmed/28528791 https://www.proquest.com/docview/1901308070 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5CCjkeSrO5tkdQIK_OypbWkvoWloZNyuYhB-RN-JDChmCHXW8e89sz42Pb0IYUCn6whceyNaM5rG9GAEcu1TyLpQ9yEeWBFB714DDSgVNc-VSFTte19CYX8fhGnt8Ob1dg1OXCEKyy1f2NTq-1ddsyaEdz8DidDq5CMUR_RKABFJQBSnG7lIqk_Pj5F8wDw50aZI83B3T3K4wXGhxX3OH3EMZL1TVPw_AtC_WWB1pbotNP8LF1IdlJ85ZbsOKKHqyPup3berD5W5HBHqxN2uXzbbicEPxudB2Q7cqZn5LDyVyDIGf1pjhzluDBqrJ8YOjPsqfpjDJMWEXVOIo7VnqG8Wr9A5ylZeF24Ob0x_VoHLSbKgSZ1FEVJJHMXeRF5o3J0HxLjCekiERmnMyE8YbLHJ0-jFSEwbYs1UkYqyTmnnujeC52YbXAx-8D84lDPus4Ni6VcYpn0uSoNBKnwwTDoD7E3UDarK04ThtfPNgOWnZvlxywxAHLpUUO9IEvCR-bohvvk-iOU7bLKUUtaNEwvE-q_kbq5u1sntvQziPL7R8S14fvS8pXQvtv3R52AmVRPmidJilcucDuDC0na1TGfdhrJG05DBHNJGXCz__T9RfYoKsGx_gVVqvZwn1D36pKD-rJcwAfTs5-ji9eAJx0Ihw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISKNMYDYt1XYTBP2mtUJ3YTmzdUDZWP9mErEm9WPmxUhBJEA7-fu8TpQAMxCSkPkZPLJb7zfcT3AfDTZornsXRBIaIikMKhHBxFKrAJT1yWhFY1tfSms3hyLk8uRhdrMO5yYSis0sv-VqY30tqPDP1sDm8Wi-GfUIzQHhGoAAVlgKLfvk7VqUY9WD88Pp3M_qZHyqahGt0fEMCTMC_UOba8xE-iMK-kKXsahi8pqZeM0EYZHW3Dlrci2WH7oh9gzZZ92Bh3zdv6sPmozmAf3k39DvpH-D2lCLzxPCD1VTC3IJuT2TaInDV9cZYsxYPVVXXN0KRl94tbSjJhNRXkKC9Z5Ri6rM0_cJZVpf0E50e_5uNJ4PsqBLlUUR2kkSxs5ETutM5Rg0t0KaSIRK6tzIV2mssC7T50VoTGsTxTaRgnacwddzrhhfgMvRIf_xWYSy2SWsWxtpmMMzyTukC5kVoVpugJDSDuJtLkvug49b64Nl102ZVZUcAQBQyXBikwAL4CvGnrbrwOojpKmS6tFAWhQd3wOmjyHKhd-gW9NKFZRoabf5huAAcryCd8-39of3QMZZA_aKsmLW11h-g07SgrlMcD-NJy2moaIlpMiQ533oL6O2xM5tMzc3Y8O92F93SlDWv8Br369s7uoalVZ_t-KT0Aep8kzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroCT-based+finite+element+models+as+a+tool+for+virtual+testing+of+cortical+bone&rft.jtitle=Medical+engineering+%26+physics&rft.au=Ramezanzadehkoldeh%2C+Masoud&rft.au=Skallerud%2C+Bj%C3%B8rn+H.&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=46&rft.spage=12&rft.epage=20&rft_id=info:doi/10.1016%2Fj.medengphy.2017.04.011&rft.externalDocID=S1350453317301200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon |