MicroCT-based finite element models as a tool for virtual testing of cortical bone

•Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models were validated using three point bending test.•Virtual testing propounded to predict elastic-plastic properties of cortical bone. The aim of...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 46; pp. 12 - 20
Main Authors Ramezanzadehkoldeh, Masoud, Skallerud, Bjørn H.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models were validated using three point bending test.•Virtual testing propounded to predict elastic-plastic properties of cortical bone. The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments.
AbstractList Highlights • Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature. • MicroCT based finite element models were validated using three point bending test. • Virtual testing propounded to predict elastic-plastic properties of cortical bone.
•Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models were validated using three point bending test.•Virtual testing propounded to predict elastic-plastic properties of cortical bone. The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments.
The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments.
The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments.The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing non-invasive methods for determining the stiffness and strength of cortical bone. Mouse femurs were µCT scanned prior to three-point-bend tests. Then microCT-based finite element models were generated with spatial variation in bone elastoplastic properties and subject-specific femur geometries. Empirical relationships of density versus Young's moduli and yield stress were used in assigning elastoplastic properties to each voxel. The microCT-based finite element modeling (µFEM) results were employed to investigate the model's accuracy through comparison with experimental tests. The correspondence of elastic stiffness and strength from the µFE analyses and tests was good. The interpretation of the derived data showed a 6.1%, 1.4%, 1.5%, and 1.6% difference between the experimental test result and µFEM output on global stiffness, nominal Young's modulus, nominal yield stress, and yield force, respectively. We conclude that virtual testing outputs could be used to predict global elastic-plastic properties and may reduce the cost, time, and number of test specimens in performing physical experiments.
Author Ramezanzadehkoldeh, Masoud
Skallerud, Bjørn H.
Author_xml – sequence: 1
  givenname: Masoud
  orcidid: 0000-0002-2450-3468
  surname: Ramezanzadehkoldeh
  fullname: Ramezanzadehkoldeh, Masoud
  email: masoud.r.koldeh@ntnu.no
– sequence: 2
  givenname: Bjørn H.
  surname: Skallerud
  fullname: Skallerud, Bjørn H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28528791$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7If-Bc2lNzOefOzO5EKlLLUVKoLW65DNnNSss8maZAr7782wrRcFsSSQcHjfN4fn5JQchRiQkDcMWgZs-W7TbnHAcLv7uW85sK4F2QJjz8gJ6zvRSBBwVO9iAY1cCHFMTnPeAICUS_GCHPN-wftOsRPy7Yu3Ka5umrXJOFDngy9IccQthkK3ccAxU1M3LTGO1MVE73wqkxlpwVx8uKXRURtT8bbW1rXNl-S5M2PGV_fnGfnx6eJmddVcf738vDq_bqzseWkMlwNyJ6xTynLJZFeX4MIqlFYop0AOigvOOqFqza57w5adWYIDpzoYxBl5e8jdpfh7qs3orc8Wx9EEjFPWTAET0EMHVfr6XjqtKzi9S35r0l4_cKiC9wdBhZFzQqetL6b4GEoyftQM9Mxdb_Rf7nrmrkHqyr36u0f-hyf-7zw_OCtovPOYdLYeg8XBJ7RFD9E_IePDoww71kHWgfzCPeZNnFKok9BMZ65Bf5__xfwtKlpgHGY-H_8d8KQW_gCEZcue
CitedBy_id crossref_primary_10_1007_s10439_020_02719_2
crossref_primary_10_1016_j_bone_2020_115250
crossref_primary_10_1016_j_clinbiomech_2018_06_003
crossref_primary_10_3390_ma15155163
crossref_primary_10_1016_j_medengphy_2019_09_007
crossref_primary_10_3389_fbioe_2023_1082254
crossref_primary_10_3390_ma13010106
crossref_primary_10_1115_1_4047991
crossref_primary_10_1007_s10439_019_02238_9
crossref_primary_10_1007_s11831_019_09322_2
crossref_primary_10_1080_10255842_2022_2098016
crossref_primary_10_1016_j_jmbbm_2019_03_009
crossref_primary_10_1007_s42452_021_04760_9
crossref_primary_10_1016_j_bone_2020_115328
crossref_primary_10_1016_j_jbiomech_2018_05_042
crossref_primary_10_1016_j_mbs_2019_04_005
crossref_primary_10_1016_j_medntd_2020_100036
Cites_doi 10.1007/BF00675623
10.1016/j.clinbiomech.2008.11.003
10.1016/j.jbiomech.2015.01.002
10.1016/j.bone.2014.05.019
10.1016/0021-9290(95)80008-5
10.1016/j.jbiomech.2009.10.047
10.1016/j.bone.2008.06.008
10.1002/jbmr.5650110218
10.1016/S0142-9612(97)00073-2
10.1098/rspb.1996.0044
10.1002/jbmr.1996
10.1016/j.medengphy.2010.01.004
10.1007/s10439-014-1027-3
10.1016/S8756-3282(01)00467-7
10.1016/j.jbiomech.2007.02.010
10.1016/S0268-0033(01)00110-3
10.1007/BF02406145
10.1016/8756-3282(95)00489-0
10.1002/jor.1100010409
10.1016/j.jbiomech.2014.12.024
10.1115/1.1763177
10.1016/S0021-9290(00)00149-4
10.1016/j.pmatsci.2007.06.001
10.1097/00005373-197204000-00005
10.1115/1.2796085
10.1080/10255842.2011.581236
10.1016/j.clinbiomech.2007.08.024
10.1016/j.jbiomech.2004.04.020
10.1016/j.medengphy.2005.06.003
10.1016/S8756-3282(02)00736-6
10.1016/S0021-9290(00)00069-5
10.1038/nmat3959
10.1002/cnm.2739
10.1016/j.jbiomech.2011.04.020
10.1302/0301-620X.78B3.0780363
10.1530/JOE-16-0017
10.1016/j.jbiomech.2003.10.002
10.1097/00004728-199001000-00020
10.1016/S0021-9290(99)00111-6
10.1016/0021-9290(91)90350-V
10.1016/S0021-9290(03)00071-X
ContentType Journal Article
Copyright 2017 IPEM
IPEM
Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 IPEM
– notice: IPEM
– notice: Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.medengphy.2017.04.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 20
ExternalDocumentID 28528791
10_1016_j_medengphy_2017_04_011
S1350453317301200
1_s2_0_S1350453317301200
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c482t-a24de2f3cf99c24147474323c9e4c39f904d92321739c9ecb8a167a60f0f970d3
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Fri Jul 11 09:45:48 EDT 2025
Thu Apr 03 07:10:33 EDT 2025
Tue Jul 01 04:24:52 EDT 2025
Thu Apr 24 23:06:13 EDT 2025
Fri Feb 23 02:29:17 EST 2024
Sun Feb 23 10:19:58 EST 2025
Tue Aug 26 16:31:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Virtual testing
Femur
Biomechanical testing
MicroCT-based FEM
Language English
License Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-a24de2f3cf99c24147474323c9e4c39f904d92321739c9ecb8a167a60f0f970d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2450-3468
PMID 28528791
PQID 1901308070
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1901308070
pubmed_primary_28528791
crossref_citationtrail_10_1016_j_medengphy_2017_04_011
crossref_primary_10_1016_j_medengphy_2017_04_011
elsevier_sciencedirect_doi_10_1016_j_medengphy_2017_04_011
elsevier_clinicalkeyesjournals_1_s2_0_S1350453317301200
elsevier_clinicalkey_doi_10_1016_j_medengphy_2017_04_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Parfitt (bib0003) 1984; 36
Hernandez, Beaupré, Keller, Carter (bib0027) 2001; 29
Hipp, Jansujwicz, Simmons, Snyder (bib0007) 1996; 11
Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0031) 2007; 40
Niebur, Feldstein, Yuen, Chen, Keaveny (bib0005) 2000; 33
Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0014) 2008; 23
Danielsen, Mosekilde, Svenstrup (bib0001) 1993; 52
Cory, Nazarian, Entezari, Vartanians, Müller, Snyder (bib0020) 2010; 43
Bourne, Van Der Meulen (bib0013) 2004; 37
Bayraktar, Gupta, Kwon, Papadopoulos, Keaveny (bib0032) 2004; 126
Pelker, Friedlaender, Markham, Panjabi, Moen (bib0037) 1984; 1
Aasarød, Ramezanzadehkoldeh, Shabestari, Mosti, Stunes, Reseland (bib0024) 2016
Carnelli, Lucchini, Ponzoni, Contro, Vena (bib0033) 2011; 44
Pettersen, Wik, Skallerud (bib0041) 2009; 24
Schwiedrzik, Gross, Bina, Pretterklieber, Zysset, Pahr (bib0023) 2016; 32
Kohles, Bowers, Vailas, Vanderby Jr (bib0029) 1997; 119
Wirtz, Schiffers, Pandorf, Radermacher, Weichert, Forst (bib0018) 2000; 33
Pistoia, Van Rietbergen, Lochmüller, Lill, Eckstein, Rüegsegger (bib0011) 2002; 30
Morgan, Bayraktar, Keaveny (bib0034) 2003; 36
Spatz -Ch, O'Leary, Vincent (bib0016) 1996; 263
Lotz, Gerhart, Hayes (bib0019) 1991; 24
van Rietbergen, Ito (bib0010) 2015; 48
Müller, Hahn, Vogel, Delling, Rüegsegger (bib0006) 1996; 18
Schwiedrzik, Raghavan, Bürki, Lenader, Wolfram, Michler (bib0012) 2014; 13
Lotz, Gerhart, Hayes (bib0035) 1990; 14
Abendschein, Hyatt (bib0026) 1972; 12
Kourtis, Carter, Beaupre (bib0022) 2014; 42
Peng, Bai, Zeng, Zhou (bib0038) 2006; 28
Zysset, Edward Guo, Edward Hoffler, Moore, Goldstein (bib0009) 1999; 32
Van Rietbergen, Weinans, Huiskes, Odgaard (bib0004) 1995; 28
Yang, Ma, Guo (bib0025) 2010; 32
Van Rietbergen, Majumdar, Newitt, MacDonald (bib0002) 2002; 17
Van Lenthe, Voide, Boyd, Müller (bib0028) 2008; 43
Hamer, Strachan, Black, Ibbotson, Stockley, Elson (bib0036) 1996; 78
Rho, Tsui, Pharr (bib0008) 1997; 18
Schriefer, Robling, Warden, Fournier, Mason, Turner (bib0021) 2005; 38
Gross, Pahr, Peyrin, Zysset (bib0030) 2012; 15
Christen, Melton Iii, Zwahlen, Amin, Khosla, Müller (bib0042) 2013; 28
Zysset (bib0040) 1994
Lekadir, Hazrati-Marangalou, Hoogendoorn, Taylor, van Rietbergen, Frangi (bib0015) 2015; 48
Yang, Butz, Duffy, Niebur, Nauman, Main (bib0017) 2014; 66
Fratzl, Weinkamer (bib0039) 2007; 52
Kourtis (10.1016/j.medengphy.2017.04.011_bib0022) 2014; 42
Schileo (10.1016/j.medengphy.2017.04.011_bib0031) 2007; 40
Fratzl (10.1016/j.medengphy.2017.04.011_bib0039) 2007; 52
Zysset (10.1016/j.medengphy.2017.04.011_bib0040) 1994
Pistoia (10.1016/j.medengphy.2017.04.011_bib0011) 2002; 30
Lekadir (10.1016/j.medengphy.2017.04.011_bib0015) 2015; 48
Zysset (10.1016/j.medengphy.2017.04.011_bib0009) 1999; 32
Helgason (10.1016/j.medengphy.2017.04.011_bib0014) 2008; 23
Müller (10.1016/j.medengphy.2017.04.011_bib0006) 1996; 18
Schwiedrzik (10.1016/j.medengphy.2017.04.011_bib0012) 2014; 13
Hernandez (10.1016/j.medengphy.2017.04.011_bib0027) 2001; 29
Van Rietbergen (10.1016/j.medengphy.2017.04.011_bib0004) 1995; 28
Schriefer (10.1016/j.medengphy.2017.04.011_bib0021) 2005; 38
Bayraktar (10.1016/j.medengphy.2017.04.011_bib0032) 2004; 126
Aasarød (10.1016/j.medengphy.2017.04.011_bib0024) 2016
Bourne (10.1016/j.medengphy.2017.04.011_bib0013) 2004; 37
Hamer (10.1016/j.medengphy.2017.04.011_bib0036) 1996; 78
Christen (10.1016/j.medengphy.2017.04.011_bib0042) 2013; 28
Danielsen (10.1016/j.medengphy.2017.04.011_bib0001) 1993; 52
Morgan (10.1016/j.medengphy.2017.04.011_bib0034) 2003; 36
Wirtz (10.1016/j.medengphy.2017.04.011_bib0018) 2000; 33
Yang (10.1016/j.medengphy.2017.04.011_bib0017) 2014; 66
Kohles (10.1016/j.medengphy.2017.04.011_bib0029) 1997; 119
Spatz -Ch (10.1016/j.medengphy.2017.04.011_bib0016) 1996; 263
van Rietbergen (10.1016/j.medengphy.2017.04.011_bib0010) 2015; 48
Peng (10.1016/j.medengphy.2017.04.011_bib0038) 2006; 28
Parfitt (10.1016/j.medengphy.2017.04.011_bib0003) 1984; 36
Rho (10.1016/j.medengphy.2017.04.011_bib0008) 1997; 18
Yang (10.1016/j.medengphy.2017.04.011_bib0025) 2010; 32
Van Lenthe (10.1016/j.medengphy.2017.04.011_bib0028) 2008; 43
Lotz (10.1016/j.medengphy.2017.04.011_bib0019) 1991; 24
Lotz (10.1016/j.medengphy.2017.04.011_bib0035) 1990; 14
Cory (10.1016/j.medengphy.2017.04.011_bib0020) 2010; 43
Pelker (10.1016/j.medengphy.2017.04.011_bib0037) 1984; 1
Hipp (10.1016/j.medengphy.2017.04.011_bib0007) 1996; 11
Van Rietbergen (10.1016/j.medengphy.2017.04.011_bib0002) 2002; 17
Abendschein (10.1016/j.medengphy.2017.04.011_bib0026) 1972; 12
Carnelli (10.1016/j.medengphy.2017.04.011_bib0033) 2011; 44
Niebur (10.1016/j.medengphy.2017.04.011_bib0005) 2000; 33
Gross (10.1016/j.medengphy.2017.04.011_bib0030) 2012; 15
Pettersen (10.1016/j.medengphy.2017.04.011_bib0041) 2009; 24
Schwiedrzik (10.1016/j.medengphy.2017.04.011_bib0023) 2016; 32
References_xml – volume: 48
  start-page: 598
  year: 2015
  end-page: 603
  ident: bib0015
  article-title: Statistical estimation of femur micro-architecture using optimal shape and density predictors
  publication-title: J Biomech
– volume: 66
  start-page: 131
  year: 2014
  end-page: 139
  ident: bib0017
  article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis
  publication-title: Bone
– volume: 42
  start-page: 1773
  year: 2014
  end-page: 1780
  ident: bib0022
  article-title: Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones
  publication-title: Ann Biomed Eng
– year: 1994
  ident: bib0040
  article-title: A constitutive law for trabecular bone
– volume: 36
  start-page: S123
  year: 1984
  end-page: S128
  ident: bib0003
  article-title: Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences
  publication-title: Calcif Tissue Int
– volume: 18
  start-page: 215
  year: 1996
  end-page: 220
  ident: bib0006
  article-title: Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections
  publication-title: Bone
– volume: 78
  start-page: 363
  year: 1996
  end-page: 368
  ident: bib0036
  article-title: Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: A comparison of fresh, fresh-frozen and irradiated bone
  publication-title: J Bone Joint Surg - Ser B
– volume: 43
  start-page: 717
  year: 2008
  end-page: 723
  ident: bib0028
  article-title: Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus
  publication-title: Bone
– volume: 1
  start-page: 405
  year: 1984
  end-page: 411
  ident: bib0037
  article-title: Effects of freezing and freeze-drying on the biomechanical properties of rat bone
  publication-title: J Orthop Res
– volume: 52
  start-page: 1263
  year: 2007
  end-page: 1334
  ident: bib0039
  article-title: Nature's hierarchical materials
  publication-title: Prog Mater Sci
– volume: 32
  start-page: e02739
  year: 2016
  ident: bib0023
  article-title: Experimental validation of a nonlinear µFE model based on cohesive-frictional plasticity for trabecular bone
  publication-title: Int J Numer Methods Biomed Eng
– volume: 43
  start-page: 953
  year: 2010
  end-page: 960
  ident: bib0020
  article-title: Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-CT based mineral density
  publication-title: J Biomech
– volume: 37
  start-page: 613
  year: 2004
  end-page: 621
  ident: bib0013
  article-title: Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation
  publication-title: J Biomech
– volume: 28
  start-page: 227
  year: 2006
  end-page: 233
  ident: bib0038
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med Eng Phys
– volume: 32
  start-page: 1005
  year: 1999
  end-page: 1012
  ident: bib0009
  article-title: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur
  publication-title: J Biomech
– volume: 32
  start-page: 553
  year: 2010
  end-page: 560
  ident: bib0025
  article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur
  publication-title: Med Eng Phys
– volume: 14
  start-page: 107
  year: 1990
  end-page: 114
  ident: bib0035
  article-title: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study
  publication-title: J Comput Assisted Tomogr
– volume: 263
  start-page: 287
  year: 1996
  end-page: 294
  ident: bib0016
  article-title: Young's moduli and shear moduli in cortical bone
  publication-title: Proc R Soc B
– volume: 29
  start-page: 74
  year: 2001
  end-page: 78
  ident: bib0027
  article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus
  publication-title: Bone
– volume: 17
  start-page: 81
  year: 2002
  end-page: 88
  ident: bib0002
  article-title: High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment
  publication-title: Clin Biomech
– volume: 24
  start-page: 196
  year: 2009
  end-page: 202
  ident: bib0041
  article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem
  publication-title: Clin Biomech
– volume: 40
  start-page: 2982
  year: 2007
  end-page: 2989
  ident: bib0031
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
– volume: 44
  start-page: 1852
  year: 2011
  end-page: 1858
  ident: bib0033
  article-title: Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response
  publication-title: J Biomech
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: bib0014
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech
– volume: 33
  start-page: 1575
  year: 2000
  end-page: 1583
  ident: bib0005
  article-title: High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone
  publication-title: J Biomech
– volume: 12
  start-page: 297
  year: 1972
  end-page: 301
  ident: bib0026
  article-title: Ultrasonics and physical properties of healing bone
  publication-title: J Trauma: Inj, Infect, Crit Care
– volume: 13
  start-page: 740
  year: 2014
  end-page: 747
  ident: bib0012
  article-title: In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone
  publication-title: Nat Mater
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib0034
  article-title: Trabecular bone modulus-density relationships depend on anatomic site
  publication-title: J Biomech
– volume: 33
  start-page: 1325
  year: 2000
  end-page: 1330
  ident: bib0018
  article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur
  publication-title: J Biomech
– volume: 24
  start-page: 317
  year: 1991
  end-page: 329
  ident: bib0019
  article-title: Mechanical properties of metaphyseal bone in the proximal femur
  publication-title: J Biomech
– volume: 48
  start-page: 832
  year: 2015
  end-page: 841
  ident: bib0010
  article-title: A survey of micro-finite element analysis for clinical assessment of bone strength: The first decade
  publication-title: J Biomech
– volume: 28
  start-page: 69
  year: 1995
  end-page: 81
  ident: bib0004
  article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
  publication-title: J Biomech
– volume: 11
  start-page: 286
  year: 1996
  end-page: 292
  ident: bib0007
  article-title: Trabecular bone morphology from micro-magnetic resonance imaging
  publication-title: J Bone Miner Res
– volume: 18
  start-page: 1325
  year: 1997
  end-page: 1330
  ident: bib0008
  article-title: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation
  publication-title: Biomaterials
– volume: 52
  start-page: 26
  year: 1993
  end-page: 33
  ident: bib0001
  article-title: Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution
  publication-title: Calcif Tissue Int
– volume: 30
  start-page: 842
  year: 2002
  end-page: 848
  ident: bib0011
  article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images
  publication-title: Bone
– volume: 38
  start-page: 467
  year: 2005
  end-page: 475
  ident: bib0021
  article-title: A comparison of mechanical properties derived from multiple skeletal sites in mice
  publication-title: J Biomech
– year: 2016
  ident: bib0024
  article-title: Skeletal effects of a gastrin receptor antagonist in H+/K+ATPase beta subunit KO mice
  publication-title: J Endocrinol
– volume: 119
  start-page: 232
  year: 1997
  end-page: 236
  ident: bib0029
  article-title: Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens
  publication-title: J Biomech Eng
– volume: 15
  start-page: 1137
  year: 2012
  end-page: 1144
  ident: bib0030
  article-title: Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SRµCT-based finite element study
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 28
  start-page: 2601
  year: 2013
  end-page: 2608
  ident: bib0042
  article-title: Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius
  publication-title: J Bone Miner Res
– volume: 126
  start-page: 677
  year: 2004
  end-page: 684
  ident: bib0032
  article-title: The modified super-ellipsoid yield criterion for human trabecular bone
  publication-title: J Biomech Eng
– volume: 52
  start-page: 26
  issue: 1
  year: 1993
  ident: 10.1016/j.medengphy.2017.04.011_bib0001
  article-title: Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution
  publication-title: Calcif Tissue Int
  doi: 10.1007/BF00675623
– volume: 24
  start-page: 196
  issue: 2
  year: 2009
  ident: 10.1016/j.medengphy.2017.04.011_bib0041
  article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2008.11.003
– volume: 48
  start-page: 598
  issue: 4
  year: 2015
  ident: 10.1016/j.medengphy.2017.04.011_bib0015
  article-title: Statistical estimation of femur micro-architecture using optimal shape and density predictors
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2015.01.002
– volume: 66
  start-page: 131
  year: 2014
  ident: 10.1016/j.medengphy.2017.04.011_bib0017
  article-title: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis
  publication-title: Bone
  doi: 10.1016/j.bone.2014.05.019
– volume: 28
  start-page: 69
  issue: 1
  year: 1995
  ident: 10.1016/j.medengphy.2017.04.011_bib0004
  article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
  publication-title: J Biomech
  doi: 10.1016/0021-9290(95)80008-5
– volume: 43
  start-page: 953
  issue: 5
  year: 2010
  ident: 10.1016/j.medengphy.2017.04.011_bib0020
  article-title: Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-CT based mineral density
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.10.047
– volume: 43
  start-page: 717
  issue: 4
  year: 2008
  ident: 10.1016/j.medengphy.2017.04.011_bib0028
  article-title: Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus
  publication-title: Bone
  doi: 10.1016/j.bone.2008.06.008
– volume: 11
  start-page: 286
  issue: 2
  year: 1996
  ident: 10.1016/j.medengphy.2017.04.011_bib0007
  article-title: Trabecular bone morphology from micro-magnetic resonance imaging
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.5650110218
– volume: 18
  start-page: 1325
  issue: 20
  year: 1997
  ident: 10.1016/j.medengphy.2017.04.011_bib0008
  article-title: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(97)00073-2
– volume: 263
  start-page: 287
  issue: 1368
  year: 1996
  ident: 10.1016/j.medengphy.2017.04.011_bib0016
  article-title: Young's moduli and shear moduli in cortical bone
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.1996.0044
– volume: 28
  start-page: 2601
  issue: 12
  year: 2013
  ident: 10.1016/j.medengphy.2017.04.011_bib0042
  article-title: Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1996
– volume: 32
  start-page: 553
  issue: 6
  year: 2010
  ident: 10.1016/j.medengphy.2017.04.011_bib0025
  article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.01.004
– volume: 42
  start-page: 1773
  issue: 8
  year: 2014
  ident: 10.1016/j.medengphy.2017.04.011_bib0022
  article-title: Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-014-1027-3
– volume: 29
  start-page: 74
  issue: 1
  year: 2001
  ident: 10.1016/j.medengphy.2017.04.011_bib0027
  article-title: The influence of bone volume fraction and ash fraction on bone strength and modulus
  publication-title: Bone
  doi: 10.1016/S8756-3282(01)00467-7
– volume: 40
  start-page: 2982
  issue: 13
  year: 2007
  ident: 10.1016/j.medengphy.2017.04.011_bib0031
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 17
  start-page: 81
  issue: 2
  year: 2002
  ident: 10.1016/j.medengphy.2017.04.011_bib0002
  article-title: High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment
  publication-title: Clin Biomech
  doi: 10.1016/S0268-0033(01)00110-3
– volume: 36
  start-page: S123
  issue: 1 Supplement
  year: 1984
  ident: 10.1016/j.medengphy.2017.04.011_bib0003
  article-title: Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences
  publication-title: Calcif Tissue Int
  doi: 10.1007/BF02406145
– volume: 18
  start-page: 215
  issue: 3
  year: 1996
  ident: 10.1016/j.medengphy.2017.04.011_bib0006
  article-title: Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections
  publication-title: Bone
  doi: 10.1016/8756-3282(95)00489-0
– volume: 1
  start-page: 405
  issue: 4
  year: 1984
  ident: 10.1016/j.medengphy.2017.04.011_bib0037
  article-title: Effects of freezing and freeze-drying on the biomechanical properties of rat bone
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100010409
– year: 1994
  ident: 10.1016/j.medengphy.2017.04.011_bib0040
– volume: 48
  start-page: 832
  issue: 5
  year: 2015
  ident: 10.1016/j.medengphy.2017.04.011_bib0010
  article-title: A survey of micro-finite element analysis for clinical assessment of bone strength: The first decade
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.12.024
– volume: 126
  start-page: 677
  issue: 6
  year: 2004
  ident: 10.1016/j.medengphy.2017.04.011_bib0032
  article-title: The modified super-ellipsoid yield criterion for human trabecular bone
  publication-title: J Biomech Eng
  doi: 10.1115/1.1763177
– volume: 33
  start-page: 1575
  issue: 12
  year: 2000
  ident: 10.1016/j.medengphy.2017.04.011_bib0005
  article-title: High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(00)00149-4
– volume: 52
  start-page: 1263
  issue: 8
  year: 2007
  ident: 10.1016/j.medengphy.2017.04.011_bib0039
  article-title: Nature's hierarchical materials
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2007.06.001
– volume: 12
  start-page: 297
  issue: 4
  year: 1972
  ident: 10.1016/j.medengphy.2017.04.011_bib0026
  article-title: Ultrasonics and physical properties of healing bone
  publication-title: J Trauma: Inj, Infect, Crit Care
  doi: 10.1097/00005373-197204000-00005
– volume: 119
  start-page: 232
  issue: 3
  year: 1997
  ident: 10.1016/j.medengphy.2017.04.011_bib0029
  article-title: Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens
  publication-title: J Biomech Eng
  doi: 10.1115/1.2796085
– volume: 15
  start-page: 1137
  issue: 11
  year: 2012
  ident: 10.1016/j.medengphy.2017.04.011_bib0030
  article-title: Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SRµCT-based finite element study
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2011.581236
– volume: 23
  start-page: 135
  issue: 2
  year: 2008
  ident: 10.1016/j.medengphy.2017.04.011_bib0014
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 38
  start-page: 467
  issue: 3
  year: 2005
  ident: 10.1016/j.medengphy.2017.04.011_bib0021
  article-title: A comparison of mechanical properties derived from multiple skeletal sites in mice
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.04.020
– volume: 28
  start-page: 227
  issue: 3
  year: 2006
  ident: 10.1016/j.medengphy.2017.04.011_bib0038
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2005.06.003
– volume: 30
  start-page: 842
  issue: 6
  year: 2002
  ident: 10.1016/j.medengphy.2017.04.011_bib0011
  article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00736-6
– volume: 33
  start-page: 1325
  issue: 10
  year: 2000
  ident: 10.1016/j.medengphy.2017.04.011_bib0018
  article-title: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(00)00069-5
– volume: 13
  start-page: 740
  issue: 7
  year: 2014
  ident: 10.1016/j.medengphy.2017.04.011_bib0012
  article-title: In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone
  publication-title: Nat Mater
  doi: 10.1038/nmat3959
– volume: 32
  start-page: e02739
  issue: 4
  year: 2016
  ident: 10.1016/j.medengphy.2017.04.011_bib0023
  article-title: Experimental validation of a nonlinear µFE model based on cohesive-frictional plasticity for trabecular bone
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.2739
– volume: 44
  start-page: 1852
  issue: 10
  year: 2011
  ident: 10.1016/j.medengphy.2017.04.011_bib0033
  article-title: Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.04.020
– volume: 78
  start-page: 363
  issue: 3
  year: 1996
  ident: 10.1016/j.medengphy.2017.04.011_bib0036
  article-title: Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: A comparison of fresh, fresh-frozen and irradiated bone
  publication-title: J Bone Joint Surg - Ser B
  doi: 10.1302/0301-620X.78B3.0780363
– year: 2016
  ident: 10.1016/j.medengphy.2017.04.011_bib0024
  article-title: Skeletal effects of a gastrin receptor antagonist in H+/K+ATPase beta subunit KO mice
  publication-title: J Endocrinol
  doi: 10.1530/JOE-16-0017
– volume: 37
  start-page: 613
  issue: 5
  year: 2004
  ident: 10.1016/j.medengphy.2017.04.011_bib0013
  article-title: Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2003.10.002
– volume: 14
  start-page: 107
  issue: 1
  year: 1990
  ident: 10.1016/j.medengphy.2017.04.011_bib0035
  article-title: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study
  publication-title: J Comput Assisted Tomogr
  doi: 10.1097/00004728-199001000-00020
– volume: 32
  start-page: 1005
  issue: 10
  year: 1999
  ident: 10.1016/j.medengphy.2017.04.011_bib0009
  article-title: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(99)00111-6
– volume: 24
  start-page: 317
  issue: 5
  year: 1991
  ident: 10.1016/j.medengphy.2017.04.011_bib0019
  article-title: Mechanical properties of metaphyseal bone in the proximal femur
  publication-title: J Biomech
  doi: 10.1016/0021-9290(91)90350-V
– volume: 36
  start-page: 897
  issue: 7
  year: 2003
  ident: 10.1016/j.medengphy.2017.04.011_bib0034
  article-title: Trabecular bone modulus-density relationships depend on anatomic site
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00071-X
SSID ssj0004463
Score 2.273815
Snippet •Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature.•MicroCT based finite element models...
Highlights • Validated specimen-specific cortical bone µFE models with non-uniform structure and material is scarce in the literature. • MicroCT based finite...
The aim of this study was to assess a virtual biomechanics testing approach purely based on microcomputed tomography (microCT or µCT) data, providing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12
SubjectTerms Animals
Biomechanical Phenomena
Biomechanical testing
Cortical Bone - diagnostic imaging
Elastic Modulus
Femur
Femur - diagnostic imaging
Finite Element Analysis
Materials Testing - methods
Mechanical Phenomena
Mice
MicroCT-based FEM
Nonlinear Dynamics
Radiology
Stress, Mechanical
User-Computer Interface
Virtual testing
X-Ray Microtomography
Title MicroCT-based finite element models as a tool for virtual testing of cortical bone
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453317301200
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453317301200
https://dx.doi.org/10.1016/j.medengphy.2017.04.011
https://www.ncbi.nlm.nih.gov/pubmed/28528791
https://www.proquest.com/docview/1901308070
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5CCjkeSrO5tkdQIK_OypbWkvoWloZNyuYhB-RN-JDChmCHXW8e89sz42Pb0IYUCn6whceyNaM5rG9GAEcu1TyLpQ9yEeWBFB714DDSgVNc-VSFTte19CYX8fhGnt8Ob1dg1OXCEKyy1f2NTq-1ddsyaEdz8DidDq5CMUR_RKABFJQBSnG7lIqk_Pj5F8wDw50aZI83B3T3K4wXGhxX3OH3EMZL1TVPw_AtC_WWB1pbotNP8LF1IdlJ85ZbsOKKHqyPup3berD5W5HBHqxN2uXzbbicEPxudB2Q7cqZn5LDyVyDIGf1pjhzluDBqrJ8YOjPsqfpjDJMWEXVOIo7VnqG8Wr9A5ylZeF24Ob0x_VoHLSbKgSZ1FEVJJHMXeRF5o3J0HxLjCekiERmnMyE8YbLHJ0-jFSEwbYs1UkYqyTmnnujeC52YbXAx-8D84lDPus4Ni6VcYpn0uSoNBKnwwTDoD7E3UDarK04ThtfPNgOWnZvlxywxAHLpUUO9IEvCR-bohvvk-iOU7bLKUUtaNEwvE-q_kbq5u1sntvQziPL7R8S14fvS8pXQvtv3R52AmVRPmidJilcucDuDC0na1TGfdhrJG05DBHNJGXCz__T9RfYoKsGx_gVVqvZwn1D36pKD-rJcwAfTs5-ji9eAJx0Ihw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISKNMYDYt1XYTBP2mtUJ3YTmzdUDZWP9mErEm9WPmxUhBJEA7-fu8TpQAMxCSkPkZPLJb7zfcT3AfDTZornsXRBIaIikMKhHBxFKrAJT1yWhFY1tfSms3hyLk8uRhdrMO5yYSis0sv-VqY30tqPDP1sDm8Wi-GfUIzQHhGoAAVlgKLfvk7VqUY9WD88Pp3M_qZHyqahGt0fEMCTMC_UOba8xE-iMK-kKXsahi8pqZeM0EYZHW3Dlrci2WH7oh9gzZZ92Bh3zdv6sPmozmAf3k39DvpH-D2lCLzxPCD1VTC3IJuT2TaInDV9cZYsxYPVVXXN0KRl94tbSjJhNRXkKC9Z5Ri6rM0_cJZVpf0E50e_5uNJ4PsqBLlUUR2kkSxs5ETutM5Rg0t0KaSIRK6tzIV2mssC7T50VoTGsTxTaRgnacwddzrhhfgMvRIf_xWYSy2SWsWxtpmMMzyTukC5kVoVpugJDSDuJtLkvug49b64Nl102ZVZUcAQBQyXBikwAL4CvGnrbrwOojpKmS6tFAWhQd3wOmjyHKhd-gW9NKFZRoabf5huAAcryCd8-39of3QMZZA_aKsmLW11h-g07SgrlMcD-NJy2moaIlpMiQ533oL6O2xM5tMzc3Y8O92F93SlDWv8Br369s7uoalVZ_t-KT0Aep8kzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroCT-based+finite+element+models+as+a+tool+for+virtual+testing+of+cortical+bone&rft.jtitle=Medical+engineering+%26+physics&rft.au=Ramezanzadehkoldeh%2C+Masoud&rft.au=Skallerud%2C+Bj%C3%B8rn+H.&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=46&rft.spage=12&rft.epage=20&rft_id=info:doi/10.1016%2Fj.medengphy.2017.04.011&rft.externalDocID=S1350453317301200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon