Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis
Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristic...
Saved in:
Published in | Journal of neural engineering Vol. 12; no. 6; pp. 66022 - 66036 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees. |
---|---|
AbstractList | Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control.OBJECTIVEMyoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control.We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living.APPROACHWe developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living.The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training.MAIN RESULTSThe CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training.The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.SIGNIFICANCEThe CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees. |
Author | Dosen, Strahinja Markovic, Marko Popovic, Dejan Graimann, Bernhard Farina, Dario |
Author_xml | – sequence: 1 givenname: Marko surname: Markovic fullname: Markovic, Marko email: marko.markovic@ottobock.de organization: Department of Translational Research and Knowledge Management, Otto Bock HealthCare GmbH, D-37115 Duderstadt, Germany – sequence: 2 givenname: Strahinja surname: Dosen fullname: Dosen, Strahinja email: strahinja.dosen@bccn.uni-goettingen.de organization: University Medical Center Göttingen, Georg-August University Department of NeuroRehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, D-37075 Göttingen, Germany – sequence: 3 givenname: Dejan surname: Popovic fullname: Popovic, Dejan email: dbp@etf.rs organization: University of Belgrade Faculty of Electrical Engineering, Bulevar kralja Aleksandra 73, 11020 Belgrade, Serbia – sequence: 4 givenname: Bernhard surname: Graimann fullname: Graimann, Bernhard email: bernhard.graimann@ottobock.de organization: Department of Translational Research and Knowledge Management, Otto Bock HealthCare GmbH, D-37115 Duderstadt, Germany – sequence: 5 givenname: Dario surname: Farina fullname: Farina, Dario email: dario.farina@bccn.uni-goettingen.de organization: University Medical Center Göttingen, Georg-August University Department of NeuroRehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, D-37075 Göttingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26529274$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhS1URB_wE0De0U24Yyd-RKxQVR5SJRbA2rKTMfgqiYOd8Pj3OL23CCFEV2OPv3NGnnNOTqY4ISFPGbxgoPWOqYZVXEjYMb6TO5ASOH9Azo59wU9-nyWckvOc9wA1Uy08IqdcCt5y1ZyR7gNOOSbq1xziRO3U0y6O87pgot_Cbc-X5y5OC_5YKvvdJry9pTjQ6Kml4zosgfb4OSFW0Ve-1D6OdE4xL18wh_yYPPR2yPjkWC_Ip9fXH6_eVjfv37y7enVTdY3mxZsJbltnna4t59Y1uqsbIS00zinZAngFrgfl69pBb3kPGnuNjeIo2pq5-oJcHnzL6K8r5sWMIXc4DHbCuGbDNBeNYFKx-1GlJGipYUOfHdHVjdibOYXRpp_mbocFeHkAuvLjnNCbLix2CduSbBgMA7MlZrY0zJaGYdxIc0isqMVf6rsB9-meH3QhzmYf1zSV1Zr9hH9SZu59Idk_yP-7_wIgz7SZ |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_7554_eLife_87317_3 crossref_primary_10_1109_ACCESS_2020_3036115 crossref_primary_10_3389_fnbot_2022_815693 crossref_primary_10_1088_1741_2552_aa620a crossref_primary_10_1109_OJEMB_2021_3058036 crossref_primary_10_1109_ACCESS_2021_3096040 crossref_primary_10_1109_LRA_2024_3398563 crossref_primary_10_3389_fnins_2020_00637 crossref_primary_10_1109_TCYB_2020_2996960 crossref_primary_10_1109_ACCESS_2019_2911968 crossref_primary_10_3389_fbioe_2019_00316 crossref_primary_10_1371_journal_pone_0164694 crossref_primary_10_21272_jes_2022_9_2__e4 crossref_primary_10_1109_TNSRE_2019_2935765 crossref_primary_10_20965_jrm_2017_p1049 crossref_primary_10_1109_TNSRE_2020_3007625 crossref_primary_10_7554_eLife_87317 crossref_primary_10_1088_1741_2552_aa6802 crossref_primary_10_1109_TNSRE_2023_3247580 crossref_primary_10_1007_s40137_019_0227_z crossref_primary_10_3389_fnbot_2019_00065 crossref_primary_10_1002_adma_201905399 crossref_primary_10_3390_s21134515 crossref_primary_10_1109_TMRB_2022_3146743 crossref_primary_10_1109_TBME_2021_3052065 crossref_primary_10_3389_fnbot_2021_768619 crossref_primary_10_1016_j_robot_2022_104123 crossref_primary_10_1109_LRA_2023_3240375 crossref_primary_10_1590_2179_10742023v22i1271724 crossref_primary_10_3390_s19235238 crossref_primary_10_7736_JKSPE_024_019 crossref_primary_10_1109_THMS_2020_2970740 crossref_primary_10_1109_TRO_2020_3047013 crossref_primary_10_1088_2057_1976_ad464e crossref_primary_10_1109_JSEN_2019_2951601 crossref_primary_10_3390_s20216097 crossref_primary_10_1016_j_cviu_2017_03_001 crossref_primary_10_21272_jes_2024_11_2__e1 crossref_primary_10_1155_2022_4718684 crossref_primary_10_3390_biomimetics9090532 crossref_primary_10_1109_ACCESS_2021_3109733 crossref_primary_10_3389_fnbot_2022_815716 crossref_primary_10_1109_JSEN_2019_2897083 crossref_primary_10_1155_2017_7862178 crossref_primary_10_1146_annurev_bioeng_110222_095816 crossref_primary_10_1109_JAS_2024_124329 crossref_primary_10_1109_TMRB_2024_3377530 crossref_primary_10_3389_fnbot_2017_00071 crossref_primary_10_3389_frobt_2022_948238 crossref_primary_10_1126_science_adj3312 crossref_primary_10_3389_fnins_2020_00345 crossref_primary_10_1109_TMRB_2023_3292419 crossref_primary_10_1126_scirobotics_adl0085 crossref_primary_10_1088_1741_2552_aa7e82 crossref_primary_10_1109_TNSRE_2022_3228514 crossref_primary_10_3389_frai_2021_744476 crossref_primary_10_3390_s19224887 crossref_primary_10_1109_ACCESS_2019_2955480 crossref_primary_10_3390_biomimetics9010062 crossref_primary_10_1109_TNSRE_2024_3521923 crossref_primary_10_1109_JSEN_2023_3308615 crossref_primary_10_1186_s40648_016_0043_5 crossref_primary_10_1088_1741_2552_ac7ad7 crossref_primary_10_3390_chemosensors10110474 crossref_primary_10_3389_fnbot_2022_814973 |
Cites_doi | 10.1097/JPO.0000000000000055 10.5898/JHRI.3.1.Johnson 10.1049/cce:19910006 10.1109/TNSRE.2013.2286955 10.1109/MSP.2012.2203480 10.1016/j.apmr.2007.11.005 10.1109/TBME.2008.2007967 10.1080/03091900210142459 10.1109/MRA.2012.2191995 10.1109/TBME.2015.2403368 10.1109/JSEN.2013.2295268 10.1109/70.34763 10.1109/TRO.2007.910708 10.1155/2013/243257 10.1109/TNSRE.2013.2294685 10.1186/1743-0003-9-33 10.1016/0141-5425(80)90142-9 10.1109/ICRA.2011.5979715 10.1007/s002210000444 10.1109/TBME.2012.2209649 10.1016/0745-7138(85)90015-6 10.1109/MRA.2012.2229949 10.1007/978-3-642-18812-1 10.3109/03093649909071611 10.1109/JSEN.2011.2166383 10.1088/1741-2560/11/4/046001 10.1504/IJAMECHS.2008.022009 10.1109/TNSRE.2010.2047590 10.1109/TMECH.2009.2032686 10.1007/s002219900322 10.1088/1741-2560/11/6/066013 10.1109/ICORR.2013.6650507 10.1109/TNSRE.2012.2207916 10.1109/TASE.2014.2320157 10.1097/JPO.0b013e3181ae970b 10.1097/JPO.0b013e3181a1d2dc 10.3109/03093640409167756 10.1109/TMECH.2006.886250 10.1109/TNSRE.2014.2361478 10.1109/TNSRE.2012.2196711 10.1682/JRRD.2011.10.0188 10.1109/TAC.1962.1105456 10.1186/1743-0003-7-42 10.1016/0141-5425(87)90013-6 10.1007/s002210050684 10.1053/apmr.2002.32737 |
ContentType | Journal Article |
Copyright | 2015 IOP Publishing Ltd |
Copyright_xml | – notice: 2015 IOP Publishing Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1088/1741-2560/12/6/066022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis |
EISSN | 1741-2552 |
EndPage | 66036 |
ExternalDocumentID | 26529274 10_1088_1741_2560_12_6_066022 jneaa057a |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: German Ministry for Education and Research grantid: 1GQ0810 – fundername: European Commission grantid: FP7-PEOPLE-2011-IAPP-26208 funderid: http://dx.doi.org/10.13039/501100000780 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX ADEQX CITATION 02O 1WK ACARI AERVB AHSEE ARNYC BBWZM CGR CUY CVF ECM EIF FEDTE HVGLF JCGBZ NPM Q02 RNS S3P 7X8 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c482t-a152a9bab83a22ab48c3456a04bb76900f70bd07f33b0da2d08ed8e472e5931b3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Fri Jul 11 02:25:03 EDT 2025 Thu Jul 10 18:20:04 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Tue Jul 01 01:58:36 EDT 2025 Fri Jan 08 09:41:24 EST 2021 Wed Aug 21 03:33:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-a152a9bab83a22ab48c3456a04bb76900f70bd07f33b0da2d08ed8e472e5931b3 |
Notes | JNE-101004.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26529274 |
PQID | 1776086801 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1088_1741_2560_12_6_066022 crossref_primary_10_1088_1741_2560_12_6_066022 proquest_miscellaneous_1825451671 proquest_miscellaneous_1776086801 iop_journals_10_1088_1741_2560_12_6_066022 pubmed_primary_26529274 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2015 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 47 48 Dillon S S (29) 1995 Muelling K (38) 2015 50 53 10 54 11 12 13 15 59 16 18 19 Kuiken T A (21) 2004; 28 2 Shumway-Cook A (67) 2007 3 4 5 Matija Š (51) 2014; 2014 6 7 Vilarino M (62) 2014 8 9 60 61 Amsuess S (14) 2014 63 20 64 22 23 24 68 25 Stein S C (66) 2014 69 26 27 28 Aulinas J (65) 2008; 184 Dosen S (46) 2013 Suzuki R (17) 2013 McMullen D (41) 2014; 22 70 71 72 73 74 31 75 32 Tomovic R (33) 1987; 4 EUrobotics (43) 2015 34 35 36 37 39 Kermorgant O (56) 2011 Hart S G (58) 1988; 52 Markovic M (49) 2014; 11 Marković M (52) 2014 Jones L E (57) 1999; 23 Banziger E (30) 1996; 30 Smith L H (55) 2014; 11 MacKenzie C L (1) 1994 40 42 |
References_xml | – year: 1994 ident: 1 – ident: 63 doi: 10.1097/JPO.0000000000000055 – ident: 42 doi: 10.5898/JHRI.3.1.Johnson – ident: 68 – volume: 4 start-page: 83 year: 1987 ident: 33 publication-title: Proc. of the IEEE Int. Conf. on Robotics and Automation – ident: 54 doi: 10.1049/cce:19910006 – ident: 12 – ident: 15 doi: 10.1109/TNSRE.2013.2286955 – ident: 13 doi: 10.1109/MSP.2012.2203480 – ident: 6 doi: 10.1016/j.apmr.2007.11.005 – volume: 184 start-page: 363 year: 2008 ident: 65 publication-title: Frontiers Artif. Intell. Appl. – ident: 23 doi: 10.1109/TBME.2008.2007967 – ident: 35 doi: 10.1080/03091900210142459 – ident: 26 doi: 10.1109/MRA.2012.2191995 – ident: 71 doi: 10.1109/TBME.2015.2403368 – ident: 60 – ident: 70 doi: 10.1109/JSEN.2013.2295268 – ident: 2 doi: 10.1109/70.34763 – ident: 9 – ident: 45 – volume: 52 year: 1988 ident: 58 publication-title: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research – ident: 72 doi: 10.1109/TRO.2007.910708 – ident: 69 – volume: 2014 start-page: 12 year: 2014 ident: 51 publication-title: Biomed. Res. Int. – ident: 16 doi: 10.1155/2013/243257 – volume: 22 start-page: 784 issn: 1534-4320 year: 2014 ident: 41 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2294685 – ident: 59 doi: 10.1186/1743-0003-9-33 – ident: 27 doi: 10.1016/0141-5425(80)90142-9 – year: 2015 ident: 38 – start-page: 4518 year: 2011 ident: 56 publication-title: Proc. of the IEEE Int. Conf. on Robotics and Automation doi: 10.1109/ICRA.2011.5979715 – ident: 3 doi: 10.1007/s002210000444 – start-page: 178 year: 2015 ident: 43 – ident: 64 doi: 10.1109/TBME.2012.2209649 – ident: 31 doi: 10.1016/0745-7138(85)90015-6 – ident: 48 – ident: 61 – ident: 39 doi: 10.1109/MRA.2012.2229949 – ident: 44 doi: 10.1007/978-3-642-18812-1 – start-page: 143 year: 2014 ident: 52 publication-title: MEC – volume: 23 start-page: 55 issn: 0309-3646 year: 1999 ident: 57 publication-title: Prosthet. Orthot. Int. doi: 10.3109/03093649909071611 – ident: 53 doi: 10.1109/JSEN.2011.2166383 – year: 2014 ident: 62 publication-title: Technical Note: A Novel Wireless Controller for Switching among Modes for an Upper-Limb Prosthesis – volume: 30 start-page: 12 year: 1996 ident: 30 publication-title: ACPOC News – start-page: 714 year: 2013 ident: 17 publication-title: Proc. of the IEEE 8th Conf. on Industrial Electronics and Applications (ICIEA) – volume: 11 issn: 1741-2552 year: 2014 ident: 49 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/4/046001 – ident: 36 doi: 10.1504/IJAMECHS.2008.022009 – ident: 20 doi: 10.1109/TNSRE.2010.2047590 – start-page: 110 year: 1995 ident: 29 publication-title: Proc. of the MyoElectric Controls Prosthetics Symp. – ident: 34 doi: 10.1109/TMECH.2009.2032686 – start-page: 658 year: 2014 ident: 14 publication-title: Proc. Ann. Int. Conf. IEEE Engineering in Medical and Biology Society – ident: 40 doi: 10.1109/MRA.2012.2229949 – ident: 5 doi: 10.1007/s002219900322 – ident: 10 – start-page: 3213 year: 2014 ident: 66 publication-title: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA) – volume: 11 issn: 1741-2552 year: 2014 ident: 55 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/6/066013 – ident: 37 doi: 10.1109/ICORR.2013.6650507 – ident: 24 doi: 10.1109/TNSRE.2012.2207916 – ident: 47 – ident: 25 doi: 10.1109/TASE.2014.2320157 – ident: 73 doi: 10.1097/JPO.0b013e3181ae970b – ident: 74 doi: 10.1097/JPO.0b013e3181a1d2dc – volume: 28 start-page: 245 issn: 0309-3646 year: 2004 ident: 21 publication-title: Prosthet. Orthot. Int. doi: 10.3109/03093640409167756 – ident: 18 doi: 10.1109/TMECH.2006.886250 – ident: 22 doi: 10.1109/TNSRE.2014.2361478 – ident: 7 doi: 10.1109/TNSRE.2012.2196711 – ident: 8 doi: 10.1682/JRRD.2011.10.0188 – ident: 11 – year: 2007 ident: 67 publication-title: Motor Control: Translating Research Into Clinical Practice – ident: 19 – ident: 28 doi: 10.1109/TAC.1962.1105456 – ident: 50 doi: 10.1186/1743-0003-7-42 – ident: 32 doi: 10.1016/0141-5425(87)90013-6 – year: 2013 ident: 46 publication-title: EP – ident: 4 doi: 10.1007/s002210050684 – ident: 75 doi: 10.1053/apmr.2002.32737 |
SSID | ssj0031790 |
Score | 2.4200077 |
Snippet | Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions... Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 66022 |
SubjectTerms | Activities of Daily Living Adult Amputees Artificial Limbs Awareness - physiology context awareness control of grasping Degrees of freedom Electromyography - methods Female Forearm - physiology Hand Strength - physiology Human Humans Male Mathematical analysis Middle Aged Muscles Prostheses Prosthesis Design - instrumentation Prosthesis Design - methods Prosthetics reactive control semi-autonomous sensor fusion Sensors Surgical implants upper limb prosthesis user awareness User-Computer Interface |
Title | Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis |
URI | https://iopscience.iop.org/article/10.1088/1741-2560/12/6/066022 https://www.ncbi.nlm.nih.gov/pubmed/26529274 https://www.proquest.com/docview/1776086801 https://www.proquest.com/docview/1825451671 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9UwEA7u-uKLt_VyvDGC-CD0nDZJk_RxEZdF8AK6sG9hcimuuu3hXBD99U6adtkV1kV8aqGTkEySzjfJNxPGXvhSoUq8MCQwXkgdmqJpZSgkzSdUoXFiyLP97r06PJJvj-vjc1H8J_1y_PXP6TUnCs4qHAlxZkEYuiqSpV5UfKEWZDPJDu2w68KQ9UwhfB8-Tv9ikfJP5ZDIXGSK4bmsmgvWaYdacDnwHAzQwS2GU9Mz7-TbfLtxc__rj6yO_9O32-zmiE5hP8vfYddid5ft7XfkmZ_-hJcw8EWHjfg95j-RB9yvoN2mDTfALoAfr4iAHLEOBIghceGTd40_cBVhZMZD3wLCQGaEEMnlj0XfFi09Q38KyxSJ8iWuT9b32NHBm8-vD4vxyobCS8OpLoID2Dh0RiDn6KTxgiAaltI5TY542erShVK3QrgyIA-licFEqXmsG1E5cZ_tdn0XHzKIQQQZfaXq4GVtykajqSokB5RgmlP1jMlpqKwf85mnazW-2-Fc3RiblGmTMm3FrbJZmTM2Pyu2zAk9rirwikbLjkt7fZUwXBD-2sXzn-0ytDP2fJpRlpZyOp_BLvZbqllrRR4mYYa_yCSPvq6UJpkHeTqedYOrmjdcy0f_0uLH7AZhwDozdJ6w3c1qG58Sztq4Z8NS-g3GDBbY |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB6SFEpfeqXH9lSh9KHgta3bj6Hpkl5poA3kTUiWTK_Yyx6U9td3ZNlLU0hD6ZMNnhE6Pd8nzYwAntaFtDL6hVkE4xlXvsqqhvuM43yy0leO9Xm23x3Kg2P--kScbMH-Jhammw-__im-pkTBqQsHhzidI4Yus2ip85LmMkebiXYon_tmGy4JhgY0hvG9Pxr_xyzmoEphkUltjOM5r6gzFmoba3E--OyN0OwahLH6yffk63S9ctP65x-ZHf-3fdfh6oBSyV7SuQFbob0Ju3stMvTTH-QZ6f1G-w35Xag_IBPuFqRZx403YltP6uGqCJIi1wkCYxJ94iPLtt_tIpDBQ550DbGkd2okPiD1D1nXZA0-fXdK5jEi5VNYfl7eguPZy48vDrLh6oas5ppiWQgLbOWs08xSah3XNUOoZgvunEJCXjSqcL5QDWOu8Jb6QgevA1c0iIqVjt2GnbZrw10gwTPPQ11K4WsudFEpq8vSIhFFuOakmAAfh8vUQ17zeL3GN9Ofr2ttYoea2KGmpEaa1KETmG7U5imxx0UKz3HEzLDElxcJkzPCX9rw-2eDozmBJ-OsMrik4zmNbUO3xpKVksg0ETv8RSYye1FKhTJ30pTcNINKQSuq-L1_qfFjuHy0PzNvXx2-uQ9XEBaK5LTzAHZWi3V4iNBr5R71K-sXI5McPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+fusion+and+computer+vision+for+context-aware+control+of+a+multi+degree-of-freedom+prosthesis&rft.jtitle=Journal+of+neural+engineering&rft.au=Markovic%2C+Marko&rft.au=Dosen%2C+Strahinja&rft.au=Popovic%2C+Dejan&rft.au=Graimann%2C+Bernhard&rft.date=2015-12-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=12&rft.issue=6&rft.spage=066022&rft_id=info:doi/10.1088%2F1741-2560%2F12%2F6%2F066022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |