Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis

Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristic...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 12; no. 6; pp. 66022 - 66036
Main Authors Markovic, Marko, Dosen, Strahinja, Popovic, Dejan, Graimann, Bernhard, Farina, Dario
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
AbstractList Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control.OBJECTIVEMyoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control.We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living.APPROACHWe developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living.The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training.MAIN RESULTSThe CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training.The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.SIGNIFICANCEThe CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
Author Dosen, Strahinja
Markovic, Marko
Popovic, Dejan
Graimann, Bernhard
Farina, Dario
Author_xml – sequence: 1
  givenname: Marko
  surname: Markovic
  fullname: Markovic, Marko
  email: marko.markovic@ottobock.de
  organization: Department of Translational Research and Knowledge Management, Otto Bock HealthCare GmbH, D-37115 Duderstadt, Germany
– sequence: 2
  givenname: Strahinja
  surname: Dosen
  fullname: Dosen, Strahinja
  email: strahinja.dosen@bccn.uni-goettingen.de
  organization: University Medical Center Göttingen, Georg-August University Department of NeuroRehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, D-37075 Göttingen, Germany
– sequence: 3
  givenname: Dejan
  surname: Popovic
  fullname: Popovic, Dejan
  email: dbp@etf.rs
  organization: University of Belgrade Faculty of Electrical Engineering, Bulevar kralja Aleksandra 73, 11020 Belgrade, Serbia
– sequence: 4
  givenname: Bernhard
  surname: Graimann
  fullname: Graimann, Bernhard
  email: bernhard.graimann@ottobock.de
  organization: Department of Translational Research and Knowledge Management, Otto Bock HealthCare GmbH, D-37115 Duderstadt, Germany
– sequence: 5
  givenname: Dario
  surname: Farina
  fullname: Farina, Dario
  email: dario.farina@bccn.uni-goettingen.de
  organization: University Medical Center Göttingen, Georg-August University Department of NeuroRehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, D-37075 Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26529274$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB_wE0De0U24Yyd-RKxQVR5SJRbA2rKTMfgqiYOd8Pj3OL23CCFEV2OPv3NGnnNOTqY4ISFPGbxgoPWOqYZVXEjYMb6TO5ASOH9Azo59wU9-nyWckvOc9wA1Uy08IqdcCt5y1ZyR7gNOOSbq1xziRO3U0y6O87pgot_Cbc-X5y5OC_5YKvvdJry9pTjQ6Kml4zosgfb4OSFW0Ve-1D6OdE4xL18wh_yYPPR2yPjkWC_Ip9fXH6_eVjfv37y7enVTdY3mxZsJbltnna4t59Y1uqsbIS00zinZAngFrgfl69pBb3kPGnuNjeIo2pq5-oJcHnzL6K8r5sWMIXc4DHbCuGbDNBeNYFKx-1GlJGipYUOfHdHVjdibOYXRpp_mbocFeHkAuvLjnNCbLix2CduSbBgMA7MlZrY0zJaGYdxIc0isqMVf6rsB9-meH3QhzmYf1zSV1Zr9hH9SZu59Idk_yP-7_wIgz7SZ
CODEN JNEIEZ
CitedBy_id crossref_primary_10_7554_eLife_87317_3
crossref_primary_10_1109_ACCESS_2020_3036115
crossref_primary_10_3389_fnbot_2022_815693
crossref_primary_10_1088_1741_2552_aa620a
crossref_primary_10_1109_OJEMB_2021_3058036
crossref_primary_10_1109_ACCESS_2021_3096040
crossref_primary_10_1109_LRA_2024_3398563
crossref_primary_10_3389_fnins_2020_00637
crossref_primary_10_1109_TCYB_2020_2996960
crossref_primary_10_1109_ACCESS_2019_2911968
crossref_primary_10_3389_fbioe_2019_00316
crossref_primary_10_1371_journal_pone_0164694
crossref_primary_10_21272_jes_2022_9_2__e4
crossref_primary_10_1109_TNSRE_2019_2935765
crossref_primary_10_20965_jrm_2017_p1049
crossref_primary_10_1109_TNSRE_2020_3007625
crossref_primary_10_7554_eLife_87317
crossref_primary_10_1088_1741_2552_aa6802
crossref_primary_10_1109_TNSRE_2023_3247580
crossref_primary_10_1007_s40137_019_0227_z
crossref_primary_10_3389_fnbot_2019_00065
crossref_primary_10_1002_adma_201905399
crossref_primary_10_3390_s21134515
crossref_primary_10_1109_TMRB_2022_3146743
crossref_primary_10_1109_TBME_2021_3052065
crossref_primary_10_3389_fnbot_2021_768619
crossref_primary_10_1016_j_robot_2022_104123
crossref_primary_10_1109_LRA_2023_3240375
crossref_primary_10_1590_2179_10742023v22i1271724
crossref_primary_10_3390_s19235238
crossref_primary_10_7736_JKSPE_024_019
crossref_primary_10_1109_THMS_2020_2970740
crossref_primary_10_1109_TRO_2020_3047013
crossref_primary_10_1088_2057_1976_ad464e
crossref_primary_10_1109_JSEN_2019_2951601
crossref_primary_10_3390_s20216097
crossref_primary_10_1016_j_cviu_2017_03_001
crossref_primary_10_21272_jes_2024_11_2__e1
crossref_primary_10_1155_2022_4718684
crossref_primary_10_3390_biomimetics9090532
crossref_primary_10_1109_ACCESS_2021_3109733
crossref_primary_10_3389_fnbot_2022_815716
crossref_primary_10_1109_JSEN_2019_2897083
crossref_primary_10_1155_2017_7862178
crossref_primary_10_1146_annurev_bioeng_110222_095816
crossref_primary_10_1109_JAS_2024_124329
crossref_primary_10_1109_TMRB_2024_3377530
crossref_primary_10_3389_fnbot_2017_00071
crossref_primary_10_3389_frobt_2022_948238
crossref_primary_10_1126_science_adj3312
crossref_primary_10_3389_fnins_2020_00345
crossref_primary_10_1109_TMRB_2023_3292419
crossref_primary_10_1126_scirobotics_adl0085
crossref_primary_10_1088_1741_2552_aa7e82
crossref_primary_10_1109_TNSRE_2022_3228514
crossref_primary_10_3389_frai_2021_744476
crossref_primary_10_3390_s19224887
crossref_primary_10_1109_ACCESS_2019_2955480
crossref_primary_10_3390_biomimetics9010062
crossref_primary_10_1109_TNSRE_2024_3521923
crossref_primary_10_1109_JSEN_2023_3308615
crossref_primary_10_1186_s40648_016_0043_5
crossref_primary_10_1088_1741_2552_ac7ad7
crossref_primary_10_3390_chemosensors10110474
crossref_primary_10_3389_fnbot_2022_814973
Cites_doi 10.1097/JPO.0000000000000055
10.5898/JHRI.3.1.Johnson
10.1049/cce:19910006
10.1109/TNSRE.2013.2286955
10.1109/MSP.2012.2203480
10.1016/j.apmr.2007.11.005
10.1109/TBME.2008.2007967
10.1080/03091900210142459
10.1109/MRA.2012.2191995
10.1109/TBME.2015.2403368
10.1109/JSEN.2013.2295268
10.1109/70.34763
10.1109/TRO.2007.910708
10.1155/2013/243257
10.1109/TNSRE.2013.2294685
10.1186/1743-0003-9-33
10.1016/0141-5425(80)90142-9
10.1109/ICRA.2011.5979715
10.1007/s002210000444
10.1109/TBME.2012.2209649
10.1016/0745-7138(85)90015-6
10.1109/MRA.2012.2229949
10.1007/978-3-642-18812-1
10.3109/03093649909071611
10.1109/JSEN.2011.2166383
10.1088/1741-2560/11/4/046001
10.1504/IJAMECHS.2008.022009
10.1109/TNSRE.2010.2047590
10.1109/TMECH.2009.2032686
10.1007/s002219900322
10.1088/1741-2560/11/6/066013
10.1109/ICORR.2013.6650507
10.1109/TNSRE.2012.2207916
10.1109/TASE.2014.2320157
10.1097/JPO.0b013e3181ae970b
10.1097/JPO.0b013e3181a1d2dc
10.3109/03093640409167756
10.1109/TMECH.2006.886250
10.1109/TNSRE.2014.2361478
10.1109/TNSRE.2012.2196711
10.1682/JRRD.2011.10.0188
10.1109/TAC.1962.1105456
10.1186/1743-0003-7-42
10.1016/0141-5425(87)90013-6
10.1007/s002210050684
10.1053/apmr.2002.32737
ContentType Journal Article
Copyright 2015 IOP Publishing Ltd
Copyright_xml – notice: 2015 IOP Publishing Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1088/1741-2560/12/6/066022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis
EISSN 1741-2552
EndPage 66036
ExternalDocumentID 26529274
10_1088_1741_2560_12_6_066022
jneaa057a
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Ministry for Education and Research
  grantid: 1GQ0810
– fundername: European Commission
  grantid: FP7-PEOPLE-2011-IAPP-26208
  funderid: http://dx.doi.org/10.13039/501100000780
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
CITATION
02O
1WK
ACARI
AERVB
AHSEE
ARNYC
BBWZM
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
JCGBZ
NPM
Q02
RNS
S3P
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c482t-a152a9bab83a22ab48c3456a04bb76900f70bd07f33b0da2d08ed8e472e5931b3
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Jul 11 02:25:03 EDT 2025
Thu Jul 10 18:20:04 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 01:58:36 EDT 2025
Fri Jan 08 09:41:24 EST 2021
Wed Aug 21 03:33:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-a152a9bab83a22ab48c3456a04bb76900f70bd07f33b0da2d08ed8e472e5931b3
Notes JNE-101004.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26529274
PQID 1776086801
PQPubID 23479
PageCount 15
ParticipantIDs crossref_citationtrail_10_1088_1741_2560_12_6_066022
crossref_primary_10_1088_1741_2560_12_6_066022
proquest_miscellaneous_1825451671
proquest_miscellaneous_1776086801
iop_journals_10_1088_1741_2560_12_6_066022
pubmed_primary_26529274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2015
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
47
48
Dillon S S (29) 1995
Muelling K (38) 2015
50
53
10
54
11
12
13
15
59
16
18
19
Kuiken T A (21) 2004; 28
2
Shumway-Cook A (67) 2007
3
4
5
Matija Š (51) 2014; 2014
6
7
Vilarino M (62) 2014
8
9
60
61
Amsuess S (14) 2014
63
20
64
22
23
24
68
25
Stein S C (66) 2014
69
26
27
28
Aulinas J (65) 2008; 184
Dosen S (46) 2013
Suzuki R (17) 2013
McMullen D (41) 2014; 22
70
71
72
73
74
31
75
32
Tomovic R (33) 1987; 4
EUrobotics (43) 2015
34
35
36
37
39
Kermorgant O (56) 2011
Hart S G (58) 1988; 52
Markovic M (49) 2014; 11
Marković M (52) 2014
Jones L E (57) 1999; 23
Banziger E (30) 1996; 30
Smith L H (55) 2014; 11
MacKenzie C L (1) 1994
40
42
References_xml – year: 1994
  ident: 1
– ident: 63
  doi: 10.1097/JPO.0000000000000055
– ident: 42
  doi: 10.5898/JHRI.3.1.Johnson
– ident: 68
– volume: 4
  start-page: 83
  year: 1987
  ident: 33
  publication-title: Proc. of the IEEE Int. Conf. on Robotics and Automation
– ident: 54
  doi: 10.1049/cce:19910006
– ident: 12
– ident: 15
  doi: 10.1109/TNSRE.2013.2286955
– ident: 13
  doi: 10.1109/MSP.2012.2203480
– ident: 6
  doi: 10.1016/j.apmr.2007.11.005
– volume: 184
  start-page: 363
  year: 2008
  ident: 65
  publication-title: Frontiers Artif. Intell. Appl.
– ident: 23
  doi: 10.1109/TBME.2008.2007967
– ident: 35
  doi: 10.1080/03091900210142459
– ident: 26
  doi: 10.1109/MRA.2012.2191995
– ident: 71
  doi: 10.1109/TBME.2015.2403368
– ident: 60
– ident: 70
  doi: 10.1109/JSEN.2013.2295268
– ident: 2
  doi: 10.1109/70.34763
– ident: 9
– ident: 45
– volume: 52
  year: 1988
  ident: 58
  publication-title: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research
– ident: 72
  doi: 10.1109/TRO.2007.910708
– ident: 69
– volume: 2014
  start-page: 12
  year: 2014
  ident: 51
  publication-title: Biomed. Res. Int.
– ident: 16
  doi: 10.1155/2013/243257
– volume: 22
  start-page: 784
  issn: 1534-4320
  year: 2014
  ident: 41
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2294685
– ident: 59
  doi: 10.1186/1743-0003-9-33
– ident: 27
  doi: 10.1016/0141-5425(80)90142-9
– year: 2015
  ident: 38
– start-page: 4518
  year: 2011
  ident: 56
  publication-title: Proc. of the IEEE Int. Conf. on Robotics and Automation
  doi: 10.1109/ICRA.2011.5979715
– ident: 3
  doi: 10.1007/s002210000444
– start-page: 178
  year: 2015
  ident: 43
– ident: 64
  doi: 10.1109/TBME.2012.2209649
– ident: 31
  doi: 10.1016/0745-7138(85)90015-6
– ident: 48
– ident: 61
– ident: 39
  doi: 10.1109/MRA.2012.2229949
– ident: 44
  doi: 10.1007/978-3-642-18812-1
– start-page: 143
  year: 2014
  ident: 52
  publication-title: MEC
– volume: 23
  start-page: 55
  issn: 0309-3646
  year: 1999
  ident: 57
  publication-title: Prosthet. Orthot. Int.
  doi: 10.3109/03093649909071611
– ident: 53
  doi: 10.1109/JSEN.2011.2166383
– year: 2014
  ident: 62
  publication-title: Technical Note: A Novel Wireless Controller for Switching among Modes for an Upper-Limb Prosthesis
– volume: 30
  start-page: 12
  year: 1996
  ident: 30
  publication-title: ACPOC News
– start-page: 714
  year: 2013
  ident: 17
  publication-title: Proc. of the IEEE 8th Conf. on Industrial Electronics and Applications (ICIEA)
– volume: 11
  issn: 1741-2552
  year: 2014
  ident: 49
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/4/046001
– ident: 36
  doi: 10.1504/IJAMECHS.2008.022009
– ident: 20
  doi: 10.1109/TNSRE.2010.2047590
– start-page: 110
  year: 1995
  ident: 29
  publication-title: Proc. of the MyoElectric Controls Prosthetics Symp.
– ident: 34
  doi: 10.1109/TMECH.2009.2032686
– start-page: 658
  year: 2014
  ident: 14
  publication-title: Proc. Ann. Int. Conf. IEEE Engineering in Medical and Biology Society
– ident: 40
  doi: 10.1109/MRA.2012.2229949
– ident: 5
  doi: 10.1007/s002219900322
– ident: 10
– start-page: 3213
  year: 2014
  ident: 66
  publication-title: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA)
– volume: 11
  issn: 1741-2552
  year: 2014
  ident: 55
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/6/066013
– ident: 37
  doi: 10.1109/ICORR.2013.6650507
– ident: 24
  doi: 10.1109/TNSRE.2012.2207916
– ident: 47
– ident: 25
  doi: 10.1109/TASE.2014.2320157
– ident: 73
  doi: 10.1097/JPO.0b013e3181ae970b
– ident: 74
  doi: 10.1097/JPO.0b013e3181a1d2dc
– volume: 28
  start-page: 245
  issn: 0309-3646
  year: 2004
  ident: 21
  publication-title: Prosthet. Orthot. Int.
  doi: 10.3109/03093640409167756
– ident: 18
  doi: 10.1109/TMECH.2006.886250
– ident: 22
  doi: 10.1109/TNSRE.2014.2361478
– ident: 7
  doi: 10.1109/TNSRE.2012.2196711
– ident: 8
  doi: 10.1682/JRRD.2011.10.0188
– ident: 11
– year: 2007
  ident: 67
  publication-title: Motor Control: Translating Research Into Clinical Practice
– ident: 19
– ident: 28
  doi: 10.1109/TAC.1962.1105456
– ident: 50
  doi: 10.1186/1743-0003-7-42
– ident: 32
  doi: 10.1016/0141-5425(87)90013-6
– year: 2013
  ident: 46
  publication-title: EP
– ident: 4
  doi: 10.1007/s002210050684
– ident: 75
  doi: 10.1053/apmr.2002.32737
SSID ssj0031790
Score 2.4200077
Snippet Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions...
Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66022
SubjectTerms Activities of Daily Living
Adult
Amputees
Artificial Limbs
Awareness - physiology
context awareness
control of grasping
Degrees of freedom
Electromyography - methods
Female
Forearm - physiology
Hand Strength - physiology
Human
Humans
Male
Mathematical analysis
Middle Aged
Muscles
Prostheses
Prosthesis Design - instrumentation
Prosthesis Design - methods
Prosthetics
reactive control
semi-autonomous
sensor fusion
Sensors
Surgical implants
upper limb prosthesis
user awareness
User-Computer Interface
Title Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis
URI https://iopscience.iop.org/article/10.1088/1741-2560/12/6/066022
https://www.ncbi.nlm.nih.gov/pubmed/26529274
https://www.proquest.com/docview/1776086801
https://www.proquest.com/docview/1825451671
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9UwEA7u-uKLt_VyvDGC-CD0nDZJk_RxEZdF8AK6sG9hcimuuu3hXBD99U6adtkV1kV8aqGTkEySzjfJNxPGXvhSoUq8MCQwXkgdmqJpZSgkzSdUoXFiyLP97r06PJJvj-vjc1H8J_1y_PXP6TUnCs4qHAlxZkEYuiqSpV5UfKEWZDPJDu2w68KQ9UwhfB8-Tv9ikfJP5ZDIXGSK4bmsmgvWaYdacDnwHAzQwS2GU9Mz7-TbfLtxc__rj6yO_9O32-zmiE5hP8vfYddid5ft7XfkmZ_-hJcw8EWHjfg95j-RB9yvoN2mDTfALoAfr4iAHLEOBIghceGTd40_cBVhZMZD3wLCQGaEEMnlj0XfFi09Q38KyxSJ8iWuT9b32NHBm8-vD4vxyobCS8OpLoID2Dh0RiDn6KTxgiAaltI5TY542erShVK3QrgyIA-licFEqXmsG1E5cZ_tdn0XHzKIQQQZfaXq4GVtykajqSokB5RgmlP1jMlpqKwf85mnazW-2-Fc3RiblGmTMm3FrbJZmTM2Pyu2zAk9rirwikbLjkt7fZUwXBD-2sXzn-0ytDP2fJpRlpZyOp_BLvZbqllrRR4mYYa_yCSPvq6UJpkHeTqedYOrmjdcy0f_0uLH7AZhwDozdJ6w3c1qG58Sztq4Z8NS-g3GDBbY
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB6SFEpfeqXH9lSh9KHgta3bj6Hpkl5poA3kTUiWTK_Yyx6U9td3ZNlLU0hD6ZMNnhE6Pd8nzYwAntaFtDL6hVkE4xlXvsqqhvuM43yy0leO9Xm23x3Kg2P--kScbMH-Jhammw-__im-pkTBqQsHhzidI4Yus2ip85LmMkebiXYon_tmGy4JhgY0hvG9Pxr_xyzmoEphkUltjOM5r6gzFmoba3E--OyN0OwahLH6yffk63S9ctP65x-ZHf-3fdfh6oBSyV7SuQFbob0Ju3stMvTTH-QZ6f1G-w35Xag_IBPuFqRZx403YltP6uGqCJIi1wkCYxJ94iPLtt_tIpDBQ550DbGkd2okPiD1D1nXZA0-fXdK5jEi5VNYfl7eguPZy48vDrLh6oas5ppiWQgLbOWs08xSah3XNUOoZgvunEJCXjSqcL5QDWOu8Jb6QgevA1c0iIqVjt2GnbZrw10gwTPPQ11K4WsudFEpq8vSIhFFuOakmAAfh8vUQ17zeL3GN9Ofr2ttYoea2KGmpEaa1KETmG7U5imxx0UKz3HEzLDElxcJkzPCX9rw-2eDozmBJ-OsMrik4zmNbUO3xpKVksg0ETv8RSYye1FKhTJ30pTcNINKQSuq-L1_qfFjuHy0PzNvXx2-uQ9XEBaK5LTzAHZWi3V4iNBr5R71K-sXI5McPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+fusion+and+computer+vision+for+context-aware+control+of+a+multi+degree-of-freedom+prosthesis&rft.jtitle=Journal+of+neural+engineering&rft.au=Markovic%2C+Marko&rft.au=Dosen%2C+Strahinja&rft.au=Popovic%2C+Dejan&rft.au=Graimann%2C+Bernhard&rft.date=2015-12-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=12&rft.issue=6&rft.spage=066022&rft_id=info:doi/10.1088%2F1741-2560%2F12%2F6%2F066022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon