Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces
Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various applications in nanoscience and nanotechnology. At the liquid/graphite interface, we found by means of scanning tunneling microscopy molecules...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 89; no. 11; pp. 1277 - 1306 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Chemical Society of Japan
2016
Chemical Society of Japan |
Series | The Chemical Society of Japan Award for Young Chemists for 2011 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various applications in nanoscience and nanotechnology. At the liquid/graphite interface, we found by means of scanning tunneling microscopy molecules with a rigid triangular core, a twelve-membered phenylene-ethynylene macrocycle called dehydrobenzo[12]annulene (DBA), substituted by six flexible alkoxy chains self-assembled to form hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains as the directional intermolecular linkages. Factors that affect the formation of the porous 2D molecular networks including alkyl chain length, solvent, solute concentration, and temperature were elucidated through a systematic study. Because DBA molecules are versatile for chemical modification, they turned out to be highly adaptive for on-surface supramolecular chemistry with respect to (i) pore size control by changing the chain length, (ii) study of parity effect due to even or odd number chains, (iii) generation of supramolecular chirality on surfaces by introducing stereocenters, (iv) chemical modification of the pore interior for selective co-adsorption of guest molecules by introducing functional groups. Additionally, formation of superlattice structures on surfaces was incidentally observed by mixing DBAs of different alkoxy chain parity or by addition of guest molecules via an induced-fit mechanism. These results made significant contribution to advancement of supramolecular chemistry in 2D space. |
---|---|
AbstractList | Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various applications in nanoscience and nanotechnology. At the liquid/graphite interface, we found by means of scanning tunneling microscopy molecules with a rigid triangular core, a twelve-membered phenylene-ethynylene macrocycle called dehydrobenzo[12]annulene (DBA), substituted by six flexible alkoxy chains self-assembled to form hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains as the directional intermolecular linkages. Factors that affect the formation of the porous 2D molecular networks including alkyl chain length, solvent, solute concentration, and temperature were elucidated through a systematic study. Because DBA molecules are versatile for chemical modification, they turned out to be highly adaptive for on-surface supramolecular chemistry with respect to (i) pore size control by changing the chain length, (ii) study of parity effect due to even or odd number chains, (iii) generation of supramolecular chirality on surfaces by introducing stereocenters, (iv) chemical modification of the pore interior for selective co-adsorption of guest molecules by introducing functional groups. Additionally, formation of superlattice structures on surfaces was incidentally observed by mixing DBAs of different alkoxy chain parity or by addition of guest molecules via an induced-fit mechanism. These results made significant contribution to advancement of supramolecular chemistry in 2D space. |
Author | Tahara, Kazukuni Tobe, Yoshito De Feyter, Steven |
Author_xml | – sequence: 1 givenname: Yoshito surname: Tobe fullname: Tobe, Yoshito – sequence: 2 givenname: Kazukuni surname: Tahara fullname: Tahara, Kazukuni – sequence: 3 givenname: Steven surname: De Feyter fullname: De Feyter, Steven |
BookMark | eNp1kM1LJDEQxcPiwo6ux70HPLcm6XRP4m0cdBUGBD_OTXU-xoyZZEzS4tz9w7cHFRbRU1FVv1f1ePtoL8RgEPpDyTFlvD3pVV4dM0Jbwij_gSa05qIibc330IQQIivWTutfaD_n1diKhssJep1p2BT3bPDZ4Lx2YYnPfFSPGc9jyC6X3SRafOOWTuO75CAsBw9pXCeDIWh84c2L673BM_8YX7Z4_gAuZGxjwrfG22qWs1n3fouh4IV7Gpw-uY1-PHYVikkWlMm_0U8LPpvD93qA7i_O7-aX1eL679V8tqgUF6xU0kqrlBH1VCimQfZKK6Zo0zPdSy65qZkCIxsKPW8Y47YWwHoltbLABfD6AB293d2k-DSYXLpVHFIYX3ZUTMW0FQ1pRqp6o1SKOSdju01ya0jbjpJuF3S3C7r7CHrk60-8cgWKi6EkcP5b1em76sGsnRo9ROVM2a5gA-E_X1-K_wGthJpc |
CitedBy_id | crossref_primary_10_1021_jacs_1c13610 crossref_primary_10_1039_D1CC01356D crossref_primary_10_1021_jacs_0c00765 crossref_primary_10_1021_acs_langmuir_3c02327 crossref_primary_10_1021_acs_langmuir_7b03007 crossref_primary_10_1021_acs_langmuir_8b01434 crossref_primary_10_1246_bcsj_20170334 crossref_primary_10_1002_adfm_201702905 crossref_primary_10_3762_bjnano_14_72 crossref_primary_10_1021_acs_joc_1c00888 crossref_primary_10_3390_molecules25153335 crossref_primary_10_1038_s41467_019_12654_z crossref_primary_10_1246_cl_170884 crossref_primary_10_1002_chem_202400926 crossref_primary_10_1246_bcsj_20180075 crossref_primary_10_1002_asia_201800935 crossref_primary_10_1002_tcr_201700070 crossref_primary_10_1039_C7CP02280H crossref_primary_10_1246_cl_200080 crossref_primary_10_1039_C9CC00532C crossref_primary_10_1039_C7NR00867H crossref_primary_10_1246_bcsj_20170043 crossref_primary_10_1002_cnma_201900733 crossref_primary_10_1038_s41427_018_0022_9 crossref_primary_10_1039_D0CC01823F crossref_primary_10_1002_cplu_201900344 crossref_primary_10_1021_jacs_0c00108 crossref_primary_10_1021_acs_langmuir_7b00083 crossref_primary_10_1246_bcsj_20180084 crossref_primary_10_1039_D0CC03150J crossref_primary_10_1016_j_cocis_2018_01_007 crossref_primary_10_1021_acs_jpcc_4c00695 crossref_primary_10_1246_bcsj_20180285 crossref_primary_10_1021_acs_jpcc_7b02262 crossref_primary_10_1246_bcsj_20180240 crossref_primary_10_1002_chem_202401885 crossref_primary_10_1039_D0CC07374A crossref_primary_10_1246_bcsj_20170156 crossref_primary_10_1246_bcsj_20170036 crossref_primary_10_1016_j_colsurfa_2017_10_020 crossref_primary_10_1039_C9CP03863A crossref_primary_10_1002_anie_202114290 crossref_primary_10_1002_smll_202410652 crossref_primary_10_1002_anie_201804402 crossref_primary_10_1002_chem_201904114 crossref_primary_10_1021_acs_jpcc_9b08084 crossref_primary_10_1021_acs_langmuir_7b04293 crossref_primary_10_1246_bcsj_20180016 crossref_primary_10_1039_D0SC04585C crossref_primary_10_1039_D2CE00676F crossref_primary_10_5059_yukigoseikyokaishi_78_162 crossref_primary_10_1246_bcsj_20180174 crossref_primary_10_1038_ncomms15727 crossref_primary_10_1016_j_jphotochemrev_2017_12_005 crossref_primary_10_1016_j_cattod_2018_11_078 crossref_primary_10_1021_acs_langmuir_7b00603 crossref_primary_10_1016_j_cclet_2019_04_032 crossref_primary_10_1021_acsnano_9b08408 crossref_primary_10_1002_ange_202114290 crossref_primary_10_1002_ange_201804402 crossref_primary_10_1246_cl_170815 crossref_primary_10_1021_jacs_9b07877 crossref_primary_10_1246_cl_170614 crossref_primary_10_1039_D0NA00616E |
Cites_doi | 10.1002/anie.200905503 10.1002/anie.201303745 10.1021/la0342621 10.1021/la203054k 10.1021/nn4039047 10.1002/3527601600 10.1002/adma.200600683 10.1021/ja0602896 10.1021/ar0500158 10.1002/asia.200900439 10.1038/nature04166 10.1039/C1SC00543J 10.1016/j.cocis.2008.10.002 10.1021/cr050149z 10.1021/cg030025k 10.1021/jp910029z 10.1021/la703240y 10.1039/c3cc47949h 10.1021/cr3000412 10.1021/la010869a 10.1021/nl060292n 10.1021/acs.accounts.5b00168 10.1021/la701663j 10.1021/ja800801e 10.1002/anie.200701614 10.1002/sia.1047 10.1126/science.268.5219.1860 10.1103/PhysRevB.68.115410 10.1021/ja101944r 10.1021/ja0375737 10.1021/acs.langmuir.5b01507 10.1007/128_2008_6 10.1002/chem.200800476 10.1038/nnano.2012.238 10.1021/jp3115435 10.1002/smll.200600550 10.1002/smll.200400078 10.1021/nl200631m 10.1021/ja044136z 10.1016/0379-6779(91)91123-R 10.1002/anie.200801863 10.1021/la201467b 10.1021/ja0362353 10.1038/nchem.295 10.1351/pac197127040647 10.1021/cr9603892 10.1039/B708902N 10.1021/acsnano.5b06483 10.1002/asia.201201229 10.1063/1.4913657 10.1002/chem.201003589 10.1021/ja801883t 10.1002/anie.201204006 10.1021/jz900146f 10.1103/PhysRevB.69.155406 10.1021/ja0583362 10.1039/C2CP43244G 10.1021/nl2025739 10.1063/1.3569132 10.1021/ja904481j 10.1021/nl401265f 10.1103/PhysRevLett.75.3154 10.1038/nchem.1111 10.1021/ar970261m 10.1002/anie.200705322 10.1021/ja0525049 10.1038/nchem.2514 10.1021/ja209469d 10.1038/nchem.2098 10.1007/s11426-013-4975-9 10.1021/ja9001986 10.1021/la0205755 10.1021/ja102989y 10.1021/ja043028+ 10.1038/nature04419 10.1038/nmat1088 10.1021/ol060781u 10.1021/la047533w 10.1002/3527607439 10.1103/PhysRevLett.102.135501 10.1021/ja309673t 10.1524/zpch.2009.6023 10.1021/jp070328f 10.1039/b404021j 10.1002/1439-7641(20011217)2:12%3C750::AID-CPHC750%3E3.0.CO%3B2-9 10.1021/nl103590j 10.1021/nn204398m 10.1002/adfm.200500264 10.1002/anie.199726481 10.1021/ja9032428 10.1002/adma.201401857 10.1021/ar0501929 10.1021/la204653b 10.1002/chem.201001776 10.1021/acs.langmuir.5b01404 10.1002/anie.199611541 10.1038/35025027 10.1063/1.4864458 10.1039/b926824c 10.1039/b807500j 10.1021/nl801592c 10.1021/cr050258d 10.1021/ja804604y 10.1002/anie.200605224 10.1146/annurev.physchem.56.092503.141259 10.1039/c0cc02780d 10.1002/chem.201101940 10.1021/ja3125096 10.1002/anie.200806339 10.1038/nmat1558 10.1021/ja901718q 10.1002/chem.200900900 10.1039/c0ce00282h 10.1039/C5CC07381B 10.1039/c3cp51413g 10.1021/jp3048949 10.1038/nature01915 10.1021/la049441c 10.1039/b806444j 10.1021/nn901717k 10.1002/adma.200802068 10.1016/S0009-2614(03)00637-7 10.1126/science.1205962 10.1021/cr9700282 10.1039/b708578h 10.1021/jp0619437 10.1063/1.104234 10.1002/anie.200900436 10.1246/cl.2004.972 10.1146/annurev.physchem.040808.090423 10.1021/jo970944f 10.1021/nn4032036 10.1038/nchem.517 10.1021/jp406681j 10.1039/C4CC08826C 10.1126/science.253.5018.424 10.1021/ja0655441 10.1002/(SICI)1521-3773(20000218)39:4%3C792::AID-ANIE792%3E3.0.CO%3B2-2 10.1021/nn303144r 10.1002/chem.201405638 10.1021/ja205998c 10.1021/ja037056o 10.1021/nn503815q 10.1021/cr800260k 10.1002/anie.200502316 10.1039/B314626J 10.1088/0953-8984/14/42/309 10.1021/nn200874k 10.1021/nn102211n 10.1002/cphc.200200492 10.1002/anie.200604782 10.1021/ja405585s 10.1016/S0039-6028(03)00698-8 10.1039/b800411k 10.1021/ja908919r 10.1021/nl8016626 10.1039/c4cc01576b 10.1002/anie.199523111 10.1021/j100002a009 10.1021/ja105039s 10.1039/b713426f 10.1039/B304972H 10.1021/jp045298k 10.1103/PhysRevLett.80.1682 10.1002/anie.200604203 |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan Copyright Chemical Society of Japan 2016 |
Copyright_xml | – notice: The Chemical Society of Japan – notice: Copyright Chemical Society of Japan 2016 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1246/bcsj.20160214 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces |
EISSN | 1348-0634 |
EndPage | 1306 |
ExternalDocumentID | 10_1246_bcsj_20160214 |
FullText_t_NoSnippeting | true |
GroupedDBID | 02 23N 5GY ABEFU ABFLS ABZEH ACCUC ACIWK ACNCT AENEX AETEA AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F20 F5P GX1 JSI JSP P0W P2P RAD RJT RZJ SC5 TN5 TWZ UPT WH7 X XPZ ZE2 -~X 0R~ 6J9 6TJ AAUAY AAYXX ABDFA ABEJV ABGNP ABJNI ABVGC ABXVV ACGFO ADIPN ADNBA ADVOB AGMDO AGORE AJNCP BCRHZ CITATION KOP NU- OJZSN OWPYF ROX ~02 7SR 8BQ 8FD H13 JG9 |
ID | FETCH-LOGICAL-c482t-9f9fcce8378c2da9bcdc2c15b2db9494e32cae951ab45224f38a2bc9dcfa48a43 |
ISSN | 0009-2673 |
IngestDate | Wed Aug 13 10:39:09 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Jul 01 00:34:41 EDT 2025 Tue Jan 05 20:24:28 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c482t-9f9fcce8378c2da9bcdc2c15b2db9494e32cae951ab45224f38a2bc9dcfa48a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dx.doi.org/10.1246/bcsj.20160214 |
PQID | 1878768505 |
PQPubID | 1996365 |
PageCount | 30 |
ParticipantIDs | proquest_journals_1878768505 crossref_primary_10_1246_bcsj_20160214 crossref_citationtrail_10_1246_bcsj_20160214 chemicalsocietyjapan_journals_10_1246_bcsj_20160214 |
ProviderPackageCode | RAD CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationSeriesTitle | The Chemical Society of Japan Award for Young Chemists for 2011 |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationYear | 2016 |
Publisher | The Chemical Society of Japan Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan – name: Chemical Society of Japan |
References | 28a) F. Charra, J. Cousty, Phys. Rev. Lett. 1998, 80, 1682. 10.1103/PhysRevLett.80.1682
b) S. Xu, Q. Zeng, J. Lu, C. Wang, L. Wan, C.-L. Bai, Surf. Sci. 2003, 538, L451. 10.1016/S0039-6028(03)00698-8
c) C. Arrigoni, G. Schull, D. Bléger, L. Douillard, C. Fiorini-Debuisschert, F. Mathevet, D. Kreher, A.-J. Attias, F. Charra, J. Phys. Chem. Lett. 2010, 1, 190. 10.1021/jz900146f 75W. R. Browne, B. L. Feringa, Annu. Rev. Phys. Chem. 2009, 60, 407. 10.1146/annurev.physchem.040808.09042318999995 14Y. Yang, C. Wang, Curr. Opin. Colloid Interface Sci. 2009, 14, 135. 10.1016/j.cocis.2008.10.002 52S. Lei, M. Surin, K. Tahara, J. Adisoejoso, R. Lazzaroni, Y. Tobe, S. De Feyter, Nano Lett. 2008, 8, 2541. 10.1021/nl801662618630887 24a) G. C. McGonigal, R. H. Bernhardt, D. J. Thomson, Appl. Phys. Lett. 1990, 57, 28. 10.1063/1.104234 b) K. W. Herwig, B. Matthies, H. Taub, Phys. Rev. Lett. 1995, 75, 3154. 10.1103/PhysRevLett.75.315410059508 70Y. Fang, E. Ghijsens, O. Ivasenko, H. Cao, A. Noguchi, K. S. Mali, K. Tahara, Y. Tobe, S. De Feyter, Nat. Chem. 2016, 8, 711. 10.1038/nchem.251427325099 45a) N. Katsonis, A. Marchenko, D. Fichou, J. Am. Chem. Soc. 2003, 125, 13682. 10.1021/ja037573714599205 b) T. Kudernac, N. Sändig, T. F. Landaluce, B. J. van Wees, P. Rudolf, N. Katsonis, F. Zerbetto, B. L. Feringa, J. Am. Chem. Soc. 2009, 131, 15655. 10.1021/ja901718q19827775 c) Z. X. Xie, X. Xu, B. W. Mao, K. Tanaka, Langmuir 2002, 18, 3113. 10.1021/la010869a 39a) A. Stabel, R. Heinz, F. C. De Schryver, J. P. Rabe, J. Phys. Chem. 1995, 99, 505. 10.1021/j100002a009 b) M. Lackinger, S. Griessl, L. Kampschulte, F. Jamitzky, W. M. Heckl, Small 2005, 1, 532. 10.1002/smll.20040007817193483 46T. Balandina, K. Tahara, N. Sändig, M. Blunt, J. Adisoejoso, S. Lei, F. Zerbetto, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 8381. 10.1021/nn303144r22954382 10a) P. Samorì, J. Mater. Chem. 2004, 14, 1353. 10.1039/B314626J b) P. Samorì, Chem. Soc. Rev. 2005, 34, 551. 10.1039/b404021j15965537 20a) S. Furukawa, H. Uji-i, K. Tahara, T. Ichikawa, M. Sonoda, F. C. De Schryver, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2006, 128, 3502. 10.1021/ja058336216536507 b) K. Tahara, S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, W. Mamdouh, M. Sonoda, F. C. De Schryver, S. De Feyter, Y. Tobe, J. Am. Chem. Soc. 2006, 128, 16613. 10.1021/ja065544117177410 58a) H. Spillmann, A. Dmitriev, N. Lin, P. Messina, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2003, 125, 10725. 10.1021/ja036235312940758 b) W. Xiao, X. Feng, P. Ruffieux, O. Gröning, K. Müllen, R. Fasel, J. Am. Chem. Soc. 2008, 130, 8911. c) J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, L.-J. Wan, J. Am. Chem. Soc. 2011, 133, 21010. 10.1021/ja209469d22106949 d) S.-S. Jester, E. Sigmund, L. M. Röck, S. Höger, Angew. Chem., Int. Ed. 2012, 51, 8555. 10.1002/anie.201204006 6a) L. C. Giancarlo, G. W. Flynn, Acc. Chem. Res. 2000, 33, 491. 10.1021/ar970261m10913238 b) P. Samorì, J. P. Rabe, J. Phys.: Condens. Matter 2002, 14, 9955. 10.1088/0953-8984/14/42/309 c) S. De Feyter, F. C. De Schryver, J. Phys. Chem. B 2005, 109, 4290. 10.1021/jp045298k16851494 d) L.-J. Wan, Acc. Chem. Res. 2006, 39, 334. 10.1021/ar050192916700532 e) B. A. Hermann, L. J. Scherer, C. E. Housecroft, E. C. Constable, Adv. Funct. Mater. 2006, 16, 221. 10.1002/adfm.200500264 f) Y. Yang, C. Wang, Chem. Soc. Rev. 2009, 38, 2576. 10.1039/b807500j19690738 54a) L. Ramin, A. Jabbarzadeh, Langmuir 2011, 27, 9748. 10.1021/la201467b21749126 b) X. Liu, T. Wang, M. Liu, Langmuir 2012, 28, 3474. 10.1021/la204653b22272776 c) N. Nerngchamnong, L. Yuan, D.-C. Qi, J. Li, D. Thompson, C. A. Nijhuis, Nat. Nanotechnol. 2013, 8, 113. 10.1038/nnano.2012.23823292010 d) F. Tao, S. L. Bernasek, Chem. Rev. 2007, 107, 1408. 10.1021/cr050258d17439290 e) L. Xu, X. Miao, B. Zha, W. Deng, Chem.—Asian J. 2013, 8, 926. 10.1002/asia.20120122923447489 36a) C. Marie, F. Silly, L. Tortech, K. Müllen, D. Fichou, ACS Nano 2010, 4, 1288. 10.1021/nn901717k20155970 b) J. Saiz-Poseu, J. Faraudo, A. Figueras, R. Alibes, F. Busqué, D. Ruiz-Molina, Chem.—Eur. J. 2012, 18, 3056. 10.1002/chem.20110194022290796 c) Y. Li, C. Liu, Y. Xie, X. Li, X. Li, X. Fan, K. Deng, Q. Zeng, C. Wang, Phys. Chem. Chem. Phys. 2013, 15, 125. 10.1039/C2CP43244G23147835 d) C.-J. Li, Q.-D. Zeng, Y.-H. Liu, L.-J. Wan, C. Wang, C.-R. Wang, C.-L. Bai, ChemPhysChem 2003, 4, 857. 10.1002/cphc.20020049212961984 e) Y.-T. Shen, N. Zhu, X.-M. Zhang, K. Deng, W. Feng, Q. Yan, S. Lei, D. Zhao, Q.-D. Zeng, C. Wang, Chem.—Eur. J. 2011, 17, 7061. 10.1002/chem.20100358921557347 f) J. Adisoejoso, K. Tahara, S. Lei, P. Szabelski, W. Rżysko, K. Inukai, M. O. Blunt, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 897. 10.1021/nn204398m22206261 g) A. Jahanbekam, S. Vorpahl, U. Mazur, K. W. Hipps, J. Phys. Chem. C 2013, 117, 2914. 10.1021/jp3115435 34a) L. Kampschulte, T. L. Werblowsky, R. S. K. Kishore, M. Schmittel, W. M. Heckl, M. Lackinger, J. Am. Chem. Soc. 2008, 130, 8502. 10.1021/ja801883t18533654 b) R. Gutzler, T. Sirtl, J. F. Dienstmaier, K. Mahata, W. M. Heckel, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2010, 132, 5084. 10.1021/ja908919r20235537 c) C. Meier, M. Roos, D. Künzel, A. Breitruck, H. E. Hoster, K. Landfester, A. Gross, R. J. Behm, U. Ziener, J. Phys. Chem. C 2010, 114, 1268. 10.1021/jp910029z d) C.-A. Palma, J. Bjork, M. Bonini, M. S. Dyer, A. Llanes-Pallas, D. Bonifazi, M. Persson, P. Samorì, J. Am. Chem. Soc. 2009, 131, 13062. 10.1021/ja903242819702301 50S. Lei, K. Tahara, X. Feng, S. Furukawa, F. C. De Schryver, K. Müllen, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2008, 130, 7119. 10.1021/ja800801e18465857 55a) L. Messe, S. M. Clarke, C. Dong, R. K. Thomas, A. Inaba, M. D. Alba, M. A. Castro, Langmuir 2002, 18, 9429. 10.1021/la0205755 b) G. Wang, S. Lei, S. De Feyter, R. Feldman, J. E. Parker, S. M. Clarke, Langmuir 2008, 24, 2501. 10.1021/la703240y18237218 43a) Q. H. Wang, M. C. Hersam, Nano Lett. 2011, 11, 589. 10.1021/nl103590j21166423 b) A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner, S. Gsell, M. Fischer, M. Schreck, J. Osterwalder, T. Greber, S. Berner, N. R. Champness, P. H. Beton, Angew. Chem., Int. Ed. 2010, 49, 1794. 10.1002/anie.200905503 c) K. Xiao, W. Deng, J. K. Keum, M. Yoon, I. V. Vlassiouk, K. W. Clark, A.-P. Li, I. I. Kravchenko, G. Gu, E. A. Payzant, B. G. Sumpter, S. C. Smith, J. F. Browning, D. B. Geohegan, J. Am. Chem. Soc. 2013, 135, 3680. 10.1021/ja312509623368998 d) Y. Ogawa, T. Niu, S. L. Wong, M. Tsuji, A. T. S. Wee, W. Chen, H. Ago, J. Phys. Chem. C 2013, 117, 21849. 10.1021/jp406681j e) P. Järvinen, S. K. Hämäläinen, K. Banerjee, P. Häkkinen, M. Ijäs, A. Harju, P. Liljeroth, Nano Lett. 2013, 13, 3199. 10.1021/nl401265f23786613 47By collaboration with the group of Profs. Kim and Kawai, we also investigated self-assembly of unsubstituted DBA, DBA-OC1 and DBA-OC4 on Au(111) under UHV conditions, where geometry of self-assembly is dominated by epitaxial effect, hydrogen bonding, and/or van der Waals interactions depending on the substituents. a) J.-H. Kim, K. Tahara, J. Jung, S. De Feyter, Y. Tobe, Y. Kim, M. Kawai, J. Phys. Chem. C 2012, 116, 17082. 10.1021/jp3048949 b) J.-H. Kim, J. Jung, K. Tahara, Y. Tobe, Y. Kim, M. Kawai, J. Chem. Phys. 2014, 140, 074709. 10.1063/1.486445824559362 21R. Lazzaroni, A. Calderone, G. Lambin, J. P. Rabe, J. L. Brédas, Synth. Met. 1991, 41, 525. 10.1016/0379-6779(91)91123-R 26K. Tahara, C. A. Johnson, II, T. Fujita, M. Sonoda, F. C. De Schryver, S. De Feyter, M. M. Haley, Y. Tobe, Langmuir 2007, 23, 10190. 10.1021/la701663j17760473 27L. Xu, L. Yang, L. Cao, T. Li, S. Chen, D. Zhao, S. Lei, J. Ma, Phys. Chem. Chem. Phys. 2013, 15, 11748. 10.1039/c3cp51413g23756563 30S. Lei, K. Tahara, F. C. De Schryver, M. Van der Auweraer, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2008, 47, 2964. 10.1002/anie.200705322 4a) J. V. Barth, G. Costantini, K. Kern, Nature 2005, 437, 671. 10.1038/nature0416616193042 b) L. Bartels, Nat. Chem. 2010, 2, 87. 10.1038/nchem.51721124397 64For chirality induction: a) M. Parschau, S. Romer, K.-H. Ernst, J. Am. Chem. Soc. 2004, 126, 15398. 10.1021/ja044136z15563164 b) R. Fasel, M. Parschau, K.-H. Ernst, Nature 2006, 439, 449. 10.1038/nature0441916437111 c) S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, R. Raval, Nat. Chem. 2009, 1, 409. 10.1038/nchem.29521378896 d) F. Masini, N. Kalashnyk, M. M. Knudsen, J. R. Cramer, E. Lægsgaard, F. Besenbacher, K. V. Gothelf, T. R. Linderoth, J. Am. Chem. Soc. 2011, 133, 13910. 10.1021/ja205998c21830788 72a) Molecular Devices and Machines, ed. by V. Balzani, M. Venturi, A. Credi, Wiley-VCH, Weinheim, 2003. doi:10.1002/3527601600. 10.1002/3527601600 b) D. Philp, J. F. Stoddart, Angew. Chem., Int. Ed. Engl. 1996, 35, 1154. 10.1002/anie.199611541 c) J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, J. Mater. Chem. 2003, 13, 2661. 10.1039/B304972H d) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813. 10.1126/science.120596222344437 32K. Tahara, J. Adisoejoso, K. Inukai, S. Lei, A. Noguchi, B. Li, W. Vanderlinden, S. De Feyter, Y. Tobe, Chem. Commun. 2014, 50, 2831. 10.1039/c3cc47949h 7a) K. E. Plass, A. L. Grzesiak, A. J. Matzger, Acc. Chem. Res. 2007, 40, 287. 10.1021/ar050015817437327 b) S. Furukawa, S. De Feyter, Top. Curr. Chem. 2009, 287, 87. 10.1007/128_2008_623604443 31K. Tahara, S. Lei, D. Mössinger, H. Kozuma, K. Inukai, M. Van der Auweraer, F. C. De Schryver, S. Höger, Y. Tobe, S. De Feyter, Chem. Commun. 2008, 44, 3897. 10.1039/b806444j 78a) J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem., Int. Ed. 2009, 48, 1030. 10.1002/anie.200801863 b) X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Adv. Mater. 2015, 27, 403. 10.1002/adma.20140185725155302 c) Q. Fan, J. M. Gottfried, J. Zhu, Acc. Chem. Res. 2015, 48, 2484. 10.1021/acs.accounts.5b0016826194462 d) P. Payamyar, B. T. King, H. C. Öttinger, A. D. Schlüter, Chem. Commun. 2016, 52, 18. 10.1039/C5CC07381B 53J. Adisoejoso, K. Tahara, S. Okuhata, S. Lei, Y. Tobe, S. De Feyter, An Yang (2024012219414320200_r62) 2010; 132 Böhringer (2024012219414320200_r62) 2000; 39 Laschat (2024012219414320200_r1) 2007; 46 Perdigão (2024012219414320200_r19) 2008; 14 Philp (2024012219414320200_r72) 1996; 35 Blagden (2024012219414320200_r9) 2003; 3 Mössinger (2024012219414320200_r51) 2007; 46 Bartels (2024012219414320200_r4) 2010; 2 Tahara (2024012219414320200_r22) 2009; 131 Tahara (2024012219414320200_r73) 2014; 8 Sakamoto (2024012219414320200_r78) 2009; 48 Giancarlo (2024012219414320200_r6) 2000; 33 Hermann (2024012219414320200_r6) 2006; 16 Li (2024012219414320200_r36) 2013; 15 Tahara (2024012219414320200_r77) 2016; 10 Palma (2024012219414320200_r34) 2009; 131 Kong (2024012219414320200_r51) 2007; 111 Nerngchamnong (2024012219414320200_r54) 2013; 8 Georgakilas (2024012219414320200_r42) 2012; 112 Fan (2024012219414320200_r78) 2015; 48 Marie (2024012219414320200_r36) 2010; 4 Kim (2024012219414320200_r47) 2012; 116 Liu (2024012219414320200_r58) 2011; 133 Bonifazi (2024012219414320200_r8) 2009; 15 Sonoda (2024012219414320200_r13) 2004; 33 Jester (2024012219414320200_r58) 2012; 51 Ghijsens (2024012219414320200_r69) 2015; 142 Schmidt (2024012219414320200_r9) 1971; 27 Surin (2024012219414320200_r8) 2007; 3 Yoshimura (2024012219414320200_r13) 2006; 8 Kim (2024012219414320200_r16) 2005; 127 Haq (2024012219414320200_r64) 2009; 1 Furukawa (2024012219414320200_r7) 2009; 287 Yin (2024012219414320200_r23) 2001; 32 Stabel (2024012219414320200_r39) 1995; 99 Samorì (2024012219414320200_r10) 2005; 34 Ma (2024012219414320200_r8) 2008; 18 Schöck (2024012219414320200_r63) 2006; 110 Dong (2024012219414320200_r42) 2009; 102 Xu (2024012219414320200_r27) 2013; 15 Berner (2024012219414320200_r33) 2003; 68 Sakai (2024012219414320200_r3) 2010; 132 Günes (2024012219414320200_r3) 2007; 107 Kim (2024012219414320200_r16) 2003; 19 Tahara (2024012219414320200_r76) 2013; 52 Stepanow (2024012219414320200_r17) 2004; 3 Tahara (2024012219414320200_r13) 2008; 130 Yokoyama (2024012219414320200_r29) 2015; 31 Xie (2024012219414320200_r45) 2002; 18 Yu (2024012219414320200_r42) 2011; 11 Zhang (2024012219414320200_r62) 2009; 131 Parschau (2024012219414320200_r64) 2004; 126 Palma (2024012219414320200_r35) 2009; 21 Rabe (2024012219414320200_r11) 1991; 253 Shen (2024012219414320200_r18) 2010; 5 Spillmann (2024012219414320200_r58) 2003; 125 Raval (2024012219414320200_r61) 2009; 38 Adisoejoso (2024012219414320200_r60) 2012; 6 Elemans (2024012219414320200_r8) 2009; 48 2024012219414320200_r71 2024012219414320200_r72 Feng (2024012219414320200_r49) 2007; 46 Wan (2024012219414320200_r6) 2006; 39 Payamyar (2024012219414320200_r78) 2016; 52 Kim (2024012219414320200_r47) 2014; 140 Tahara (2024012219414320200_r20) 2006; 128 Masini (2024012219414320200_r64) 2011; 133 Kudernac (2024012219414320200_r8) 2009; 38 Terech (2024012219414320200_r2) 1997; 97 Kudernac (2024012219414320200_r45) 2009; 131 Charra (2024012219414320200_r28) 1998; 80 Palmans (2024012219414320200_r65) 1997; 36 Griessl (2024012219414320200_r17) 2004; 20 Phillips (2024012219414320200_r19) 2010; 46 Jahanbekam (2024012219414320200_r36) 2013; 117 Lazzaroni (2024012219414320200_r21) 1991; 41 Meier (2024012219414320200_r34) 2010; 114 Adisoejoso (2024012219414320200_r53) 2009; 48 Lei (2024012219414320200_r30) 2008; 47 Katsonis (2024012219414320200_r45) 2003; 125 Donovan (2024012219414320200_r63) 2010; 16 Li (2024012219414320200_r44) 2013; 7 France (2024012219414320200_r62) 2003; 125 Vidal (2024012219414320200_r63) 2005; 127 Vidal (2024012219414320200_r33) 2005; 127 Balandina (2024012219414320200_r46) 2012; 6 Plass (2024012219414320200_r7) 2007; 40 Tahara (2024012219414320200_r32) 2014; 50 Nath (2024012219414320200_r15) 2006; 128 Ghijsens (2024012219414320200_r68) 2015; 51 Ahn (2024012219414320200_r37) 2010; 132 Tahara (2024012219414320200_r41) 2015; 31 Tahara (2024012219414320200_r31) 2008; 44 Yang (2024012219414320200_r14) 2009; 14 Ernst (2024012219414320200_r61) 2009; 223 Tahara (2024012219414320200_r66) 2011; 3 Furukawa (2024012219414320200_r20) 2006; 128 Stöhr (2024012219414320200_r33) 2005; 44 Xiao (2024012219414320200_r43) 2013; 135 Krafft (2024012219414320200_r74) 2009; 109 De Feyter (2024012219414320200_r6) 2005; 109 Arrigoni (2024012219414320200_r28) 2010; 1 Järvinen (2024012219414320200_r43) 2013; 13 Tao (2024012219414320200_r54) 2007; 107 Kampschulte (2024012219414320200_r34) 2008; 130 Ramin (2024012219414320200_r54) 2011; 27 Räisänen (2024012219414320200_r19) 2012; 3 Saiz-Poseu (2024012219414320200_r36) 2012; 18 Adisoejoso (2024012219414320200_r36) 2012; 6 Fasel (2024012219414320200_r64) 2006; 439 Wu (2024012219414320200_r25) 2001; 2 Barth (2024012219414320200_r4) 2005; 437 Shen (2024012219414320200_r36) 2011; 17 Elemans (2024012219414320200_r72) 2003; 13 Lei (2024012219414320200_r52) 2008; 8 Zang (2024012219414320200_r17) 2014; 57 Szafranek (2024012219414320200_r42) 2011; 11 Fang (2024012219414320200_r70) 2016; 8 Bellec (2024012219414320200_r37) 2011; 134 Ghijsens (2024012219414320200_r57) 2013; 7 Schull (2024012219414320200_r17) 2006; 6 Tahara (2024012219414320200_r66) 2014; 6 Yang (2024012219414320200_r6) 2009; 38 Herwig (2024012219414320200_r24) 1995; 75 Xu (2024012219414320200_r28) 2003; 538 Weigelt (2024012219414320200_r63) 2006; 5 Green (2024012219414320200_r65) 1995; 268 Lei (2024012219414320200_r50) 2008; 130 Barth (2024012219414320200_r5) 2007; 58 Xu (2024012219414320200_r54) 2013; 8 Theobald (2024012219414320200_r5) 2003; 424 Zacharia (2024012219414320200_r16) 2004; 69 Cortés (2024012219414320200_r62) 2008; 8 Samorì (2024012219414320200_r6) 2002; 14 Ogawa (2024012219414320200_r43) 2013; 117 Lackinger (2024012219414320200_r39) 2005; 1 Clarke (2024012219414320200_r56) 2003; 373 Desiraju (2024012219414320200_r9) 1995; 34 Theobald (2024012219414320200_r51) 2005; 21 Tsuya (2024012219414320200_r62) 2015; 21 Xiao (2024012219414320200_r58) 2008; 130 Messe (2024012219414320200_r55) 2002; 18 Browne (2024012219414320200_r75) 2009; 60 Blunt (2024012219414320200_r38) 2013; 135 Aida (2024012219414320200_r72) 2012; 335 Lei (2024012219414320200_r12) 2010; 12 Destoop (2024012219414320200_r67) 2012; 134 McGonigal (2024012219414320200_r24) 1990; 57 Hirschberg (2024012219414320200_r65) 2000; 407 Schull (2024012219414320200_r17) 2006; 18 2024012219414320200_r9 Samorì (2024012219414320200_r10) 2004; 14 Tahara (2024012219414320200_r29) 2014; 50 Zeng (2024012219414320200_r71) 1997; 97 Roos (2024012219414320200_r33) 2007; 9 Kampschulte (2024012219414320200_r37) 2008; 130 Tahara (2024012219414320200_r26) 2007; 23 Pollard (2024012219414320200_r43) 2010; 49 Li (2024012219414320200_r36) 2003; 4 Zhuang (2024012219414320200_r78) 2015; 27 Gutzler (2024012219414320200_r34) 2010; 132 Furukawa (2024012219414320200_r48) 2007; 46 Wang (2024012219414320200_r55) 2008; 24 Eder (2024012219414320200_r17) 2011; 27 Prado (2024012219414320200_r42) 2011; 5 Wang (2024012219414320200_r43) 2011; 11 Xue (2024012219414320200_r18) 2012; 134 Tahara (2024012219414320200_r12) 2010; 46 Liu (2024012219414320200_r54) 2012; 28 Lei (2024012219414320200_r59) 2011; 5 Mammen (2024012219414320200_r40) 1998; 63 |
References_xml | – reference: 13a) M. Sonoda, Y. Sakai, T. Yoshimura, Y. Tobe, K. Kamada, Chem. Lett. 2004, 33, 972. 10.1246/cl.2004.972
b) T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R. V. Williams, Org. Lett. 2006, 8, 2933. 10.1021/ol060781u16805520
c) K. Tahara, T. Fujita, M. Sonoda, M. Shiro, Y. Tobe, J. Am. Chem. Soc. 2008, 130, 14339. 10.1021/ja804604y18816113 – reference: 27L. Xu, L. Yang, L. Cao, T. Li, S. Chen, D. Zhao, S. Lei, J. Ma, Phys. Chem. Chem. Phys. 2013, 15, 11748. 10.1039/c3cp51413g23756563 – reference: 33a) S. Berner, M. de Wild, L. Ramoino, S. Ivan, A. Baratoff, H.-J. Güntherodt, H. Suzuki, D. Schlettwein, T. A. Jung, Phys. Rev. B 2003, 68, 115410. 10.1103/PhysRevB.68.115410 b) M. Roos, H. E. Hoster, A. Breitruck, R. J. Behm, Phys. Chem. Chem. Phys. 2007, 9, 5672. 10.1039/b708578h17960255 c) F. Vidal, E. Delvigne, S. Stepanow, N. Lin, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2005, 127, 10101. 10.1021/ja052504916011376 d) M. Stöhr, M. Wahl, C. H. Galka, T. Riehm, T. A. Jung, L. H. Gade, Angew. Chem., Int. Ed. 2005, 44, 7394. 10.1002/anie.200502316 – reference: 41K. Tahara, K. Kaneko, K. Katayama, S. Itano, C. H. Nguyen, D. D. D. Amorim, S. De Feyter, Y. Tobe, Langmuir 2015, 31, 7032. 10.1021/acs.langmuir.5b0150726061362 – reference: 20a) S. Furukawa, H. Uji-i, K. Tahara, T. Ichikawa, M. Sonoda, F. C. De Schryver, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2006, 128, 3502. 10.1021/ja058336216536507 b) K. Tahara, S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, W. Mamdouh, M. Sonoda, F. C. De Schryver, S. De Feyter, Y. Tobe, J. Am. Chem. Soc. 2006, 128, 16613. 10.1021/ja065544117177410 – reference: 61Reviews: a) R. Raval, Chem. Soc. Rev. 2009, 38, 707. 10.1039/b800411k19322464 b) K.-H. Ernst, Z. Phys. Chem. 2009, 223, 37. 10.1524/zpch.2009.6023 – reference: 4a) J. V. Barth, G. Costantini, K. Kern, Nature 2005, 437, 671. 10.1038/nature0416616193042 b) L. Bartels, Nat. Chem. 2010, 2, 87. 10.1038/nchem.51721124397 – reference: 30S. Lei, K. Tahara, F. C. De Schryver, M. Van der Auweraer, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2008, 47, 2964. 10.1002/anie.200705322 – reference: 24a) G. C. McGonigal, R. H. Bernhardt, D. J. Thomson, Appl. Phys. Lett. 1990, 57, 28. 10.1063/1.104234 b) K. W. Herwig, B. Matthies, H. Taub, Phys. Rev. Lett. 1995, 75, 3154. 10.1103/PhysRevLett.75.315410059508 – reference: 45a) N. Katsonis, A. Marchenko, D. Fichou, J. Am. Chem. Soc. 2003, 125, 13682. 10.1021/ja037573714599205 b) T. Kudernac, N. Sändig, T. F. Landaluce, B. J. van Wees, P. Rudolf, N. Katsonis, F. Zerbetto, B. L. Feringa, J. Am. Chem. Soc. 2009, 131, 15655. 10.1021/ja901718q19827775 c) Z. X. Xie, X. Xu, B. W. Mao, K. Tanaka, Langmuir 2002, 18, 3113. 10.1021/la010869a – reference: 3a) N. Sakai, R. Bhosale, D. Emery, J. Mareda, S. Matile, J. Am. Chem. Soc. 2010, 132, 6923. 10.1021/ja101944r20426476 b) S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324. 10.1021/cr050149z17428026 – reference: 59S. Lei, K. Tahara, K. Müllen, P. Szabelski, Y. Tobe, S. De Feyter, ACS Nano 2011, 5, 4145. 10.1021/nn200874k21500863 – reference: 38M. O. Blunt, J. Adisoejoso, K. Tahara, K. Katayama, M. Van der Auweraer, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2013, 135, 12068. 10.1021/ja405585s23829544 – reference: 42a) W. J. Yu, L. Liao, S. H. Chae, Y. H. Lee, X. Duan, Nano Lett. 2011, 11, 4759. 10.1021/nl202573921985035 b) B. N. Szafranek, D. Schall, M. Otto, D. Neumaier, H. Kurz, Nano Lett. 2011, 11, 2640. 10.1021/nl200631m21688768 c) M. C. Prado, R. Nascimento, L. G. Moura, M. J. S. Matos, M. S. C. Mazzoni, L. G. Cancado, H. Chacham, B. R. A. Neves, ACS Nano 2011, 5, 394. 10.1021/nn102211n21186832 d) X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, L.-J. Li, Phys. Rev. Lett. 2009, 102, 135501. 10.1103/PhysRevLett.102.13550119392367 e) V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156. 10.1021/cr300041223009634 – reference: 47By collaboration with the group of Profs. Kim and Kawai, we also investigated self-assembly of unsubstituted DBA, DBA-OC1 and DBA-OC4 on Au(111) under UHV conditions, where geometry of self-assembly is dominated by epitaxial effect, hydrogen bonding, and/or van der Waals interactions depending on the substituents. a) J.-H. Kim, K. Tahara, J. Jung, S. De Feyter, Y. Tobe, Y. Kim, M. Kawai, J. Phys. Chem. C 2012, 116, 17082. 10.1021/jp3048949 b) J.-H. Kim, J. Jung, K. Tahara, Y. Tobe, Y. Kim, M. Kawai, J. Chem. Phys. 2014, 140, 074709. 10.1063/1.486445824559362 – reference: 23S. Yin, C. Wang, X. Qiu, B. Xu, C. Bai, Surf. Interface Anal. 2001, 32, 248. 10.1002/sia.1047 – reference: 53J. Adisoejoso, K. Tahara, S. Okuhata, S. Lei, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2009, 48, 7353. 10.1002/anie.200900436 – reference: 9a) G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647. 10.1351/pac197127040647 b) G. R. Desiraju, Crystal Engineering: The Design of Organic Solid, Elsevier, Amsterdam, 1989. c) G. R. Desiraju, Angew. Chem., Int. Ed. Engl. 1995, 34, 2311. 10.1002/anie.199523111 d) N. Blagden, R. J. Davey, Cryst. Growth Des. 2003, 3, 873. 10.1021/cg030025k – reference: 29a) K. Tahara, M. L. Abraham, K. Igawa, K. Katayama, I. M. Oppel, Y. Tobe, Chem. Commun. 2014, 50, 7683. 10.1039/c4cc01576b b) S. Yokoyama, T. Hirose, K. Matsuda, Langmuir 2015, 31, 6404. 10.1021/acs.langmuir.5b0140426005903 – reference: 16a) R. Zacharia, H. Ulbricht, T. Hertel, Phys. Rev. B 2004, 69, 155406. 10.1103/PhysRevB.69.155406 b) K. Kim, K. E. Plass, A. J. Matzger, Langmuir 2003, 19, 7149. 10.1021/la0342621 c) K. Kim, K. E. Plass, A. J. Matzger, J. Am. Chem. Soc. 2005, 127, 4879. 10.1021/ja043028+15796552 – reference: 7a) K. E. Plass, A. L. Grzesiak, A. J. Matzger, Acc. Chem. Res. 2007, 40, 287. 10.1021/ar050015817437327 b) S. Furukawa, S. De Feyter, Top. Curr. Chem. 2009, 287, 87. 10.1007/128_2008_623604443 – reference: 21R. Lazzaroni, A. Calderone, G. Lambin, J. P. Rabe, J. L. Brédas, Synth. Met. 1991, 41, 525. 10.1016/0379-6779(91)91123-R – reference: 14Y. Yang, C. Wang, Curr. Opin. Colloid Interface Sci. 2009, 14, 135. 10.1016/j.cocis.2008.10.002 – reference: 34a) L. Kampschulte, T. L. Werblowsky, R. S. K. Kishore, M. Schmittel, W. M. Heckl, M. Lackinger, J. Am. Chem. Soc. 2008, 130, 8502. 10.1021/ja801883t18533654 b) R. Gutzler, T. Sirtl, J. F. Dienstmaier, K. Mahata, W. M. Heckel, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2010, 132, 5084. 10.1021/ja908919r20235537 c) C. Meier, M. Roos, D. Künzel, A. Breitruck, H. E. Hoster, K. Landfester, A. Gross, R. J. Behm, U. Ziener, J. Phys. Chem. C 2010, 114, 1268. 10.1021/jp910029z d) C.-A. Palma, J. Bjork, M. Bonini, M. S. Dyer, A. Llanes-Pallas, D. Bonifazi, M. Persson, P. Samorì, J. Am. Chem. Soc. 2009, 131, 13062. 10.1021/ja903242819702301 – reference: 5a) J. V. Barth, Annu. Rev. Phys. Chem. 2007, 58, 375. 10.1146/annurev.physchem.56.092503.14125917430091 b) J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness, P. H. Beton, Nature 2003, 424, 1029. 10.1038/nature0191512944962 – reference: 56S. M. Clarke, L. Messe, J. Adams, A. Inaba, T. Arnold, R. K. Thomas, Chem. Phys. Lett. 2003, 373, 480. 10.1016/S0009-2614(03)00637-7 – reference: 25P. Wu, Q. Zeng, S. Xu, C. Wang, S. Yin, C.-L. Bai, ChemPhysChem 2001, 2, 750. 10.1002/1439-7641(20011217)2:12%3C750::AID-CPHC750%3E3.0.CO%3B2-923686927 – reference: 72a) Molecular Devices and Machines, ed. by V. Balzani, M. Venturi, A. Credi, Wiley-VCH, Weinheim, 2003. doi:10.1002/3527601600. 10.1002/3527601600 b) D. Philp, J. F. Stoddart, Angew. Chem., Int. Ed. Engl. 1996, 35, 1154. 10.1002/anie.199611541 c) J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, J. Mater. Chem. 2003, 13, 2661. 10.1039/B304972H d) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813. 10.1126/science.120596222344437 – reference: 10a) P. Samorì, J. Mater. Chem. 2004, 14, 1353. 10.1039/B314626J b) P. Samorì, Chem. Soc. Rev. 2005, 34, 551. 10.1039/b404021j15965537 – reference: 51a) D. Mössinger, J. Hornung, S. Lei, S. De Feyter, S. Höger, Angew. Chem., Int. Ed. 2007, 46, 6802. 10.1002/anie.200701614 b) J. A. Theobald, N. S. Oxtoby, N. R. Champness, P. H. Beton, T. J. S. Dennis, Langmuir 2005, 21, 2038. 10.1021/la047533w15723508 c) X.-H. Kong, K. Deng, Y.-L. Yang, Q.-D. Zeng, C. Wang, J. Phys. Chem. C 2007, 111, 9235. 10.1021/jp070328f – reference: 68E. Ghijsens, H. Cao, A. Noguchi, O. Ivasenko, Y. Fang, K. Tahara, Y. Tobe, S. De Feyter, Chem. Commun. 2015, 51, 4766. 10.1039/C4CC08826C – reference: 66K. Tahara, H. Yamaga, E. Ghijsens, K. Inukai, J. Adisoejoso, M. O. Blunt, S. De Feyter, Y. Tobe, Nat. Chem. 2011, 3, 714; 10.1038/nchem.111121860461 See also: K. Tahara, H. Yamaga, E. Ghijsens, K. Inukai, J. Adisoejoso, M. O. Blunt, S. De Feyter, Y. Tobe, Nat. Chem. 2014, 6, 1024. 10.1038/nchem.2098 – reference: 15K. G. Nath, O. Ivasenko, J. A. Miwa, H. Dang, J. D. Wuest, A. Nanci, D. F. Perepichka, F. Rosei, J. Am. Chem. Soc. 2006, 128, 4212. 10.1021/ja060289616568980 – reference: 62For molecular chirality: a) M. Böhringer, W.-D. Schneider, R. Berndt, Angew. Chem., Int. Ed. 2000, 39, 792. 10.1002/(SICI)1521-3773(20000218)39:4%3C792::AID-ANIE792%3E3.0.CO%3B2-2 b) C. B. France, B. A. Parkinson, J. Am. Chem. Soc. 2003, 125, 12712. 10.1021/ja037056o14558811 c) R. Cortés, A. Mascaraque, P. Schmidt-Weber, H. Dil, T. U. Kampen, K. Horn, Nano Lett. 2008, 8, 4162. 10.1021/nl801592c19367879 d) J. Zhang, B. Lin, X. Cui, B. Wang, J. Yang, J. G. Hou, J. Am. Chem. Soc. 2009, 131, 5885. 10.1021/ja900198619338337 e) B. Yang, Y. Wang, H. Cun, S. Du, M. Xu, Y. Wang, K.-H. Ernst, H.-J. Gao, J. Am. Chem. Soc. 2010, 132, 10440. 10.1021/ja102989y20662521 f) T. Tsuya, K. Iritani, K. Tahara, Y. Tobe, T. Iwanaga, S. Toyota, Chem.—Eur. J. 2015, 21, 5520. 10.1002/chem.20140563825688524 – reference: 73K. Tahara, K. Katayama, M. O. Blunt, K. Iritani, S. De Feyter, Y. Tobe, ACS Nano 2014, 8, 8683. 10.1021/nn503815q25089732 – reference: 26K. Tahara, C. A. Johnson, II, T. Fujita, M. Sonoda, F. C. De Schryver, S. De Feyter, M. M. Haley, Y. Tobe, Langmuir 2007, 23, 10190. 10.1021/la701663j17760473 – reference: 12a) K. Tahara, S. Lei, J. Adisoejoso, S. De Feyter, Y. Tobe, Chem. Commun. 2010, 46, 8507. 10.1039/c0cc02780d b) S. Lei, K. Tahara, J. Adisoejoso, T. Balandina, Y. Tobe, S. De Feyter, CrystEngComm 2010, 12, 3369. 10.1039/c0ce00282h – reference: 28a) F. Charra, J. Cousty, Phys. Rev. Lett. 1998, 80, 1682. 10.1103/PhysRevLett.80.1682 b) S. Xu, Q. Zeng, J. Lu, C. Wang, L. Wan, C.-L. Bai, Surf. Sci. 2003, 538, L451. 10.1016/S0039-6028(03)00698-8 c) C. Arrigoni, G. Schull, D. Bléger, L. Douillard, C. Fiorini-Debuisschert, F. Mathevet, D. Kreher, A.-J. Attias, F. Charra, J. Phys. Chem. Lett. 2010, 1, 190. 10.1021/jz900146f – reference: 77K. Tahara, K. Nakatani, K. Iritani, S. De Feyter, Y. Tobe, ACS Nano 2016, 10, 2113. 10.1021/acsnano.5b0648326838957 – reference: 31K. Tahara, S. Lei, D. Mössinger, H. Kozuma, K. Inukai, M. Van der Auweraer, F. C. De Schryver, S. Höger, Y. Tobe, S. De Feyter, Chem. Commun. 2008, 44, 3897. 10.1039/b806444j – reference: 1S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem., Int. Ed. 2007, 46, 4832. 10.1002/anie.200604203 – reference: 19a) L. M. A. Perdigão, A. Saywell, G. N. Fontes, P. A. Staniec, G. Goretzki, A. G. Phillips, N. R. Champness, P. H. Beton, Chem.—Eur. J. 2008, 14, 7600. 10.1002/chem.20080047618666294 b) A. G. Phillips, L. M. A. Perdigão, P. H. Beton, N. R. Champness, Chem. Commun. 2010, 46, 2775. 10.1039/b926824c c) M. T. Räisänen, A. G. Slater (née Phillips), N. R. Champness, M. Buck, Chem. Sci. 2012, 3, 84. 10.1039/C1SC00543J – reference: 58a) H. Spillmann, A. Dmitriev, N. Lin, P. Messina, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2003, 125, 10725. 10.1021/ja036235312940758 b) W. Xiao, X. Feng, P. Ruffieux, O. Gröning, K. Müllen, R. Fasel, J. Am. Chem. Soc. 2008, 130, 8911. c) J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, L.-J. Wan, J. Am. Chem. Soc. 2011, 133, 21010. 10.1021/ja209469d22106949 d) S.-S. Jester, E. Sigmund, L. M. Röck, S. Höger, Angew. Chem., Int. Ed. 2012, 51, 8555. 10.1002/anie.201204006 – reference: 63For supramolecular chirality: a) F. Vidal, E. Delvigne, S. Stepanow, N. Lin, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2005, 127, 10101. 10.1021/ja052504916011376 b) M. Schöck, R. Otero, S. Stojkovic, F. Hümmelink, A. Gourdon, E. Lægsgaard, I. Stensgaard, C. Joachim, F. Besenbacher, J. Phys. Chem. B 2006, 110, 12835. 10.1021/jp061943716805577 c) S. Weigelt, C. Busse, L. Petersen, E. Rauls, B. Hammer, K. V. Gothelf, F. Besenbacher, T. R. Linderoth, Nat. Mater. 2006, 5, 112. 10.1038/nmat155816415876 d) P. Donovan, A. Robin, M. S. Dyer, M. Persson, R. Raval, Chem.—Eur. J. 2010, 16, 11641. 10.1002/chem.20100177620853297 – reference: 64For chirality induction: a) M. Parschau, S. Romer, K.-H. Ernst, J. Am. Chem. Soc. 2004, 126, 15398. 10.1021/ja044136z15563164 b) R. Fasel, M. Parschau, K.-H. Ernst, Nature 2006, 439, 449. 10.1038/nature0441916437111 c) S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, R. Raval, Nat. Chem. 2009, 1, 409. 10.1038/nchem.29521378896 d) F. Masini, N. Kalashnyk, M. M. Knudsen, J. R. Cramer, E. Lægsgaard, F. Besenbacher, K. V. Gothelf, T. R. Linderoth, J. Am. Chem. Soc. 2011, 133, 13910. 10.1021/ja205998c21830788 – reference: 39a) A. Stabel, R. Heinz, F. C. De Schryver, J. P. Rabe, J. Phys. Chem. 1995, 99, 505. 10.1021/j100002a009 b) M. Lackinger, S. Griessl, L. Kampschulte, F. Jamitzky, W. M. Heckl, Small 2005, 1, 532. 10.1002/smll.20040007817193483 – reference: 22K. Tahara, S. Okuhata, J. Adisoejoso, S. Lei, T. Fujita, S. De Feyter, Y. Tobe, J. Am. Chem. Soc. 2009, 131, 17583. 10.1021/ja904481j19908882 – reference: 67We also found chirality induction of the porous networks of DBAs by using chiral solvents: I. Destoop, E. Ghijsens, K. Katayama, K. Tahara, K. S. Mali, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2012, 134, 19568. 10.1021/ja309673t23167496 – reference: 78a) J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem., Int. Ed. 2009, 48, 1030. 10.1002/anie.200801863 b) X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Adv. Mater. 2015, 27, 403. 10.1002/adma.20140185725155302 c) Q. Fan, J. M. Gottfried, J. Zhu, Acc. Chem. Res. 2015, 48, 2484. 10.1021/acs.accounts.5b0016826194462 d) P. Payamyar, B. T. King, H. C. Öttinger, A. D. Schlüter, Chem. Commun. 2016, 52, 18. 10.1039/C5CC07381B – reference: 43a) Q. H. Wang, M. C. Hersam, Nano Lett. 2011, 11, 589. 10.1021/nl103590j21166423 b) A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner, S. Gsell, M. Fischer, M. Schreck, J. Osterwalder, T. Greber, S. Berner, N. R. Champness, P. H. Beton, Angew. Chem., Int. Ed. 2010, 49, 1794. 10.1002/anie.200905503 c) K. Xiao, W. Deng, J. K. Keum, M. Yoon, I. V. Vlassiouk, K. W. Clark, A.-P. Li, I. I. Kravchenko, G. Gu, E. A. Payzant, B. G. Sumpter, S. C. Smith, J. F. Browning, D. B. Geohegan, J. Am. Chem. Soc. 2013, 135, 3680. 10.1021/ja312509623368998 d) Y. Ogawa, T. Niu, S. L. Wong, M. Tsuji, A. T. S. Wee, W. Chen, H. Ago, J. Phys. Chem. C 2013, 117, 21849. 10.1021/jp406681j e) P. Järvinen, S. K. Hämäläinen, K. Banerjee, P. Häkkinen, M. Ijäs, A. Harju, P. Liljeroth, Nano Lett. 2013, 13, 3199. 10.1021/nl401265f23786613 – reference: 70Y. Fang, E. Ghijsens, O. Ivasenko, H. Cao, A. Noguchi, K. S. Mali, K. Tahara, Y. Tobe, S. De Feyter, Nat. Chem. 2016, 8, 711. 10.1038/nchem.251427325099 – reference: 8a) J. A. A. W. Elemans, S. Lei, S. De Feyter, Angew. Chem., Int. Ed. 2009, 48, 7298. 10.1002/anie.200806339 b) D. Bonifazi, S. Mohnani, A. Llanes-Pallas, Chem.—Eur. J. 2009, 15, 7004. 10.1002/chem.20090090019569139 c) X. Ma, Y. Yang, K. Deng, Q. Zeng, K. Zhao, C. Wang, C. Bai, J. Mater. Chem. 2008, 18, 2074. 10.1039/b713426f d) T. Kudernac, S. Lei, J. A. A. W. Elemans, S. De Feyter, Chem. Soc. Rev. 2009, 38, 402. 10.1039/B708902N19169457 e) M. Surin, P. Samorì, Small 2007, 3, 190. 10.1002/smll.20060055017191290 – reference: 75W. R. Browne, B. L. Feringa, Annu. Rev. Phys. Chem. 2009, 60, 407. 10.1146/annurev.physchem.040808.09042318999995 – reference: 46T. Balandina, K. Tahara, N. Sändig, M. Blunt, J. Adisoejoso, S. Lei, F. Zerbetto, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 8381. 10.1021/nn303144r22954382 – reference: 71a) J.-M. Lehn, Supramolecular Chemistry, Wiley-VCH, Weinheim, 1995. doi:10.1002/3527607439. 10.1002/3527607439 b) F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681. 10.1021/cr960389211851463 c) E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, Sausalito, 2006, Chap. 4. – reference: 44B. Li, K. Tahara, J. Adisoejoso, W. Vanderlinden, K. S. Mali, S. De Gendt, Y. Tobe, S. De Feyter, ACS Nano 2013, 7, 10764. 10.1021/nn403904724206021 – reference: 17a) X. Zang, Q. Zeng, C. Wang, Sci. China: Chem. 2014, 57, 13. 10.1007/s11426-013-4975-9 b) G. Schull, L. Douillard, C. Fiorini-Debuisschert, F. Charra, F. Mathevet, D. Kreher, A.-J. Attias, Nano Lett. 2006, 6, 1360. 10.1021/nl060292n16834411 c) G. Schull, L. Douillard, C. Fiorini-Debuisschert, F. Charra, F. Mathevet, D. Kreher, A.-J. Attias, Adv. Mater. 2006, 18, 2954. 10.1002/adma.200600683 d) S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, K. Kern, Nat. Mater. 2004, 3, 229. 10.1038/nmat108815004551 e) S. J. H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, W. M. Heckl, Langmuir 2004, 20, 9403. 10.1021/la049441c15461536 f) G. Eder, S. Kloft, N. Martsinovich, K. Mahata, M. Schmittel, W. M. Heckl, M. Lackinger, Langmuir 2011, 27, 13563. 10.1021/la203054k21951230 – reference: 2P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133. 10.1021/cr970028211851487 – reference: 35C.-A. Palma, M. Bonini, T. Breiner, P. Samorì, Adv. Mater. 2009, 21, 1383. 10.1002/adma.200802068 – reference: 57E. Ghijsens, O. Ivasenko, K. Tahara, H. Yamaga, S. Itano, T. Balandina, Y. Tobe, S. De Feyter, ACS Nano 2013, 7, 8031. 10.1021/nn403203623964989 – reference: 6a) L. C. Giancarlo, G. W. Flynn, Acc. Chem. Res. 2000, 33, 491. 10.1021/ar970261m10913238 b) P. Samorì, J. P. Rabe, J. Phys.: Condens. Matter 2002, 14, 9955. 10.1088/0953-8984/14/42/309 c) S. De Feyter, F. C. De Schryver, J. Phys. Chem. B 2005, 109, 4290. 10.1021/jp045298k16851494 d) L.-J. Wan, Acc. Chem. Res. 2006, 39, 334. 10.1021/ar050192916700532 e) B. A. Hermann, L. J. Scherer, C. E. Housecroft, E. C. Constable, Adv. Funct. Mater. 2006, 16, 221. 10.1002/adfm.200500264 f) Y. Yang, C. Wang, Chem. Soc. Rev. 2009, 38, 2576. 10.1039/b807500j19690738 – reference: 52S. Lei, M. Surin, K. Tahara, J. Adisoejoso, R. Lazzaroni, Y. Tobe, S. De Feyter, Nano Lett. 2008, 8, 2541. 10.1021/nl801662618630887 – reference: 55a) L. Messe, S. M. Clarke, C. Dong, R. K. Thomas, A. Inaba, M. D. Alba, M. A. Castro, Langmuir 2002, 18, 9429. 10.1021/la0205755 b) G. Wang, S. Lei, S. De Feyter, R. Feldman, J. E. Parker, S. M. Clarke, Langmuir 2008, 24, 2501. 10.1021/la703240y18237218 – reference: 18a) Y. Xue, M. B. Zimmt, J. Am. Chem. Soc. 2012, 134, 4503. b) Y.-T. Shen, M. Li, Y.-Y. Guo, K. Deng, Q.-D. Zeng, C. Wang, Chem.—Asian J. 2010, 5, 787. 10.1002/asia.20090043920143371 – reference: 49X. Feng, J. Wu, M. Ai, W. Pisula, L. Zhi, J. P. Rabe, K. Müllen, Angew. Chem., Int. Ed. 2007, 46, 3033. 10.1002/anie.200605224 – reference: 65a) M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, S. Lifson, Science 1995, 268, 1860. 10.1126/science.268.5219.186017797527 b) A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer, Angew. Chem., Int. Ed. Engl. 1997, 36, 2648. 10.1002/anie.199726481 c) J. H. K. K. Hirschberg, L. Brunsveld, A. Ramzi, J. A. J. M. Vekemans, R. P. Sijbesma, E. W. Maijer, Nature 2000, 407, 170. – reference: 40M. Mammen, E. I. Shakhnovich, J. M. Deutch, G. M. Whitesides, J. Org. Chem. 1998, 63, 3821. 10.1021/jo970944f – reference: 48S. Furukawa, K. Tahara, F. C. De Schryver, M. Van der Auweraer, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2007, 46, 2831. 10.1002/anie.200604782 – reference: 60J. Adisoejoso, K. Tahara, S. Lei, P. Szabelski, W. Rżysko, K. Inukai, M. O. Blunt, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 897. 10.1021/nn204398m22206261 – reference: 76K. Tahara, K. Inukai, J. Adisoejoso, H. Yamaga, T. Balandina, M. O. Blunt, S. De Feyter, Y. Tobe, Angew. Chem., Int. Ed. 2013, 52, 8373. 10.1002/anie.201303745 – reference: 32K. Tahara, J. Adisoejoso, K. Inukai, S. Lei, A. Noguchi, B. Li, W. Vanderlinden, S. De Feyter, Y. Tobe, Chem. Commun. 2014, 50, 2831. 10.1039/c3cc47949h – reference: 69E. Ghijsens, J. Adisoejoso, H. Van Gorp, I. Destoop, A. Noguchi, O. Ivasenko, K. Tahara, M. Van der Auweraer, Y. Tobe, S. De Feyter, J. Chem. Phys. 2015, 142, 101932. 10.1063/1.491365725770521 – reference: 11J. P. Rabe, S. Buchholz, Science 1991, 253, 424. 10.1126/science.253.5018.42417746397 – reference: 37a) A. Bellec, C. Arrigoni, G. Schull, L. Douillard, C. Fiorini-Debuisschert, F. Mathevet, D. Kreher, A.-J. Attias, F. Charra, J. Chem. Phys. 2011, 134, 124702. 10.1063/1.356913221456690 b) S. Ahn, A. J. Matzger, J. Am. Chem. Soc. 2010, 132, 11364. 10.1021/ja105039s20698703 c) L. Kampschulte, T. L. Werblowsky, R. S. Kishore, M. Schmittel, W. M. Heckl, M. Lackinger, J. Am. Chem. Soc. 2008, 130, 8502. 10.1021/ja801883t18533654 – reference: 36a) C. Marie, F. Silly, L. Tortech, K. Müllen, D. Fichou, ACS Nano 2010, 4, 1288. 10.1021/nn901717k20155970 b) J. Saiz-Poseu, J. Faraudo, A. Figueras, R. Alibes, F. Busqué, D. Ruiz-Molina, Chem.—Eur. J. 2012, 18, 3056. 10.1002/chem.20110194022290796 c) Y. Li, C. Liu, Y. Xie, X. Li, X. Li, X. Fan, K. Deng, Q. Zeng, C. Wang, Phys. Chem. Chem. Phys. 2013, 15, 125. 10.1039/C2CP43244G23147835 d) C.-J. Li, Q.-D. Zeng, Y.-H. Liu, L.-J. Wan, C. Wang, C.-R. Wang, C.-L. Bai, ChemPhysChem 2003, 4, 857. 10.1002/cphc.20020049212961984 e) Y.-T. Shen, N. Zhu, X.-M. Zhang, K. Deng, W. Feng, Q. Yan, S. Lei, D. Zhao, Q.-D. Zeng, C. Wang, Chem.—Eur. J. 2011, 17, 7061. 10.1002/chem.20100358921557347 f) J. Adisoejoso, K. Tahara, S. Lei, P. Szabelski, W. Rżysko, K. Inukai, M. O. Blunt, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 897. 10.1021/nn204398m22206261 g) A. Jahanbekam, S. Vorpahl, U. Mazur, K. W. Hipps, J. Phys. Chem. C 2013, 117, 2914. 10.1021/jp3115435 – reference: 50S. Lei, K. Tahara, X. Feng, S. Furukawa, F. C. De Schryver, K. Müllen, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2008, 130, 7119. 10.1021/ja800801e18465857 – reference: 54a) L. Ramin, A. Jabbarzadeh, Langmuir 2011, 27, 9748. 10.1021/la201467b21749126 b) X. Liu, T. Wang, M. Liu, Langmuir 2012, 28, 3474. 10.1021/la204653b22272776 c) N. Nerngchamnong, L. Yuan, D.-C. Qi, J. Li, D. Thompson, C. A. Nijhuis, Nat. Nanotechnol. 2013, 8, 113. 10.1038/nnano.2012.23823292010 d) F. Tao, S. L. Bernasek, Chem. Rev. 2007, 107, 1408. 10.1021/cr050258d17439290 e) L. Xu, X. Miao, B. Zha, W. Deng, Chem.—Asian J. 2013, 8, 926. 10.1002/asia.20120122923447489 – reference: 74M. P. Krafft, J. G. Riess, Chem. Rev. 2009, 109, 1714. 10.1021/cr800260k19296687 – volume: 49 start-page: 1794 year: 2010 ident: 2024012219414320200_r43 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905503 – volume: 52 start-page: 8373 year: 2013 ident: 2024012219414320200_r76 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201303745 – volume: 19 start-page: 7149 year: 2003 ident: 2024012219414320200_r16 publication-title: Langmuir doi: 10.1021/la0342621 – volume: 27 start-page: 13563 year: 2011 ident: 2024012219414320200_r17 publication-title: Langmuir doi: 10.1021/la203054k – volume: 7 start-page: 10764 year: 2013 ident: 2024012219414320200_r44 publication-title: ACS Nano doi: 10.1021/nn4039047 – ident: 2024012219414320200_r72 doi: 10.1002/3527601600 – volume: 18 start-page: 2954 year: 2006 ident: 2024012219414320200_r17 publication-title: Adv. Mater. doi: 10.1002/adma.200600683 – volume: 128 start-page: 4212 year: 2006 ident: 2024012219414320200_r15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0602896 – volume: 40 start-page: 287 year: 2007 ident: 2024012219414320200_r7 publication-title: Acc. Chem. Res. doi: 10.1021/ar0500158 – volume: 5 start-page: 787 year: 2010 ident: 2024012219414320200_r18 publication-title: Chem.—Asian J. doi: 10.1002/asia.200900439 – volume: 437 start-page: 671 year: 2005 ident: 2024012219414320200_r4 publication-title: Nature doi: 10.1038/nature04166 – volume: 3 start-page: 84 year: 2012 ident: 2024012219414320200_r19 publication-title: Chem. Sci. doi: 10.1039/C1SC00543J – volume: 14 start-page: 135 year: 2009 ident: 2024012219414320200_r14 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2008.10.002 – volume: 107 start-page: 1324 year: 2007 ident: 2024012219414320200_r3 publication-title: Chem. Rev. doi: 10.1021/cr050149z – volume: 3 start-page: 873 year: 2003 ident: 2024012219414320200_r9 publication-title: Cryst. Growth Des. doi: 10.1021/cg030025k – volume: 114 start-page: 1268 year: 2010 ident: 2024012219414320200_r34 publication-title: J. Phys. Chem. C doi: 10.1021/jp910029z – volume: 24 start-page: 2501 year: 2008 ident: 2024012219414320200_r55 publication-title: Langmuir doi: 10.1021/la703240y – volume: 50 start-page: 2831 year: 2014 ident: 2024012219414320200_r32 publication-title: Chem. Commun. doi: 10.1039/c3cc47949h – volume: 112 start-page: 6156 year: 2012 ident: 2024012219414320200_r42 publication-title: Chem. Rev. doi: 10.1021/cr3000412 – volume: 18 start-page: 3113 year: 2002 ident: 2024012219414320200_r45 publication-title: Langmuir doi: 10.1021/la010869a – volume: 6 start-page: 1360 year: 2006 ident: 2024012219414320200_r17 publication-title: Nano Lett. doi: 10.1021/nl060292n – ident: 2024012219414320200_r9 – volume: 48 start-page: 2484 year: 2015 ident: 2024012219414320200_r78 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00168 – volume: 23 start-page: 10190 year: 2007 ident: 2024012219414320200_r26 publication-title: Langmuir doi: 10.1021/la701663j – volume: 130 start-page: 7119 year: 2008 ident: 2024012219414320200_r50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800801e – volume: 46 start-page: 6802 year: 2007 ident: 2024012219414320200_r51 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701614 – volume: 32 start-page: 248 year: 2001 ident: 2024012219414320200_r23 publication-title: Surf. Interface Anal. doi: 10.1002/sia.1047 – volume: 268 start-page: 1860 year: 1995 ident: 2024012219414320200_r65 publication-title: Science doi: 10.1126/science.268.5219.1860 – volume: 68 start-page: 115410 year: 2003 ident: 2024012219414320200_r33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.115410 – volume: 132 start-page: 6923 year: 2010 ident: 2024012219414320200_r3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101944r – volume: 125 start-page: 13682 year: 2003 ident: 2024012219414320200_r45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0375737 – volume: 31 start-page: 7032 year: 2015 ident: 2024012219414320200_r41 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b01507 – volume: 287 start-page: 87 year: 2009 ident: 2024012219414320200_r7 publication-title: Top. Curr. Chem. doi: 10.1007/128_2008_6 – volume: 14 start-page: 7600 year: 2008 ident: 2024012219414320200_r19 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200800476 – volume: 8 start-page: 113 year: 2013 ident: 2024012219414320200_r54 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.238 – volume: 117 start-page: 2914 year: 2013 ident: 2024012219414320200_r36 publication-title: J. Phys. Chem. C doi: 10.1021/jp3115435 – volume: 3 start-page: 190 year: 2007 ident: 2024012219414320200_r8 publication-title: Small doi: 10.1002/smll.200600550 – volume: 1 start-page: 532 year: 2005 ident: 2024012219414320200_r39 publication-title: Small doi: 10.1002/smll.200400078 – volume: 11 start-page: 2640 year: 2011 ident: 2024012219414320200_r42 publication-title: Nano Lett. doi: 10.1021/nl200631m – volume: 126 start-page: 15398 year: 2004 ident: 2024012219414320200_r64 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044136z – volume: 41 start-page: 525 year: 1991 ident: 2024012219414320200_r21 publication-title: Synth. Met. doi: 10.1016/0379-6779(91)91123-R – volume: 48 start-page: 1030 year: 2009 ident: 2024012219414320200_r78 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801863 – volume: 27 start-page: 9748 year: 2011 ident: 2024012219414320200_r54 publication-title: Langmuir doi: 10.1021/la201467b – volume: 125 start-page: 10725 year: 2003 ident: 2024012219414320200_r58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0362353 – volume: 1 start-page: 409 year: 2009 ident: 2024012219414320200_r64 publication-title: Nat. Chem. doi: 10.1038/nchem.295 – volume: 27 start-page: 647 year: 1971 ident: 2024012219414320200_r9 publication-title: Pure Appl. Chem. doi: 10.1351/pac197127040647 – volume: 97 start-page: 1681 year: 1997 ident: 2024012219414320200_r71 publication-title: Chem. Rev. doi: 10.1021/cr9603892 – volume: 38 start-page: 402 year: 2009 ident: 2024012219414320200_r8 publication-title: Chem. Soc. Rev. doi: 10.1039/B708902N – volume: 10 start-page: 2113 year: 2016 ident: 2024012219414320200_r77 publication-title: ACS Nano doi: 10.1021/acsnano.5b06483 – volume: 8 start-page: 926 year: 2013 ident: 2024012219414320200_r54 publication-title: Chem.—Asian J. doi: 10.1002/asia.201201229 – volume: 142 start-page: 101932 year: 2015 ident: 2024012219414320200_r69 publication-title: J. Chem. Phys. doi: 10.1063/1.4913657 – volume: 17 start-page: 7061 year: 2011 ident: 2024012219414320200_r36 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201003589 – volume: 130 start-page: 8502 year: 2008 ident: 2024012219414320200_r34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801883t – volume: 51 start-page: 8555 year: 2012 ident: 2024012219414320200_r58 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204006 – volume: 1 start-page: 190 year: 2010 ident: 2024012219414320200_r28 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900146f – volume: 69 start-page: 155406 year: 2004 ident: 2024012219414320200_r16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.155406 – volume: 128 start-page: 3502 year: 2006 ident: 2024012219414320200_r20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0583362 – volume: 15 start-page: 125 year: 2013 ident: 2024012219414320200_r36 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C2CP43244G – volume: 11 start-page: 4759 year: 2011 ident: 2024012219414320200_r42 publication-title: Nano Lett. doi: 10.1021/nl2025739 – volume: 130 start-page: 8911 year: 2008 ident: 2024012219414320200_r58 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 124702 year: 2011 ident: 2024012219414320200_r37 publication-title: J. Chem. Phys. doi: 10.1063/1.3569132 – volume: 131 start-page: 17583 year: 2009 ident: 2024012219414320200_r22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904481j – volume: 13 start-page: 3199 year: 2013 ident: 2024012219414320200_r43 publication-title: Nano Lett. doi: 10.1021/nl401265f – volume: 75 start-page: 3154 year: 1995 ident: 2024012219414320200_r24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.3154 – volume: 3 start-page: 714 year: 2011 ident: 2024012219414320200_r66 publication-title: Nat. Chem. doi: 10.1038/nchem.1111 – volume: 33 start-page: 491 year: 2000 ident: 2024012219414320200_r6 publication-title: Acc. Chem. Res. doi: 10.1021/ar970261m – volume: 47 start-page: 2964 year: 2008 ident: 2024012219414320200_r30 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705322 – volume: 127 start-page: 10101 year: 2005 ident: 2024012219414320200_r33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0525049 – volume: 8 start-page: 711 year: 2016 ident: 2024012219414320200_r70 publication-title: Nat. Chem. doi: 10.1038/nchem.2514 – volume: 133 start-page: 21010 year: 2011 ident: 2024012219414320200_r58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209469d – volume: 6 start-page: 1024 year: 2014 ident: 2024012219414320200_r66 publication-title: Nat. Chem. doi: 10.1038/nchem.2098 – volume: 57 start-page: 13 year: 2014 ident: 2024012219414320200_r17 publication-title: Sci. China: Chem. doi: 10.1007/s11426-013-4975-9 – volume: 131 start-page: 5885 year: 2009 ident: 2024012219414320200_r62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9001986 – volume: 18 start-page: 9429 year: 2002 ident: 2024012219414320200_r55 publication-title: Langmuir doi: 10.1021/la0205755 – volume: 132 start-page: 10440 year: 2010 ident: 2024012219414320200_r62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102989y – volume: 127 start-page: 4879 year: 2005 ident: 2024012219414320200_r16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043028+ – volume: 439 start-page: 449 year: 2006 ident: 2024012219414320200_r64 publication-title: Nature doi: 10.1038/nature04419 – volume: 3 start-page: 229 year: 2004 ident: 2024012219414320200_r17 publication-title: Nat. Mater. doi: 10.1038/nmat1088 – volume: 8 start-page: 2933 year: 2006 ident: 2024012219414320200_r13 publication-title: Org. Lett. doi: 10.1021/ol060781u – volume: 21 start-page: 2038 year: 2005 ident: 2024012219414320200_r51 publication-title: Langmuir doi: 10.1021/la047533w – ident: 2024012219414320200_r71 doi: 10.1002/3527607439 – volume: 102 start-page: 135501 year: 2009 ident: 2024012219414320200_r42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.135501 – volume: 134 start-page: 19568 year: 2012 ident: 2024012219414320200_r67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309673t – volume: 223 start-page: 37 year: 2009 ident: 2024012219414320200_r61 publication-title: Z. Phys. Chem. doi: 10.1524/zpch.2009.6023 – volume: 111 start-page: 9235 year: 2007 ident: 2024012219414320200_r51 publication-title: J. Phys. Chem. C doi: 10.1021/jp070328f – volume: 34 start-page: 551 year: 2005 ident: 2024012219414320200_r10 publication-title: Chem. Soc. Rev. doi: 10.1039/b404021j – volume: 2 start-page: 750 year: 2001 ident: 2024012219414320200_r25 publication-title: ChemPhysChem doi: 10.1002/1439-7641(20011217)2:12%3C750::AID-CPHC750%3E3.0.CO%3B2-9 – volume: 11 start-page: 589 year: 2011 ident: 2024012219414320200_r43 publication-title: Nano Lett. doi: 10.1021/nl103590j – volume: 6 start-page: 897 year: 2012 ident: 2024012219414320200_r60 publication-title: ACS Nano doi: 10.1021/nn204398m – volume: 16 start-page: 221 year: 2006 ident: 2024012219414320200_r6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500264 – volume: 36 start-page: 2648 year: 1997 ident: 2024012219414320200_r65 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199726481 – volume: 134 start-page: 4503 year: 2012 ident: 2024012219414320200_r18 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 13062 year: 2009 ident: 2024012219414320200_r34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9032428 – volume: 27 start-page: 403 year: 2015 ident: 2024012219414320200_r78 publication-title: Adv. Mater. doi: 10.1002/adma.201401857 – volume: 39 start-page: 334 year: 2006 ident: 2024012219414320200_r6 publication-title: Acc. Chem. Res. doi: 10.1021/ar0501929 – volume: 28 start-page: 3474 year: 2012 ident: 2024012219414320200_r54 publication-title: Langmuir doi: 10.1021/la204653b – volume: 16 start-page: 11641 year: 2010 ident: 2024012219414320200_r63 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201001776 – volume: 31 start-page: 6404 year: 2015 ident: 2024012219414320200_r29 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b01404 – volume: 35 start-page: 1154 year: 1996 ident: 2024012219414320200_r72 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199611541 – volume: 407 start-page: 170 year: 2000 ident: 2024012219414320200_r65 publication-title: Nature doi: 10.1038/35025027 – volume: 140 start-page: 074709 year: 2014 ident: 2024012219414320200_r47 publication-title: J. Chem. Phys. doi: 10.1063/1.4864458 – volume: 46 start-page: 2775 year: 2010 ident: 2024012219414320200_r19 publication-title: Chem. Commun. doi: 10.1039/b926824c – volume: 38 start-page: 2576 year: 2009 ident: 2024012219414320200_r6 publication-title: Chem. Soc. Rev. doi: 10.1039/b807500j – volume: 8 start-page: 4162 year: 2008 ident: 2024012219414320200_r62 publication-title: Nano Lett. doi: 10.1021/nl801592c – volume: 107 start-page: 1408 year: 2007 ident: 2024012219414320200_r54 publication-title: Chem. Rev. doi: 10.1021/cr050258d – volume: 130 start-page: 14339 year: 2008 ident: 2024012219414320200_r13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804604y – volume: 46 start-page: 3033 year: 2007 ident: 2024012219414320200_r49 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200605224 – volume: 58 start-page: 375 year: 2007 ident: 2024012219414320200_r5 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.56.092503.141259 – volume: 46 start-page: 8507 year: 2010 ident: 2024012219414320200_r12 publication-title: Chem. Commun. doi: 10.1039/c0cc02780d – volume: 18 start-page: 3056 year: 2012 ident: 2024012219414320200_r36 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201101940 – volume: 135 start-page: 3680 year: 2013 ident: 2024012219414320200_r43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3125096 – volume: 48 start-page: 7298 year: 2009 ident: 2024012219414320200_r8 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200806339 – volume: 5 start-page: 112 year: 2006 ident: 2024012219414320200_r63 publication-title: Nat. Mater. doi: 10.1038/nmat1558 – volume: 131 start-page: 15655 year: 2009 ident: 2024012219414320200_r45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901718q – volume: 15 start-page: 7004 year: 2009 ident: 2024012219414320200_r8 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200900900 – volume: 12 start-page: 3369 year: 2010 ident: 2024012219414320200_r12 publication-title: CrystEngComm doi: 10.1039/c0ce00282h – volume: 52 start-page: 18 year: 2016 ident: 2024012219414320200_r78 publication-title: Chem. Commun. doi: 10.1039/C5CC07381B – volume: 15 start-page: 11748 year: 2013 ident: 2024012219414320200_r27 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51413g – volume: 116 start-page: 17082 year: 2012 ident: 2024012219414320200_r47 publication-title: J. Phys. Chem. C doi: 10.1021/jp3048949 – volume: 424 start-page: 1029 year: 2003 ident: 2024012219414320200_r5 publication-title: Nature doi: 10.1038/nature01915 – volume: 20 start-page: 9403 year: 2004 ident: 2024012219414320200_r17 publication-title: Langmuir doi: 10.1021/la049441c – volume: 44 start-page: 3897 year: 2008 ident: 2024012219414320200_r31 publication-title: Chem. Commun. doi: 10.1039/b806444j – volume: 4 start-page: 1288 year: 2010 ident: 2024012219414320200_r36 publication-title: ACS Nano doi: 10.1021/nn901717k – volume: 21 start-page: 1383 year: 2009 ident: 2024012219414320200_r35 publication-title: Adv. Mater. doi: 10.1002/adma.200802068 – volume: 373 start-page: 480 year: 2003 ident: 2024012219414320200_r56 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00637-7 – volume: 335 start-page: 813 year: 2012 ident: 2024012219414320200_r72 publication-title: Science doi: 10.1126/science.1205962 – ident: 2024012219414320200_r71 – volume: 97 start-page: 3133 year: 1997 ident: 2024012219414320200_r2 publication-title: Chem. Rev. doi: 10.1021/cr9700282 – volume: 9 start-page: 5672 year: 2007 ident: 2024012219414320200_r33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b708578h – volume: 110 start-page: 12835 year: 2006 ident: 2024012219414320200_r63 publication-title: J. Phys. Chem. B doi: 10.1021/jp0619437 – volume: 57 start-page: 28 year: 1990 ident: 2024012219414320200_r24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.104234 – volume: 48 start-page: 7353 year: 2009 ident: 2024012219414320200_r53 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900436 – volume: 33 start-page: 972 year: 2004 ident: 2024012219414320200_r13 publication-title: Chem. Lett. doi: 10.1246/cl.2004.972 – volume: 60 start-page: 407 year: 2009 ident: 2024012219414320200_r75 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.040808.090423 – volume: 63 start-page: 3821 year: 1998 ident: 2024012219414320200_r40 publication-title: J. Org. Chem. doi: 10.1021/jo970944f – volume: 7 start-page: 8031 year: 2013 ident: 2024012219414320200_r57 publication-title: ACS Nano doi: 10.1021/nn4032036 – volume: 2 start-page: 87 year: 2010 ident: 2024012219414320200_r4 publication-title: Nat. Chem. doi: 10.1038/nchem.517 – volume: 117 start-page: 21849 year: 2013 ident: 2024012219414320200_r43 publication-title: J. Phys. Chem. C doi: 10.1021/jp406681j – volume: 127 start-page: 10101 year: 2005 ident: 2024012219414320200_r63 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0525049 – volume: 51 start-page: 4766 year: 2015 ident: 2024012219414320200_r68 publication-title: Chem. Commun. doi: 10.1039/C4CC08826C – volume: 253 start-page: 424 year: 1991 ident: 2024012219414320200_r11 publication-title: Science doi: 10.1126/science.253.5018.424 – volume: 128 start-page: 16613 year: 2006 ident: 2024012219414320200_r20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0655441 – volume: 39 start-page: 792 year: 2000 ident: 2024012219414320200_r62 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(20000218)39:4%3C792::AID-ANIE792%3E3.0.CO%3B2-2 – volume: 6 start-page: 8381 year: 2012 ident: 2024012219414320200_r46 publication-title: ACS Nano doi: 10.1021/nn303144r – volume: 21 start-page: 5520 year: 2015 ident: 2024012219414320200_r62 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201405638 – volume: 133 start-page: 13910 year: 2011 ident: 2024012219414320200_r64 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205998c – volume: 125 start-page: 12712 year: 2003 ident: 2024012219414320200_r62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037056o – volume: 8 start-page: 8683 year: 2014 ident: 2024012219414320200_r73 publication-title: ACS Nano doi: 10.1021/nn503815q – volume: 109 start-page: 1714 year: 2009 ident: 2024012219414320200_r74 publication-title: Chem. Rev. doi: 10.1021/cr800260k – volume: 44 start-page: 7394 year: 2005 ident: 2024012219414320200_r33 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502316 – volume: 14 start-page: 1353 year: 2004 ident: 2024012219414320200_r10 publication-title: J. Mater. Chem. doi: 10.1039/B314626J – volume: 14 start-page: 9955 year: 2002 ident: 2024012219414320200_r6 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/42/309 – volume: 5 start-page: 4145 year: 2011 ident: 2024012219414320200_r59 publication-title: ACS Nano doi: 10.1021/nn200874k – volume: 5 start-page: 394 year: 2011 ident: 2024012219414320200_r42 publication-title: ACS Nano doi: 10.1021/nn102211n – volume: 4 start-page: 857 year: 2003 ident: 2024012219414320200_r36 publication-title: ChemPhysChem doi: 10.1002/cphc.200200492 – volume: 46 start-page: 2831 year: 2007 ident: 2024012219414320200_r48 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604782 – volume: 135 start-page: 12068 year: 2013 ident: 2024012219414320200_r38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405585s – volume: 538 start-page: L451 year: 2003 ident: 2024012219414320200_r28 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(03)00698-8 – volume: 38 start-page: 707 year: 2009 ident: 2024012219414320200_r61 publication-title: Chem. Soc. Rev. doi: 10.1039/b800411k – volume: 132 start-page: 5084 year: 2010 ident: 2024012219414320200_r34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908919r – volume: 8 start-page: 2541 year: 2008 ident: 2024012219414320200_r52 publication-title: Nano Lett. doi: 10.1021/nl8016626 – volume: 50 start-page: 7683 year: 2014 ident: 2024012219414320200_r29 publication-title: Chem. Commun. doi: 10.1039/c4cc01576b – volume: 34 start-page: 2311 year: 1995 ident: 2024012219414320200_r9 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199523111 – volume: 99 start-page: 505 year: 1995 ident: 2024012219414320200_r39 publication-title: J. Phys. Chem. doi: 10.1021/j100002a009 – volume: 132 start-page: 11364 year: 2010 ident: 2024012219414320200_r37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105039s – volume: 18 start-page: 2074 year: 2008 ident: 2024012219414320200_r8 publication-title: J. Mater. Chem. doi: 10.1039/b713426f – volume: 6 start-page: 897 year: 2012 ident: 2024012219414320200_r36 publication-title: ACS Nano doi: 10.1021/nn204398m – volume: 13 start-page: 2661 year: 2003 ident: 2024012219414320200_r72 publication-title: J. Mater. Chem. doi: 10.1039/B304972H – volume: 109 start-page: 4290 year: 2005 ident: 2024012219414320200_r6 publication-title: J. Phys. Chem. B doi: 10.1021/jp045298k – volume: 80 start-page: 1682 year: 1998 ident: 2024012219414320200_r28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1682 – volume: 46 start-page: 4832 year: 2007 ident: 2024012219414320200_r1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604203 – volume: 130 start-page: 8502 year: 2008 ident: 2024012219414320200_r37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801883t |
SSID | ssj0008549 |
Score | 2.4078991 |
Snippet | Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various... |
SourceID | proquest crossref chemicalsocietyjapan |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1277 |
SubjectTerms | Adaptive control Chains Chirality Functional groups Liquid-solid interfaces Parity Pore size Scanning tunneling microscopy Self-assembly Solid surfaces Superlattices |
Title | Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces |
URI | http://dx.doi.org/10.1246/bcsj.20160214 https://www.proquest.com/docview/1878768505 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKOAAHBAy0jYF8QFxKusVxsuTYVYxpAg6sk3qLbMeZuoV2kFQanPmn-O94zz-aVGoR7BJF1kvj-H31e7a_9x4hb1gpD0UkD4OjkMmAyzANJJidAAsjiZjrsjDl2z59Tk4v-NkknvR6vzuspUUjB-rn2riSu2gV2kCvGCX7H5pd_ig0wD3oF66gYbj-k46Hhbgx1J9jV9y6fwy26dqV4aw9o_nL9HJa9MfQodmlYZ2O5u7U4ATTYWLs1LC6nt9iomOBlBmkHp7rqgzwSPirrH5gyOPH6beF-cLzeTUt7FZiiYSulXNhl83bUw-W-Qg8OxTaz8A-WyzgIOnaQHWjYH-IvF7TJTMzWcm6sb1Ex6K7cWEjKgc-6O3vr_eTdRawxFY6GWg7P0c8DcCr4t0J3NYg8kANO9NxyFyNGGvawV4na80GM_mSpaqvkOyXYB651j4uWYu4XgLJHOVyL3eP3IeXMCye8WHSsovS2K-87De49K7w-MHKax6RbeWGorYjcYWjsOolrToJxvMZPyGP3ZKFDi3-npKenj0jD0a-UuA2-eVxSD0OqcUhbXFI5yU1OKQtDinikAIOqcchtTikFocUNExXcEhFQy0ODwwKaYvC5-Ti5P14dBq46h6B4ilrgqzMSqU0FjRQrBCZVIViKowlK2TGM64jpoSGBYCQmPWfl1EqmFRZoUrBU8GjF2RrNp_pHUIjED0CmSjSKddphnsKKmaiSMAxK5jYJdG6Qc7dX7nO12p2l7zzOsiVS5iPdVuqTeJvl-I3NlPMJsF9r9BOD1KwnEkK65G9O3X2JXmIt3ZzcJ9sNd8X-hW4y418bYD5B2a-xzw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Building+Blocks+Consisting+of+Rigid+Triangular+Core+and+Flexible+Alkoxy+Chains+for+Self-Assembly+at+Liquid%2FSolid+Interfaces&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.series=The+Chemical+Society+of+Japan+Award+for+Young+Chemists+for+2011&rft.date=2016&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=89&rft.issue=11&rft.spage=1277&rft.epage=1306&rft_id=info:doi/10.1246%2Fbcsj.20160214&rft.externalDocID=10_1246_bcsj_20160214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |