Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces

Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various applications in nanoscience and nanotechnology. At the liquid/graphite interface, we found by means of scanning tunneling microscopy molecules...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 89; no. 11; pp. 1277 - 1306
Main Authors Tobe, Yoshito, Tahara, Kazukuni, De Feyter, Steven
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 2016
Chemical Society of Japan
SeriesThe Chemical Society of Japan Award for Young Chemists for 2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various applications in nanoscience and nanotechnology. At the liquid/graphite interface, we found by means of scanning tunneling microscopy molecules with a rigid triangular core, a twelve-membered phenylene-ethynylene macrocycle called dehydrobenzo[12]annulene (DBA), substituted by six flexible alkoxy chains self-assembled to form hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains as the directional intermolecular linkages. Factors that affect the formation of the porous 2D molecular networks including alkyl chain length, solvent, solute concentration, and temperature were elucidated through a systematic study. Because DBA molecules are versatile for chemical modification, they turned out to be highly adaptive for on-surface supramolecular chemistry with respect to (i) pore size control by changing the chain length, (ii) study of parity effect due to even or odd number chains, (iii) generation of supramolecular chirality on surfaces by introducing stereocenters, (iv) chemical modification of the pore interior for selective co-adsorption of guest molecules by introducing functional groups. Additionally, formation of superlattice structures on surfaces was incidentally observed by mixing DBAs of different alkoxy chain parity or by addition of guest molecules via an induced-fit mechanism. These results made significant contribution to advancement of supramolecular chemistry in 2D space.
AbstractList Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various applications in nanoscience and nanotechnology. At the liquid/graphite interface, we found by means of scanning tunneling microscopy molecules with a rigid triangular core, a twelve-membered phenylene-ethynylene macrocycle called dehydrobenzo[12]annulene (DBA), substituted by six flexible alkoxy chains self-assembled to form hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains as the directional intermolecular linkages. Factors that affect the formation of the porous 2D molecular networks including alkyl chain length, solvent, solute concentration, and temperature were elucidated through a systematic study. Because DBA molecules are versatile for chemical modification, they turned out to be highly adaptive for on-surface supramolecular chemistry with respect to (i) pore size control by changing the chain length, (ii) study of parity effect due to even or odd number chains, (iii) generation of supramolecular chirality on surfaces by introducing stereocenters, (iv) chemical modification of the pore interior for selective co-adsorption of guest molecules by introducing functional groups. Additionally, formation of superlattice structures on surfaces was incidentally observed by mixing DBAs of different alkoxy chain parity or by addition of guest molecules via an induced-fit mechanism. These results made significant contribution to advancement of supramolecular chemistry in 2D space.
Author Tahara, Kazukuni
Tobe, Yoshito
De Feyter, Steven
Author_xml – sequence: 1
  givenname: Yoshito
  surname: Tobe
  fullname: Tobe, Yoshito
– sequence: 2
  givenname: Kazukuni
  surname: Tahara
  fullname: Tahara, Kazukuni
– sequence: 3
  givenname: Steven
  surname: De Feyter
  fullname: De Feyter, Steven
BookMark eNp1kM1LJDEQxcPiwo6ux70HPLcm6XRP4m0cdBUGBD_OTXU-xoyZZEzS4tz9w7cHFRbRU1FVv1f1ePtoL8RgEPpDyTFlvD3pVV4dM0Jbwij_gSa05qIibc330IQQIivWTutfaD_n1diKhssJep1p2BT3bPDZ4Lx2YYnPfFSPGc9jyC6X3SRafOOWTuO75CAsBw9pXCeDIWh84c2L673BM_8YX7Z4_gAuZGxjwrfG22qWs1n3fouh4IV7Gpw-uY1-PHYVikkWlMm_0U8LPpvD93qA7i_O7-aX1eL679V8tqgUF6xU0kqrlBH1VCimQfZKK6Zo0zPdSy65qZkCIxsKPW8Y47YWwHoltbLABfD6AB293d2k-DSYXLpVHFIYX3ZUTMW0FQ1pRqp6o1SKOSdju01ya0jbjpJuF3S3C7r7CHrk60-8cgWKi6EkcP5b1em76sGsnRo9ROVM2a5gA-E_X1-K_wGthJpc
CitedBy_id crossref_primary_10_1021_jacs_1c13610
crossref_primary_10_1039_D1CC01356D
crossref_primary_10_1021_jacs_0c00765
crossref_primary_10_1021_acs_langmuir_3c02327
crossref_primary_10_1021_acs_langmuir_7b03007
crossref_primary_10_1021_acs_langmuir_8b01434
crossref_primary_10_1246_bcsj_20170334
crossref_primary_10_1002_adfm_201702905
crossref_primary_10_3762_bjnano_14_72
crossref_primary_10_1021_acs_joc_1c00888
crossref_primary_10_3390_molecules25153335
crossref_primary_10_1038_s41467_019_12654_z
crossref_primary_10_1246_cl_170884
crossref_primary_10_1002_chem_202400926
crossref_primary_10_1246_bcsj_20180075
crossref_primary_10_1002_asia_201800935
crossref_primary_10_1002_tcr_201700070
crossref_primary_10_1039_C7CP02280H
crossref_primary_10_1246_cl_200080
crossref_primary_10_1039_C9CC00532C
crossref_primary_10_1039_C7NR00867H
crossref_primary_10_1246_bcsj_20170043
crossref_primary_10_1002_cnma_201900733
crossref_primary_10_1038_s41427_018_0022_9
crossref_primary_10_1039_D0CC01823F
crossref_primary_10_1002_cplu_201900344
crossref_primary_10_1021_jacs_0c00108
crossref_primary_10_1021_acs_langmuir_7b00083
crossref_primary_10_1246_bcsj_20180084
crossref_primary_10_1039_D0CC03150J
crossref_primary_10_1016_j_cocis_2018_01_007
crossref_primary_10_1021_acs_jpcc_4c00695
crossref_primary_10_1246_bcsj_20180285
crossref_primary_10_1021_acs_jpcc_7b02262
crossref_primary_10_1246_bcsj_20180240
crossref_primary_10_1002_chem_202401885
crossref_primary_10_1039_D0CC07374A
crossref_primary_10_1246_bcsj_20170156
crossref_primary_10_1246_bcsj_20170036
crossref_primary_10_1016_j_colsurfa_2017_10_020
crossref_primary_10_1039_C9CP03863A
crossref_primary_10_1002_anie_202114290
crossref_primary_10_1002_smll_202410652
crossref_primary_10_1002_anie_201804402
crossref_primary_10_1002_chem_201904114
crossref_primary_10_1021_acs_jpcc_9b08084
crossref_primary_10_1021_acs_langmuir_7b04293
crossref_primary_10_1246_bcsj_20180016
crossref_primary_10_1039_D0SC04585C
crossref_primary_10_1039_D2CE00676F
crossref_primary_10_5059_yukigoseikyokaishi_78_162
crossref_primary_10_1246_bcsj_20180174
crossref_primary_10_1038_ncomms15727
crossref_primary_10_1016_j_jphotochemrev_2017_12_005
crossref_primary_10_1016_j_cattod_2018_11_078
crossref_primary_10_1021_acs_langmuir_7b00603
crossref_primary_10_1016_j_cclet_2019_04_032
crossref_primary_10_1021_acsnano_9b08408
crossref_primary_10_1002_ange_202114290
crossref_primary_10_1002_ange_201804402
crossref_primary_10_1246_cl_170815
crossref_primary_10_1021_jacs_9b07877
crossref_primary_10_1246_cl_170614
crossref_primary_10_1039_D0NA00616E
Cites_doi 10.1002/anie.200905503
10.1002/anie.201303745
10.1021/la0342621
10.1021/la203054k
10.1021/nn4039047
10.1002/3527601600
10.1002/adma.200600683
10.1021/ja0602896
10.1021/ar0500158
10.1002/asia.200900439
10.1038/nature04166
10.1039/C1SC00543J
10.1016/j.cocis.2008.10.002
10.1021/cr050149z
10.1021/cg030025k
10.1021/jp910029z
10.1021/la703240y
10.1039/c3cc47949h
10.1021/cr3000412
10.1021/la010869a
10.1021/nl060292n
10.1021/acs.accounts.5b00168
10.1021/la701663j
10.1021/ja800801e
10.1002/anie.200701614
10.1002/sia.1047
10.1126/science.268.5219.1860
10.1103/PhysRevB.68.115410
10.1021/ja101944r
10.1021/ja0375737
10.1021/acs.langmuir.5b01507
10.1007/128_2008_6
10.1002/chem.200800476
10.1038/nnano.2012.238
10.1021/jp3115435
10.1002/smll.200600550
10.1002/smll.200400078
10.1021/nl200631m
10.1021/ja044136z
10.1016/0379-6779(91)91123-R
10.1002/anie.200801863
10.1021/la201467b
10.1021/ja0362353
10.1038/nchem.295
10.1351/pac197127040647
10.1021/cr9603892
10.1039/B708902N
10.1021/acsnano.5b06483
10.1002/asia.201201229
10.1063/1.4913657
10.1002/chem.201003589
10.1021/ja801883t
10.1002/anie.201204006
10.1021/jz900146f
10.1103/PhysRevB.69.155406
10.1021/ja0583362
10.1039/C2CP43244G
10.1021/nl2025739
10.1063/1.3569132
10.1021/ja904481j
10.1021/nl401265f
10.1103/PhysRevLett.75.3154
10.1038/nchem.1111
10.1021/ar970261m
10.1002/anie.200705322
10.1021/ja0525049
10.1038/nchem.2514
10.1021/ja209469d
10.1038/nchem.2098
10.1007/s11426-013-4975-9
10.1021/ja9001986
10.1021/la0205755
10.1021/ja102989y
10.1021/ja043028+
10.1038/nature04419
10.1038/nmat1088
10.1021/ol060781u
10.1021/la047533w
10.1002/3527607439
10.1103/PhysRevLett.102.135501
10.1021/ja309673t
10.1524/zpch.2009.6023
10.1021/jp070328f
10.1039/b404021j
10.1002/1439-7641(20011217)2:12%3C750::AID-CPHC750%3E3.0.CO%3B2-9
10.1021/nl103590j
10.1021/nn204398m
10.1002/adfm.200500264
10.1002/anie.199726481
10.1021/ja9032428
10.1002/adma.201401857
10.1021/ar0501929
10.1021/la204653b
10.1002/chem.201001776
10.1021/acs.langmuir.5b01404
10.1002/anie.199611541
10.1038/35025027
10.1063/1.4864458
10.1039/b926824c
10.1039/b807500j
10.1021/nl801592c
10.1021/cr050258d
10.1021/ja804604y
10.1002/anie.200605224
10.1146/annurev.physchem.56.092503.141259
10.1039/c0cc02780d
10.1002/chem.201101940
10.1021/ja3125096
10.1002/anie.200806339
10.1038/nmat1558
10.1021/ja901718q
10.1002/chem.200900900
10.1039/c0ce00282h
10.1039/C5CC07381B
10.1039/c3cp51413g
10.1021/jp3048949
10.1038/nature01915
10.1021/la049441c
10.1039/b806444j
10.1021/nn901717k
10.1002/adma.200802068
10.1016/S0009-2614(03)00637-7
10.1126/science.1205962
10.1021/cr9700282
10.1039/b708578h
10.1021/jp0619437
10.1063/1.104234
10.1002/anie.200900436
10.1246/cl.2004.972
10.1146/annurev.physchem.040808.090423
10.1021/jo970944f
10.1021/nn4032036
10.1038/nchem.517
10.1021/jp406681j
10.1039/C4CC08826C
10.1126/science.253.5018.424
10.1021/ja0655441
10.1002/(SICI)1521-3773(20000218)39:4%3C792::AID-ANIE792%3E3.0.CO%3B2-2
10.1021/nn303144r
10.1002/chem.201405638
10.1021/ja205998c
10.1021/ja037056o
10.1021/nn503815q
10.1021/cr800260k
10.1002/anie.200502316
10.1039/B314626J
10.1088/0953-8984/14/42/309
10.1021/nn200874k
10.1021/nn102211n
10.1002/cphc.200200492
10.1002/anie.200604782
10.1021/ja405585s
10.1016/S0039-6028(03)00698-8
10.1039/b800411k
10.1021/ja908919r
10.1021/nl8016626
10.1039/c4cc01576b
10.1002/anie.199523111
10.1021/j100002a009
10.1021/ja105039s
10.1039/b713426f
10.1039/B304972H
10.1021/jp045298k
10.1103/PhysRevLett.80.1682
10.1002/anie.200604203
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Chemical Society of Japan 2016
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Chemical Society of Japan 2016
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20160214
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces
EISSN 1348-0634
EndPage 1306
ExternalDocumentID 10_1246_bcsj_20160214
FullText_t_NoSnippeting true
GroupedDBID 02
23N
5GY
ABEFU
ABFLS
ABZEH
ACCUC
ACIWK
ACNCT
AENEX
AETEA
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F20
F5P
GX1
JSI
JSP
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
X
XPZ
ZE2
-~X
0R~
6J9
6TJ
AAUAY
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABVGC
ABXVV
ACGFO
ADIPN
ADNBA
ADVOB
AGMDO
AGORE
AJNCP
BCRHZ
CITATION
KOP
NU-
OJZSN
OWPYF
ROX
~02
7SR
8BQ
8FD
H13
JG9
ID FETCH-LOGICAL-c482t-9f9fcce8378c2da9bcdc2c15b2db9494e32cae951ab45224f38a2bc9dcfa48a43
ISSN 0009-2673
IngestDate Wed Aug 13 10:39:09 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Jul 01 00:34:41 EDT 2025
Tue Jan 05 20:24:28 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c482t-9f9fcce8378c2da9bcdc2c15b2db9494e32cae951ab45224f38a2bc9dcfa48a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1246/bcsj.20160214
PQID 1878768505
PQPubID 1996365
PageCount 30
ParticipantIDs proquest_journals_1878768505
crossref_primary_10_1246_bcsj_20160214
crossref_citationtrail_10_1246_bcsj_20160214
chemicalsocietyjapan_journals_10_1246_bcsj_20160214
ProviderPackageCode RAD
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationSeriesTitle The Chemical Society of Japan Award for Young Chemists for 2011
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2016
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 28a) F. Charra, J. Cousty, Phys. Rev. Lett. 1998, 80, 1682. 10.1103/PhysRevLett.80.1682 b) S. Xu, Q. Zeng, J. Lu, C. Wang, L. Wan, C.-L. Bai, Surf. Sci. 2003, 538, L451. 10.1016/S0039-6028(03)00698-8 c) C. Arrigoni, G. Schull, D. Bléger, L. Douillard, C. Fiorini-Debuisschert, F. Mathevet, D. Kreher, A.-J. Attias, F. Charra, J. Phys. Chem. Lett. 2010, 1, 190. 10.1021/jz900146f
75W. R. Browne, B. L. Feringa, Annu. Rev. Phys. Chem. 2009, 60, 407. 10.1146/annurev.physchem.040808.09042318999995
14Y. Yang, C. Wang, Curr. Opin. Colloid Interface Sci. 2009, 14, 135. 10.1016/j.cocis.2008.10.002
52S. Lei, M. Surin, K. Tahara, J. Adisoejoso, R. Lazzaroni, Y. Tobe, S. De Feyter, Nano Lett. 2008, 8, 2541. 10.1021/nl801662618630887
24a) G. C. McGonigal, R. H. Bernhardt, D. J. Thomson, Appl. Phys. Lett. 1990, 57, 28. 10.1063/1.104234 b) K. W. Herwig, B. Matthies, H. Taub, Phys. Rev. Lett. 1995, 75, 3154. 10.1103/PhysRevLett.75.315410059508
70Y. Fang, E. Ghijsens, O. Ivasenko, H. Cao, A. Noguchi, K. S. Mali, K. Tahara, Y. Tobe, S. De Feyter, Nat. Chem. 2016, 8, 711. 10.1038/nchem.251427325099
45a) N. Katsonis, A. Marchenko, D. Fichou, J. Am. Chem. Soc. 2003, 125, 13682. 10.1021/ja037573714599205 b) T. Kudernac, N. Sändig, T. F. Landaluce, B. J. van Wees, P. Rudolf, N. Katsonis, F. Zerbetto, B. L. Feringa, J. Am. Chem. Soc. 2009, 131, 15655. 10.1021/ja901718q19827775 c) Z. X. Xie, X. Xu, B. W. Mao, K. Tanaka, Langmuir 2002, 18, 3113. 10.1021/la010869a
39a) A. Stabel, R. Heinz, F. C. De Schryver, J. P. Rabe, J. Phys. Chem. 1995, 99, 505. 10.1021/j100002a009 b) M. Lackinger, S. Griessl, L. Kampschulte, F. Jamitzky, W. M. Heckl, Small 2005, 1, 532. 10.1002/smll.20040007817193483
46T. Balandina, K. Tahara, N. Sändig, M. Blunt, J. Adisoejoso, S. Lei, F. Zerbetto, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 8381. 10.1021/nn303144r22954382
10a) P. Samorì, J. Mater. Chem. 2004, 14, 1353. 10.1039/B314626J b) P. Samorì, Chem. Soc. Rev. 2005, 34, 551. 10.1039/b404021j15965537
20a) S. Furukawa, H. Uji-i, K. Tahara, T. Ichikawa, M. Sonoda, F. C. De Schryver, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2006, 128, 3502. 10.1021/ja058336216536507 b) K. Tahara, S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, W. Mamdouh, M. Sonoda, F. C. De Schryver, S. De Feyter, Y. Tobe, J. Am. Chem. Soc. 2006, 128, 16613. 10.1021/ja065544117177410
58a) H. Spillmann, A. Dmitriev, N. Lin, P. Messina, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2003, 125, 10725. 10.1021/ja036235312940758 b) W. Xiao, X. Feng, P. Ruffieux, O. Gröning, K. Müllen, R. Fasel, J. Am. Chem. Soc. 2008, 130, 8911. c) J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, L.-J. Wan, J. Am. Chem. Soc. 2011, 133, 21010. 10.1021/ja209469d22106949 d) S.-S. Jester, E. Sigmund, L. M. Röck, S. Höger, Angew. Chem., Int. Ed. 2012, 51, 8555. 10.1002/anie.201204006
6a) L. C. Giancarlo, G. W. Flynn, Acc. Chem. Res. 2000, 33, 491. 10.1021/ar970261m10913238 b) P. Samorì, J. P. Rabe, J. Phys.: Condens. Matter 2002, 14, 9955. 10.1088/0953-8984/14/42/309 c) S. De Feyter, F. C. De Schryver, J. Phys. Chem. B 2005, 109, 4290. 10.1021/jp045298k16851494 d) L.-J. Wan, Acc. Chem. Res. 2006, 39, 334. 10.1021/ar050192916700532 e) B. A. Hermann, L. J. Scherer, C. E. Housecroft, E. C. Constable, Adv. Funct. Mater. 2006, 16, 221. 10.1002/adfm.200500264 f) Y. Yang, C. Wang, Chem. Soc. Rev. 2009, 38, 2576. 10.1039/b807500j19690738
54a) L. Ramin, A. Jabbarzadeh, Langmuir 2011, 27, 9748. 10.1021/la201467b21749126 b) X. Liu, T. Wang, M. Liu, Langmuir 2012, 28, 3474. 10.1021/la204653b22272776 c) N. Nerngchamnong, L. Yuan, D.-C. Qi, J. Li, D. Thompson, C. A. Nijhuis, Nat. Nanotechnol. 2013, 8, 113. 10.1038/nnano.2012.23823292010 d) F. Tao, S. L. Bernasek, Chem. Rev. 2007, 107, 1408. 10.1021/cr050258d17439290 e) L. Xu, X. Miao, B. Zha, W. Deng, Chem.—Asian J. 2013, 8, 926. 10.1002/asia.20120122923447489
36a) C. Marie, F. Silly, L. Tortech, K. Müllen, D. Fichou, ACS Nano 2010, 4, 1288. 10.1021/nn901717k20155970 b) J. Saiz-Poseu, J. Faraudo, A. Figueras, R. Alibes, F. Busqué, D. Ruiz-Molina, Chem.—Eur. J. 2012, 18, 3056. 10.1002/chem.20110194022290796 c) Y. Li, C. Liu, Y. Xie, X. Li, X. Li, X. Fan, K. Deng, Q. Zeng, C. Wang, Phys. Chem. Chem. Phys. 2013, 15, 125. 10.1039/C2CP43244G23147835 d) C.-J. Li, Q.-D. Zeng, Y.-H. Liu, L.-J. Wan, C. Wang, C.-R. Wang, C.-L. Bai, ChemPhysChem 2003, 4, 857. 10.1002/cphc.20020049212961984 e) Y.-T. Shen, N. Zhu, X.-M. Zhang, K. Deng, W. Feng, Q. Yan, S. Lei, D. Zhao, Q.-D. Zeng, C. Wang, Chem.—Eur. J. 2011, 17, 7061. 10.1002/chem.20100358921557347 f) J. Adisoejoso, K. Tahara, S. Lei, P. Szabelski, W. Rżysko, K. Inukai, M. O. Blunt, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 897. 10.1021/nn204398m22206261 g) A. Jahanbekam, S. Vorpahl, U. Mazur, K. W. Hipps, J. Phys. Chem. C 2013, 117, 2914. 10.1021/jp3115435
34a) L. Kampschulte, T. L. Werblowsky, R. S. K. Kishore, M. Schmittel, W. M. Heckl, M. Lackinger, J. Am. Chem. Soc. 2008, 130, 8502. 10.1021/ja801883t18533654 b) R. Gutzler, T. Sirtl, J. F. Dienstmaier, K. Mahata, W. M. Heckel, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2010, 132, 5084. 10.1021/ja908919r20235537 c) C. Meier, M. Roos, D. Künzel, A. Breitruck, H. E. Hoster, K. Landfester, A. Gross, R. J. Behm, U. Ziener, J. Phys. Chem. C 2010, 114, 1268. 10.1021/jp910029z d) C.-A. Palma, J. Bjork, M. Bonini, M. S. Dyer, A. Llanes-Pallas, D. Bonifazi, M. Persson, P. Samorì, J. Am. Chem. Soc. 2009, 131, 13062. 10.1021/ja903242819702301
50S. Lei, K. Tahara, X. Feng, S. Furukawa, F. C. De Schryver, K. Müllen, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2008, 130, 7119. 10.1021/ja800801e18465857
55a) L. Messe, S. M. Clarke, C. Dong, R. K. Thomas, A. Inaba, M. D. Alba, M. A. Castro, Langmuir 2002, 18, 9429. 10.1021/la0205755 b) G. Wang, S. Lei, S. De Feyter, R. Feldman, J. E. Parker, S. M. Clarke, Langmuir 2008, 24, 2501. 10.1021/la703240y18237218
43a) Q. H. Wang, M. C. Hersam, Nano Lett. 2011, 11, 589. 10.1021/nl103590j21166423 b) A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner, S. Gsell, M. Fischer, M. Schreck, J. Osterwalder, T. Greber, S. Berner, N. R. Champness, P. H. Beton, Angew. Chem., Int. Ed. 2010, 49, 1794. 10.1002/anie.200905503 c) K. Xiao, W. Deng, J. K. Keum, M. Yoon, I. V. Vlassiouk, K. W. Clark, A.-P. Li, I. I. Kravchenko, G. Gu, E. A. Payzant, B. G. Sumpter, S. C. Smith, J. F. Browning, D. B. Geohegan, J. Am. Chem. Soc. 2013, 135, 3680. 10.1021/ja312509623368998 d) Y. Ogawa, T. Niu, S. L. Wong, M. Tsuji, A. T. S. Wee, W. Chen, H. Ago, J. Phys. Chem. C 2013, 117, 21849. 10.1021/jp406681j e) P. Järvinen, S. K. Hämäläinen, K. Banerjee, P. Häkkinen, M. Ijäs, A. Harju, P. Liljeroth, Nano Lett. 2013, 13, 3199. 10.1021/nl401265f23786613
47By collaboration with the group of Profs. Kim and Kawai, we also investigated self-assembly of unsubstituted DBA, DBA-OC1 and DBA-OC4 on Au(111) under UHV conditions, where geometry of self-assembly is dominated by epitaxial effect, hydrogen bonding, and/or van der Waals interactions depending on the substituents. a) J.-H. Kim, K. Tahara, J. Jung, S. De Feyter, Y. Tobe, Y. Kim, M. Kawai, J. Phys. Chem. C 2012, 116, 17082. 10.1021/jp3048949 b) J.-H. Kim, J. Jung, K. Tahara, Y. Tobe, Y. Kim, M. Kawai, J. Chem. Phys. 2014, 140, 074709. 10.1063/1.486445824559362
21R. Lazzaroni, A. Calderone, G. Lambin, J. P. Rabe, J. L. Brédas, Synth. Met. 1991, 41, 525. 10.1016/0379-6779(91)91123-R
26K. Tahara, C. A. Johnson, II, T. Fujita, M. Sonoda, F. C. De Schryver, S. De Feyter, M. M. Haley, Y. Tobe, Langmuir 2007, 23, 10190. 10.1021/la701663j17760473
27L. Xu, L. Yang, L. Cao, T. Li, S. Chen, D. Zhao, S. Lei, J. Ma, Phys. Chem. Chem. Phys. 2013, 15, 11748. 10.1039/c3cp51413g23756563
30S. Lei, K. Tahara, F. C. De Schryver, M. Van der Auweraer, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2008, 47, 2964. 10.1002/anie.200705322
4a) J. V. Barth, G. Costantini, K. Kern, Nature 2005, 437, 671. 10.1038/nature0416616193042 b) L. Bartels, Nat. Chem. 2010, 2, 87. 10.1038/nchem.51721124397
64For chirality induction: a) M. Parschau, S. Romer, K.-H. Ernst, J. Am. Chem. Soc. 2004, 126, 15398. 10.1021/ja044136z15563164 b) R. Fasel, M. Parschau, K.-H. Ernst, Nature 2006, 439, 449. 10.1038/nature0441916437111 c) S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, R. Raval, Nat. Chem. 2009, 1, 409. 10.1038/nchem.29521378896 d) F. Masini, N. Kalashnyk, M. M. Knudsen, J. R. Cramer, E. Lægsgaard, F. Besenbacher, K. V. Gothelf, T. R. Linderoth, J. Am. Chem. Soc. 2011, 133, 13910. 10.1021/ja205998c21830788
72a) Molecular Devices and Machines, ed. by V. Balzani, M. Venturi, A. Credi, Wiley-VCH, Weinheim, 2003. doi:10.1002/3527601600. 10.1002/3527601600 b) D. Philp, J. F. Stoddart, Angew. Chem., Int. Ed. Engl. 1996, 35, 1154. 10.1002/anie.199611541 c) J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, J. Mater. Chem. 2003, 13, 2661. 10.1039/B304972H d) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813. 10.1126/science.120596222344437
32K. Tahara, J. Adisoejoso, K. Inukai, S. Lei, A. Noguchi, B. Li, W. Vanderlinden, S. De Feyter, Y. Tobe, Chem. Commun. 2014, 50, 2831. 10.1039/c3cc47949h
7a) K. E. Plass, A. L. Grzesiak, A. J. Matzger, Acc. Chem. Res. 2007, 40, 287. 10.1021/ar050015817437327 b) S. Furukawa, S. De Feyter, Top. Curr. Chem. 2009, 287, 87. 10.1007/128_2008_623604443
31K. Tahara, S. Lei, D. Mössinger, H. Kozuma, K. Inukai, M. Van der Auweraer, F. C. De Schryver, S. Höger, Y. Tobe, S. De Feyter, Chem. Commun. 2008, 44, 3897. 10.1039/b806444j
78a) J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem., Int. Ed. 2009, 48, 1030. 10.1002/anie.200801863 b) X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Adv. Mater. 2015, 27, 403. 10.1002/adma.20140185725155302 c) Q. Fan, J. M. Gottfried, J. Zhu, Acc. Chem. Res. 2015, 48, 2484. 10.1021/acs.accounts.5b0016826194462 d) P. Payamyar, B. T. King, H. C. Öttinger, A. D. Schlüter, Chem. Commun. 2016, 52, 18. 10.1039/C5CC07381B
53J. Adisoejoso, K. Tahara, S. Okuhata, S. Lei, Y. Tobe, S. De Feyter, An
Yang (2024012219414320200_r62) 2010; 132
Böhringer (2024012219414320200_r62) 2000; 39
Laschat (2024012219414320200_r1) 2007; 46
Perdigão (2024012219414320200_r19) 2008; 14
Philp (2024012219414320200_r72) 1996; 35
Blagden (2024012219414320200_r9) 2003; 3
Mössinger (2024012219414320200_r51) 2007; 46
Bartels (2024012219414320200_r4) 2010; 2
Tahara (2024012219414320200_r22) 2009; 131
Tahara (2024012219414320200_r73) 2014; 8
Sakamoto (2024012219414320200_r78) 2009; 48
Giancarlo (2024012219414320200_r6) 2000; 33
Hermann (2024012219414320200_r6) 2006; 16
Li (2024012219414320200_r36) 2013; 15
Tahara (2024012219414320200_r77) 2016; 10
Palma (2024012219414320200_r34) 2009; 131
Kong (2024012219414320200_r51) 2007; 111
Nerngchamnong (2024012219414320200_r54) 2013; 8
Georgakilas (2024012219414320200_r42) 2012; 112
Fan (2024012219414320200_r78) 2015; 48
Marie (2024012219414320200_r36) 2010; 4
Kim (2024012219414320200_r47) 2012; 116
Liu (2024012219414320200_r58) 2011; 133
Bonifazi (2024012219414320200_r8) 2009; 15
Sonoda (2024012219414320200_r13) 2004; 33
Jester (2024012219414320200_r58) 2012; 51
Ghijsens (2024012219414320200_r69) 2015; 142
Schmidt (2024012219414320200_r9) 1971; 27
Surin (2024012219414320200_r8) 2007; 3
Yoshimura (2024012219414320200_r13) 2006; 8
Kim (2024012219414320200_r16) 2005; 127
Haq (2024012219414320200_r64) 2009; 1
Furukawa (2024012219414320200_r7) 2009; 287
Yin (2024012219414320200_r23) 2001; 32
Stabel (2024012219414320200_r39) 1995; 99
Samorì (2024012219414320200_r10) 2005; 34
Ma (2024012219414320200_r8) 2008; 18
Schöck (2024012219414320200_r63) 2006; 110
Dong (2024012219414320200_r42) 2009; 102
Xu (2024012219414320200_r27) 2013; 15
Berner (2024012219414320200_r33) 2003; 68
Sakai (2024012219414320200_r3) 2010; 132
Günes (2024012219414320200_r3) 2007; 107
Kim (2024012219414320200_r16) 2003; 19
Tahara (2024012219414320200_r76) 2013; 52
Stepanow (2024012219414320200_r17) 2004; 3
Tahara (2024012219414320200_r13) 2008; 130
Yokoyama (2024012219414320200_r29) 2015; 31
Xie (2024012219414320200_r45) 2002; 18
Yu (2024012219414320200_r42) 2011; 11
Zhang (2024012219414320200_r62) 2009; 131
Parschau (2024012219414320200_r64) 2004; 126
Palma (2024012219414320200_r35) 2009; 21
Rabe (2024012219414320200_r11) 1991; 253
Shen (2024012219414320200_r18) 2010; 5
Spillmann (2024012219414320200_r58) 2003; 125
Raval (2024012219414320200_r61) 2009; 38
Adisoejoso (2024012219414320200_r60) 2012; 6
Elemans (2024012219414320200_r8) 2009; 48
2024012219414320200_r71
2024012219414320200_r72
Feng (2024012219414320200_r49) 2007; 46
Wan (2024012219414320200_r6) 2006; 39
Payamyar (2024012219414320200_r78) 2016; 52
Kim (2024012219414320200_r47) 2014; 140
Tahara (2024012219414320200_r20) 2006; 128
Masini (2024012219414320200_r64) 2011; 133
Kudernac (2024012219414320200_r8) 2009; 38
Terech (2024012219414320200_r2) 1997; 97
Kudernac (2024012219414320200_r45) 2009; 131
Charra (2024012219414320200_r28) 1998; 80
Palmans (2024012219414320200_r65) 1997; 36
Griessl (2024012219414320200_r17) 2004; 20
Phillips (2024012219414320200_r19) 2010; 46
Jahanbekam (2024012219414320200_r36) 2013; 117
Lazzaroni (2024012219414320200_r21) 1991; 41
Meier (2024012219414320200_r34) 2010; 114
Adisoejoso (2024012219414320200_r53) 2009; 48
Lei (2024012219414320200_r30) 2008; 47
Katsonis (2024012219414320200_r45) 2003; 125
Donovan (2024012219414320200_r63) 2010; 16
Li (2024012219414320200_r44) 2013; 7
France (2024012219414320200_r62) 2003; 125
Vidal (2024012219414320200_r63) 2005; 127
Vidal (2024012219414320200_r33) 2005; 127
Balandina (2024012219414320200_r46) 2012; 6
Plass (2024012219414320200_r7) 2007; 40
Tahara (2024012219414320200_r32) 2014; 50
Nath (2024012219414320200_r15) 2006; 128
Ghijsens (2024012219414320200_r68) 2015; 51
Ahn (2024012219414320200_r37) 2010; 132
Tahara (2024012219414320200_r41) 2015; 31
Tahara (2024012219414320200_r31) 2008; 44
Yang (2024012219414320200_r14) 2009; 14
Ernst (2024012219414320200_r61) 2009; 223
Tahara (2024012219414320200_r66) 2011; 3
Furukawa (2024012219414320200_r20) 2006; 128
Stöhr (2024012219414320200_r33) 2005; 44
Xiao (2024012219414320200_r43) 2013; 135
Krafft (2024012219414320200_r74) 2009; 109
De Feyter (2024012219414320200_r6) 2005; 109
Arrigoni (2024012219414320200_r28) 2010; 1
Järvinen (2024012219414320200_r43) 2013; 13
Tao (2024012219414320200_r54) 2007; 107
Kampschulte (2024012219414320200_r34) 2008; 130
Ramin (2024012219414320200_r54) 2011; 27
Räisänen (2024012219414320200_r19) 2012; 3
Saiz-Poseu (2024012219414320200_r36) 2012; 18
Adisoejoso (2024012219414320200_r36) 2012; 6
Fasel (2024012219414320200_r64) 2006; 439
Wu (2024012219414320200_r25) 2001; 2
Barth (2024012219414320200_r4) 2005; 437
Shen (2024012219414320200_r36) 2011; 17
Elemans (2024012219414320200_r72) 2003; 13
Lei (2024012219414320200_r52) 2008; 8
Zang (2024012219414320200_r17) 2014; 57
Szafranek (2024012219414320200_r42) 2011; 11
Fang (2024012219414320200_r70) 2016; 8
Bellec (2024012219414320200_r37) 2011; 134
Ghijsens (2024012219414320200_r57) 2013; 7
Schull (2024012219414320200_r17) 2006; 6
Tahara (2024012219414320200_r66) 2014; 6
Yang (2024012219414320200_r6) 2009; 38
Herwig (2024012219414320200_r24) 1995; 75
Xu (2024012219414320200_r28) 2003; 538
Weigelt (2024012219414320200_r63) 2006; 5
Green (2024012219414320200_r65) 1995; 268
Lei (2024012219414320200_r50) 2008; 130
Barth (2024012219414320200_r5) 2007; 58
Xu (2024012219414320200_r54) 2013; 8
Theobald (2024012219414320200_r5) 2003; 424
Zacharia (2024012219414320200_r16) 2004; 69
Cortés (2024012219414320200_r62) 2008; 8
Samorì (2024012219414320200_r6) 2002; 14
Ogawa (2024012219414320200_r43) 2013; 117
Lackinger (2024012219414320200_r39) 2005; 1
Clarke (2024012219414320200_r56) 2003; 373
Desiraju (2024012219414320200_r9) 1995; 34
Theobald (2024012219414320200_r51) 2005; 21
Tsuya (2024012219414320200_r62) 2015; 21
Xiao (2024012219414320200_r58) 2008; 130
Messe (2024012219414320200_r55) 2002; 18
Browne (2024012219414320200_r75) 2009; 60
Blunt (2024012219414320200_r38) 2013; 135
Aida (2024012219414320200_r72) 2012; 335
Lei (2024012219414320200_r12) 2010; 12
Destoop (2024012219414320200_r67) 2012; 134
McGonigal (2024012219414320200_r24) 1990; 57
Hirschberg (2024012219414320200_r65) 2000; 407
Schull (2024012219414320200_r17) 2006; 18
2024012219414320200_r9
Samorì (2024012219414320200_r10) 2004; 14
Tahara (2024012219414320200_r29) 2014; 50
Zeng (2024012219414320200_r71) 1997; 97
Roos (2024012219414320200_r33) 2007; 9
Kampschulte (2024012219414320200_r37) 2008; 130
Tahara (2024012219414320200_r26) 2007; 23
Pollard (2024012219414320200_r43) 2010; 49
Li (2024012219414320200_r36) 2003; 4
Zhuang (2024012219414320200_r78) 2015; 27
Gutzler (2024012219414320200_r34) 2010; 132
Furukawa (2024012219414320200_r48) 2007; 46
Wang (2024012219414320200_r55) 2008; 24
Eder (2024012219414320200_r17) 2011; 27
Prado (2024012219414320200_r42) 2011; 5
Wang (2024012219414320200_r43) 2011; 11
Xue (2024012219414320200_r18) 2012; 134
Tahara (2024012219414320200_r12) 2010; 46
Liu (2024012219414320200_r54) 2012; 28
Lei (2024012219414320200_r59) 2011; 5
Mammen (2024012219414320200_r40) 1998; 63
References_xml – reference: 13a) M. Sonoda, Y. Sakai, T. Yoshimura, Y. Tobe, K. Kamada, Chem. Lett. 2004, 33, 972. 10.1246/cl.2004.972 b) T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R. V. Williams, Org. Lett. 2006, 8, 2933. 10.1021/ol060781u16805520 c) K. Tahara, T. Fujita, M. Sonoda, M. Shiro, Y. Tobe, J. Am. Chem. Soc. 2008, 130, 14339. 10.1021/ja804604y18816113
– reference: 27L. Xu, L. Yang, L. Cao, T. Li, S. Chen, D. Zhao, S. Lei, J. Ma, Phys. Chem. Chem. Phys. 2013, 15, 11748. 10.1039/c3cp51413g23756563
– reference: 33a) S. Berner, M. de Wild, L. Ramoino, S. Ivan, A. Baratoff, H.-J. Güntherodt, H. Suzuki, D. Schlettwein, T. A. Jung, Phys. Rev. B 2003, 68, 115410. 10.1103/PhysRevB.68.115410 b) M. Roos, H. E. Hoster, A. Breitruck, R. J. Behm, Phys. Chem. Chem. Phys. 2007, 9, 5672. 10.1039/b708578h17960255 c) F. Vidal, E. Delvigne, S. Stepanow, N. Lin, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2005, 127, 10101. 10.1021/ja052504916011376 d) M. Stöhr, M. Wahl, C. H. Galka, T. Riehm, T. A. Jung, L. H. Gade, Angew. Chem., Int. Ed. 2005, 44, 7394. 10.1002/anie.200502316
– reference: 41K. Tahara, K. Kaneko, K. Katayama, S. Itano, C. H. Nguyen, D. D. D. Amorim, S. De Feyter, Y. Tobe, Langmuir 2015, 31, 7032. 10.1021/acs.langmuir.5b0150726061362
– reference: 20a) S. Furukawa, H. Uji-i, K. Tahara, T. Ichikawa, M. Sonoda, F. C. De Schryver, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2006, 128, 3502. 10.1021/ja058336216536507 b) K. Tahara, S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, W. Mamdouh, M. Sonoda, F. C. De Schryver, S. De Feyter, Y. Tobe, J. Am. Chem. Soc. 2006, 128, 16613. 10.1021/ja065544117177410
– reference: 61Reviews: a) R. Raval, Chem. Soc. Rev. 2009, 38, 707. 10.1039/b800411k19322464 b) K.-H. Ernst, Z. Phys. Chem. 2009, 223, 37. 10.1524/zpch.2009.6023
– reference: 4a) J. V. Barth, G. Costantini, K. Kern, Nature 2005, 437, 671. 10.1038/nature0416616193042 b) L. Bartels, Nat. Chem. 2010, 2, 87. 10.1038/nchem.51721124397
– reference: 30S. Lei, K. Tahara, F. C. De Schryver, M. Van der Auweraer, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2008, 47, 2964. 10.1002/anie.200705322
– reference: 24a) G. C. McGonigal, R. H. Bernhardt, D. J. Thomson, Appl. Phys. Lett. 1990, 57, 28. 10.1063/1.104234 b) K. W. Herwig, B. Matthies, H. Taub, Phys. Rev. Lett. 1995, 75, 3154. 10.1103/PhysRevLett.75.315410059508
– reference: 45a) N. Katsonis, A. Marchenko, D. Fichou, J. Am. Chem. Soc. 2003, 125, 13682. 10.1021/ja037573714599205 b) T. Kudernac, N. Sändig, T. F. Landaluce, B. J. van Wees, P. Rudolf, N. Katsonis, F. Zerbetto, B. L. Feringa, J. Am. Chem. Soc. 2009, 131, 15655. 10.1021/ja901718q19827775 c) Z. X. Xie, X. Xu, B. W. Mao, K. Tanaka, Langmuir 2002, 18, 3113. 10.1021/la010869a
– reference: 3a) N. Sakai, R. Bhosale, D. Emery, J. Mareda, S. Matile, J. Am. Chem. Soc. 2010, 132, 6923. 10.1021/ja101944r20426476 b) S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324. 10.1021/cr050149z17428026
– reference: 59S. Lei, K. Tahara, K. Müllen, P. Szabelski, Y. Tobe, S. De Feyter, ACS Nano 2011, 5, 4145. 10.1021/nn200874k21500863
– reference: 38M. O. Blunt, J. Adisoejoso, K. Tahara, K. Katayama, M. Van der Auweraer, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2013, 135, 12068. 10.1021/ja405585s23829544
– reference: 42a) W. J. Yu, L. Liao, S. H. Chae, Y. H. Lee, X. Duan, Nano Lett. 2011, 11, 4759. 10.1021/nl202573921985035 b) B. N. Szafranek, D. Schall, M. Otto, D. Neumaier, H. Kurz, Nano Lett. 2011, 11, 2640. 10.1021/nl200631m21688768 c) M. C. Prado, R. Nascimento, L. G. Moura, M. J. S. Matos, M. S. C. Mazzoni, L. G. Cancado, H. Chacham, B. R. A. Neves, ACS Nano 2011, 5, 394. 10.1021/nn102211n21186832 d) X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, L.-J. Li, Phys. Rev. Lett. 2009, 102, 135501. 10.1103/PhysRevLett.102.13550119392367 e) V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156. 10.1021/cr300041223009634
– reference: 47By collaboration with the group of Profs. Kim and Kawai, we also investigated self-assembly of unsubstituted DBA, DBA-OC1 and DBA-OC4 on Au(111) under UHV conditions, where geometry of self-assembly is dominated by epitaxial effect, hydrogen bonding, and/or van der Waals interactions depending on the substituents. a) J.-H. Kim, K. Tahara, J. Jung, S. De Feyter, Y. Tobe, Y. Kim, M. Kawai, J. Phys. Chem. C 2012, 116, 17082. 10.1021/jp3048949 b) J.-H. Kim, J. Jung, K. Tahara, Y. Tobe, Y. Kim, M. Kawai, J. Chem. Phys. 2014, 140, 074709. 10.1063/1.486445824559362
– reference: 23S. Yin, C. Wang, X. Qiu, B. Xu, C. Bai, Surf. Interface Anal. 2001, 32, 248. 10.1002/sia.1047
– reference: 53J. Adisoejoso, K. Tahara, S. Okuhata, S. Lei, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2009, 48, 7353. 10.1002/anie.200900436
– reference: 9a) G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647. 10.1351/pac197127040647 b) G. R. Desiraju, Crystal Engineering: The Design of Organic Solid, Elsevier, Amsterdam, 1989. c) G. R. Desiraju, Angew. Chem., Int. Ed. Engl. 1995, 34, 2311. 10.1002/anie.199523111 d) N. Blagden, R. J. Davey, Cryst. Growth Des. 2003, 3, 873. 10.1021/cg030025k
– reference: 29a) K. Tahara, M. L. Abraham, K. Igawa, K. Katayama, I. M. Oppel, Y. Tobe, Chem. Commun. 2014, 50, 7683. 10.1039/c4cc01576b b) S. Yokoyama, T. Hirose, K. Matsuda, Langmuir 2015, 31, 6404. 10.1021/acs.langmuir.5b0140426005903
– reference: 16a) R. Zacharia, H. Ulbricht, T. Hertel, Phys. Rev. B 2004, 69, 155406. 10.1103/PhysRevB.69.155406 b) K. Kim, K. E. Plass, A. J. Matzger, Langmuir 2003, 19, 7149. 10.1021/la0342621 c) K. Kim, K. E. Plass, A. J. Matzger, J. Am. Chem. Soc. 2005, 127, 4879. 10.1021/ja043028+15796552
– reference: 7a) K. E. Plass, A. L. Grzesiak, A. J. Matzger, Acc. Chem. Res. 2007, 40, 287. 10.1021/ar050015817437327 b) S. Furukawa, S. De Feyter, Top. Curr. Chem. 2009, 287, 87. 10.1007/128_2008_623604443
– reference: 21R. Lazzaroni, A. Calderone, G. Lambin, J. P. Rabe, J. L. Brédas, Synth. Met. 1991, 41, 525. 10.1016/0379-6779(91)91123-R
– reference: 14Y. Yang, C. Wang, Curr. Opin. Colloid Interface Sci. 2009, 14, 135. 10.1016/j.cocis.2008.10.002
– reference: 34a) L. Kampschulte, T. L. Werblowsky, R. S. K. Kishore, M. Schmittel, W. M. Heckl, M. Lackinger, J. Am. Chem. Soc. 2008, 130, 8502. 10.1021/ja801883t18533654 b) R. Gutzler, T. Sirtl, J. F. Dienstmaier, K. Mahata, W. M. Heckel, M. Schmittel, M. Lackinger, J. Am. Chem. Soc. 2010, 132, 5084. 10.1021/ja908919r20235537 c) C. Meier, M. Roos, D. Künzel, A. Breitruck, H. E. Hoster, K. Landfester, A. Gross, R. J. Behm, U. Ziener, J. Phys. Chem. C 2010, 114, 1268. 10.1021/jp910029z d) C.-A. Palma, J. Bjork, M. Bonini, M. S. Dyer, A. Llanes-Pallas, D. Bonifazi, M. Persson, P. Samorì, J. Am. Chem. Soc. 2009, 131, 13062. 10.1021/ja903242819702301
– reference: 5a) J. V. Barth, Annu. Rev. Phys. Chem. 2007, 58, 375. 10.1146/annurev.physchem.56.092503.14125917430091 b) J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness, P. H. Beton, Nature 2003, 424, 1029. 10.1038/nature0191512944962
– reference: 56S. M. Clarke, L. Messe, J. Adams, A. Inaba, T. Arnold, R. K. Thomas, Chem. Phys. Lett. 2003, 373, 480. 10.1016/S0009-2614(03)00637-7
– reference: 25P. Wu, Q. Zeng, S. Xu, C. Wang, S. Yin, C.-L. Bai, ChemPhysChem 2001, 2, 750. 10.1002/1439-7641(20011217)2:12%3C750::AID-CPHC750%3E3.0.CO%3B2-923686927
– reference: 72a) Molecular Devices and Machines, ed. by V. Balzani, M. Venturi, A. Credi, Wiley-VCH, Weinheim, 2003. doi:10.1002/3527601600. 10.1002/3527601600 b) D. Philp, J. F. Stoddart, Angew. Chem., Int. Ed. Engl. 1996, 35, 1154. 10.1002/anie.199611541 c) J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, J. Mater. Chem. 2003, 13, 2661. 10.1039/B304972H d) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813. 10.1126/science.120596222344437
– reference: 10a) P. Samorì, J. Mater. Chem. 2004, 14, 1353. 10.1039/B314626J b) P. Samorì, Chem. Soc. Rev. 2005, 34, 551. 10.1039/b404021j15965537
– reference: 51a) D. Mössinger, J. Hornung, S. Lei, S. De Feyter, S. Höger, Angew. Chem., Int. Ed. 2007, 46, 6802. 10.1002/anie.200701614 b) J. A. Theobald, N. S. Oxtoby, N. R. Champness, P. H. Beton, T. J. S. Dennis, Langmuir 2005, 21, 2038. 10.1021/la047533w15723508 c) X.-H. Kong, K. Deng, Y.-L. Yang, Q.-D. Zeng, C. Wang, J. Phys. Chem. C 2007, 111, 9235. 10.1021/jp070328f
– reference: 68E. Ghijsens, H. Cao, A. Noguchi, O. Ivasenko, Y. Fang, K. Tahara, Y. Tobe, S. De Feyter, Chem. Commun. 2015, 51, 4766. 10.1039/C4CC08826C
– reference: 66K. Tahara, H. Yamaga, E. Ghijsens, K. Inukai, J. Adisoejoso, M. O. Blunt, S. De Feyter, Y. Tobe, Nat. Chem. 2011, 3, 714; 10.1038/nchem.111121860461 See also: K. Tahara, H. Yamaga, E. Ghijsens, K. Inukai, J. Adisoejoso, M. O. Blunt, S. De Feyter, Y. Tobe, Nat. Chem. 2014, 6, 1024. 10.1038/nchem.2098
– reference: 15K. G. Nath, O. Ivasenko, J. A. Miwa, H. Dang, J. D. Wuest, A. Nanci, D. F. Perepichka, F. Rosei, J. Am. Chem. Soc. 2006, 128, 4212. 10.1021/ja060289616568980
– reference: 62For molecular chirality: a) M. Böhringer, W.-D. Schneider, R. Berndt, Angew. Chem., Int. Ed. 2000, 39, 792. 10.1002/(SICI)1521-3773(20000218)39:4%3C792::AID-ANIE792%3E3.0.CO%3B2-2 b) C. B. France, B. A. Parkinson, J. Am. Chem. Soc. 2003, 125, 12712. 10.1021/ja037056o14558811 c) R. Cortés, A. Mascaraque, P. Schmidt-Weber, H. Dil, T. U. Kampen, K. Horn, Nano Lett. 2008, 8, 4162. 10.1021/nl801592c19367879 d) J. Zhang, B. Lin, X. Cui, B. Wang, J. Yang, J. G. Hou, J. Am. Chem. Soc. 2009, 131, 5885. 10.1021/ja900198619338337 e) B. Yang, Y. Wang, H. Cun, S. Du, M. Xu, Y. Wang, K.-H. Ernst, H.-J. Gao, J. Am. Chem. Soc. 2010, 132, 10440. 10.1021/ja102989y20662521 f) T. Tsuya, K. Iritani, K. Tahara, Y. Tobe, T. Iwanaga, S. Toyota, Chem.—Eur. J. 2015, 21, 5520. 10.1002/chem.20140563825688524
– reference: 73K. Tahara, K. Katayama, M. O. Blunt, K. Iritani, S. De Feyter, Y. Tobe, ACS Nano 2014, 8, 8683. 10.1021/nn503815q25089732
– reference: 26K. Tahara, C. A. Johnson, II, T. Fujita, M. Sonoda, F. C. De Schryver, S. De Feyter, M. M. Haley, Y. Tobe, Langmuir 2007, 23, 10190. 10.1021/la701663j17760473
– reference: 12a) K. Tahara, S. Lei, J. Adisoejoso, S. De Feyter, Y. Tobe, Chem. Commun. 2010, 46, 8507. 10.1039/c0cc02780d b) S. Lei, K. Tahara, J. Adisoejoso, T. Balandina, Y. Tobe, S. De Feyter, CrystEngComm 2010, 12, 3369. 10.1039/c0ce00282h
– reference: 28a) F. Charra, J. Cousty, Phys. Rev. Lett. 1998, 80, 1682. 10.1103/PhysRevLett.80.1682 b) S. Xu, Q. Zeng, J. Lu, C. Wang, L. Wan, C.-L. Bai, Surf. Sci. 2003, 538, L451. 10.1016/S0039-6028(03)00698-8 c) C. Arrigoni, G. Schull, D. Bléger, L. Douillard, C. Fiorini-Debuisschert, F. Mathevet, D. Kreher, A.-J. Attias, F. Charra, J. Phys. Chem. Lett. 2010, 1, 190. 10.1021/jz900146f
– reference: 77K. Tahara, K. Nakatani, K. Iritani, S. De Feyter, Y. Tobe, ACS Nano 2016, 10, 2113. 10.1021/acsnano.5b0648326838957
– reference: 31K. Tahara, S. Lei, D. Mössinger, H. Kozuma, K. Inukai, M. Van der Auweraer, F. C. De Schryver, S. Höger, Y. Tobe, S. De Feyter, Chem. Commun. 2008, 44, 3897. 10.1039/b806444j
– reference: 1S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem., Int. Ed. 2007, 46, 4832. 10.1002/anie.200604203
– reference: 19a) L. M. A. Perdigão, A. Saywell, G. N. Fontes, P. A. Staniec, G. Goretzki, A. G. Phillips, N. R. Champness, P. H. Beton, Chem.—Eur. J. 2008, 14, 7600. 10.1002/chem.20080047618666294 b) A. G. Phillips, L. M. A. Perdigão, P. H. Beton, N. R. Champness, Chem. Commun. 2010, 46, 2775. 10.1039/b926824c c) M. T. Räisänen, A. G. Slater (née Phillips), N. R. Champness, M. Buck, Chem. Sci. 2012, 3, 84. 10.1039/C1SC00543J
– reference: 58a) H. Spillmann, A. Dmitriev, N. Lin, P. Messina, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2003, 125, 10725. 10.1021/ja036235312940758 b) W. Xiao, X. Feng, P. Ruffieux, O. Gröning, K. Müllen, R. Fasel, J. Am. Chem. Soc. 2008, 130, 8911. c) J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, L.-J. Wan, J. Am. Chem. Soc. 2011, 133, 21010. 10.1021/ja209469d22106949 d) S.-S. Jester, E. Sigmund, L. M. Röck, S. Höger, Angew. Chem., Int. Ed. 2012, 51, 8555. 10.1002/anie.201204006
– reference: 63For supramolecular chirality: a) F. Vidal, E. Delvigne, S. Stepanow, N. Lin, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2005, 127, 10101. 10.1021/ja052504916011376 b) M. Schöck, R. Otero, S. Stojkovic, F. Hümmelink, A. Gourdon, E. Lægsgaard, I. Stensgaard, C. Joachim, F. Besenbacher, J. Phys. Chem. B 2006, 110, 12835. 10.1021/jp061943716805577 c) S. Weigelt, C. Busse, L. Petersen, E. Rauls, B. Hammer, K. V. Gothelf, F. Besenbacher, T. R. Linderoth, Nat. Mater. 2006, 5, 112. 10.1038/nmat155816415876 d) P. Donovan, A. Robin, M. S. Dyer, M. Persson, R. Raval, Chem.—Eur. J. 2010, 16, 11641. 10.1002/chem.20100177620853297
– reference: 64For chirality induction: a) M. Parschau, S. Romer, K.-H. Ernst, J. Am. Chem. Soc. 2004, 126, 15398. 10.1021/ja044136z15563164 b) R. Fasel, M. Parschau, K.-H. Ernst, Nature 2006, 439, 449. 10.1038/nature0441916437111 c) S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, R. Raval, Nat. Chem. 2009, 1, 409. 10.1038/nchem.29521378896 d) F. Masini, N. Kalashnyk, M. M. Knudsen, J. R. Cramer, E. Lægsgaard, F. Besenbacher, K. V. Gothelf, T. R. Linderoth, J. Am. Chem. Soc. 2011, 133, 13910. 10.1021/ja205998c21830788
– reference: 39a) A. Stabel, R. Heinz, F. C. De Schryver, J. P. Rabe, J. Phys. Chem. 1995, 99, 505. 10.1021/j100002a009 b) M. Lackinger, S. Griessl, L. Kampschulte, F. Jamitzky, W. M. Heckl, Small 2005, 1, 532. 10.1002/smll.20040007817193483
– reference: 22K. Tahara, S. Okuhata, J. Adisoejoso, S. Lei, T. Fujita, S. De Feyter, Y. Tobe, J. Am. Chem. Soc. 2009, 131, 17583. 10.1021/ja904481j19908882
– reference: 67We also found chirality induction of the porous networks of DBAs by using chiral solvents: I. Destoop, E. Ghijsens, K. Katayama, K. Tahara, K. S. Mali, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2012, 134, 19568. 10.1021/ja309673t23167496
– reference: 78a) J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Angew. Chem., Int. Ed. 2009, 48, 1030. 10.1002/anie.200801863 b) X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Adv. Mater. 2015, 27, 403. 10.1002/adma.20140185725155302 c) Q. Fan, J. M. Gottfried, J. Zhu, Acc. Chem. Res. 2015, 48, 2484. 10.1021/acs.accounts.5b0016826194462 d) P. Payamyar, B. T. King, H. C. Öttinger, A. D. Schlüter, Chem. Commun. 2016, 52, 18. 10.1039/C5CC07381B
– reference: 43a) Q. H. Wang, M. C. Hersam, Nano Lett. 2011, 11, 589. 10.1021/nl103590j21166423 b) A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner, S. Gsell, M. Fischer, M. Schreck, J. Osterwalder, T. Greber, S. Berner, N. R. Champness, P. H. Beton, Angew. Chem., Int. Ed. 2010, 49, 1794. 10.1002/anie.200905503 c) K. Xiao, W. Deng, J. K. Keum, M. Yoon, I. V. Vlassiouk, K. W. Clark, A.-P. Li, I. I. Kravchenko, G. Gu, E. A. Payzant, B. G. Sumpter, S. C. Smith, J. F. Browning, D. B. Geohegan, J. Am. Chem. Soc. 2013, 135, 3680. 10.1021/ja312509623368998 d) Y. Ogawa, T. Niu, S. L. Wong, M. Tsuji, A. T. S. Wee, W. Chen, H. Ago, J. Phys. Chem. C 2013, 117, 21849. 10.1021/jp406681j e) P. Järvinen, S. K. Hämäläinen, K. Banerjee, P. Häkkinen, M. Ijäs, A. Harju, P. Liljeroth, Nano Lett. 2013, 13, 3199. 10.1021/nl401265f23786613
– reference: 70Y. Fang, E. Ghijsens, O. Ivasenko, H. Cao, A. Noguchi, K. S. Mali, K. Tahara, Y. Tobe, S. De Feyter, Nat. Chem. 2016, 8, 711. 10.1038/nchem.251427325099
– reference: 8a) J. A. A. W. Elemans, S. Lei, S. De Feyter, Angew. Chem., Int. Ed. 2009, 48, 7298. 10.1002/anie.200806339 b) D. Bonifazi, S. Mohnani, A. Llanes-Pallas, Chem.—Eur. J. 2009, 15, 7004. 10.1002/chem.20090090019569139 c) X. Ma, Y. Yang, K. Deng, Q. Zeng, K. Zhao, C. Wang, C. Bai, J. Mater. Chem. 2008, 18, 2074. 10.1039/b713426f d) T. Kudernac, S. Lei, J. A. A. W. Elemans, S. De Feyter, Chem. Soc. Rev. 2009, 38, 402. 10.1039/B708902N19169457 e) M. Surin, P. Samorì, Small 2007, 3, 190. 10.1002/smll.20060055017191290
– reference: 75W. R. Browne, B. L. Feringa, Annu. Rev. Phys. Chem. 2009, 60, 407. 10.1146/annurev.physchem.040808.09042318999995
– reference: 46T. Balandina, K. Tahara, N. Sändig, M. Blunt, J. Adisoejoso, S. Lei, F. Zerbetto, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 8381. 10.1021/nn303144r22954382
– reference: 71a) J.-M. Lehn, Supramolecular Chemistry, Wiley-VCH, Weinheim, 1995. doi:10.1002/3527607439. 10.1002/3527607439 b) F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681. 10.1021/cr960389211851463 c) E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, Sausalito, 2006, Chap. 4.
– reference: 44B. Li, K. Tahara, J. Adisoejoso, W. Vanderlinden, K. S. Mali, S. De Gendt, Y. Tobe, S. De Feyter, ACS Nano 2013, 7, 10764. 10.1021/nn403904724206021
– reference: 17a) X. Zang, Q. Zeng, C. Wang, Sci. China: Chem. 2014, 57, 13. 10.1007/s11426-013-4975-9 b) G. Schull, L. Douillard, C. Fiorini-Debuisschert, F. Charra, F. Mathevet, D. Kreher, A.-J. Attias, Nano Lett. 2006, 6, 1360. 10.1021/nl060292n16834411 c) G. Schull, L. Douillard, C. Fiorini-Debuisschert, F. Charra, F. Mathevet, D. Kreher, A.-J. Attias, Adv. Mater. 2006, 18, 2954. 10.1002/adma.200600683 d) S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, K. Kern, Nat. Mater. 2004, 3, 229. 10.1038/nmat108815004551 e) S. J. H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, W. M. Heckl, Langmuir 2004, 20, 9403. 10.1021/la049441c15461536 f) G. Eder, S. Kloft, N. Martsinovich, K. Mahata, M. Schmittel, W. M. Heckl, M. Lackinger, Langmuir 2011, 27, 13563. 10.1021/la203054k21951230
– reference: 2P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133. 10.1021/cr970028211851487
– reference: 35C.-A. Palma, M. Bonini, T. Breiner, P. Samorì, Adv. Mater. 2009, 21, 1383. 10.1002/adma.200802068
– reference: 57E. Ghijsens, O. Ivasenko, K. Tahara, H. Yamaga, S. Itano, T. Balandina, Y. Tobe, S. De Feyter, ACS Nano 2013, 7, 8031. 10.1021/nn403203623964989
– reference: 6a) L. C. Giancarlo, G. W. Flynn, Acc. Chem. Res. 2000, 33, 491. 10.1021/ar970261m10913238 b) P. Samorì, J. P. Rabe, J. Phys.: Condens. Matter 2002, 14, 9955. 10.1088/0953-8984/14/42/309 c) S. De Feyter, F. C. De Schryver, J. Phys. Chem. B 2005, 109, 4290. 10.1021/jp045298k16851494 d) L.-J. Wan, Acc. Chem. Res. 2006, 39, 334. 10.1021/ar050192916700532 e) B. A. Hermann, L. J. Scherer, C. E. Housecroft, E. C. Constable, Adv. Funct. Mater. 2006, 16, 221. 10.1002/adfm.200500264 f) Y. Yang, C. Wang, Chem. Soc. Rev. 2009, 38, 2576. 10.1039/b807500j19690738
– reference: 52S. Lei, M. Surin, K. Tahara, J. Adisoejoso, R. Lazzaroni, Y. Tobe, S. De Feyter, Nano Lett. 2008, 8, 2541. 10.1021/nl801662618630887
– reference: 55a) L. Messe, S. M. Clarke, C. Dong, R. K. Thomas, A. Inaba, M. D. Alba, M. A. Castro, Langmuir 2002, 18, 9429. 10.1021/la0205755 b) G. Wang, S. Lei, S. De Feyter, R. Feldman, J. E. Parker, S. M. Clarke, Langmuir 2008, 24, 2501. 10.1021/la703240y18237218
– reference: 18a) Y. Xue, M. B. Zimmt, J. Am. Chem. Soc. 2012, 134, 4503. b) Y.-T. Shen, M. Li, Y.-Y. Guo, K. Deng, Q.-D. Zeng, C. Wang, Chem.—Asian J. 2010, 5, 787. 10.1002/asia.20090043920143371
– reference: 49X. Feng, J. Wu, M. Ai, W. Pisula, L. Zhi, J. P. Rabe, K. Müllen, Angew. Chem., Int. Ed. 2007, 46, 3033. 10.1002/anie.200605224
– reference: 65a) M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, S. Lifson, Science 1995, 268, 1860. 10.1126/science.268.5219.186017797527 b) A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer, Angew. Chem., Int. Ed. Engl. 1997, 36, 2648. 10.1002/anie.199726481 c) J. H. K. K. Hirschberg, L. Brunsveld, A. Ramzi, J. A. J. M. Vekemans, R. P. Sijbesma, E. W. Maijer, Nature 2000, 407, 170.
– reference: 40M. Mammen, E. I. Shakhnovich, J. M. Deutch, G. M. Whitesides, J. Org. Chem. 1998, 63, 3821. 10.1021/jo970944f
– reference: 48S. Furukawa, K. Tahara, F. C. De Schryver, M. Van der Auweraer, Y. Tobe, S. De Feyter, Angew. Chem., Int. Ed. 2007, 46, 2831. 10.1002/anie.200604782
– reference: 60J. Adisoejoso, K. Tahara, S. Lei, P. Szabelski, W. Rżysko, K. Inukai, M. O. Blunt, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 897. 10.1021/nn204398m22206261
– reference: 76K. Tahara, K. Inukai, J. Adisoejoso, H. Yamaga, T. Balandina, M. O. Blunt, S. De Feyter, Y. Tobe, Angew. Chem., Int. Ed. 2013, 52, 8373. 10.1002/anie.201303745
– reference: 32K. Tahara, J. Adisoejoso, K. Inukai, S. Lei, A. Noguchi, B. Li, W. Vanderlinden, S. De Feyter, Y. Tobe, Chem. Commun. 2014, 50, 2831. 10.1039/c3cc47949h
– reference: 69E. Ghijsens, J. Adisoejoso, H. Van Gorp, I. Destoop, A. Noguchi, O. Ivasenko, K. Tahara, M. Van der Auweraer, Y. Tobe, S. De Feyter, J. Chem. Phys. 2015, 142, 101932. 10.1063/1.491365725770521
– reference: 11J. P. Rabe, S. Buchholz, Science 1991, 253, 424. 10.1126/science.253.5018.42417746397
– reference: 37a) A. Bellec, C. Arrigoni, G. Schull, L. Douillard, C. Fiorini-Debuisschert, F. Mathevet, D. Kreher, A.-J. Attias, F. Charra, J. Chem. Phys. 2011, 134, 124702. 10.1063/1.356913221456690 b) S. Ahn, A. J. Matzger, J. Am. Chem. Soc. 2010, 132, 11364. 10.1021/ja105039s20698703 c) L. Kampschulte, T. L. Werblowsky, R. S. Kishore, M. Schmittel, W. M. Heckl, M. Lackinger, J. Am. Chem. Soc. 2008, 130, 8502. 10.1021/ja801883t18533654
– reference: 36a) C. Marie, F. Silly, L. Tortech, K. Müllen, D. Fichou, ACS Nano 2010, 4, 1288. 10.1021/nn901717k20155970 b) J. Saiz-Poseu, J. Faraudo, A. Figueras, R. Alibes, F. Busqué, D. Ruiz-Molina, Chem.—Eur. J. 2012, 18, 3056. 10.1002/chem.20110194022290796 c) Y. Li, C. Liu, Y. Xie, X. Li, X. Li, X. Fan, K. Deng, Q. Zeng, C. Wang, Phys. Chem. Chem. Phys. 2013, 15, 125. 10.1039/C2CP43244G23147835 d) C.-J. Li, Q.-D. Zeng, Y.-H. Liu, L.-J. Wan, C. Wang, C.-R. Wang, C.-L. Bai, ChemPhysChem 2003, 4, 857. 10.1002/cphc.20020049212961984 e) Y.-T. Shen, N. Zhu, X.-M. Zhang, K. Deng, W. Feng, Q. Yan, S. Lei, D. Zhao, Q.-D. Zeng, C. Wang, Chem.—Eur. J. 2011, 17, 7061. 10.1002/chem.20100358921557347 f) J. Adisoejoso, K. Tahara, S. Lei, P. Szabelski, W. Rżysko, K. Inukai, M. O. Blunt, Y. Tobe, S. De Feyter, ACS Nano 2012, 6, 897. 10.1021/nn204398m22206261 g) A. Jahanbekam, S. Vorpahl, U. Mazur, K. W. Hipps, J. Phys. Chem. C 2013, 117, 2914. 10.1021/jp3115435
– reference: 50S. Lei, K. Tahara, X. Feng, S. Furukawa, F. C. De Schryver, K. Müllen, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2008, 130, 7119. 10.1021/ja800801e18465857
– reference: 54a) L. Ramin, A. Jabbarzadeh, Langmuir 2011, 27, 9748. 10.1021/la201467b21749126 b) X. Liu, T. Wang, M. Liu, Langmuir 2012, 28, 3474. 10.1021/la204653b22272776 c) N. Nerngchamnong, L. Yuan, D.-C. Qi, J. Li, D. Thompson, C. A. Nijhuis, Nat. Nanotechnol. 2013, 8, 113. 10.1038/nnano.2012.23823292010 d) F. Tao, S. L. Bernasek, Chem. Rev. 2007, 107, 1408. 10.1021/cr050258d17439290 e) L. Xu, X. Miao, B. Zha, W. Deng, Chem.—Asian J. 2013, 8, 926. 10.1002/asia.20120122923447489
– reference: 74M. P. Krafft, J. G. Riess, Chem. Rev. 2009, 109, 1714. 10.1021/cr800260k19296687
– volume: 49
  start-page: 1794
  year: 2010
  ident: 2024012219414320200_r43
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905503
– volume: 52
  start-page: 8373
  year: 2013
  ident: 2024012219414320200_r76
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201303745
– volume: 19
  start-page: 7149
  year: 2003
  ident: 2024012219414320200_r16
  publication-title: Langmuir
  doi: 10.1021/la0342621
– volume: 27
  start-page: 13563
  year: 2011
  ident: 2024012219414320200_r17
  publication-title: Langmuir
  doi: 10.1021/la203054k
– volume: 7
  start-page: 10764
  year: 2013
  ident: 2024012219414320200_r44
  publication-title: ACS Nano
  doi: 10.1021/nn4039047
– ident: 2024012219414320200_r72
  doi: 10.1002/3527601600
– volume: 18
  start-page: 2954
  year: 2006
  ident: 2024012219414320200_r17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600683
– volume: 128
  start-page: 4212
  year: 2006
  ident: 2024012219414320200_r15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0602896
– volume: 40
  start-page: 287
  year: 2007
  ident: 2024012219414320200_r7
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0500158
– volume: 5
  start-page: 787
  year: 2010
  ident: 2024012219414320200_r18
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.200900439
– volume: 437
  start-page: 671
  year: 2005
  ident: 2024012219414320200_r4
  publication-title: Nature
  doi: 10.1038/nature04166
– volume: 3
  start-page: 84
  year: 2012
  ident: 2024012219414320200_r19
  publication-title: Chem. Sci.
  doi: 10.1039/C1SC00543J
– volume: 14
  start-page: 135
  year: 2009
  ident: 2024012219414320200_r14
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2008.10.002
– volume: 107
  start-page: 1324
  year: 2007
  ident: 2024012219414320200_r3
  publication-title: Chem. Rev.
  doi: 10.1021/cr050149z
– volume: 3
  start-page: 873
  year: 2003
  ident: 2024012219414320200_r9
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg030025k
– volume: 114
  start-page: 1268
  year: 2010
  ident: 2024012219414320200_r34
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp910029z
– volume: 24
  start-page: 2501
  year: 2008
  ident: 2024012219414320200_r55
  publication-title: Langmuir
  doi: 10.1021/la703240y
– volume: 50
  start-page: 2831
  year: 2014
  ident: 2024012219414320200_r32
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc47949h
– volume: 112
  start-page: 6156
  year: 2012
  ident: 2024012219414320200_r42
  publication-title: Chem. Rev.
  doi: 10.1021/cr3000412
– volume: 18
  start-page: 3113
  year: 2002
  ident: 2024012219414320200_r45
  publication-title: Langmuir
  doi: 10.1021/la010869a
– volume: 6
  start-page: 1360
  year: 2006
  ident: 2024012219414320200_r17
  publication-title: Nano Lett.
  doi: 10.1021/nl060292n
– ident: 2024012219414320200_r9
– volume: 48
  start-page: 2484
  year: 2015
  ident: 2024012219414320200_r78
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00168
– volume: 23
  start-page: 10190
  year: 2007
  ident: 2024012219414320200_r26
  publication-title: Langmuir
  doi: 10.1021/la701663j
– volume: 130
  start-page: 7119
  year: 2008
  ident: 2024012219414320200_r50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800801e
– volume: 46
  start-page: 6802
  year: 2007
  ident: 2024012219414320200_r51
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701614
– volume: 32
  start-page: 248
  year: 2001
  ident: 2024012219414320200_r23
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1047
– volume: 268
  start-page: 1860
  year: 1995
  ident: 2024012219414320200_r65
  publication-title: Science
  doi: 10.1126/science.268.5219.1860
– volume: 68
  start-page: 115410
  year: 2003
  ident: 2024012219414320200_r33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.115410
– volume: 132
  start-page: 6923
  year: 2010
  ident: 2024012219414320200_r3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101944r
– volume: 125
  start-page: 13682
  year: 2003
  ident: 2024012219414320200_r45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0375737
– volume: 31
  start-page: 7032
  year: 2015
  ident: 2024012219414320200_r41
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01507
– volume: 287
  start-page: 87
  year: 2009
  ident: 2024012219414320200_r7
  publication-title: Top. Curr. Chem.
  doi: 10.1007/128_2008_6
– volume: 14
  start-page: 7600
  year: 2008
  ident: 2024012219414320200_r19
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200800476
– volume: 8
  start-page: 113
  year: 2013
  ident: 2024012219414320200_r54
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.238
– volume: 117
  start-page: 2914
  year: 2013
  ident: 2024012219414320200_r36
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3115435
– volume: 3
  start-page: 190
  year: 2007
  ident: 2024012219414320200_r8
  publication-title: Small
  doi: 10.1002/smll.200600550
– volume: 1
  start-page: 532
  year: 2005
  ident: 2024012219414320200_r39
  publication-title: Small
  doi: 10.1002/smll.200400078
– volume: 11
  start-page: 2640
  year: 2011
  ident: 2024012219414320200_r42
  publication-title: Nano Lett.
  doi: 10.1021/nl200631m
– volume: 126
  start-page: 15398
  year: 2004
  ident: 2024012219414320200_r64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044136z
– volume: 41
  start-page: 525
  year: 1991
  ident: 2024012219414320200_r21
  publication-title: Synth. Met.
  doi: 10.1016/0379-6779(91)91123-R
– volume: 48
  start-page: 1030
  year: 2009
  ident: 2024012219414320200_r78
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801863
– volume: 27
  start-page: 9748
  year: 2011
  ident: 2024012219414320200_r54
  publication-title: Langmuir
  doi: 10.1021/la201467b
– volume: 125
  start-page: 10725
  year: 2003
  ident: 2024012219414320200_r58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0362353
– volume: 1
  start-page: 409
  year: 2009
  ident: 2024012219414320200_r64
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.295
– volume: 27
  start-page: 647
  year: 1971
  ident: 2024012219414320200_r9
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac197127040647
– volume: 97
  start-page: 1681
  year: 1997
  ident: 2024012219414320200_r71
  publication-title: Chem. Rev.
  doi: 10.1021/cr9603892
– volume: 38
  start-page: 402
  year: 2009
  ident: 2024012219414320200_r8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B708902N
– volume: 10
  start-page: 2113
  year: 2016
  ident: 2024012219414320200_r77
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06483
– volume: 8
  start-page: 926
  year: 2013
  ident: 2024012219414320200_r54
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.201201229
– volume: 142
  start-page: 101932
  year: 2015
  ident: 2024012219414320200_r69
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4913657
– volume: 17
  start-page: 7061
  year: 2011
  ident: 2024012219414320200_r36
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201003589
– volume: 130
  start-page: 8502
  year: 2008
  ident: 2024012219414320200_r34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801883t
– volume: 51
  start-page: 8555
  year: 2012
  ident: 2024012219414320200_r58
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204006
– volume: 1
  start-page: 190
  year: 2010
  ident: 2024012219414320200_r28
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900146f
– volume: 69
  start-page: 155406
  year: 2004
  ident: 2024012219414320200_r16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.155406
– volume: 128
  start-page: 3502
  year: 2006
  ident: 2024012219414320200_r20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0583362
– volume: 15
  start-page: 125
  year: 2013
  ident: 2024012219414320200_r36
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP43244G
– volume: 11
  start-page: 4759
  year: 2011
  ident: 2024012219414320200_r42
  publication-title: Nano Lett.
  doi: 10.1021/nl2025739
– volume: 130
  start-page: 8911
  year: 2008
  ident: 2024012219414320200_r58
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 124702
  year: 2011
  ident: 2024012219414320200_r37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3569132
– volume: 131
  start-page: 17583
  year: 2009
  ident: 2024012219414320200_r22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904481j
– volume: 13
  start-page: 3199
  year: 2013
  ident: 2024012219414320200_r43
  publication-title: Nano Lett.
  doi: 10.1021/nl401265f
– volume: 75
  start-page: 3154
  year: 1995
  ident: 2024012219414320200_r24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.3154
– volume: 3
  start-page: 714
  year: 2011
  ident: 2024012219414320200_r66
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1111
– volume: 33
  start-page: 491
  year: 2000
  ident: 2024012219414320200_r6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar970261m
– volume: 47
  start-page: 2964
  year: 2008
  ident: 2024012219414320200_r30
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705322
– volume: 127
  start-page: 10101
  year: 2005
  ident: 2024012219414320200_r33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0525049
– volume: 8
  start-page: 711
  year: 2016
  ident: 2024012219414320200_r70
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2514
– volume: 133
  start-page: 21010
  year: 2011
  ident: 2024012219414320200_r58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209469d
– volume: 6
  start-page: 1024
  year: 2014
  ident: 2024012219414320200_r66
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2098
– volume: 57
  start-page: 13
  year: 2014
  ident: 2024012219414320200_r17
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-013-4975-9
– volume: 131
  start-page: 5885
  year: 2009
  ident: 2024012219414320200_r62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9001986
– volume: 18
  start-page: 9429
  year: 2002
  ident: 2024012219414320200_r55
  publication-title: Langmuir
  doi: 10.1021/la0205755
– volume: 132
  start-page: 10440
  year: 2010
  ident: 2024012219414320200_r62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102989y
– volume: 127
  start-page: 4879
  year: 2005
  ident: 2024012219414320200_r16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043028+
– volume: 439
  start-page: 449
  year: 2006
  ident: 2024012219414320200_r64
  publication-title: Nature
  doi: 10.1038/nature04419
– volume: 3
  start-page: 229
  year: 2004
  ident: 2024012219414320200_r17
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1088
– volume: 8
  start-page: 2933
  year: 2006
  ident: 2024012219414320200_r13
  publication-title: Org. Lett.
  doi: 10.1021/ol060781u
– volume: 21
  start-page: 2038
  year: 2005
  ident: 2024012219414320200_r51
  publication-title: Langmuir
  doi: 10.1021/la047533w
– ident: 2024012219414320200_r71
  doi: 10.1002/3527607439
– volume: 102
  start-page: 135501
  year: 2009
  ident: 2024012219414320200_r42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.135501
– volume: 134
  start-page: 19568
  year: 2012
  ident: 2024012219414320200_r67
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309673t
– volume: 223
  start-page: 37
  year: 2009
  ident: 2024012219414320200_r61
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.2009.6023
– volume: 111
  start-page: 9235
  year: 2007
  ident: 2024012219414320200_r51
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp070328f
– volume: 34
  start-page: 551
  year: 2005
  ident: 2024012219414320200_r10
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b404021j
– volume: 2
  start-page: 750
  year: 2001
  ident: 2024012219414320200_r25
  publication-title: ChemPhysChem
  doi: 10.1002/1439-7641(20011217)2:12%3C750::AID-CPHC750%3E3.0.CO%3B2-9
– volume: 11
  start-page: 589
  year: 2011
  ident: 2024012219414320200_r43
  publication-title: Nano Lett.
  doi: 10.1021/nl103590j
– volume: 6
  start-page: 897
  year: 2012
  ident: 2024012219414320200_r60
  publication-title: ACS Nano
  doi: 10.1021/nn204398m
– volume: 16
  start-page: 221
  year: 2006
  ident: 2024012219414320200_r6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500264
– volume: 36
  start-page: 2648
  year: 1997
  ident: 2024012219414320200_r65
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199726481
– volume: 134
  start-page: 4503
  year: 2012
  ident: 2024012219414320200_r18
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 13062
  year: 2009
  ident: 2024012219414320200_r34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9032428
– volume: 27
  start-page: 403
  year: 2015
  ident: 2024012219414320200_r78
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401857
– volume: 39
  start-page: 334
  year: 2006
  ident: 2024012219414320200_r6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0501929
– volume: 28
  start-page: 3474
  year: 2012
  ident: 2024012219414320200_r54
  publication-title: Langmuir
  doi: 10.1021/la204653b
– volume: 16
  start-page: 11641
  year: 2010
  ident: 2024012219414320200_r63
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201001776
– volume: 31
  start-page: 6404
  year: 2015
  ident: 2024012219414320200_r29
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01404
– volume: 35
  start-page: 1154
  year: 1996
  ident: 2024012219414320200_r72
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199611541
– volume: 407
  start-page: 170
  year: 2000
  ident: 2024012219414320200_r65
  publication-title: Nature
  doi: 10.1038/35025027
– volume: 140
  start-page: 074709
  year: 2014
  ident: 2024012219414320200_r47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4864458
– volume: 46
  start-page: 2775
  year: 2010
  ident: 2024012219414320200_r19
  publication-title: Chem. Commun.
  doi: 10.1039/b926824c
– volume: 38
  start-page: 2576
  year: 2009
  ident: 2024012219414320200_r6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807500j
– volume: 8
  start-page: 4162
  year: 2008
  ident: 2024012219414320200_r62
  publication-title: Nano Lett.
  doi: 10.1021/nl801592c
– volume: 107
  start-page: 1408
  year: 2007
  ident: 2024012219414320200_r54
  publication-title: Chem. Rev.
  doi: 10.1021/cr050258d
– volume: 130
  start-page: 14339
  year: 2008
  ident: 2024012219414320200_r13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804604y
– volume: 46
  start-page: 3033
  year: 2007
  ident: 2024012219414320200_r49
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200605224
– volume: 58
  start-page: 375
  year: 2007
  ident: 2024012219414320200_r5
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.56.092503.141259
– volume: 46
  start-page: 8507
  year: 2010
  ident: 2024012219414320200_r12
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02780d
– volume: 18
  start-page: 3056
  year: 2012
  ident: 2024012219414320200_r36
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201101940
– volume: 135
  start-page: 3680
  year: 2013
  ident: 2024012219414320200_r43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3125096
– volume: 48
  start-page: 7298
  year: 2009
  ident: 2024012219414320200_r8
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200806339
– volume: 5
  start-page: 112
  year: 2006
  ident: 2024012219414320200_r63
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1558
– volume: 131
  start-page: 15655
  year: 2009
  ident: 2024012219414320200_r45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901718q
– volume: 15
  start-page: 7004
  year: 2009
  ident: 2024012219414320200_r8
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200900900
– volume: 12
  start-page: 3369
  year: 2010
  ident: 2024012219414320200_r12
  publication-title: CrystEngComm
  doi: 10.1039/c0ce00282h
– volume: 52
  start-page: 18
  year: 2016
  ident: 2024012219414320200_r78
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07381B
– volume: 15
  start-page: 11748
  year: 2013
  ident: 2024012219414320200_r27
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51413g
– volume: 116
  start-page: 17082
  year: 2012
  ident: 2024012219414320200_r47
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3048949
– volume: 424
  start-page: 1029
  year: 2003
  ident: 2024012219414320200_r5
  publication-title: Nature
  doi: 10.1038/nature01915
– volume: 20
  start-page: 9403
  year: 2004
  ident: 2024012219414320200_r17
  publication-title: Langmuir
  doi: 10.1021/la049441c
– volume: 44
  start-page: 3897
  year: 2008
  ident: 2024012219414320200_r31
  publication-title: Chem. Commun.
  doi: 10.1039/b806444j
– volume: 4
  start-page: 1288
  year: 2010
  ident: 2024012219414320200_r36
  publication-title: ACS Nano
  doi: 10.1021/nn901717k
– volume: 21
  start-page: 1383
  year: 2009
  ident: 2024012219414320200_r35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802068
– volume: 373
  start-page: 480
  year: 2003
  ident: 2024012219414320200_r56
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00637-7
– volume: 335
  start-page: 813
  year: 2012
  ident: 2024012219414320200_r72
  publication-title: Science
  doi: 10.1126/science.1205962
– ident: 2024012219414320200_r71
– volume: 97
  start-page: 3133
  year: 1997
  ident: 2024012219414320200_r2
  publication-title: Chem. Rev.
  doi: 10.1021/cr9700282
– volume: 9
  start-page: 5672
  year: 2007
  ident: 2024012219414320200_r33
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b708578h
– volume: 110
  start-page: 12835
  year: 2006
  ident: 2024012219414320200_r63
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0619437
– volume: 57
  start-page: 28
  year: 1990
  ident: 2024012219414320200_r24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.104234
– volume: 48
  start-page: 7353
  year: 2009
  ident: 2024012219414320200_r53
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900436
– volume: 33
  start-page: 972
  year: 2004
  ident: 2024012219414320200_r13
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2004.972
– volume: 60
  start-page: 407
  year: 2009
  ident: 2024012219414320200_r75
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.040808.090423
– volume: 63
  start-page: 3821
  year: 1998
  ident: 2024012219414320200_r40
  publication-title: J. Org. Chem.
  doi: 10.1021/jo970944f
– volume: 7
  start-page: 8031
  year: 2013
  ident: 2024012219414320200_r57
  publication-title: ACS Nano
  doi: 10.1021/nn4032036
– volume: 2
  start-page: 87
  year: 2010
  ident: 2024012219414320200_r4
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.517
– volume: 117
  start-page: 21849
  year: 2013
  ident: 2024012219414320200_r43
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp406681j
– volume: 127
  start-page: 10101
  year: 2005
  ident: 2024012219414320200_r63
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0525049
– volume: 51
  start-page: 4766
  year: 2015
  ident: 2024012219414320200_r68
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08826C
– volume: 253
  start-page: 424
  year: 1991
  ident: 2024012219414320200_r11
  publication-title: Science
  doi: 10.1126/science.253.5018.424
– volume: 128
  start-page: 16613
  year: 2006
  ident: 2024012219414320200_r20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0655441
– volume: 39
  start-page: 792
  year: 2000
  ident: 2024012219414320200_r62
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(20000218)39:4%3C792::AID-ANIE792%3E3.0.CO%3B2-2
– volume: 6
  start-page: 8381
  year: 2012
  ident: 2024012219414320200_r46
  publication-title: ACS Nano
  doi: 10.1021/nn303144r
– volume: 21
  start-page: 5520
  year: 2015
  ident: 2024012219414320200_r62
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201405638
– volume: 133
  start-page: 13910
  year: 2011
  ident: 2024012219414320200_r64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205998c
– volume: 125
  start-page: 12712
  year: 2003
  ident: 2024012219414320200_r62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037056o
– volume: 8
  start-page: 8683
  year: 2014
  ident: 2024012219414320200_r73
  publication-title: ACS Nano
  doi: 10.1021/nn503815q
– volume: 109
  start-page: 1714
  year: 2009
  ident: 2024012219414320200_r74
  publication-title: Chem. Rev.
  doi: 10.1021/cr800260k
– volume: 44
  start-page: 7394
  year: 2005
  ident: 2024012219414320200_r33
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200502316
– volume: 14
  start-page: 1353
  year: 2004
  ident: 2024012219414320200_r10
  publication-title: J. Mater. Chem.
  doi: 10.1039/B314626J
– volume: 14
  start-page: 9955
  year: 2002
  ident: 2024012219414320200_r6
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/42/309
– volume: 5
  start-page: 4145
  year: 2011
  ident: 2024012219414320200_r59
  publication-title: ACS Nano
  doi: 10.1021/nn200874k
– volume: 5
  start-page: 394
  year: 2011
  ident: 2024012219414320200_r42
  publication-title: ACS Nano
  doi: 10.1021/nn102211n
– volume: 4
  start-page: 857
  year: 2003
  ident: 2024012219414320200_r36
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200200492
– volume: 46
  start-page: 2831
  year: 2007
  ident: 2024012219414320200_r48
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604782
– volume: 135
  start-page: 12068
  year: 2013
  ident: 2024012219414320200_r38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405585s
– volume: 538
  start-page: L451
  year: 2003
  ident: 2024012219414320200_r28
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(03)00698-8
– volume: 38
  start-page: 707
  year: 2009
  ident: 2024012219414320200_r61
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b800411k
– volume: 132
  start-page: 5084
  year: 2010
  ident: 2024012219414320200_r34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908919r
– volume: 8
  start-page: 2541
  year: 2008
  ident: 2024012219414320200_r52
  publication-title: Nano Lett.
  doi: 10.1021/nl8016626
– volume: 50
  start-page: 7683
  year: 2014
  ident: 2024012219414320200_r29
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc01576b
– volume: 34
  start-page: 2311
  year: 1995
  ident: 2024012219414320200_r9
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199523111
– volume: 99
  start-page: 505
  year: 1995
  ident: 2024012219414320200_r39
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100002a009
– volume: 132
  start-page: 11364
  year: 2010
  ident: 2024012219414320200_r37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105039s
– volume: 18
  start-page: 2074
  year: 2008
  ident: 2024012219414320200_r8
  publication-title: J. Mater. Chem.
  doi: 10.1039/b713426f
– volume: 6
  start-page: 897
  year: 2012
  ident: 2024012219414320200_r36
  publication-title: ACS Nano
  doi: 10.1021/nn204398m
– volume: 13
  start-page: 2661
  year: 2003
  ident: 2024012219414320200_r72
  publication-title: J. Mater. Chem.
  doi: 10.1039/B304972H
– volume: 109
  start-page: 4290
  year: 2005
  ident: 2024012219414320200_r6
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp045298k
– volume: 80
  start-page: 1682
  year: 1998
  ident: 2024012219414320200_r28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1682
– volume: 46
  start-page: 4832
  year: 2007
  ident: 2024012219414320200_r1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604203
– volume: 130
  start-page: 8502
  year: 2008
  ident: 2024012219414320200_r37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801883t
SSID ssj0008549
Score 2.4078991
Snippet Supramolecular self-assembly in two-dimensional (2D) spaces on solid surfaces is the subject of intense current interest because of perspectives for various...
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1277
SubjectTerms Adaptive control
Chains
Chirality
Functional groups
Liquid-solid interfaces
Parity
Pore size
Scanning tunneling microscopy
Self-assembly
Solid surfaces
Superlattices
Title Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces
URI http://dx.doi.org/10.1246/bcsj.20160214
https://www.proquest.com/docview/1878768505
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKOAAHBAy0jYF8QFxKusVxsuTYVYxpAg6sk3qLbMeZuoV2kFQanPmn-O94zz-aVGoR7BJF1kvj-H31e7a_9x4hb1gpD0UkD4OjkMmAyzANJJidAAsjiZjrsjDl2z59Tk4v-NkknvR6vzuspUUjB-rn2riSu2gV2kCvGCX7H5pd_ig0wD3oF66gYbj-k46Hhbgx1J9jV9y6fwy26dqV4aw9o_nL9HJa9MfQodmlYZ2O5u7U4ATTYWLs1LC6nt9iomOBlBmkHp7rqgzwSPirrH5gyOPH6beF-cLzeTUt7FZiiYSulXNhl83bUw-W-Qg8OxTaz8A-WyzgIOnaQHWjYH-IvF7TJTMzWcm6sb1Ex6K7cWEjKgc-6O3vr_eTdRawxFY6GWg7P0c8DcCr4t0J3NYg8kANO9NxyFyNGGvawV4na80GM_mSpaqvkOyXYB651j4uWYu4XgLJHOVyL3eP3IeXMCye8WHSsovS2K-87De49K7w-MHKax6RbeWGorYjcYWjsOolrToJxvMZPyGP3ZKFDi3-npKenj0jD0a-UuA2-eVxSD0OqcUhbXFI5yU1OKQtDinikAIOqcchtTikFocUNExXcEhFQy0ODwwKaYvC5-Ti5P14dBq46h6B4ilrgqzMSqU0FjRQrBCZVIViKowlK2TGM64jpoSGBYCQmPWfl1EqmFRZoUrBU8GjF2RrNp_pHUIjED0CmSjSKddphnsKKmaiSMAxK5jYJdG6Qc7dX7nO12p2l7zzOsiVS5iPdVuqTeJvl-I3NlPMJsF9r9BOD1KwnEkK65G9O3X2JXmIt3ZzcJ9sNd8X-hW4y418bYD5B2a-xzw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Building+Blocks+Consisting+of+Rigid+Triangular+Core+and+Flexible+Alkoxy+Chains+for+Self-Assembly+at+Liquid%2FSolid+Interfaces&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.series=The+Chemical+Society+of+Japan+Award+for+Young+Chemists+for+2011&rft.date=2016&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=89&rft.issue=11&rft.spage=1277&rft.epage=1306&rft_id=info:doi/10.1246%2Fbcsj.20160214&rft.externalDocID=10_1246_bcsj_20160214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon