Back to heterotic strings on ALE spaces. Part I. Instantons, 2-groups and T-duality
A bstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator....
Saved in:
Published in | The journal of high energy physics Vol. 2023; no. 1; pp. 176 - 38 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
31.01.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1126-6708 1029-8479 |
DOI | 10.1007/JHEP01(2023)176 |
Cover
Loading…
Abstract | A
bstract
In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic
E
8
×
E
8
five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose. |
---|---|
AbstractList | In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic
E
8
×
E
8
five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose. In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E8 × E8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose. In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose. Abstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose. A bstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose. |
ArticleNumber | 176 |
Author | Oehlmann, Paul-Konstantin Del Zotto, Michele Liu, Muyang |
Author_xml | – sequence: 1 givenname: Michele surname: Del Zotto fullname: Del Zotto, Michele organization: Department of Mathematics, Uppsala University, Department of Physics and Astronomy, Uppsala University – sequence: 2 givenname: Muyang surname: Liu fullname: Liu, Muyang organization: Department of Mathematics, Uppsala University – sequence: 3 givenname: Paul-Konstantin surname: Oehlmann fullname: Oehlmann, Paul-Konstantin email: p.oehlmann@northeastern.edu organization: Department of Physics, Northeastern University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-498106$$DView record from Swedish Publication Index |
BookMark | eNp9kd1rFDEUxYO0YFt99jXgi0Jnm8_N5HGt23ZloQWrryGTubNmXZMxySD9753tFD8K7VMu4ZzfvYdzjA5CDIDQG0pmlBB19ulqeUPoO0YYf0_V_AU6ooTpqhZKH_wzv0THOW8JoZJqcoQ-f7DuOy4Rf4MCKRbvcC7Jh03GMeDFeolzbx3kGb6xqeDVDK9CLjaUGPIpZtUmxaHP2IYW31btYHe-3L1Ch53dZXj98J6gLxfL2_Oran19uTpfrCsnalYqTRunHGuV5HPLac0akHNrgXeatm3ngEoriRZOjgKnO2B12ykuxJhWS3D8BK0mbhvt1vTJ_7DpzkTrzf1HTBsz3uzdDoyCzuqGU964WuiWawEClLBEAdGN5CPrdGLlX9APzX-0j_7r4p42DEbompL5KH87yfsUfw6Qi9nGIYUxrWE1kWOkWvNnVUpRSaTUe9bZpHIp5pyg-7OcErOv1kzVmn21Zqx2dMhHDueLLT6GkqzfPeMjDyH7fcWQ_t7zlOU3kfq1nA |
CitedBy_id | crossref_primary_10_1103_PhysRevD_110_026016 crossref_primary_10_1016_j_physrep_2024_01_007 crossref_primary_10_1007_JHEP11_2024_149 crossref_primary_10_1007_JHEP03_2025_085 crossref_primary_10_1007_JHEP01_2024_167 crossref_primary_10_1007_JHEP03_2025_064 crossref_primary_10_1007_s00220_024_05227_9 crossref_primary_10_1103_PhysRevD_110_045021 crossref_primary_10_1007_JHEP01_2024_017 crossref_primary_10_1103_PhysRevD_109_L021903 crossref_primary_10_1007_JHEP01_2024_109 crossref_primary_10_1103_PhysRevD_109_026012 crossref_primary_10_1103_PhysRevD_110_066014 crossref_primary_10_1103_PhysRevD_109_046004 crossref_primary_10_1007_JHEP01_2025_058 crossref_primary_10_1103_PhysRevD_110_126016 crossref_primary_10_1103_PhysRevD_109_126013 crossref_primary_10_1007_JHEP08_2024_061 |
Cites_doi | 10.1007/JHEP11(2018)016 10.1016/0550-3213(95)00614-1 10.21468/SciPostPhys.12.3.098 10.1088/1126-6708/1999/07/009 10.1016/S0550-3213(97)00232-0 10.1007/JHEP06(2015)158 10.1088/1126-6708/1998/03/003 10.1016/S0550-3213(97)00236-8 10.1088/1751-8121/aafc81 10.1007/JHEP09(2017)147 10.1016/S0550-3213(98)00355-1 10.1016/0550-3213(95)00625-7 10.1007/JHEP10(2012)011 10.1016/0370-2693(90)91894-H 10.1103/PhysRevD.97.046004 10.4310/ATMP.2020.v24.n3.a4 10.1007/JHEP08(2018)173 10.1007/JHEP08(2018)138 10.1007/JHEP11(2015)123 10.1007/s11005-016-0839-5 10.1007/978-1-4613-0729-7_23 10.1007/JHEP02(2021)159 10.4310/ATMP.1997.v1.n2.a5 10.1007/JHEP08(2016)175 10.1007/JHEP07(2015)014 10.1007/JHEP04(2019)006 10.1007/JHEP02(2019)167 10.1007/978-1-4757-1382-4 10.1016/S0550-3213(97)00516-6 10.1007/JHEP12(2022)076 10.1002/prop.201500024 10.1007/s00023-021-01018-3 10.1016/0550-3213(96)00339-2 10.1007/JHEP04(2021)252 10.1016/S0550-3213(97)00450-1 10.1016/0550-3213(96)00243-X 10.4310/ATMP.1997.v1.n1.a3 10.1016/0550-3213(95)00621-4 10.1007/JHEP10(2016)080 10.1016/S0550-3213(97)00449-5 10.1007/JHEP02(2019)184 10.1007/JHEP03(2020)171 10.1007/JHEP07(2016)082 10.1007/JHEP11(2017)064 10.1007/JHEP09(2017)144 10.1007/JHEP02(2015)054 10.1007/JHEP10(2020)173 10.1103/PhysRevD.93.086002 10.1007/JHEP05(2014)028 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
DOI | 10.1007/JHEP01(2023)176 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 38 |
ExternalDocumentID | oai_doaj_org_article_7efa9b313bc849d394e4e74a07e09b53 oai_DiVA_org_uu_498106 10_1007_JHEP01_2023_176 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYZH ABFSG ACAFW ACARI ACBXY ACNBI ACSTC ADKPE ADRFC ADTPV AEFHF AEINN AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AOWAS ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU D8T DF2 EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ZZAVC PUEGO |
ID | FETCH-LOGICAL-c482t-91bc7c2d7536a3182be56aae3f91ddfce15a5094c5536c9fe28df734400795ec3 |
IEDL.DBID | 8FG |
ISSN | 1029-8479 1126-6708 |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Thu Aug 21 06:59:43 EDT 2025 Sat Jul 26 00:34:53 EDT 2025 Sun Jul 13 05:23:07 EDT 2025 Tue Jul 01 01:00:42 EDT 2025 Thu Apr 24 22:52:12 EDT 2025 Fri Feb 21 02:43:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Global Symmetries F-Theory M-Theory String Duality |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-91bc7c2d7536a3182be56aae3f91ddfce15a5094c5536c9fe28df734400795ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2805753893?pq-origsite=%requestingapplication% |
PQID | 2771505596 |
PQPubID | 2034718 |
PageCount | 38 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7efa9b313bc849d394e4e74a07e09b53 swepub_primary_oai_DiVA_org_uu_498106 proquest_journals_2805753893 proquest_journals_2771505596 crossref_primary_10_1007_JHEP01_2023_176 crossref_citationtrail_10_1007_JHEP01_2023_176 springer_journals_10_1007_JHEP01_2023_176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-31 |
PublicationDateYYYYMMDD | 2023-01-31 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | HeckmanJJMorrisonDRVafaCOn the Classification of 6D SCFTs and Generalized ADE OrbifoldsJHEP2014050282014JHEP...05..028H10.1007/JHEP05(2014)028[arXiv:1312.5746] [INSPIRE] HeckmanJJRudeliusTTomasielloAFission, Fusion, and 6D RG FlowsJHEP2019021672019JHEP...02..167H392526310.1007/JHEP02(2019)167[arXiv:1807.10274] [INSPIRE] FontAMayrhoferCNon-geometric vacua of the Spin(32)/ℤ2heterotic string and little string theoriesJHEP2017110642017JHEP...11..064F37472431383.8317110.1007/JHEP11(2017)064[arXiv:1708.05428] [INSPIRE] M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B247 (1990) 517 [INSPIRE]. BastianBHoheneggerSIqbalAReyS-JBeyond Triality: Dual Quiver Gauge Theories and Little String TheoriesJHEP2018110162018JHEP...11..016B39085601404.8311110.1007/JHEP11(2018)016[arXiv:1807.00186] [INSPIRE] ElvangHFreedmanDZHungL-YKiermaierMMyersRCTheisenSOn renormalization group flows and the a-theorem in 6dJHEP2012100112012JHEP...10..011E30338891397.8117910.1007/JHEP10(2012)011[arXiv:1205.3994] [INSPIRE] V.G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser Boston (1983), https://doi.org/10.1007/978-1-4757-1382-4. CordovaCDumitrescuTTIntriligatorKAnomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theoriesJHEP2016100802016JHEP...10..080C35775491390.8136910.1007/JHEP10(2016)080[arXiv:1506.03807] [INSPIRE] ApruzziFBhardwajLGouldDSWSchafer-NamekiS2-Group symmetries and their classification in 6dSciPost Phys.2022120982022ScPP...12...98A439957810.21468/SciPostPhys.12.3.098[arXiv:2110.14647] [INSPIRE] SenADynamics of multiple Kaluza-Klein monopoles in M and string theoryAdv. Theor. Math. Phys.1998111514892970898.5806410.4310/ATMP.1997.v1.n1.a3[hep-th/9707042] [INSPIRE] HananyAZaffaroniAIssues on orientifolds: On the brane construction of gauge theories with SO(2n) global symmetryJHEP1999070091999JHEP...07..009H17123961060.8160310.1088/1126-6708/1999/07/009[hep-th/9903242] [INSPIRE] A. Font, I.n. Garcia-Etxebarria, D. Lüst, S. Massai and C. Mayrhofer, Non-geometric heterotic backgrounds and 6D SCFTs/LSTs, PoSCORFU2016 (2017) 123 [arXiv:1712.07083] [INSPIRE]. HeckmanJJRudeliusTTop Down Approach to 6D SCFTsJ. Phys. A2019522019JPhA...52i3001H1505.8106910.1088/1751-8121/aafc81[arXiv:1805.06467] [INSPIRE] BlumJDIntriligatorKAConsistency conditions for branes at orbifold singularitiesNucl. Phys. B19975062231997NuPhB.506..223B14910190925.8126310.1016/S0550-3213(97)00450-1[hep-th/9705030] [INSPIRE] OhmoriKShimizuHTachikawaYYonekuraKAnomaly polynomial of general 6d SCFTsPTEP201420141331.81266[arXiv:1408.5572] [INSPIRE] IntriligatorKANew string theories in six-dimensions via branes at orbifold singularitiesAdv. Theor. Math. Phys.1998127116055950907.3200610.4310/ATMP.1997.v1.n2.a5[hep-th/9708117] [INSPIRE] Del ZottoMVafaCXieDGeometric engineering, mirror symmetry and 6d(1,0)→ 4d(𝒩 =2)JHEP2015111232015JHEP...11..123D[arXiv:1504.08348] [INSPIRE] CórdovaCDumitrescuTTIntriligatorKExploring 2-Group Global SymmetriesJHEP2019021842019JHEP...02..184C39252801411.8311610.1007/JHEP02(2019)184[arXiv:1802.04790] [INSPIRE] BhardwajLRevisiting the classifications of 6d SCFTs and LSTsJHEP2020031712020JHEP...03..171B1435.8317010.1007/JHEP03(2020)171[arXiv:1903.10503] [INSPIRE] MekareeyaNOhmoriKTachikawaYZafrirGE8instantons on type-A ALE spaces and supersymmetric field theoriesJHEP2017091442017JHEP...09..144M1382.8120710.1007/JHEP09(2017)144[arXiv:1707.04370] [INSPIRE] L. Bhardwaj, Discovering T-Dualities of Little String Theories, arXiv:2209.10548 [INSPIRE]. PolchinskiJWittenEEvidence for heterotic - type I string dualityNucl. Phys. B19964605251996NuPhB.460..525P13816101004.8152610.1016/0550-3213(95)00614-1[hep-th/9510169] [INSPIRE] CordovaCDumitrescuTTIntriligatorK2-Group Global Symmetries and Anomalies in Six-Dimensional Quantum Field TheoriesJHEP2021042522021JHEP...04..252C42761981462.8112810.1007/JHEP04(2021)252[arXiv:2009.00138] [INSPIRE] HeckmanJJRudeliusTTomasielloA6D RG Flows and Nilpotent HierarchiesJHEP2016070822016JHEP...07..082H35473581390.8151310.1007/JHEP07(2016)082[arXiv:1601.04078] [INSPIRE] HoravaPWittenEHeterotic and type I string dynamics from eleven-dimensionsNucl. Phys. B19964605061996NuPhB.460..506H13816091004.8152510.1016/0550-3213(95)00621-4[hep-th/9510209] [INSPIRE] Del ZottoMHeckmanJJMorrisonDR6D SCFTs and Phases of 5D TheoriesJHEP2017091472017JHEP...09..147D37104671382.8117610.1007/JHEP09(2017)147[arXiv:1703.02981] [INSPIRE] BlumJDIntriligatorKANew phases of string theory and 6-D RG fixed points via branes at orbifold singularitiesNucl. Phys. B19975061991997NuPhB.506..199B14910180925.8126210.1016/S0550-3213(97)00449-5[hep-th/9705044] [INSPIRE] BerkoozMLeighRGPolchinskiJSchwarzJHSeibergNWittenEAnomalies, dualities, and topology of D=6 N=1 superstring vacuaNucl. Phys. B19964751151996NuPhB.475..115B14120980925.8133510.1016/0550-3213(96)00339-2[hep-th/9605184] [INSPIRE] Del ZottoMHeckmanJJMorrisonDRParkDS6D SCFTs and GravityJHEP2015061582015JHEP...06..158D33701771387.8303110.1007/JHEP06(2015)158[arXiv:1412.6526] [INSPIRE] BhardwajLSchäfer-NamekiSHigher-form symmetries of 6d and 5d theoriesJHEP2021021592021JHEP...02..159B42598361460.8107610.1007/JHEP02(2021)159[arXiv:2008.09600] [INSPIRE] A. Sagnotti, Open Strings and their Symmetry Groups, in NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), (1987) [hep-th/0208020] [INSPIRE]. HananyAZaffaroniABranes and six-dimensional supersymmetric theoriesNucl. Phys. B19985291801998NuPhB.529..180H16503340961.8107710.1016/S0550-3213(98)00355-1[hep-th/9712145] [INSPIRE] Del ZottoMOhmoriK2-Group Symmetries of 6D Little String Theories and T-DualityAnnales Henri Poincare20212224512021AnHP...22.2451D42859481468.8108310.1007/s00023-021-01018-3[arXiv:2009.03489] [INSPIRE] AspinwallPSPoint - like instantons and the spin (32) / Z(2) heterotic stringNucl. Phys. B19974961491997NuPhB.496..149A14579880935.8105410.1016/S0550-3213(97)00232-0[hep-th/9612108] [INSPIRE] OhmoriKTachikawaYZafrirGCompactifications of 6d N = (1, 0) SCFTs with non-trivial Stiefel-Whitney classesJHEP2019040062019JHEP...04..006O39554631415.8110510.1007/JHEP04(2019)006[arXiv:1812.04637] [INSPIRE] GanorOJHananyASmall E(8) instantons and tensionless noncritical stringsNucl. Phys. B19964741221996NuPhB.474..122G0925.8117010.1016/0550-3213(96)00243-X[hep-th/9602120] [INSPIRE] FreyDDRudeliusT6D SCFTs and the classification of homomorphisms ΓADE→ E8Adv. Theor. Math. Phys.20202470941450580743548510.4310/ATMP.2020.v24.n3.a4[arXiv:1811.04921] [INSPIRE] Del ZottoMLockhartGUniversal Features of BPS Strings in Six-dimensional SCFTsJHEP2018081732018JHEP...08..173D38611491396.8117310.1007/JHEP08(2018)173[arXiv:1804.09694] [INSPIRE] OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on T2and class S theories: Part IJHEP2015070142015JHEP...07..014O10.1007/JHEP07(2015)014[arXiv:1503.06217] [INSPIRE] BastianBHoheneggerSIqbalAReyS-JTriality in Little String TheoriesPhys. Rev. D2018972018PhRvD..97d6004B38053661404.8311110.1103/PhysRevD.97.046004[arXiv:1711.07921] [INSPIRE] M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part II. Geometric Engineering Limit of the Heterotic String, to appear. FazziMGiriSHierarchy of RG flows in 6d (1, 0) orbi-instantonsJHEP2022120762022JHEP...12..076F45256720767135410.1007/JHEP12(2022)076[arXiv:2208.11703] [INSPIRE] BrunnerIKarchABranes at orbifolds versus Hanany Witten in six-dimensionsJHEP1998030031998JHEP...03..003B16194170958.8116910.1088/1126-6708/1998/03/003[hep-th/9712143] [INSPIRE] IntriligatorKARG fixed points in six-dimensions via branes at orbifold singularitiesNucl. Phys. B19974961771997NuPhB.496..177I14579890935.8106810.1016/S0550-3213(97)00236-8[hep-th/9702038] [INSPIRE] OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on S1/T2and class S theories: part IIJHEP2015121312015JHEP...12..131O[arXiv:1508.00915] [INSPIRE] Del ZottoMHeckmanJJParkDSRudeliusTOn the Defect Group of a 6D SCFTLett. Math. Phys.20161067652016LMaPh.106..765D35004211372.3203410.1007/s11005-016-0839-5[arXiv:1503.04806] [INSPIRE] BhardwajLMorrisonDRTachikawaYTomasielloAThe frozen phase of F-theoryJHEP2018081382018JHEP...08..138B38611841396.8114710.1007/JHEP08(2018)138[arXiv:1805.09070] [INSPIRE] WittenESmall instantons in string theoryNucl. Phys. B19964605411996NuPhB.460..541W13816110935.8105210.1016/0550-3213(95)00625-7[hep-th/9511030] [INSPIRE] Del ZottoMHeckmanJJTomasielloAVafaC6d Conformal MatterJHEP20150205433214091387.8126510.1007/JHEP02(2015)054[arXiv:1407.6359] [INSPIRE] HeckmanJJMorrisonDRRudeliusTVafaCAtomic Classification of 6D SCFTsFortsch. Phys.2015634682015ForPh..63..468H1338.8132610.1002/prop.201500024[arXiv:1502.05405] [INSPIRE] M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part III. F-theory Geometry and T-duality, to appear. DieriglMOehlmannP-KRuehleFNon-Simply-Connected Symmetries in 6D SCFTsJHEP2020101732020JHEP...10..173D42039321456.8142710.1007/JHEP10(2020)173[arXiv:2005.12929] [INSPIRE] BhardwajLDel ZottoMHeckmanJJMorrisonDRRudeliusTVafaCF-theory and the Classification of Little StringsPhys. Rev. D2016932016PhRvD..93h6002B353113410.1103/PhysRevD.93.086002[arXiv:1511.05565] [INSPIRE] AspinwallPSMorrisonDRPoint - like instantons on K3 orbifoldsNucl. Phys. B19975035331997NuPhB.503..533A14827350934.8104810.1016/S0550-3213(97)00516-6[hep-th/9705104] [INSPIRE] K Ohmori (20090_CR8) 2015; 12 KA Intriligator (20090_CR47) 1997; 496 C Córdova (20090_CR15) 2019; 02 K Ohmori (20090_CR7) 2015; 07 20090_CR44 DD Frey (20090_CR42) 2020; 24 20090_CR43 E Witten (20090_CR35) 1996; 460 L Bhardwaj (20090_CR34) 2018; 08 A Hanany (20090_CR50) 1999; 07 C Cordova (20090_CR16) 2021; 04 P Horava (20090_CR39) 1996; 460 PS Aspinwall (20090_CR20) 1997; 496 OJ Ganor (20090_CR40) 1996; 474 20090_CR31 I Brunner (20090_CR25) 1998; 03 20090_CR30 M Del Zotto (20090_CR2) 2015; 02 M Berkooz (20090_CR37) 1996; 475 JD Blum (20090_CR36) 1997; 506 L Bhardwaj (20090_CR9) 2016; 93 K Ohmori (20090_CR3) 2014; 2014 L Bhardwaj (20090_CR18) 2021; 02 K Ohmori (20090_CR12) 2019; 04 F Apruzzi (20090_CR19) 2022; 12 A Sen (20090_CR46) 1998; 1 20090_CR27 M Del Zotto (20090_CR10) 2017; 09 20090_CR26 A Hanany (20090_CR24) 1998; 529 M Dierigl (20090_CR13) 2020; 10 20090_CR29 M Del Zotto (20090_CR32) 2018; 08 KA Intriligator (20090_CR23) 1998; 1 A Font (20090_CR28) 2017; 11 B Bastian (20090_CR48) 2018; 97 M Del Zotto (20090_CR5) 2015; 11 JJ Heckman (20090_CR33) 2019; 52 L Bhardwaj (20090_CR38) 2020; 03 JJ Heckman (20090_CR6) 2015; 63 M Del Zotto (20090_CR4) 2015; 06 N Mekareeya (20090_CR11) 2017; 09 JJ Heckman (20090_CR1) 2014; 05 M Fazzi (20090_CR52) 2022; 12 B Bastian (20090_CR49) 2018; 11 JD Blum (20090_CR22) 1997; 506 M Del Zotto (20090_CR14) 2016; 106 JJ Heckman (20090_CR51) 2016; 07 J Polchinski (20090_CR45) 1996; 460 C Cordova (20090_CR54) 2016; 10 H Elvang (20090_CR53) 2012; 10 M Del Zotto (20090_CR17) 2021; 22 PS Aspinwall (20090_CR21) 1997; 503 JJ Heckman (20090_CR41) 2019; 02 |
References_xml | – reference: OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on T2and class S theories: Part IJHEP2015070142015JHEP...07..014O10.1007/JHEP07(2015)014[arXiv:1503.06217] [INSPIRE] – reference: M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part III. F-theory Geometry and T-duality, to appear. – reference: BlumJDIntriligatorKAConsistency conditions for branes at orbifold singularitiesNucl. Phys. B19975062231997NuPhB.506..223B14910190925.8126310.1016/S0550-3213(97)00450-1[hep-th/9705030] [INSPIRE] – reference: Del ZottoMOhmoriK2-Group Symmetries of 6D Little String Theories and T-DualityAnnales Henri Poincare20212224512021AnHP...22.2451D42859481468.8108310.1007/s00023-021-01018-3[arXiv:2009.03489] [INSPIRE] – reference: BastianBHoheneggerSIqbalAReyS-JBeyond Triality: Dual Quiver Gauge Theories and Little String TheoriesJHEP2018110162018JHEP...11..016B39085601404.8311110.1007/JHEP11(2018)016[arXiv:1807.00186] [INSPIRE] – reference: CordovaCDumitrescuTTIntriligatorKAnomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theoriesJHEP2016100802016JHEP...10..080C35775491390.8136910.1007/JHEP10(2016)080[arXiv:1506.03807] [INSPIRE] – reference: HananyAZaffaroniABranes and six-dimensional supersymmetric theoriesNucl. Phys. B19985291801998NuPhB.529..180H16503340961.8107710.1016/S0550-3213(98)00355-1[hep-th/9712145] [INSPIRE] – reference: Del ZottoMHeckmanJJParkDSRudeliusTOn the Defect Group of a 6D SCFTLett. Math. Phys.20161067652016LMaPh.106..765D35004211372.3203410.1007/s11005-016-0839-5[arXiv:1503.04806] [INSPIRE] – reference: OhmoriKShimizuHTachikawaYYonekuraKAnomaly polynomial of general 6d SCFTsPTEP201420141331.81266[arXiv:1408.5572] [INSPIRE] – reference: WittenESmall instantons in string theoryNucl. Phys. B19964605411996NuPhB.460..541W13816110935.8105210.1016/0550-3213(95)00625-7[hep-th/9511030] [INSPIRE] – reference: BhardwajLRevisiting the classifications of 6d SCFTs and LSTsJHEP2020031712020JHEP...03..171B1435.8317010.1007/JHEP03(2020)171[arXiv:1903.10503] [INSPIRE] – reference: ApruzziFBhardwajLGouldDSWSchafer-NamekiS2-Group symmetries and their classification in 6dSciPost Phys.2022120982022ScPP...12...98A439957810.21468/SciPostPhys.12.3.098[arXiv:2110.14647] [INSPIRE] – reference: Del ZottoMLockhartGUniversal Features of BPS Strings in Six-dimensional SCFTsJHEP2018081732018JHEP...08..173D38611491396.8117310.1007/JHEP08(2018)173[arXiv:1804.09694] [INSPIRE] – reference: HoravaPWittenEHeterotic and type I string dynamics from eleven-dimensionsNucl. Phys. B19964605061996NuPhB.460..506H13816091004.8152510.1016/0550-3213(95)00621-4[hep-th/9510209] [INSPIRE] – reference: Del ZottoMVafaCXieDGeometric engineering, mirror symmetry and 6d(1,0)→ 4d(𝒩 =2)JHEP2015111232015JHEP...11..123D[arXiv:1504.08348] [INSPIRE] – reference: Del ZottoMHeckmanJJMorrisonDR6D SCFTs and Phases of 5D TheoriesJHEP2017091472017JHEP...09..147D37104671382.8117610.1007/JHEP09(2017)147[arXiv:1703.02981] [INSPIRE] – reference: HananyAZaffaroniAIssues on orientifolds: On the brane construction of gauge theories with SO(2n) global symmetryJHEP1999070091999JHEP...07..009H17123961060.8160310.1088/1126-6708/1999/07/009[hep-th/9903242] [INSPIRE] – reference: A. Font, I.n. Garcia-Etxebarria, D. Lüst, S. Massai and C. Mayrhofer, Non-geometric heterotic backgrounds and 6D SCFTs/LSTs, PoSCORFU2016 (2017) 123 [arXiv:1712.07083] [INSPIRE]. – reference: HeckmanJJRudeliusTTop Down Approach to 6D SCFTsJ. Phys. A2019522019JPhA...52i3001H1505.8106910.1088/1751-8121/aafc81[arXiv:1805.06467] [INSPIRE] – reference: BhardwajLMorrisonDRTachikawaYTomasielloAThe frozen phase of F-theoryJHEP2018081382018JHEP...08..138B38611841396.8114710.1007/JHEP08(2018)138[arXiv:1805.09070] [INSPIRE] – reference: BastianBHoheneggerSIqbalAReyS-JTriality in Little String TheoriesPhys. Rev. D2018972018PhRvD..97d6004B38053661404.8311110.1103/PhysRevD.97.046004[arXiv:1711.07921] [INSPIRE] – reference: HeckmanJJRudeliusTTomasielloAFission, Fusion, and 6D RG FlowsJHEP2019021672019JHEP...02..167H392526310.1007/JHEP02(2019)167[arXiv:1807.10274] [INSPIRE] – reference: M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B247 (1990) 517 [INSPIRE]. – reference: FontAMayrhoferCNon-geometric vacua of the Spin(32)/ℤ2heterotic string and little string theoriesJHEP2017110642017JHEP...11..064F37472431383.8317110.1007/JHEP11(2017)064[arXiv:1708.05428] [INSPIRE] – reference: BlumJDIntriligatorKANew phases of string theory and 6-D RG fixed points via branes at orbifold singularitiesNucl. Phys. B19975061991997NuPhB.506..199B14910180925.8126210.1016/S0550-3213(97)00449-5[hep-th/9705044] [INSPIRE] – reference: HeckmanJJRudeliusTTomasielloA6D RG Flows and Nilpotent HierarchiesJHEP2016070822016JHEP...07..082H35473581390.8151310.1007/JHEP07(2016)082[arXiv:1601.04078] [INSPIRE] – reference: M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part II. Geometric Engineering Limit of the Heterotic String, to appear. – reference: IntriligatorKANew string theories in six-dimensions via branes at orbifold singularitiesAdv. Theor. Math. Phys.1998127116055950907.3200610.4310/ATMP.1997.v1.n2.a5[hep-th/9708117] [INSPIRE] – reference: PolchinskiJWittenEEvidence for heterotic - type I string dualityNucl. Phys. B19964605251996NuPhB.460..525P13816101004.8152610.1016/0550-3213(95)00614-1[hep-th/9510169] [INSPIRE] – reference: HeckmanJJMorrisonDRVafaCOn the Classification of 6D SCFTs and Generalized ADE OrbifoldsJHEP2014050282014JHEP...05..028H10.1007/JHEP05(2014)028[arXiv:1312.5746] [INSPIRE] – reference: Del ZottoMHeckmanJJMorrisonDRParkDS6D SCFTs and GravityJHEP2015061582015JHEP...06..158D33701771387.8303110.1007/JHEP06(2015)158[arXiv:1412.6526] [INSPIRE] – reference: FazziMGiriSHierarchy of RG flows in 6d (1, 0) orbi-instantonsJHEP2022120762022JHEP...12..076F45256720767135410.1007/JHEP12(2022)076[arXiv:2208.11703] [INSPIRE] – reference: BhardwajLSchäfer-NamekiSHigher-form symmetries of 6d and 5d theoriesJHEP2021021592021JHEP...02..159B42598361460.8107610.1007/JHEP02(2021)159[arXiv:2008.09600] [INSPIRE] – reference: A. Sagnotti, Open Strings and their Symmetry Groups, in NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), (1987) [hep-th/0208020] [INSPIRE]. – reference: V.G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser Boston (1983), https://doi.org/10.1007/978-1-4757-1382-4. – reference: HeckmanJJMorrisonDRRudeliusTVafaCAtomic Classification of 6D SCFTsFortsch. Phys.2015634682015ForPh..63..468H1338.8132610.1002/prop.201500024[arXiv:1502.05405] [INSPIRE] – reference: FreyDDRudeliusT6D SCFTs and the classification of homomorphisms ΓADE→ E8Adv. Theor. Math. Phys.20202470941450580743548510.4310/ATMP.2020.v24.n3.a4[arXiv:1811.04921] [INSPIRE] – reference: OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on S1/T2and class S theories: part IIJHEP2015121312015JHEP...12..131O[arXiv:1508.00915] [INSPIRE] – reference: IntriligatorKARG fixed points in six-dimensions via branes at orbifold singularitiesNucl. Phys. B19974961771997NuPhB.496..177I14579890935.8106810.1016/S0550-3213(97)00236-8[hep-th/9702038] [INSPIRE] – reference: MekareeyaNOhmoriKTachikawaYZafrirGE8instantons on type-A ALE spaces and supersymmetric field theoriesJHEP2017091442017JHEP...09..144M1382.8120710.1007/JHEP09(2017)144[arXiv:1707.04370] [INSPIRE] – reference: DieriglMOehlmannP-KRuehleFNon-Simply-Connected Symmetries in 6D SCFTsJHEP2020101732020JHEP...10..173D42039321456.8142710.1007/JHEP10(2020)173[arXiv:2005.12929] [INSPIRE] – reference: AspinwallPSPoint - like instantons and the spin (32) / Z(2) heterotic stringNucl. Phys. B19974961491997NuPhB.496..149A14579880935.8105410.1016/S0550-3213(97)00232-0[hep-th/9612108] [INSPIRE] – reference: CórdovaCDumitrescuTTIntriligatorKExploring 2-Group Global SymmetriesJHEP2019021842019JHEP...02..184C39252801411.8311610.1007/JHEP02(2019)184[arXiv:1802.04790] [INSPIRE] – reference: GanorOJHananyASmall E(8) instantons and tensionless noncritical stringsNucl. Phys. B19964741221996NuPhB.474..122G0925.8117010.1016/0550-3213(96)00243-X[hep-th/9602120] [INSPIRE] – reference: Del ZottoMHeckmanJJTomasielloAVafaC6d Conformal MatterJHEP20150205433214091387.8126510.1007/JHEP02(2015)054[arXiv:1407.6359] [INSPIRE] – reference: CordovaCDumitrescuTTIntriligatorK2-Group Global Symmetries and Anomalies in Six-Dimensional Quantum Field TheoriesJHEP2021042522021JHEP...04..252C42761981462.8112810.1007/JHEP04(2021)252[arXiv:2009.00138] [INSPIRE] – reference: BerkoozMLeighRGPolchinskiJSchwarzJHSeibergNWittenEAnomalies, dualities, and topology of D=6 N=1 superstring vacuaNucl. Phys. B19964751151996NuPhB.475..115B14120980925.8133510.1016/0550-3213(96)00339-2[hep-th/9605184] [INSPIRE] – reference: OhmoriKTachikawaYZafrirGCompactifications of 6d N = (1, 0) SCFTs with non-trivial Stiefel-Whitney classesJHEP2019040062019JHEP...04..006O39554631415.8110510.1007/JHEP04(2019)006[arXiv:1812.04637] [INSPIRE] – reference: SenADynamics of multiple Kaluza-Klein monopoles in M and string theoryAdv. Theor. Math. Phys.1998111514892970898.5806410.4310/ATMP.1997.v1.n1.a3[hep-th/9707042] [INSPIRE] – reference: BrunnerIKarchABranes at orbifolds versus Hanany Witten in six-dimensionsJHEP1998030031998JHEP...03..003B16194170958.8116910.1088/1126-6708/1998/03/003[hep-th/9712143] [INSPIRE] – reference: BhardwajLDel ZottoMHeckmanJJMorrisonDRRudeliusTVafaCF-theory and the Classification of Little StringsPhys. Rev. D2016932016PhRvD..93h6002B353113410.1103/PhysRevD.93.086002[arXiv:1511.05565] [INSPIRE] – reference: ElvangHFreedmanDZHungL-YKiermaierMMyersRCTheisenSOn renormalization group flows and the a-theorem in 6dJHEP2012100112012JHEP...10..011E30338891397.8117910.1007/JHEP10(2012)011[arXiv:1205.3994] [INSPIRE] – reference: L. Bhardwaj, Discovering T-Dualities of Little String Theories, arXiv:2209.10548 [INSPIRE]. – reference: AspinwallPSMorrisonDRPoint - like instantons on K3 orbifoldsNucl. Phys. B19975035331997NuPhB.503..533A14827350934.8104810.1016/S0550-3213(97)00516-6[hep-th/9705104] [INSPIRE] – volume: 11 start-page: 016 year: 2018 ident: 20090_CR49 publication-title: JHEP doi: 10.1007/JHEP11(2018)016 – volume: 460 start-page: 525 year: 1996 ident: 20090_CR45 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00614-1 – volume: 12 start-page: 098 year: 2022 ident: 20090_CR19 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.3.098 – volume: 07 start-page: 009 year: 1999 ident: 20090_CR50 publication-title: JHEP doi: 10.1088/1126-6708/1999/07/009 – volume: 496 start-page: 149 year: 1997 ident: 20090_CR20 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00232-0 – volume: 06 start-page: 158 year: 2015 ident: 20090_CR4 publication-title: JHEP doi: 10.1007/JHEP06(2015)158 – volume: 03 start-page: 003 year: 1998 ident: 20090_CR25 publication-title: JHEP doi: 10.1088/1126-6708/1998/03/003 – ident: 20090_CR43 – volume: 496 start-page: 177 year: 1997 ident: 20090_CR47 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00236-8 – ident: 20090_CR30 – volume: 52 year: 2019 ident: 20090_CR33 publication-title: J. Phys. A doi: 10.1088/1751-8121/aafc81 – volume: 09 start-page: 147 year: 2017 ident: 20090_CR10 publication-title: JHEP doi: 10.1007/JHEP09(2017)147 – volume: 529 start-page: 180 year: 1998 ident: 20090_CR24 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(98)00355-1 – volume: 460 start-page: 541 year: 1996 ident: 20090_CR35 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00625-7 – volume: 10 start-page: 011 year: 2012 ident: 20090_CR53 publication-title: JHEP doi: 10.1007/JHEP10(2012)011 – ident: 20090_CR27 doi: 10.1016/0370-2693(90)91894-H – volume: 97 year: 2018 ident: 20090_CR48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.046004 – volume: 24 start-page: 709 year: 2020 ident: 20090_CR42 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2020.v24.n3.a4 – volume: 08 start-page: 173 year: 2018 ident: 20090_CR32 publication-title: JHEP doi: 10.1007/JHEP08(2018)173 – volume: 08 start-page: 138 year: 2018 ident: 20090_CR34 publication-title: JHEP doi: 10.1007/JHEP08(2018)138 – volume: 11 start-page: 123 year: 2015 ident: 20090_CR5 publication-title: JHEP doi: 10.1007/JHEP11(2015)123 – volume: 106 start-page: 765 year: 2016 ident: 20090_CR14 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-016-0839-5 – ident: 20090_CR31 – ident: 20090_CR26 doi: 10.1007/978-1-4613-0729-7_23 – volume: 02 start-page: 159 year: 2021 ident: 20090_CR18 publication-title: JHEP doi: 10.1007/JHEP02(2021)159 – volume: 12 start-page: 131 year: 2015 ident: 20090_CR8 publication-title: JHEP – volume: 1 start-page: 271 year: 1998 ident: 20090_CR23 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1997.v1.n2.a5 – ident: 20090_CR29 doi: 10.1007/JHEP08(2016)175 – volume: 07 start-page: 014 year: 2015 ident: 20090_CR7 publication-title: JHEP doi: 10.1007/JHEP07(2015)014 – volume: 04 start-page: 006 year: 2019 ident: 20090_CR12 publication-title: JHEP doi: 10.1007/JHEP04(2019)006 – volume: 02 start-page: 167 year: 2019 ident: 20090_CR41 publication-title: JHEP doi: 10.1007/JHEP02(2019)167 – ident: 20090_CR44 doi: 10.1007/978-1-4757-1382-4 – volume: 503 start-page: 533 year: 1997 ident: 20090_CR21 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00516-6 – volume: 12 start-page: 076 year: 2022 ident: 20090_CR52 publication-title: JHEP doi: 10.1007/JHEP12(2022)076 – volume: 63 start-page: 468 year: 2015 ident: 20090_CR6 publication-title: Fortsch. Phys. doi: 10.1002/prop.201500024 – volume: 22 start-page: 2451 year: 2021 ident: 20090_CR17 publication-title: Annales Henri Poincare doi: 10.1007/s00023-021-01018-3 – volume: 475 start-page: 115 year: 1996 ident: 20090_CR37 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(96)00339-2 – volume: 04 start-page: 252 year: 2021 ident: 20090_CR16 publication-title: JHEP doi: 10.1007/JHEP04(2021)252 – volume: 2014 year: 2014 ident: 20090_CR3 publication-title: PTEP – volume: 506 start-page: 223 year: 1997 ident: 20090_CR36 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00450-1 – volume: 474 start-page: 122 year: 1996 ident: 20090_CR40 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(96)00243-X – volume: 1 start-page: 115 year: 1998 ident: 20090_CR46 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1997.v1.n1.a3 – volume: 460 start-page: 506 year: 1996 ident: 20090_CR39 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00621-4 – volume: 10 start-page: 080 year: 2016 ident: 20090_CR54 publication-title: JHEP doi: 10.1007/JHEP10(2016)080 – volume: 506 start-page: 199 year: 1997 ident: 20090_CR22 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00449-5 – volume: 02 start-page: 184 year: 2019 ident: 20090_CR15 publication-title: JHEP doi: 10.1007/JHEP02(2019)184 – volume: 03 start-page: 171 year: 2020 ident: 20090_CR38 publication-title: JHEP doi: 10.1007/JHEP03(2020)171 – volume: 07 start-page: 082 year: 2016 ident: 20090_CR51 publication-title: JHEP doi: 10.1007/JHEP07(2016)082 – volume: 11 start-page: 064 year: 2017 ident: 20090_CR28 publication-title: JHEP doi: 10.1007/JHEP11(2017)064 – volume: 09 start-page: 144 year: 2017 ident: 20090_CR11 publication-title: JHEP doi: 10.1007/JHEP09(2017)144 – volume: 02 start-page: 054 year: 2015 ident: 20090_CR2 publication-title: JHEP doi: 10.1007/JHEP02(2015)054 – volume: 10 start-page: 173 year: 2020 ident: 20090_CR13 publication-title: JHEP doi: 10.1007/JHEP10(2020)173 – volume: 93 year: 2016 ident: 20090_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.086002 – volume: 05 start-page: 028 year: 2014 ident: 20090_CR1 publication-title: JHEP doi: 10.1007/JHEP05(2014)028 |
SSID | ssj0015190 |
Score | 2.5124078 |
Snippet | A
bstract
In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic
E
8
×
E
8
five-branes... In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE... In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E8 × E8 five-branes probing ALE... In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE... Abstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes... |
SourceID | doaj swepub proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 176 |
SubjectTerms | Branes Classical and Quantum Gravitation Elementary Particles F-Theory Flavor (particle physics) Global Symmetries High energy physics Instantons M-Theory Matching Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Singularities String Duality String Theory Strings Symmetry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReKh5FXVgqH6jESmRxYieOjwssWlaAkAoVN8tPWoGyiOwe-PcdO8kWUFEvvcaTZDwe29_48Q1Ce1nqNfGMJIpZmrCitIlgTiQwVwIYoU74uNF-cVlMbtj0Nr99keornAlr6IEbwx1y55XQNKXalExYCl9ijjNFuCNC55HnkwjSBVPt_gHgEtIR-RB-OJ2Mr0i6H1KFD9JAL_JiDopU_a_w5XJL9A19aJxyTtfQpxYr4lGj4zr64KoNtBrPbJp6E30_UuYez2f4ZzjSMgMhHJJwVHc1nlV4dD7GMFrAMDDEV1BNfDbEZxELAtqrD3CWxAsdNVaVxdeJjZcrnz-jm9Px9fEkaXMkJIaV2RzGKm24ySxEHYWC_plplxdKOepFaq03Ls1V4MgzOQgY4V1WWs8pC-nQRe4M3UIr1axyXxC2LqAtZqgnmhHLNadGl5aWhdbapraHhp3VpGkJxEMeiwfZUR83ZpbBzBLM3EP7yxceG-6M90WPQjMsxQLpdXwAriBbV5D_coUe6neNKNueWMuMc8C8EDcVfy8uA2ANqK2HBl27_yl-V91vjWO8Uvjk149RVHixkEyUEGxv_49q7aCP4b9h3YemfbQyf1q4XUBCc_01Ov1vOe8BkQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFLY2pkl7QbANrQwmP2wSSKSLY8eOHwsUtdU2IXERb5avGwKlaGkf-Pccu0mncnnYWxQfR9a52J9z7O8g9LUgweSB5ZlmjmaMVy6TzMsM1koAI9TLkBLtP3_x0QWbXJVXLUlSvAvzKH__fTIanuZkLxb53ieCv0ZvSkJ5ysryo2W6AGBI3vH2PO20suQkZv4VOLnMgD5iC00rzMkGWm-hIR4sbLmJXvn6PXqbjmja5gM6O9T2Bs-m-E88wTIFIRxrbtS_Gzyt8eDHEMPkAFHfx6fgDnjcx-ME_QDcNQe4yNL9jQbr2uHzzKW7lPcf0cXJ8PxolLUlETLLqmIGU5OxwhYONhlcQzgWxpdca0-DJM4F60mpIyWeLUHAyuCLygVBWax-Lktv6RZaq6e1_4Sw8xFcMUtDbljuhBHUmsrRihtjHHE91O-0pmzLFx7LVtyqjul4oWYV1axAzT20t-xwt6DKeFn0MJphKRY5rtMLML1qQ0YJH7Q0lFBjKyYdBR9iXjCdC59LU9Ie2umMqNrAa1QhBEBc2Cbx55uriE8jSOuh_c7u_5pfHO63hWOsDPj4-nKQBjyfKyYr2Ftv_8c3P6N38TH-zaFkB63N_s79LuCbmfmSfPsB9UDwXw priority: 102 providerName: Springer Nature |
Title | Back to heterotic strings on ALE spaces. Part I. Instantons, 2-groups and T-duality |
URI | https://link.springer.com/article/10.1007/JHEP01(2023)176 https://www.proquest.com/docview/2771505596 https://www.proquest.com/docview/2805753893 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-498106 https://doaj.org/article/7efa9b313bc849d394e4e74a07e09b53 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyQuiKcIlGgPILUSTr0Pe70nlISEtIIqggb1ZnkfLqiVXerkwL9nZmMbiigXS_aO7dXs7My3r28Iec1ZaeJSxlEhnYhkmrlIS68jiJUARoTXZVho_3SSLlby-Cw5ayfcmnZbZecTg6N2tcU58kOeIbLA8Pru6keEWaNwdbVNoXGX7DKINGjn2fxDv4oA6CTu6HxidXi8mC1jto8Jww8Ykoz8EYkCYf8NlNkvjP5FIhoCz_whedAiRjreNvEjcsdXj8m9sHPTNk_Il0lhL-i6pt9wY0sNQhRTcVTnDa0rOv44o-AzwBmM6BKshB6N6FFAhID5mreUR-FYR0OLytHTyIUjlj-fktV8djpdRG2mhMjKjK_BYxmrLHegoLSAXsqNT9Ki8KLUzLnSepYUyJRnExCwuvQ8c6USEpOi68Rb8YzsVHXlnxPqPGIuaUUZGxk7ZZSwJnMiS40xjrkBGXVay21LI47ZLC7zjgB5q-Yc1ZyDmgdkv3_hasugcbvoBJuhF0Pq6_Cgvj7P256UK18W2ggmjM2kdgJMS3oli1j5WJtEDMhe14h52x-bnCsFyBdGT-m_i3vjGpCDrt1_F99a3Tdbw7hR4fffv45DhTebXOoMhtwv_v_Ll-Q-fhHndQTbIzvr641_BUhnbYbBnIdkdzI7WX6GuymXeE2nwzB3ANcVH_8CPWT-AQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviE9RGOAHJm0S6RLbieMHhFrWqd26qoIO7c2LP7JNoGQsrdD-Kf5Gzk5SGGK87TW5ONbd-e5nn-8OobckylWYszDImKEBS1ITCGZFAL4SwAi1IveB9sNpMjpi-8fx8Rr62ebCuGuVrU30htqU2p2R75DUIQvnXj9cfA9c1ygXXW1baNRqcWCvfsCWrXo_3gX5bhKyN5x_HAVNV4FAs5QsYHUrzTUxMFiSgUYTZeMkyyzNRWRMrm0UZ66qnI6BQIvcktTknDLXQFzEVlMY9w5aZy6jtYPWB8Pp7NMqbgF4KGwLCIV8Z380nIXRlmtRvh25siZ_-D7fIuAarl2FYv8qW-pd3d5D9KDBqLhfK9UjtGaLx-iuvyuqqyfo8yDTX_GixGfuKk0JRNg1_yhOK1wWuD8ZYrBSYH56eAZ6icc9PPYYFFBm9Q6TwCeSVDgrDJ4Hxid1Xj1FR7fCxWeoU5SFfY6wsQ7lMU3zULHQcMWpVqmhaaKUMpHpol7LNambwuWuf8Y32ZZcrtksHZslsLmLtlYfXNQ1O24mHTgxrMhcsW3_oLw8lc3aldzmmVA0okqnTBgKyswsZ1nIbShUTLtooxWibCxAJQnngLVhv5b8-_VKnbtou5X779c3TnezVoxrE949_9L3E14uJRMpbPJf_P-Xb9C90fxwIifj6cFLdN-N7k6VaLSBOovLpX0FOGuhXjfKjdHJba-nXzwCN4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxKcoDPADkzaJtIntxPEDQh1tabcxVWJDe_Pir4FAyVhaof1r_HWcnaQwxHjba3JxrPPP59_57DuEXpHEqdixOCqYoRHLchMJZkUEayWQEWqFC4H2DwfZ9IjtHqfHa-hndxfGH6vsbGIw1KbSfo98QHLPLPzyOnDtsYj5aPL27HvkK0j5SGtXTqOByJ69-AHuW_1mNoKx3iRkMj58N43aCgORZjlZwExXmmtioOGsAHQTZdOsKCx1IjHGaZukhc8wp1MQ0MJZkhvHKfPFxEVqNYV2b6CbnHLhHb988n4VwQBmFHephGI-2J2O53Gy5YuVbyc-wckfq2AoFnCJ4a6Csn8lMA2L3uQeutuyVTxs4HUfrdnyAboVTo3q-iH6uFPor3hR4c_-UE0FQtiXASlPa1yVeLg_xmCvwBD18RwQimd9PAtsFPhm_RqTKFwpqXFRGnwYmXC98-IROroWHT5G62VV2icIG-v5HtPUxYrFhitOtcoNzTOllElMD_U7rUndpjD3lTS-yS75cqNm6dUsQc09tLX64KzJ3nG16I4fhpWYT7sdHlTnp7KdxZJbVwhFE6p0zoShAGtmOStibmOhUtpDG90gytYW1JJwDqwbPLfs369XwO6h7W7cf7--srubDTAudXj05dMwdHi5lEzk4O4__f8vX6LbMIvk_uxg7xm64xv320s02UDri_OlfQ6Ea6FeBGRjdHLdU-kXdS86UA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back+to+heterotic+strings+on+ALE+spaces&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Del+Zotto%2C+Michele&rft.au=Liu%2C+Muyang&rft.au=Oehlmann%2C+Paul-Konstantin&rft.date=2023-01-31&rft.issn=1126-6708&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282023%29176&rft.externalDocID=oai_DiVA_org_uu_498106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |