Back to heterotic strings on ALE spaces. Part I. Instantons, 2-groups and T-duality

A bstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator....

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 1; pp. 176 - 38
Main Authors Del Zotto, Michele, Liu, Muyang, Oehlmann, Paul-Konstantin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 31.01.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1029-8479
DOI10.1007/JHEP01(2023)176

Cover

Loading…
Abstract A bstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose.
AbstractList In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose.
In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E8 × E8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose.
In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose.
Abstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose.
A bstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE singularities, building on and extending previous results on the subject by Aspinwall and Morrison as well as Blum and Intriligator. Our focus are the cases corresponding to choices of non-trivial flat connections at infinity. The latter are in particular interesting for the exceptional ALE singularities, where a brane realization in Type I′ is lacking. Our approach to determine these models is based on 6d conformal matter: we determine these theories as generalized 6d quivers. All these LSTs have a higher-one form symmetry which forms a 2-group with the zero-form Poincaré symmetry, the R-symmetry and the other global symmetries: the matching of the R-symmetry two-group structure constant is a stringent constraint for T-dualities, which we use in combination with the matching of 5d Coulomb branches and flavor symmetries upon circle reduction, as a consistency check for the realization of the 6d LSTs we propose.
ArticleNumber 176
Author Oehlmann, Paul-Konstantin
Del Zotto, Michele
Liu, Muyang
Author_xml – sequence: 1
  givenname: Michele
  surname: Del Zotto
  fullname: Del Zotto, Michele
  organization: Department of Mathematics, Uppsala University, Department of Physics and Astronomy, Uppsala University
– sequence: 2
  givenname: Muyang
  surname: Liu
  fullname: Liu, Muyang
  organization: Department of Mathematics, Uppsala University
– sequence: 3
  givenname: Paul-Konstantin
  surname: Oehlmann
  fullname: Oehlmann, Paul-Konstantin
  email: p.oehlmann@northeastern.edu
  organization: Department of Physics, Northeastern University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-498106$$DView record from Swedish Publication Index
BookMark eNp9kd1rFDEUxYO0YFt99jXgi0Jnm8_N5HGt23ZloQWrryGTubNmXZMxySD9753tFD8K7VMu4ZzfvYdzjA5CDIDQG0pmlBB19ulqeUPoO0YYf0_V_AU6ooTpqhZKH_wzv0THOW8JoZJqcoQ-f7DuOy4Rf4MCKRbvcC7Jh03GMeDFeolzbx3kGb6xqeDVDK9CLjaUGPIpZtUmxaHP2IYW31btYHe-3L1Ch53dZXj98J6gLxfL2_Oran19uTpfrCsnalYqTRunHGuV5HPLac0akHNrgXeatm3ngEoriRZOjgKnO2B12ykuxJhWS3D8BK0mbhvt1vTJ_7DpzkTrzf1HTBsz3uzdDoyCzuqGU964WuiWawEClLBEAdGN5CPrdGLlX9APzX-0j_7r4p42DEbompL5KH87yfsUfw6Qi9nGIYUxrWE1kWOkWvNnVUpRSaTUe9bZpHIp5pyg-7OcErOv1kzVmn21Zqx2dMhHDueLLT6GkqzfPeMjDyH7fcWQ_t7zlOU3kfq1nA
CitedBy_id crossref_primary_10_1103_PhysRevD_110_026016
crossref_primary_10_1016_j_physrep_2024_01_007
crossref_primary_10_1007_JHEP11_2024_149
crossref_primary_10_1007_JHEP03_2025_085
crossref_primary_10_1007_JHEP01_2024_167
crossref_primary_10_1007_JHEP03_2025_064
crossref_primary_10_1007_s00220_024_05227_9
crossref_primary_10_1103_PhysRevD_110_045021
crossref_primary_10_1007_JHEP01_2024_017
crossref_primary_10_1103_PhysRevD_109_L021903
crossref_primary_10_1007_JHEP01_2024_109
crossref_primary_10_1103_PhysRevD_109_026012
crossref_primary_10_1103_PhysRevD_110_066014
crossref_primary_10_1103_PhysRevD_109_046004
crossref_primary_10_1007_JHEP01_2025_058
crossref_primary_10_1103_PhysRevD_110_126016
crossref_primary_10_1103_PhysRevD_109_126013
crossref_primary_10_1007_JHEP08_2024_061
Cites_doi 10.1007/JHEP11(2018)016
10.1016/0550-3213(95)00614-1
10.21468/SciPostPhys.12.3.098
10.1088/1126-6708/1999/07/009
10.1016/S0550-3213(97)00232-0
10.1007/JHEP06(2015)158
10.1088/1126-6708/1998/03/003
10.1016/S0550-3213(97)00236-8
10.1088/1751-8121/aafc81
10.1007/JHEP09(2017)147
10.1016/S0550-3213(98)00355-1
10.1016/0550-3213(95)00625-7
10.1007/JHEP10(2012)011
10.1016/0370-2693(90)91894-H
10.1103/PhysRevD.97.046004
10.4310/ATMP.2020.v24.n3.a4
10.1007/JHEP08(2018)173
10.1007/JHEP08(2018)138
10.1007/JHEP11(2015)123
10.1007/s11005-016-0839-5
10.1007/978-1-4613-0729-7_23
10.1007/JHEP02(2021)159
10.4310/ATMP.1997.v1.n2.a5
10.1007/JHEP08(2016)175
10.1007/JHEP07(2015)014
10.1007/JHEP04(2019)006
10.1007/JHEP02(2019)167
10.1007/978-1-4757-1382-4
10.1016/S0550-3213(97)00516-6
10.1007/JHEP12(2022)076
10.1002/prop.201500024
10.1007/s00023-021-01018-3
10.1016/0550-3213(96)00339-2
10.1007/JHEP04(2021)252
10.1016/S0550-3213(97)00450-1
10.1016/0550-3213(96)00243-X
10.4310/ATMP.1997.v1.n1.a3
10.1016/0550-3213(95)00621-4
10.1007/JHEP10(2016)080
10.1016/S0550-3213(97)00449-5
10.1007/JHEP02(2019)184
10.1007/JHEP03(2020)171
10.1007/JHEP07(2016)082
10.1007/JHEP11(2017)064
10.1007/JHEP09(2017)144
10.1007/JHEP02(2015)054
10.1007/JHEP10(2020)173
10.1103/PhysRevD.93.086002
10.1007/JHEP05(2014)028
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1007/JHEP01(2023)176
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 38
ExternalDocumentID oai_doaj_org_article_7efa9b313bc849d394e4e74a07e09b53
oai_DiVA_org_uu_498106
10_1007_JHEP01_2023_176
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYZH
ABFSG
ACAFW
ACARI
ACBXY
ACNBI
ACSTC
ADKPE
ADRFC
ADTPV
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AOWAS
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
D8T
DF2
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ZZAVC
PUEGO
ID FETCH-LOGICAL-c482t-91bc7c2d7536a3182be56aae3f91ddfce15a5094c5536c9fe28df734400795ec3
IEDL.DBID 8FG
ISSN 1029-8479
1126-6708
IngestDate Wed Aug 27 01:31:48 EDT 2025
Thu Aug 21 06:59:43 EDT 2025
Sat Jul 26 00:34:53 EDT 2025
Sun Jul 13 05:23:07 EDT 2025
Tue Jul 01 01:00:42 EDT 2025
Thu Apr 24 22:52:12 EDT 2025
Fri Feb 21 02:43:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Global Symmetries
F-Theory
M-Theory
String Duality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-91bc7c2d7536a3182be56aae3f91ddfce15a5094c5536c9fe28df734400795ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2805753893?pq-origsite=%requestingapplication%
PQID 2771505596
PQPubID 2034718
PageCount 38
ParticipantIDs doaj_primary_oai_doaj_org_article_7efa9b313bc849d394e4e74a07e09b53
swepub_primary_oai_DiVA_org_uu_498106
proquest_journals_2805753893
proquest_journals_2771505596
crossref_primary_10_1007_JHEP01_2023_176
crossref_citationtrail_10_1007_JHEP01_2023_176
springer_journals_10_1007_JHEP01_2023_176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-31
PublicationDateYYYYMMDD 2023-01-31
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-31
  day: 31
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References HeckmanJJMorrisonDRVafaCOn the Classification of 6D SCFTs and Generalized ADE OrbifoldsJHEP2014050282014JHEP...05..028H10.1007/JHEP05(2014)028[arXiv:1312.5746] [INSPIRE]
HeckmanJJRudeliusTTomasielloAFission, Fusion, and 6D RG FlowsJHEP2019021672019JHEP...02..167H392526310.1007/JHEP02(2019)167[arXiv:1807.10274] [INSPIRE]
FontAMayrhoferCNon-geometric vacua of the Spin(32)/ℤ2heterotic string and little string theoriesJHEP2017110642017JHEP...11..064F37472431383.8317110.1007/JHEP11(2017)064[arXiv:1708.05428] [INSPIRE]
M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B247 (1990) 517 [INSPIRE].
BastianBHoheneggerSIqbalAReyS-JBeyond Triality: Dual Quiver Gauge Theories and Little String TheoriesJHEP2018110162018JHEP...11..016B39085601404.8311110.1007/JHEP11(2018)016[arXiv:1807.00186] [INSPIRE]
ElvangHFreedmanDZHungL-YKiermaierMMyersRCTheisenSOn renormalization group flows and the a-theorem in 6dJHEP2012100112012JHEP...10..011E30338891397.8117910.1007/JHEP10(2012)011[arXiv:1205.3994] [INSPIRE]
V.G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser Boston (1983), https://doi.org/10.1007/978-1-4757-1382-4.
CordovaCDumitrescuTTIntriligatorKAnomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theoriesJHEP2016100802016JHEP...10..080C35775491390.8136910.1007/JHEP10(2016)080[arXiv:1506.03807] [INSPIRE]
ApruzziFBhardwajLGouldDSWSchafer-NamekiS2-Group symmetries and their classification in 6dSciPost Phys.2022120982022ScPP...12...98A439957810.21468/SciPostPhys.12.3.098[arXiv:2110.14647] [INSPIRE]
SenADynamics of multiple Kaluza-Klein monopoles in M and string theoryAdv. Theor. Math. Phys.1998111514892970898.5806410.4310/ATMP.1997.v1.n1.a3[hep-th/9707042] [INSPIRE]
HananyAZaffaroniAIssues on orientifolds: On the brane construction of gauge theories with SO(2n) global symmetryJHEP1999070091999JHEP...07..009H17123961060.8160310.1088/1126-6708/1999/07/009[hep-th/9903242] [INSPIRE]
A. Font, I.n. Garcia-Etxebarria, D. Lüst, S. Massai and C. Mayrhofer, Non-geometric heterotic backgrounds and 6D SCFTs/LSTs, PoSCORFU2016 (2017) 123 [arXiv:1712.07083] [INSPIRE].
HeckmanJJRudeliusTTop Down Approach to 6D SCFTsJ. Phys. A2019522019JPhA...52i3001H1505.8106910.1088/1751-8121/aafc81[arXiv:1805.06467] [INSPIRE]
BlumJDIntriligatorKAConsistency conditions for branes at orbifold singularitiesNucl. Phys. B19975062231997NuPhB.506..223B14910190925.8126310.1016/S0550-3213(97)00450-1[hep-th/9705030] [INSPIRE]
OhmoriKShimizuHTachikawaYYonekuraKAnomaly polynomial of general 6d SCFTsPTEP201420141331.81266[arXiv:1408.5572] [INSPIRE]
IntriligatorKANew string theories in six-dimensions via branes at orbifold singularitiesAdv. Theor. Math. Phys.1998127116055950907.3200610.4310/ATMP.1997.v1.n2.a5[hep-th/9708117] [INSPIRE]
Del ZottoMVafaCXieDGeometric engineering, mirror symmetry and 6d(1,0)→ 4d(𝒩 =2)JHEP2015111232015JHEP...11..123D[arXiv:1504.08348] [INSPIRE]
CórdovaCDumitrescuTTIntriligatorKExploring 2-Group Global SymmetriesJHEP2019021842019JHEP...02..184C39252801411.8311610.1007/JHEP02(2019)184[arXiv:1802.04790] [INSPIRE]
BhardwajLRevisiting the classifications of 6d SCFTs and LSTsJHEP2020031712020JHEP...03..171B1435.8317010.1007/JHEP03(2020)171[arXiv:1903.10503] [INSPIRE]
MekareeyaNOhmoriKTachikawaYZafrirGE8instantons on type-A ALE spaces and supersymmetric field theoriesJHEP2017091442017JHEP...09..144M1382.8120710.1007/JHEP09(2017)144[arXiv:1707.04370] [INSPIRE]
L. Bhardwaj, Discovering T-Dualities of Little String Theories, arXiv:2209.10548 [INSPIRE].
PolchinskiJWittenEEvidence for heterotic - type I string dualityNucl. Phys. B19964605251996NuPhB.460..525P13816101004.8152610.1016/0550-3213(95)00614-1[hep-th/9510169] [INSPIRE]
CordovaCDumitrescuTTIntriligatorK2-Group Global Symmetries and Anomalies in Six-Dimensional Quantum Field TheoriesJHEP2021042522021JHEP...04..252C42761981462.8112810.1007/JHEP04(2021)252[arXiv:2009.00138] [INSPIRE]
HeckmanJJRudeliusTTomasielloA6D RG Flows and Nilpotent HierarchiesJHEP2016070822016JHEP...07..082H35473581390.8151310.1007/JHEP07(2016)082[arXiv:1601.04078] [INSPIRE]
HoravaPWittenEHeterotic and type I string dynamics from eleven-dimensionsNucl. Phys. B19964605061996NuPhB.460..506H13816091004.8152510.1016/0550-3213(95)00621-4[hep-th/9510209] [INSPIRE]
Del ZottoMHeckmanJJMorrisonDR6D SCFTs and Phases of 5D TheoriesJHEP2017091472017JHEP...09..147D37104671382.8117610.1007/JHEP09(2017)147[arXiv:1703.02981] [INSPIRE]
BlumJDIntriligatorKANew phases of string theory and 6-D RG fixed points via branes at orbifold singularitiesNucl. Phys. B19975061991997NuPhB.506..199B14910180925.8126210.1016/S0550-3213(97)00449-5[hep-th/9705044] [INSPIRE]
BerkoozMLeighRGPolchinskiJSchwarzJHSeibergNWittenEAnomalies, dualities, and topology of D=6 N=1 superstring vacuaNucl. Phys. B19964751151996NuPhB.475..115B14120980925.8133510.1016/0550-3213(96)00339-2[hep-th/9605184] [INSPIRE]
Del ZottoMHeckmanJJMorrisonDRParkDS6D SCFTs and GravityJHEP2015061582015JHEP...06..158D33701771387.8303110.1007/JHEP06(2015)158[arXiv:1412.6526] [INSPIRE]
BhardwajLSchäfer-NamekiSHigher-form symmetries of 6d and 5d theoriesJHEP2021021592021JHEP...02..159B42598361460.8107610.1007/JHEP02(2021)159[arXiv:2008.09600] [INSPIRE]
A. Sagnotti, Open Strings and their Symmetry Groups, in NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), (1987) [hep-th/0208020] [INSPIRE].
HananyAZaffaroniABranes and six-dimensional supersymmetric theoriesNucl. Phys. B19985291801998NuPhB.529..180H16503340961.8107710.1016/S0550-3213(98)00355-1[hep-th/9712145] [INSPIRE]
Del ZottoMOhmoriK2-Group Symmetries of 6D Little String Theories and T-DualityAnnales Henri Poincare20212224512021AnHP...22.2451D42859481468.8108310.1007/s00023-021-01018-3[arXiv:2009.03489] [INSPIRE]
AspinwallPSPoint - like instantons and the spin (32) / Z(2) heterotic stringNucl. Phys. B19974961491997NuPhB.496..149A14579880935.8105410.1016/S0550-3213(97)00232-0[hep-th/9612108] [INSPIRE]
OhmoriKTachikawaYZafrirGCompactifications of 6d N = (1, 0) SCFTs with non-trivial Stiefel-Whitney classesJHEP2019040062019JHEP...04..006O39554631415.8110510.1007/JHEP04(2019)006[arXiv:1812.04637] [INSPIRE]
GanorOJHananyASmall E(8) instantons and tensionless noncritical stringsNucl. Phys. B19964741221996NuPhB.474..122G0925.8117010.1016/0550-3213(96)00243-X[hep-th/9602120] [INSPIRE]
FreyDDRudeliusT6D SCFTs and the classification of homomorphisms ΓADE→ E8Adv. Theor. Math. Phys.20202470941450580743548510.4310/ATMP.2020.v24.n3.a4[arXiv:1811.04921] [INSPIRE]
Del ZottoMLockhartGUniversal Features of BPS Strings in Six-dimensional SCFTsJHEP2018081732018JHEP...08..173D38611491396.8117310.1007/JHEP08(2018)173[arXiv:1804.09694] [INSPIRE]
OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on T2and class S theories: Part IJHEP2015070142015JHEP...07..014O10.1007/JHEP07(2015)014[arXiv:1503.06217] [INSPIRE]
BastianBHoheneggerSIqbalAReyS-JTriality in Little String TheoriesPhys. Rev. D2018972018PhRvD..97d6004B38053661404.8311110.1103/PhysRevD.97.046004[arXiv:1711.07921] [INSPIRE]
M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part II. Geometric Engineering Limit of the Heterotic String, to appear.
FazziMGiriSHierarchy of RG flows in 6d (1, 0) orbi-instantonsJHEP2022120762022JHEP...12..076F45256720767135410.1007/JHEP12(2022)076[arXiv:2208.11703] [INSPIRE]
BrunnerIKarchABranes at orbifolds versus Hanany Witten in six-dimensionsJHEP1998030031998JHEP...03..003B16194170958.8116910.1088/1126-6708/1998/03/003[hep-th/9712143] [INSPIRE]
IntriligatorKARG fixed points in six-dimensions via branes at orbifold singularitiesNucl. Phys. B19974961771997NuPhB.496..177I14579890935.8106810.1016/S0550-3213(97)00236-8[hep-th/9702038] [INSPIRE]
OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on S1/T2and class S theories: part IIJHEP2015121312015JHEP...12..131O[arXiv:1508.00915] [INSPIRE]
Del ZottoMHeckmanJJParkDSRudeliusTOn the Defect Group of a 6D SCFTLett. Math. Phys.20161067652016LMaPh.106..765D35004211372.3203410.1007/s11005-016-0839-5[arXiv:1503.04806] [INSPIRE]
BhardwajLMorrisonDRTachikawaYTomasielloAThe frozen phase of F-theoryJHEP2018081382018JHEP...08..138B38611841396.8114710.1007/JHEP08(2018)138[arXiv:1805.09070] [INSPIRE]
WittenESmall instantons in string theoryNucl. Phys. B19964605411996NuPhB.460..541W13816110935.8105210.1016/0550-3213(95)00625-7[hep-th/9511030] [INSPIRE]
Del ZottoMHeckmanJJTomasielloAVafaC6d Conformal MatterJHEP20150205433214091387.8126510.1007/JHEP02(2015)054[arXiv:1407.6359] [INSPIRE]
HeckmanJJMorrisonDRRudeliusTVafaCAtomic Classification of 6D SCFTsFortsch. Phys.2015634682015ForPh..63..468H1338.8132610.1002/prop.201500024[arXiv:1502.05405] [INSPIRE]
M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part III. F-theory Geometry and T-duality, to appear.
DieriglMOehlmannP-KRuehleFNon-Simply-Connected Symmetries in 6D SCFTsJHEP2020101732020JHEP...10..173D42039321456.8142710.1007/JHEP10(2020)173[arXiv:2005.12929] [INSPIRE]
BhardwajLDel ZottoMHeckmanJJMorrisonDRRudeliusTVafaCF-theory and the Classification of Little StringsPhys. Rev. D2016932016PhRvD..93h6002B353113410.1103/PhysRevD.93.086002[arXiv:1511.05565] [INSPIRE]
AspinwallPSMorrisonDRPoint - like instantons on K3 orbifoldsNucl. Phys. B19975035331997NuPhB.503..533A14827350934.8104810.1016/S0550-3213(97)00516-6[hep-th/9705104] [INSPIRE]
K Ohmori (20090_CR8) 2015; 12
KA Intriligator (20090_CR47) 1997; 496
C Córdova (20090_CR15) 2019; 02
K Ohmori (20090_CR7) 2015; 07
20090_CR44
DD Frey (20090_CR42) 2020; 24
20090_CR43
E Witten (20090_CR35) 1996; 460
L Bhardwaj (20090_CR34) 2018; 08
A Hanany (20090_CR50) 1999; 07
C Cordova (20090_CR16) 2021; 04
P Horava (20090_CR39) 1996; 460
PS Aspinwall (20090_CR20) 1997; 496
OJ Ganor (20090_CR40) 1996; 474
20090_CR31
I Brunner (20090_CR25) 1998; 03
20090_CR30
M Del Zotto (20090_CR2) 2015; 02
M Berkooz (20090_CR37) 1996; 475
JD Blum (20090_CR36) 1997; 506
L Bhardwaj (20090_CR9) 2016; 93
K Ohmori (20090_CR3) 2014; 2014
L Bhardwaj (20090_CR18) 2021; 02
K Ohmori (20090_CR12) 2019; 04
F Apruzzi (20090_CR19) 2022; 12
A Sen (20090_CR46) 1998; 1
20090_CR27
M Del Zotto (20090_CR10) 2017; 09
20090_CR26
A Hanany (20090_CR24) 1998; 529
M Dierigl (20090_CR13) 2020; 10
20090_CR29
M Del Zotto (20090_CR32) 2018; 08
KA Intriligator (20090_CR23) 1998; 1
A Font (20090_CR28) 2017; 11
B Bastian (20090_CR48) 2018; 97
M Del Zotto (20090_CR5) 2015; 11
JJ Heckman (20090_CR33) 2019; 52
L Bhardwaj (20090_CR38) 2020; 03
JJ Heckman (20090_CR6) 2015; 63
M Del Zotto (20090_CR4) 2015; 06
N Mekareeya (20090_CR11) 2017; 09
JJ Heckman (20090_CR1) 2014; 05
M Fazzi (20090_CR52) 2022; 12
B Bastian (20090_CR49) 2018; 11
JD Blum (20090_CR22) 1997; 506
M Del Zotto (20090_CR14) 2016; 106
JJ Heckman (20090_CR51) 2016; 07
J Polchinski (20090_CR45) 1996; 460
C Cordova (20090_CR54) 2016; 10
H Elvang (20090_CR53) 2012; 10
M Del Zotto (20090_CR17) 2021; 22
PS Aspinwall (20090_CR21) 1997; 503
JJ Heckman (20090_CR41) 2019; 02
References_xml – reference: OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on T2and class S theories: Part IJHEP2015070142015JHEP...07..014O10.1007/JHEP07(2015)014[arXiv:1503.06217] [INSPIRE]
– reference: M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part III. F-theory Geometry and T-duality, to appear.
– reference: BlumJDIntriligatorKAConsistency conditions for branes at orbifold singularitiesNucl. Phys. B19975062231997NuPhB.506..223B14910190925.8126310.1016/S0550-3213(97)00450-1[hep-th/9705030] [INSPIRE]
– reference: Del ZottoMOhmoriK2-Group Symmetries of 6D Little String Theories and T-DualityAnnales Henri Poincare20212224512021AnHP...22.2451D42859481468.8108310.1007/s00023-021-01018-3[arXiv:2009.03489] [INSPIRE]
– reference: BastianBHoheneggerSIqbalAReyS-JBeyond Triality: Dual Quiver Gauge Theories and Little String TheoriesJHEP2018110162018JHEP...11..016B39085601404.8311110.1007/JHEP11(2018)016[arXiv:1807.00186] [INSPIRE]
– reference: CordovaCDumitrescuTTIntriligatorKAnomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theoriesJHEP2016100802016JHEP...10..080C35775491390.8136910.1007/JHEP10(2016)080[arXiv:1506.03807] [INSPIRE]
– reference: HananyAZaffaroniABranes and six-dimensional supersymmetric theoriesNucl. Phys. B19985291801998NuPhB.529..180H16503340961.8107710.1016/S0550-3213(98)00355-1[hep-th/9712145] [INSPIRE]
– reference: Del ZottoMHeckmanJJParkDSRudeliusTOn the Defect Group of a 6D SCFTLett. Math. Phys.20161067652016LMaPh.106..765D35004211372.3203410.1007/s11005-016-0839-5[arXiv:1503.04806] [INSPIRE]
– reference: OhmoriKShimizuHTachikawaYYonekuraKAnomaly polynomial of general 6d SCFTsPTEP201420141331.81266[arXiv:1408.5572] [INSPIRE]
– reference: WittenESmall instantons in string theoryNucl. Phys. B19964605411996NuPhB.460..541W13816110935.8105210.1016/0550-3213(95)00625-7[hep-th/9511030] [INSPIRE]
– reference: BhardwajLRevisiting the classifications of 6d SCFTs and LSTsJHEP2020031712020JHEP...03..171B1435.8317010.1007/JHEP03(2020)171[arXiv:1903.10503] [INSPIRE]
– reference: ApruzziFBhardwajLGouldDSWSchafer-NamekiS2-Group symmetries and their classification in 6dSciPost Phys.2022120982022ScPP...12...98A439957810.21468/SciPostPhys.12.3.098[arXiv:2110.14647] [INSPIRE]
– reference: Del ZottoMLockhartGUniversal Features of BPS Strings in Six-dimensional SCFTsJHEP2018081732018JHEP...08..173D38611491396.8117310.1007/JHEP08(2018)173[arXiv:1804.09694] [INSPIRE]
– reference: HoravaPWittenEHeterotic and type I string dynamics from eleven-dimensionsNucl. Phys. B19964605061996NuPhB.460..506H13816091004.8152510.1016/0550-3213(95)00621-4[hep-th/9510209] [INSPIRE]
– reference: Del ZottoMVafaCXieDGeometric engineering, mirror symmetry and 6d(1,0)→ 4d(𝒩 =2)JHEP2015111232015JHEP...11..123D[arXiv:1504.08348] [INSPIRE]
– reference: Del ZottoMHeckmanJJMorrisonDR6D SCFTs and Phases of 5D TheoriesJHEP2017091472017JHEP...09..147D37104671382.8117610.1007/JHEP09(2017)147[arXiv:1703.02981] [INSPIRE]
– reference: HananyAZaffaroniAIssues on orientifolds: On the brane construction of gauge theories with SO(2n) global symmetryJHEP1999070091999JHEP...07..009H17123961060.8160310.1088/1126-6708/1999/07/009[hep-th/9903242] [INSPIRE]
– reference: A. Font, I.n. Garcia-Etxebarria, D. Lüst, S. Massai and C. Mayrhofer, Non-geometric heterotic backgrounds and 6D SCFTs/LSTs, PoSCORFU2016 (2017) 123 [arXiv:1712.07083] [INSPIRE].
– reference: HeckmanJJRudeliusTTop Down Approach to 6D SCFTsJ. Phys. A2019522019JPhA...52i3001H1505.8106910.1088/1751-8121/aafc81[arXiv:1805.06467] [INSPIRE]
– reference: BhardwajLMorrisonDRTachikawaYTomasielloAThe frozen phase of F-theoryJHEP2018081382018JHEP...08..138B38611841396.8114710.1007/JHEP08(2018)138[arXiv:1805.09070] [INSPIRE]
– reference: BastianBHoheneggerSIqbalAReyS-JTriality in Little String TheoriesPhys. Rev. D2018972018PhRvD..97d6004B38053661404.8311110.1103/PhysRevD.97.046004[arXiv:1711.07921] [INSPIRE]
– reference: HeckmanJJRudeliusTTomasielloAFission, Fusion, and 6D RG FlowsJHEP2019021672019JHEP...02..167H392526310.1007/JHEP02(2019)167[arXiv:1807.10274] [INSPIRE]
– reference: M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B247 (1990) 517 [INSPIRE].
– reference: FontAMayrhoferCNon-geometric vacua of the Spin(32)/ℤ2heterotic string and little string theoriesJHEP2017110642017JHEP...11..064F37472431383.8317110.1007/JHEP11(2017)064[arXiv:1708.05428] [INSPIRE]
– reference: BlumJDIntriligatorKANew phases of string theory and 6-D RG fixed points via branes at orbifold singularitiesNucl. Phys. B19975061991997NuPhB.506..199B14910180925.8126210.1016/S0550-3213(97)00449-5[hep-th/9705044] [INSPIRE]
– reference: HeckmanJJRudeliusTTomasielloA6D RG Flows and Nilpotent HierarchiesJHEP2016070822016JHEP...07..082H35473581390.8151310.1007/JHEP07(2016)082[arXiv:1601.04078] [INSPIRE]
– reference: M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to Heterotic String on ALE spaces. Part II. Geometric Engineering Limit of the Heterotic String, to appear.
– reference: IntriligatorKANew string theories in six-dimensions via branes at orbifold singularitiesAdv. Theor. Math. Phys.1998127116055950907.3200610.4310/ATMP.1997.v1.n2.a5[hep-th/9708117] [INSPIRE]
– reference: PolchinskiJWittenEEvidence for heterotic - type I string dualityNucl. Phys. B19964605251996NuPhB.460..525P13816101004.8152610.1016/0550-3213(95)00614-1[hep-th/9510169] [INSPIRE]
– reference: HeckmanJJMorrisonDRVafaCOn the Classification of 6D SCFTs and Generalized ADE OrbifoldsJHEP2014050282014JHEP...05..028H10.1007/JHEP05(2014)028[arXiv:1312.5746] [INSPIRE]
– reference: Del ZottoMHeckmanJJMorrisonDRParkDS6D SCFTs and GravityJHEP2015061582015JHEP...06..158D33701771387.8303110.1007/JHEP06(2015)158[arXiv:1412.6526] [INSPIRE]
– reference: FazziMGiriSHierarchy of RG flows in 6d (1, 0) orbi-instantonsJHEP2022120762022JHEP...12..076F45256720767135410.1007/JHEP12(2022)076[arXiv:2208.11703] [INSPIRE]
– reference: BhardwajLSchäfer-NamekiSHigher-form symmetries of 6d and 5d theoriesJHEP2021021592021JHEP...02..159B42598361460.8107610.1007/JHEP02(2021)159[arXiv:2008.09600] [INSPIRE]
– reference: A. Sagnotti, Open Strings and their Symmetry Groups, in NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), (1987) [hep-th/0208020] [INSPIRE].
– reference: V.G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser Boston (1983), https://doi.org/10.1007/978-1-4757-1382-4.
– reference: HeckmanJJMorrisonDRRudeliusTVafaCAtomic Classification of 6D SCFTsFortsch. Phys.2015634682015ForPh..63..468H1338.8132610.1002/prop.201500024[arXiv:1502.05405] [INSPIRE]
– reference: FreyDDRudeliusT6D SCFTs and the classification of homomorphisms ΓADE→ E8Adv. Theor. Math. Phys.20202470941450580743548510.4310/ATMP.2020.v24.n3.a4[arXiv:1811.04921] [INSPIRE]
– reference: OhmoriKShimizuHTachikawaYYonekuraK6d 𝒩 = (1, 0) theories on S1/T2and class S theories: part IIJHEP2015121312015JHEP...12..131O[arXiv:1508.00915] [INSPIRE]
– reference: IntriligatorKARG fixed points in six-dimensions via branes at orbifold singularitiesNucl. Phys. B19974961771997NuPhB.496..177I14579890935.8106810.1016/S0550-3213(97)00236-8[hep-th/9702038] [INSPIRE]
– reference: MekareeyaNOhmoriKTachikawaYZafrirGE8instantons on type-A ALE spaces and supersymmetric field theoriesJHEP2017091442017JHEP...09..144M1382.8120710.1007/JHEP09(2017)144[arXiv:1707.04370] [INSPIRE]
– reference: DieriglMOehlmannP-KRuehleFNon-Simply-Connected Symmetries in 6D SCFTsJHEP2020101732020JHEP...10..173D42039321456.8142710.1007/JHEP10(2020)173[arXiv:2005.12929] [INSPIRE]
– reference: AspinwallPSPoint - like instantons and the spin (32) / Z(2) heterotic stringNucl. Phys. B19974961491997NuPhB.496..149A14579880935.8105410.1016/S0550-3213(97)00232-0[hep-th/9612108] [INSPIRE]
– reference: CórdovaCDumitrescuTTIntriligatorKExploring 2-Group Global SymmetriesJHEP2019021842019JHEP...02..184C39252801411.8311610.1007/JHEP02(2019)184[arXiv:1802.04790] [INSPIRE]
– reference: GanorOJHananyASmall E(8) instantons and tensionless noncritical stringsNucl. Phys. B19964741221996NuPhB.474..122G0925.8117010.1016/0550-3213(96)00243-X[hep-th/9602120] [INSPIRE]
– reference: Del ZottoMHeckmanJJTomasielloAVafaC6d Conformal MatterJHEP20150205433214091387.8126510.1007/JHEP02(2015)054[arXiv:1407.6359] [INSPIRE]
– reference: CordovaCDumitrescuTTIntriligatorK2-Group Global Symmetries and Anomalies in Six-Dimensional Quantum Field TheoriesJHEP2021042522021JHEP...04..252C42761981462.8112810.1007/JHEP04(2021)252[arXiv:2009.00138] [INSPIRE]
– reference: BerkoozMLeighRGPolchinskiJSchwarzJHSeibergNWittenEAnomalies, dualities, and topology of D=6 N=1 superstring vacuaNucl. Phys. B19964751151996NuPhB.475..115B14120980925.8133510.1016/0550-3213(96)00339-2[hep-th/9605184] [INSPIRE]
– reference: OhmoriKTachikawaYZafrirGCompactifications of 6d N = (1, 0) SCFTs with non-trivial Stiefel-Whitney classesJHEP2019040062019JHEP...04..006O39554631415.8110510.1007/JHEP04(2019)006[arXiv:1812.04637] [INSPIRE]
– reference: SenADynamics of multiple Kaluza-Klein monopoles in M and string theoryAdv. Theor. Math. Phys.1998111514892970898.5806410.4310/ATMP.1997.v1.n1.a3[hep-th/9707042] [INSPIRE]
– reference: BrunnerIKarchABranes at orbifolds versus Hanany Witten in six-dimensionsJHEP1998030031998JHEP...03..003B16194170958.8116910.1088/1126-6708/1998/03/003[hep-th/9712143] [INSPIRE]
– reference: BhardwajLDel ZottoMHeckmanJJMorrisonDRRudeliusTVafaCF-theory and the Classification of Little StringsPhys. Rev. D2016932016PhRvD..93h6002B353113410.1103/PhysRevD.93.086002[arXiv:1511.05565] [INSPIRE]
– reference: ElvangHFreedmanDZHungL-YKiermaierMMyersRCTheisenSOn renormalization group flows and the a-theorem in 6dJHEP2012100112012JHEP...10..011E30338891397.8117910.1007/JHEP10(2012)011[arXiv:1205.3994] [INSPIRE]
– reference: L. Bhardwaj, Discovering T-Dualities of Little String Theories, arXiv:2209.10548 [INSPIRE].
– reference: AspinwallPSMorrisonDRPoint - like instantons on K3 orbifoldsNucl. Phys. B19975035331997NuPhB.503..533A14827350934.8104810.1016/S0550-3213(97)00516-6[hep-th/9705104] [INSPIRE]
– volume: 11
  start-page: 016
  year: 2018
  ident: 20090_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)016
– volume: 460
  start-page: 525
  year: 1996
  ident: 20090_CR45
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00614-1
– volume: 12
  start-page: 098
  year: 2022
  ident: 20090_CR19
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.3.098
– volume: 07
  start-page: 009
  year: 1999
  ident: 20090_CR50
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/07/009
– volume: 496
  start-page: 149
  year: 1997
  ident: 20090_CR20
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00232-0
– volume: 06
  start-page: 158
  year: 2015
  ident: 20090_CR4
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)158
– volume: 03
  start-page: 003
  year: 1998
  ident: 20090_CR25
  publication-title: JHEP
  doi: 10.1088/1126-6708/1998/03/003
– ident: 20090_CR43
– volume: 496
  start-page: 177
  year: 1997
  ident: 20090_CR47
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00236-8
– ident: 20090_CR30
– volume: 52
  year: 2019
  ident: 20090_CR33
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/aafc81
– volume: 09
  start-page: 147
  year: 2017
  ident: 20090_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)147
– volume: 529
  start-page: 180
  year: 1998
  ident: 20090_CR24
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(98)00355-1
– volume: 460
  start-page: 541
  year: 1996
  ident: 20090_CR35
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00625-7
– volume: 10
  start-page: 011
  year: 2012
  ident: 20090_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)011
– ident: 20090_CR27
  doi: 10.1016/0370-2693(90)91894-H
– volume: 97
  year: 2018
  ident: 20090_CR48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.046004
– volume: 24
  start-page: 709
  year: 2020
  ident: 20090_CR42
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2020.v24.n3.a4
– volume: 08
  start-page: 173
  year: 2018
  ident: 20090_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)173
– volume: 08
  start-page: 138
  year: 2018
  ident: 20090_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)138
– volume: 11
  start-page: 123
  year: 2015
  ident: 20090_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)123
– volume: 106
  start-page: 765
  year: 2016
  ident: 20090_CR14
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-016-0839-5
– ident: 20090_CR31
– ident: 20090_CR26
  doi: 10.1007/978-1-4613-0729-7_23
– volume: 02
  start-page: 159
  year: 2021
  ident: 20090_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)159
– volume: 12
  start-page: 131
  year: 2015
  ident: 20090_CR8
  publication-title: JHEP
– volume: 1
  start-page: 271
  year: 1998
  ident: 20090_CR23
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1997.v1.n2.a5
– ident: 20090_CR29
  doi: 10.1007/JHEP08(2016)175
– volume: 07
  start-page: 014
  year: 2015
  ident: 20090_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)014
– volume: 04
  start-page: 006
  year: 2019
  ident: 20090_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)006
– volume: 02
  start-page: 167
  year: 2019
  ident: 20090_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)167
– ident: 20090_CR44
  doi: 10.1007/978-1-4757-1382-4
– volume: 503
  start-page: 533
  year: 1997
  ident: 20090_CR21
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00516-6
– volume: 12
  start-page: 076
  year: 2022
  ident: 20090_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP12(2022)076
– volume: 63
  start-page: 468
  year: 2015
  ident: 20090_CR6
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201500024
– volume: 22
  start-page: 2451
  year: 2021
  ident: 20090_CR17
  publication-title: Annales Henri Poincare
  doi: 10.1007/s00023-021-01018-3
– volume: 475
  start-page: 115
  year: 1996
  ident: 20090_CR37
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(96)00339-2
– volume: 04
  start-page: 252
  year: 2021
  ident: 20090_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)252
– volume: 2014
  year: 2014
  ident: 20090_CR3
  publication-title: PTEP
– volume: 506
  start-page: 223
  year: 1997
  ident: 20090_CR36
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00450-1
– volume: 474
  start-page: 122
  year: 1996
  ident: 20090_CR40
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(96)00243-X
– volume: 1
  start-page: 115
  year: 1998
  ident: 20090_CR46
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1997.v1.n1.a3
– volume: 460
  start-page: 506
  year: 1996
  ident: 20090_CR39
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00621-4
– volume: 10
  start-page: 080
  year: 2016
  ident: 20090_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)080
– volume: 506
  start-page: 199
  year: 1997
  ident: 20090_CR22
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00449-5
– volume: 02
  start-page: 184
  year: 2019
  ident: 20090_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)184
– volume: 03
  start-page: 171
  year: 2020
  ident: 20090_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)171
– volume: 07
  start-page: 082
  year: 2016
  ident: 20090_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)082
– volume: 11
  start-page: 064
  year: 2017
  ident: 20090_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)064
– volume: 09
  start-page: 144
  year: 2017
  ident: 20090_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)144
– volume: 02
  start-page: 054
  year: 2015
  ident: 20090_CR2
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)054
– volume: 10
  start-page: 173
  year: 2020
  ident: 20090_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)173
– volume: 93
  year: 2016
  ident: 20090_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.086002
– volume: 05
  start-page: 028
  year: 2014
  ident: 20090_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)028
SSID ssj0015190
Score 2.5124078
Snippet A bstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes...
In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE...
In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E8 × E8 five-branes probing ALE...
In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes probing ALE...
Abstract In this paper we begin revisiting the little string theories (LSTs) which govern the dynamics of the instantonic heterotic E 8 × E 8 five-branes...
SourceID doaj
swepub
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms Branes
Classical and Quantum Gravitation
Elementary Particles
F-Theory
Flavor (particle physics)
Global Symmetries
High energy physics
Instantons
M-Theory
Matching
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Singularities
String Duality
String Theory
Strings
Symmetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReKh5FXVgqH6jESmRxYieOjwssWlaAkAoVN8tPWoGyiOwe-PcdO8kWUFEvvcaTZDwe29_48Q1Ce1nqNfGMJIpZmrCitIlgTiQwVwIYoU74uNF-cVlMbtj0Nr99keornAlr6IEbwx1y55XQNKXalExYCl9ijjNFuCNC55HnkwjSBVPt_gHgEtIR-RB-OJ2Mr0i6H1KFD9JAL_JiDopU_a_w5XJL9A19aJxyTtfQpxYr4lGj4zr64KoNtBrPbJp6E30_UuYez2f4ZzjSMgMhHJJwVHc1nlV4dD7GMFrAMDDEV1BNfDbEZxELAtqrD3CWxAsdNVaVxdeJjZcrnz-jm9Px9fEkaXMkJIaV2RzGKm24ySxEHYWC_plplxdKOepFaq03Ls1V4MgzOQgY4V1WWs8pC-nQRe4M3UIr1axyXxC2LqAtZqgnmhHLNadGl5aWhdbapraHhp3VpGkJxEMeiwfZUR83ZpbBzBLM3EP7yxceG-6M90WPQjMsxQLpdXwAriBbV5D_coUe6neNKNueWMuMc8C8EDcVfy8uA2ANqK2HBl27_yl-V91vjWO8Uvjk149RVHixkEyUEGxv_49q7aCP4b9h3YemfbQyf1q4XUBCc_01Ov1vOe8BkQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFLY2pkl7QbANrQwmP2wSSKSLY8eOHwsUtdU2IXERb5avGwKlaGkf-Pccu0mncnnYWxQfR9a52J9z7O8g9LUgweSB5ZlmjmaMVy6TzMsM1koAI9TLkBLtP3_x0QWbXJVXLUlSvAvzKH__fTIanuZkLxb53ieCv0ZvSkJ5ysryo2W6AGBI3vH2PO20suQkZv4VOLnMgD5iC00rzMkGWm-hIR4sbLmJXvn6PXqbjmja5gM6O9T2Bs-m-E88wTIFIRxrbtS_Gzyt8eDHEMPkAFHfx6fgDnjcx-ME_QDcNQe4yNL9jQbr2uHzzKW7lPcf0cXJ8PxolLUlETLLqmIGU5OxwhYONhlcQzgWxpdca0-DJM4F60mpIyWeLUHAyuCLygVBWax-Lktv6RZaq6e1_4Sw8xFcMUtDbljuhBHUmsrRihtjHHE91O-0pmzLFx7LVtyqjul4oWYV1axAzT20t-xwt6DKeFn0MJphKRY5rtMLML1qQ0YJH7Q0lFBjKyYdBR9iXjCdC59LU9Ie2umMqNrAa1QhBEBc2Cbx55uriE8jSOuh_c7u_5pfHO63hWOsDPj4-nKQBjyfKyYr2Ftv_8c3P6N38TH-zaFkB63N_s79LuCbmfmSfPsB9UDwXw
  priority: 102
  providerName: Springer Nature
Title Back to heterotic strings on ALE spaces. Part I. Instantons, 2-groups and T-duality
URI https://link.springer.com/article/10.1007/JHEP01(2023)176
https://www.proquest.com/docview/2771505596
https://www.proquest.com/docview/2805753893
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-498106
https://doaj.org/article/7efa9b313bc849d394e4e74a07e09b53
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyQuiKcIlGgPILUSTr0Pe70nlISEtIIqggb1ZnkfLqiVXerkwL9nZmMbiigXS_aO7dXs7My3r28Iec1ZaeJSxlEhnYhkmrlIS68jiJUARoTXZVho_3SSLlby-Cw5ayfcmnZbZecTg6N2tcU58kOeIbLA8Pru6keEWaNwdbVNoXGX7DKINGjn2fxDv4oA6CTu6HxidXi8mC1jto8Jww8Ykoz8EYkCYf8NlNkvjP5FIhoCz_whedAiRjreNvEjcsdXj8m9sHPTNk_Il0lhL-i6pt9wY0sNQhRTcVTnDa0rOv44o-AzwBmM6BKshB6N6FFAhID5mreUR-FYR0OLytHTyIUjlj-fktV8djpdRG2mhMjKjK_BYxmrLHegoLSAXsqNT9Ki8KLUzLnSepYUyJRnExCwuvQ8c6USEpOi68Rb8YzsVHXlnxPqPGIuaUUZGxk7ZZSwJnMiS40xjrkBGXVay21LI47ZLC7zjgB5q-Yc1ZyDmgdkv3_hasugcbvoBJuhF0Pq6_Cgvj7P256UK18W2ggmjM2kdgJMS3oli1j5WJtEDMhe14h52x-bnCsFyBdGT-m_i3vjGpCDrt1_F99a3Tdbw7hR4fffv45DhTebXOoMhtwv_v_Ll-Q-fhHndQTbIzvr641_BUhnbYbBnIdkdzI7WX6GuymXeE2nwzB3ANcVH_8CPWT-AQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviE9RGOAHJm0S6RLbieMHhFrWqd26qoIO7c2LP7JNoGQsrdD-Kf5Gzk5SGGK87TW5ONbd-e5nn-8OobckylWYszDImKEBS1ITCGZFAL4SwAi1IveB9sNpMjpi-8fx8Rr62ebCuGuVrU30htqU2p2R75DUIQvnXj9cfA9c1ygXXW1baNRqcWCvfsCWrXo_3gX5bhKyN5x_HAVNV4FAs5QsYHUrzTUxMFiSgUYTZeMkyyzNRWRMrm0UZ66qnI6BQIvcktTknDLXQFzEVlMY9w5aZy6jtYPWB8Pp7NMqbgF4KGwLCIV8Z380nIXRlmtRvh25siZ_-D7fIuAarl2FYv8qW-pd3d5D9KDBqLhfK9UjtGaLx-iuvyuqqyfo8yDTX_GixGfuKk0JRNg1_yhOK1wWuD8ZYrBSYH56eAZ6icc9PPYYFFBm9Q6TwCeSVDgrDJ4Hxid1Xj1FR7fCxWeoU5SFfY6wsQ7lMU3zULHQcMWpVqmhaaKUMpHpol7LNambwuWuf8Y32ZZcrtksHZslsLmLtlYfXNQ1O24mHTgxrMhcsW3_oLw8lc3aldzmmVA0okqnTBgKyswsZ1nIbShUTLtooxWibCxAJQnngLVhv5b8-_VKnbtou5X779c3TnezVoxrE949_9L3E14uJRMpbPJf_P-Xb9C90fxwIifj6cFLdN-N7k6VaLSBOovLpX0FOGuhXjfKjdHJba-nXzwCN4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxKcoDPADkzaJtIntxPEDQh1tabcxVWJDe_Pir4FAyVhaof1r_HWcnaQwxHjba3JxrPPP59_57DuEXpHEqdixOCqYoRHLchMJZkUEayWQEWqFC4H2DwfZ9IjtHqfHa-hndxfGH6vsbGIw1KbSfo98QHLPLPzyOnDtsYj5aPL27HvkK0j5SGtXTqOByJ69-AHuW_1mNoKx3iRkMj58N43aCgORZjlZwExXmmtioOGsAHQTZdOsKCx1IjHGaZukhc8wp1MQ0MJZkhvHKfPFxEVqNYV2b6CbnHLhHb988n4VwQBmFHephGI-2J2O53Gy5YuVbyc-wckfq2AoFnCJ4a6Csn8lMA2L3uQeutuyVTxs4HUfrdnyAboVTo3q-iH6uFPor3hR4c_-UE0FQtiXASlPa1yVeLg_xmCvwBD18RwQimd9PAtsFPhm_RqTKFwpqXFRGnwYmXC98-IROroWHT5G62VV2icIG-v5HtPUxYrFhitOtcoNzTOllElMD_U7rUndpjD3lTS-yS75cqNm6dUsQc09tLX64KzJ3nG16I4fhpWYT7sdHlTnp7KdxZJbVwhFE6p0zoShAGtmOStibmOhUtpDG90gytYW1JJwDqwbPLfs369XwO6h7W7cf7--srubDTAudXj05dMwdHi5lEzk4O4__f8vX6LbMIvk_uxg7xm64xv320s02UDri_OlfQ6Ea6FeBGRjdHLdU-kXdS86UA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back+to+heterotic+strings+on+ALE+spaces&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Del+Zotto%2C+Michele&rft.au=Liu%2C+Muyang&rft.au=Oehlmann%2C+Paul-Konstantin&rft.date=2023-01-31&rft.issn=1126-6708&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282023%29176&rft.externalDocID=oai_DiVA_org_uu_498106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon