Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy

The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeut...

Full description

Saved in:
Bibliographic Details
Published inThe journal of microbiology Vol. 55; no. 11; pp. 837 - 849
Main Authors Shin, Bora, Park, Woojun
Format Journal Article
LanguageEnglish
Published Seoul The Microbiological Society of Korea 01.11.2017
Springer Nature B.V
한국미생물학회
Subjects
Online AccessGet full text
ISSN1225-8873
1976-3794
1976-3794
DOI10.1007/s12275-017-7288-4

Cover

Loading…
Abstract The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter -associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC ( Acinetobacter -derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.
AbstractList The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as blaADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as blaADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections. KCI Citation Count: 32
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter -associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC ( Acinetobacter -derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.
Author Park, Woojun
Shin, Bora
Author_xml – sequence: 1
  givenname: Bora
  surname: Shin
  fullname: Shin, Bora
  organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University
– sequence: 2
  givenname: Woojun
  surname: Park
  fullname: Park, Woojun
  email: wpark@korea.ac.kr
  organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29076065$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002275538$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkU1rFTEUhoNU7If-ADcy4MYuRk8yk6_lpWgtFASpGzchk3syTXsnuSa5i_57595pQQrq6gTyvC85eU7JUUwRCXlL4SMFkJ8KZUzyFqhsJVOq7V-QE6qlaDup-6P5zBhvlZLdMTkt5Q5A0K5nr8gx0yAFCH5Cfq5iDUNINbgmYwml2uiwSb7Z2nqbRozzxcqFiDUN1lXMTdmiC1gaG9cNTpjHEMfGpWkI0daQYlNvMdvtw2vy0ttNwTeP84z8-PL55uJre_3t8upidd26XrHaKq9h7XvomPMguWCes0FJxcD2outsx7xWPYMO5UBRS7BeI1CrKHjH7bo7I-dLb8ze3Ltgkg2HOSZzn83q-82VYVxr2omZ_bCw25x-7bBUM4XicLOxEdOuGAYAXCjN-X9RqrnsBdcAM_r-GXqXdjnOSx8ooZVQ-8J3j9RumHBttjlMNj-YJxkzIBfA5VRKRm9cqIcvrdmGjaFg9trNot3M2s1eu-nnJH2WfCr_V4YtmTKzccT8x6P_GvoNDwS87Q
CitedBy_id crossref_primary_10_1038_s41598_019_50852_3
crossref_primary_10_1016_j_diagmicrobio_2020_115280
crossref_primary_10_1089_mdr_2018_0153
crossref_primary_10_1893_BIOS_D_17_00040
crossref_primary_10_1055_a_1890_5559
crossref_primary_10_3390_antibiotics12061071
crossref_primary_10_3389_fvets_2018_00166
crossref_primary_10_1080_14656566_2018_1559817
crossref_primary_10_3390_antibiotics11040455
crossref_primary_10_1590_0037_8682_0237_2019
crossref_primary_10_1016_j_burns_2019_07_006
crossref_primary_10_1016_j_diagmicrobio_2020_114999
crossref_primary_10_1099_jmm_0_001060
crossref_primary_10_1128_AAC_00794_19
crossref_primary_10_1016_j_ijantimicag_2019_06_009
crossref_primary_10_33483_jfpau_1496909
crossref_primary_10_1007_s12275_019_8511_2
crossref_primary_10_1016_j_jmii_2024_01_008
crossref_primary_10_1007_s10096_020_03884_x
crossref_primary_10_1038_s41429_022_00509_7
crossref_primary_10_3390_biom10050720
crossref_primary_10_1111_jam_15297
crossref_primary_10_3389_fmicb_2023_1177951
crossref_primary_10_1016_j_jgar_2018_12_004
crossref_primary_10_1128_msystems_00037_22
crossref_primary_10_15789_2220_7619_ABI_2091
crossref_primary_10_1080_14787210_2018_1503054
crossref_primary_10_1007_s12275_021_1085_9
crossref_primary_10_1007_s40572_023_00393_9
crossref_primary_10_1186_s12866_024_03468_1
crossref_primary_10_3390_antibiotics10050558
crossref_primary_10_1007_s12275_019_8491_2
crossref_primary_10_1128_AAC_01089_18
crossref_primary_10_1007_s00253_019_10317_z
crossref_primary_10_1111_jam_15245
crossref_primary_10_1007_s12275_022_1620_3
crossref_primary_10_1128_JCM_01563_18
crossref_primary_10_2174_1567201816666190627141931
Cites_doi 10.1128/mBio.01982-14
10.1093/jac/dkq273
10.1128/AAC.02556-12
10.1016/j.ijantimicag.2013.05.010
10.4014/jmb.1307.07059
10.1128/AAC.00367-09
10.1128/AAC.00230-11
10.1016/j.ijantimicag.2017.01.007
10.1128/AAC.00732-07
10.1590/S1517-838246420140101
10.1093/jac/39.6.757
10.1128/CMR.00117-13
10.1128/AAC.01388-10
10.1016/j.jep.2015.12.008
10.1128/AAC.02473-13
10.1128/AAC.01624-13
10.2147/TCRM.S4328
10.1093/jac/dkq095
10.3389/fmicb.2012.00148
10.1093/jac/dkm208
10.1016/j.diagmicrobio.2010.12.023
10.1128/CMR.00059-12
10.1128/MMBR.67.4.593-656.2003
10.1371/journal.pone.0018485
10.1128/AAC.48.6.2075-2080.2004
10.1016/j.phymed.2016.11.007
10.1093/jac/28.6.791
10.1128/JB.00011-17
10.1128/AAC.00871-13
10.1128/AAC.00550-10
10.3389/fmicb.2016.01402
10.1016/j.ijantimicag.2016.11.031
10.1016/j.mib.2009.06.018
10.1128/mBio.00697-16
10.1016/j.ijantimicag.2009.10.005
10.1128/CMR.00058-16
10.1128/AAC.01343-15
10.1080/23744235.2017.1296183
10.1128/AAC.02994-15
10.1016/j.phymed.2014.08.013
10.1128/AAC.00839-16
10.1021/acsinfecdis.6b00058
10.1099/jmm.0.000315
10.1128/AAC.02143-15
10.1017/S095026881200194X
10.1128/AAC.01803-10
10.1021/pr101012s
10.1128/AAC.00584-09
10.1128/JB.00647-09
10.1016/j.ijantimicag.2012.08.009
10.1146/annurev.biochem.78.082907.145923
10.1016/j.diagmicrobio.2010.01.004
10.1159/000356755
10.1016/j.bjid.2012.10.029
10.1128/AAC.49.10.4362-4364.2005
10.1016/j.bjm.2016.06.005
10.1128/AAC.00922-10
10.1007/s10096-013-1870-4
10.1099/jmm.0.000048
10.1016/j.micres.2013.09.004
10.2174/157489110791233522
10.1128/AAC.00155-10
10.1002/iub.532
10.1093/jac/dkq195
10.1371/journal.pone.0110215
10.1007/s12275-017-6408-5
10.1016/j.ijpharm.2015.11.042
10.1111/j.1469-0691.2005.01351.x
10.1093/jac/dkx002
10.1038/ncomms13414
10.1099/jmm.0.000147
10.1128/JB.00435-12
10.1007/s00253-015-6439-y
10.1111/j.1574-695X.2011.00926.x
10.1586/14787210.2014.956093
10.1128/AAC.01768-09
10.3389/fmicb.2015.00618
10.1093/jac/dkg344
10.1128/AAC.45.3.994-995.2001
10.1155/2016/8603964
10.1371/journal.ppat.1004691
10.1128/AAC.00748-09
10.3855/jidc.6195
10.1016/j.febslet.2007.10.063
10.1016/j.ejphar.2014.02.015
10.1128/AAC.04110-14
10.3389/fmicb.2016.00760
10.1016/j.femsre.2004.04.001
10.1128/AAC.48.10.4054-4055.2004
10.1016/j.tim.2017.01.005
10.1128/AAC.49.5.1802-1807.2005
10.1080/07315724.2006.10719518
10.1016/S1995-7645(14)60074-2
10.1038/srep21121
10.1016/j.pdpdt.2017.01.003
10.1128/AAC.01082-16
10.1166/jbn.2013.1550
10.1016/j.phymed.2011.11.010
10.3892/etm.2013.1039
10.1128/AAC.00050-10
10.1371/journal.pgen.0020007
10.1099/mic.0.26541-0
10.2147/IJN.S104166
10.1016/j.diagmicrobio.2014.03.025
10.1016/j.ijantimicag.2005.10.012
10.9734/ARRB/2014/7357
10.1093/jac/dkp428
10.1016/j.resmic.2011.02.006
10.1186/1471-2334-11-109
10.1099/jmm.0.46433-0
10.1128/JCM.02607-10
10.1128/mBio.01379-14
10.1128/AAC.00963-09
10.1016/j.ajic.2011.10.009
10.1038/nrmicro3380
10.1128/AAC.00515-15
10.1007/s10096-014-2070-6
10.3389/fmicb.2016.01126
10.1073/pnas.082092899
10.4103/2231-0770.197508
10.2174/092986710792231996
10.1016/j.jgar.2016.04.007
10.1093/cid/cit253
10.1371/journal.pone.0111660
10.1099/jmm.0.008904-0
10.1371/journal.pone.0046537
10.1002/cbdv.201700092
10.1128/AAC.00704-11
10.1371/journal.pone.0052349
10.1038/srep45527
ContentType Journal Article
Copyright The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017
Journal of Microbiology is a copyright of Springer, 2017.
Copyright_xml – notice: The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017
– notice: Journal of Microbiology is a copyright of Springer, 2017.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T7
7TM
7TN
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FYUFA
GHDGH
GNUQQ
H94
H95
HCIFZ
K9.
L.G
LK8
M0S
M1P
M7N
M7P
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
ACYCR
DOI 10.1007/s12275-017-7288-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oceanic Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Oceanic Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Central Student
AGRICOLA
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1976-3794
EndPage 849
ExternalDocumentID oai_kci_go_kr_ARTI_2599136
29076065
10_1007_s12275_017_7288_4
Genre Journal Article
Review
GroupedDBID ---
-Y2
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5VS
67N
6NX
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
9ZL
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
KVFHK
LK8
LLZTM
M1P
M4Y
M7P
MA-
MM.
N9A
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
PCBAR
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TDB
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T7
7TM
7TN
7U9
7XB
88A
8FD
8FK
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H94
H95
K9.
L.G
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
7S9
ESTFP
L.6
AASML
ABAKF
ACAOD
ACYCR
AEFQL
AIGIU
ID FETCH-LOGICAL-c482t-8f90df4032cf07562f52b87820a4633a32f984203e7b1e970af9e01a810fc5ad3
IEDL.DBID BENPR
ISSN 1225-8873
1976-3794
IngestDate Sun Mar 09 07:53:54 EDT 2025
Fri Sep 05 08:35:40 EDT 2025
Fri Sep 05 13:06:29 EDT 2025
Fri Jul 25 18:57:56 EDT 2025
Mon Apr 14 01:48:04 EDT 2025
Tue Jul 01 01:01:32 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Mon Jul 21 06:08:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords multidrug resistance
natural compounds
membrane permeability
biofilm
adjuvants
Acinetobacter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-8f90df4032cf07562f52b87820a4633a32f984203e7b1e970af9e01a810fc5ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s12275-017-7288-4.pdf
PMID 29076065
PQID 1957698685
PQPubID 54654
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_2599136
proquest_miscellaneous_2000568955
proquest_miscellaneous_1957465900
proquest_journals_1957698685
pubmed_primary_29076065
crossref_citationtrail_10_1007_s12275_017_7288_4
crossref_primary_10_1007_s12275_017_7288_4
springer_journals_10_1007_s12275_017_7288_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171100
2017-11-00
2017-Nov
20171101
2017-11
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 20171100
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Korea (South)
PublicationTitle The journal of microbiology
PublicationTitleAbbrev J Microbiol
PublicationTitleAlternate J Microbiol
PublicationYear 2017
Publisher The Microbiological Society of Korea
Springer Nature B.V
한국미생물학회
Publisher_xml – name: The Microbiological Society of Korea
– name: Springer Nature B.V
– name: 한국미생물학회
References R.K. Shields (7288_CR106) 2012; 7
W.J. Wei (7288_CR129) 2017; 49
Y.S. Yang (7288_CR132) 2016; 60
A. Nemec (7288_CR83) 2011; 162
Y. Nait Chabane (7288_CR82) 2014; 9
R. Thummeepak (7288_CR116) 2016; 7
A. Rosato (7288_CR102) 2010; 17
E. Sugawara (7288_CR112) 2012; 194
M.A. Mussi (7288_CR80) 2007; 581
M. Anwar (7288_CR2) 2016; 2016
L. Huang (7288_CR58) 2011; 55
M. Nepka (7288_CR84) 2016; 60
A.P. Tomaras (7288_CR120) 2003; 149
D.R. Bowers (7288_CR14) 2015; 59
E.J. Yoon (7288_CR134) 2016; 7
T. Tsai (7288_CR122) 2011; 55
S. Farajnia (7288_CR40) 2013; 16
G.R. Yilmaz (7288_CR133) 2015; 9
S. Coyne (7288_CR27) 2011; 55
E.J. Yoon (7288_CR135) 2013; 57
H. Aydemir (7288_CR4) 2013; 141
G. Rajamohan (7288_CR95) 2010; 65
Y. Doi (7288_CR34) 2004; 48
S.H. Yun (7288_CR137) 2011; 10
A.R. Atasoy (7288_CR3) 2015; 8
S. Chusri (7288_CR25) 2014; 169
A. Batirel (7288_CR8) 2014; 33
Y. Sun (7288_CR113) 2014; 729
O. Azizi (7288_CR5) 2016; 65
S. Bae (7288_CR6) 2016; 60
A. Beceiro (7288_CR9) 2013; 26
J.M. Blair (7288_CR11) 2015; 13
B. Fan (7288_CR39) 2016; 11
W. Liang (7288_CR72) 2011; 11
E. Geisinger (7288_CR44) 2015; 11
S. Scandorieiro (7288_CR103) 2016; 7
D. Wong (7288_CR130) 2017; 30
T. Naas (7288_CR81) 2011; 49
M. Pagano (7288_CR89) 2016; 47
A.C. Gales (7288_CR42) 2006; 12
F. Temocin (7288_CR115) 2015; 46
G.A. Pankuch (7288_CR90) 2010; 67
L. Poirel (7288_CR92) 2011; 63
R.K. Shields (7288_CR107) 2011; 70
F. Rafii (7288_CR94) 2008; 4
M.S. Ramírez (7288_CR96) 2015; 64
V. Aleksic (7288_CR1) 2014; 21
H. Chu (7288_CR24) 2013; 17
M. Obara (7288_CR87) 1991; 28
S.L. Chau (7288_CR20) 2004; 48
F. Chaib (7288_CR18) 2017; 14
S. Schwarz (7288_CR104) 2004; 28
M.H. Maifiah (7288_CR77) 2017; 7
C. Valcourt (7288_CR125) 2016; 498
C.Y. Chin (7288_CR21) 2015; 59
E. Durante-Mangoni (7288_CR36) 2013; 57
G.B. Tian (7288_CR117) 2011; 55
R. Djeribi (7288_CR33) 2012; 40
I.A. Jang (7288_CR60) 2016; 6
D.J. Dwyer (7288_CR37) 2009; 12
K. Karthikeyan (7288_CR64) 2010; 65
N.C. Gordon (7288_CR48) 2010; 54
I. Roca (7288_CR98) 2012; 3
V.B. Srinivasan (7288_CR109) 2009; 53
H. Nikaido (7288_CR85) 2003; 67
G. Dinc (7288_CR32) 2013; 59
M.E. Falagas (7288_CR38) 2010; 35
R. Gopal (7288_CR47) 2014; 58
A.H. Choi (7288_CR22) 2009; 191
V. Post (7288_CR93) 2010; 65
X. Wu (7288_CR131) 2016; 7
G. Dinc (7288_CR31) 2015; 38
J.M. Rodríguez-Martínez (7288_CR101) 2010; 54
T. Dai (7288_CR29) 2010; 5
P.J. Stogios (7288_CR110) 2017; 3
G.L. Muller (7288_CR79) 2017; 199
X. Cai (7288_CR17) 2017; 49
N. Petrosillo (7288_CR91) 2014; 58
J.H. Tran (7288_CR121) 2002; 99
A. Heo (7288_CR53) 2014; 9
V. Tiwari (7288_CR119) 2015; 6
M.I. Hood (7288_CR55) 2010; 54
L. Malone (7288_CR78) 2013; 41
J. Jung (7288_CR62) 2015; 99
I. Lutsar (7288_CR76) 2014; 12
T. Bajpai (7288_CR7) 2017; 7
N. Karah (7288_CR63) 2016; 60
S. Li (7288_CR70) 2013; 9
C. Urban (7288_CR123) 2010; 54
M. Hornsey (7288_CR56) 2013; 42
G. Wan (7288_CR127) 2016; 11
Y.T. Liao (7288_CR73) 2015; 59
S. Coyne (7288_CR28) 2010; 54
E. Guclu (7288_CR49) 2014; 4
I. Roca (7288_CR99) 2009; 53
Y.S. Yu (7288_CR136) 2007; 60
J.R. Lenhard (7288_CR69) 2017; 72
H. Nikaido (7288_CR86) 2009; 78
K.A. Hassan (7288_CR51) 2015; 6
S. Chatterjee (7288_CR19) 2016; 7
A. Duarte (7288_CR35) 2012; 19
S. Ghosh (7288_CR46) 2012; 7
A.C. Jacobs (7288_CR59) 2012; 64
G.H. Shen (7288_CR105) 2012; 7
B. Shin (7288_CR108) 2015; 10
M.F. Lin (7288_CR75) 2017; 55
W.H. Gaze (7288_CR43) 2005; 49
S. Lee (7288_CR67) 2017; 24
S. Chusri (7288_CR26) 2014; 7
X.Z. Su (7288_CR111) 2005; 49
E. Boluki (7288_CR12) 2017; 18
Y. Briers (7288_CR15) 2014; 5
A. Ribera (7288_CR97) 2003; 52
J. Kim (7288_CR65) 2013; 23
T.P. Lim (7288_CR74) 2011; 6
T. Tangden (7288_CR114) 2017; 49
S. He (7288_CR52) 2015; 6
C. Cabrera (7288_CR16) 2006; 25
B.S. Weber (7288_CR128) 2017; 25
L. Damier-Piolle (7288_CR30) 2008; 52
M. Hornsey (7288_CR57) 2011; 55
A. Benjamin (7288_CR10) 2014; 27
F. Ghasemi (7288_CR45) 2016; 6
M. Hagihara (7288_CR50) 2014; 58
F. Timurkaynak (7288_CR118) 2006; 27
J. Vila (7288_CR126) 1997; 39
Y.W. Chu (7288_CR23) 2006; 55
C.H. Rodríguez (7288_CR100) 2015; 64
P. Knezevic (7288_CR66) 2016; 178
P.E. Fournier (7288_CR41) 2006; 2
Y. Zhang (7288_CR138) 2013; 5
M.E. Pachon-Ibanez (7288_CR88) 2010; 54
J. Li (7288_CR71) 2017
X. Jiang (7288_CR61) 2014; 79
P.G. Higgins (7288_CR54) 2010; 65
Y.T. Lee (7288_CR68) 2013; 32
T.W. Boo (7288_CR13) 2009; 58
C. Urban (7288_CR124) 2001; 45
References_xml – volume: 6
  start-page: 01982
  year: 2015
  ident: 7288_CR51
  publication-title: MBio
  doi: 10.1128/mBio.01982-14
– volume: 65
  start-page: 2253
  year: 2010
  ident: 7288_CR64
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkq273
– volume: 57
  start-page: 2989
  year: 2013
  ident: 7288_CR135
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02556-12
– volume: 42
  start-page: 343
  year: 2013
  ident: 7288_CR56
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2013.05.010
– volume: 23
  start-page: 1293
  year: 2013
  ident: 7288_CR65
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1307.07059
– volume: 54
  start-page: 1165
  year: 2010
  ident: 7288_CR88
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00367-09
– volume: 55
  start-page: 3534
  year: 2011
  ident: 7288_CR57
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00230-11
– volume: 49
  start-page: 609
  year: 2017
  ident: 7288_CR17
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2017.01.007
– volume: 52
  start-page: 557
  year: 2008
  ident: 7288_CR30
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00732-07
– volume: 46
  start-page: 1119
  year: 2015
  ident: 7288_CR115
  publication-title: Braz. J. Microbiol.
  doi: 10.1590/S1517-838246420140101
– volume: 39
  start-page: 757
  year: 1997
  ident: 7288_CR126
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/39.6.757
– volume: 27
  start-page: 241
  year: 2014
  ident: 7288_CR10
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00117-13
– volume: 55
  start-page: 947
  year: 2011
  ident: 7288_CR27
  publication-title: Agents Chemother.
  doi: 10.1128/AAC.01388-10
– volume: 178
  start-page: 125
  year: 2016
  ident: 7288_CR66
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.12.008
– volume: 58
  start-page: 1622
  year: 2014
  ident: 7288_CR47
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02473-13
– volume: 58
  start-page: 874
  year: 2014
  ident: 7288_CR50
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01624-13
– volume: 4
  start-page: 1343
  year: 2008
  ident: 7288_CR94
  publication-title: Ther. Clin. Risk Manag.
  doi: 10.2147/TCRM.S4328
– volume: 65
  start-page: 1162
  year: 2010
  ident: 7288_CR93
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkq095
– volume: 3
  start-page: 148
  year: 2012
  ident: 7288_CR98
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00148
– volume: 60
  start-page: 454
  year: 2007
  ident: 7288_CR136
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkm208
– volume: 70
  start-page: 246
  year: 2011
  ident: 7288_CR107
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/j.diagmicrobio.2010.12.023
– volume: 26
  start-page: 185
  year: 2013
  ident: 7288_CR9
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00059-12
– volume: 7
  start-page: 483
  year: 2012
  ident: 7288_CR46
  publication-title: Int. J. Nanomedicine
– volume-title: Microb. Drug. Resist.
  year: 2017
  ident: 7288_CR71
– volume: 67
  start-page: 593
  year: 2003
  ident: 7288_CR85
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.67.4.593-656.2003
– volume: 6
  start-page: 18485
  year: 2011
  ident: 7288_CR74
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018485
– volume: 48
  start-page: 2075
  year: 2004
  ident: 7288_CR34
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.6.2075-2080.2004
– volume: 24
  start-page: 49
  year: 2017
  ident: 7288_CR67
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2016.11.007
– volume: 28
  start-page: 791
  year: 1991
  ident: 7288_CR87
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/28.6.791
– volume: 199
  start-page: 00011
  year: 2017
  ident: 7288_CR79
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00011-17
– volume: 58
  start-page: 851
  year: 2014
  ident: 7288_CR91
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00871-13
– volume: 55
  start-page: 1883
  year: 2011
  ident: 7288_CR122
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00550-10
– volume: 7
  start-page: 1402
  year: 2016
  ident: 7288_CR116
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01402
– volume: 49
  start-page: 321
  year: 2017
  ident: 7288_CR129
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2016.11.031
– volume: 12
  start-page: 482
  year: 2009
  ident: 7288_CR37
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2009.06.018
– volume: 7
  start-page: 00697
  year: 2016
  ident: 7288_CR134
  publication-title: MBio
  doi: 10.1128/mBio.00697-16
– volume: 35
  start-page: 194
  year: 2010
  ident: 7288_CR38
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2009.10.005
– volume: 30
  start-page: 409
  year: 2017
  ident: 7288_CR130
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00058-16
– volume: 59
  start-page: 7346
  year: 2015
  ident: 7288_CR73
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01343-15
– volume: 49
  start-page: 521
  year: 2017
  ident: 7288_CR114
  publication-title: Infect. Dis. (Lond.)
  doi: 10.1080/23744235.2017.1296183
– volume: 60
  start-page: 4047
  year: 2016
  ident: 7288_CR132
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02994-15
– volume: 16
  start-page: 751
  year: 2013
  ident: 7288_CR40
  publication-title: Iran J. Basic Med. Sci.
– volume: 21
  start-page: 1666
  year: 2014
  ident: 7288_CR1
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2014.08.013
– volume: 60
  start-page: 6774
  year: 2016
  ident: 7288_CR6
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00839-16
– volume: 3
  start-page: 132
  year: 2017
  ident: 7288_CR110
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.6b00058
– volume: 65
  start-page: 928
  year: 2016
  ident: 7288_CR5
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.000315
– volume: 60
  start-page: 1801
  year: 2016
  ident: 7288_CR63
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02143-15
– volume: 10
  start-page: 0137751
  year: 2015
  ident: 7288_CR108
  publication-title: PLoS One
– volume: 141
  start-page: 1214
  year: 2013
  ident: 7288_CR4
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S095026881200194X
– volume: 55
  start-page: 3432
  year: 2011
  ident: 7288_CR58
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01803-10
– volume: 10
  start-page: 459
  year: 2011
  ident: 7288_CR137
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101012s
– volume: 53
  start-page: 4013
  year: 2009
  ident: 7288_CR99
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00584-09
– volume: 191
  start-page: 5953
  year: 2009
  ident: 7288_CR22
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00647-09
– volume: 41
  start-page: 70
  year: 2013
  ident: 7288_CR78
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2012.08.009
– volume: 78
  start-page: 119
  year: 2009
  ident: 7288_CR86
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.78.082907.145923
– volume: 67
  start-page: 191
  year: 2010
  ident: 7288_CR90
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/j.diagmicrobio.2010.01.004
– volume: 59
  start-page: 325
  year: 2013
  ident: 7288_CR32
  publication-title: Chemotherapy
  doi: 10.1159/000356755
– volume: 17
  start-page: 389
  year: 2013
  ident: 7288_CR24
  publication-title: Braz. J. Infect. Dis.
  doi: 10.1016/j.bjid.2012.10.029
– volume: 49
  start-page: 4362
  year: 2005
  ident: 7288_CR111
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.10.4362-4364.2005
– volume: 47
  start-page: 785
  year: 2016
  ident: 7288_CR89
  publication-title: Braz. J. Microbiol.
  doi: 10.1016/j.bjm.2016.06.005
– volume: 54
  start-page: 5316
  year: 2010
  ident: 7288_CR48
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00922-10
– volume: 32
  start-page: 1211
  year: 2013
  ident: 7288_CR68
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/s10096-013-1870-4
– volume: 64
  start-page: 525
  year: 2015
  ident: 7288_CR96
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.000048
– volume: 169
  start-page: 417
  year: 2014
  ident: 7288_CR25
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2013.09.004
– volume: 5
  start-page: 124
  year: 2010
  ident: 7288_CR29
  publication-title: Recent Pat. Antiinfect. Drug Discov.
  doi: 10.2174/157489110791233522
– volume: 54
  start-page: 4389
  year: 2010
  ident: 7288_CR28
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00155-10
– volume: 63
  start-page: 1061
  year: 2011
  ident: 7288_CR92
  publication-title: IUBMB Life
  doi: 10.1002/iub.532
– volume: 65
  start-page: 1919
  year: 2010
  ident: 7288_CR95
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkq195
– volume: 9
  start-page: 110215
  year: 2014
  ident: 7288_CR53
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110215
– volume: 55
  start-page: 130
  year: 2017
  ident: 7288_CR75
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-017-6408-5
– volume: 498
  start-page: 23
  year: 2016
  ident: 7288_CR125
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.11.042
– volume: 12
  start-page: 315
  year: 2006
  ident: 7288_CR42
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/j.1469-0691.2005.01351.x
– volume: 8
  start-page: 2874
  year: 2015
  ident: 7288_CR3
  publication-title: Int. J. Clin. Exp. Med.
– volume: 72
  start-page: 1415
  year: 2017
  ident: 7288_CR69
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkx002
– volume: 7
  start-page: 13414
  year: 2016
  ident: 7288_CR131
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13414
– volume: 64
  start-page: 1196
  year: 2015
  ident: 7288_CR100
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.000147
– volume: 194
  start-page: 4089
  year: 2012
  ident: 7288_CR112
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00435-12
– volume: 99
  start-page: 2533
  year: 2015
  ident: 7288_CR62
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-6439-y
– volume: 64
  start-page: 403
  year: 2012
  ident: 7288_CR59
  publication-title: FEMS Immunol. Med. Microbiol.
  doi: 10.1111/j.1574-695X.2011.00926.x
– volume: 12
  start-page: 1237
  year: 2014
  ident: 7288_CR76
  publication-title: Expert Rev. Anti. Infect. Ther.
  doi: 10.1586/14787210.2014.956093
– volume: 54
  start-page: 2732
  year: 2010
  ident: 7288_CR123
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01768-09
– volume: 6
  start-page: 618
  year: 2015
  ident: 7288_CR119
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00618
– volume: 52
  start-page: 477
  year: 2003
  ident: 7288_CR97
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkg344
– volume: 45
  start-page: 994
  year: 2001
  ident: 7288_CR124
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.45.3.994-995.2001
– volume: 2016
  start-page: 8603964
  year: 2016
  ident: 7288_CR2
  publication-title: J. Pathog.
  doi: 10.1155/2016/8603964
– volume: 11
  start-page: 1004691
  year: 2015
  ident: 7288_CR44
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004691
– volume: 53
  start-page: 5312
  year: 2009
  ident: 7288_CR109
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00748-09
– volume: 9
  start-page: 476
  year: 2015
  ident: 7288_CR133
  publication-title: J. Infect. Dev. Ctries.
  doi: 10.3855/jidc.6195
– volume: 581
  start-page: 5573
  year: 2007
  ident: 7288_CR80
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.10.063
– volume: 6
  start-page: 507
  year: 2015
  ident: 7288_CR52
  publication-title: Front. Microbiol.
– volume: 729
  start-page: 116
  year: 2014
  ident: 7288_CR113
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2014.02.015
– volume: 59
  start-page: 2720
  year: 2015
  ident: 7288_CR14
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.04110-14
– volume: 7
  start-page: 760
  year: 2016
  ident: 7288_CR103
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00760
– volume: 28
  start-page: 519
  year: 2004
  ident: 7288_CR104
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2004.04.001
– volume: 48
  start-page: 4054
  year: 2004
  ident: 7288_CR20
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.10.4054-4055.2004
– volume: 25
  start-page: 532
  year: 2017
  ident: 7288_CR128
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2017.01.005
– volume: 49
  start-page: 1802
  year: 2005
  ident: 7288_CR43
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.5.1802-1807.2005
– volume: 25
  start-page: 79
  year: 2006
  ident: 7288_CR16
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2006.10719518
– volume: 7
  start-page: 456
  year: 2014
  ident: 7288_CR26
  publication-title: Asian Pac. J. Trop. Med.
  doi: 10.1016/S1995-7645(14)60074-2
– volume: 6
  start-page: 21121
  year: 2016
  ident: 7288_CR60
  publication-title: Sci. Rep.
  doi: 10.1038/srep21121
– volume: 18
  start-page: 1
  year: 2017
  ident: 7288_CR12
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2017.01.003
– volume: 60
  start-page: 6903
  year: 2016
  ident: 7288_CR84
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01082-16
– volume: 9
  start-page: 393
  year: 2013
  ident: 7288_CR70
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2013.1550
– volume: 19
  start-page: 236
  year: 2012
  ident: 7288_CR35
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2011.11.010
– volume: 5
  start-page: 1737
  year: 2013
  ident: 7288_CR138
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2013.1039
– volume: 54
  start-page: 3484
  year: 2010
  ident: 7288_CR101
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00050-10
– volume: 2
  start-page: 7
  year: 2006
  ident: 7288_CR41
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020007
– volume: 149
  start-page: 3473
  year: 2003
  ident: 7288_CR120
  publication-title: Microbiology
  doi: 10.1099/mic.0.26541-0
– volume: 11
  start-page: 0157757
  year: 2016
  ident: 7288_CR39
  publication-title: PLoS One
– volume: 38
  start-page: 67
  year: 2015
  ident: 7288_CR31
  publication-title: New Microbiol.
– volume: 11
  start-page: 3789
  year: 2016
  ident: 7288_CR127
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S104166
– volume: 79
  start-page: 381
  year: 2014
  ident: 7288_CR61
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/j.diagmicrobio.2014.03.025
– volume: 27
  start-page: 224
  year: 2006
  ident: 7288_CR118
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2005.10.012
– volume: 4
  start-page: 1099
  year: 2014
  ident: 7288_CR49
  publication-title: Annu. Res. Rev. Biol.
  doi: 10.9734/ARRB/2014/7357
– volume: 65
  start-page: 233
  year: 2010
  ident: 7288_CR54
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkp428
– volume: 162
  start-page: 393
  year: 2011
  ident: 7288_CR83
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2011.02.006
– volume: 11
  start-page: 109
  year: 2011
  ident: 7288_CR72
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-11-109
– volume: 55
  start-page: 477
  year: 2006
  ident: 7288_CR23
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.46433-0
– volume: 49
  start-page: 1608
  year: 2011
  ident: 7288_CR81
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.02607-10
– volume: 5
  start-page: 01379
  year: 2014
  ident: 7288_CR15
  publication-title: MBio
  doi: 10.1128/mBio.01379-14
– volume: 54
  start-page: 1029
  year: 2010
  ident: 7288_CR55
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00963-09
– volume: 40
  start-page: 854
  year: 2012
  ident: 7288_CR33
  publication-title: Am. J. Infect. Control.
  doi: 10.1016/j.ajic.2011.10.009
– volume: 13
  start-page: 42
  year: 2015
  ident: 7288_CR11
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3380
– volume: 59
  start-page: 7911
  year: 2015
  ident: 7288_CR21
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00515-15
– volume: 33
  start-page: 1311
  year: 2014
  ident: 7288_CR8
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/s10096-014-2070-6
– volume: 7
  start-page: 1126
  year: 2016
  ident: 7288_CR19
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01126
– volume: 99
  start-page: 5638
  year: 2002
  ident: 7288_CR121
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.082092899
– volume: 7
  start-page: 12
  year: 2017
  ident: 7288_CR7
  publication-title: Avicenna. J. Med.
  doi: 10.4103/2231-0770.197508
– volume: 17
  start-page: 3289
  year: 2010
  ident: 7288_CR102
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986710792231996
– volume: 6
  start-page: 118
  year: 2016
  ident: 7288_CR45
  publication-title: J. Glob. Antimicrob. Resist.
  doi: 10.1016/j.jgar.2016.04.007
– volume: 57
  start-page: 349
  year: 2013
  ident: 7288_CR36
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/cit253
– volume: 9
  start-page: 111660
  year: 2014
  ident: 7288_CR82
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111660
– volume: 58
  start-page: 839
  year: 2009
  ident: 7288_CR13
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.008904-0
– volume: 7
  start-page: 46537
  year: 2012
  ident: 7288_CR105
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046537
– volume: 14
  start-page: 1700092
  year: 2017
  ident: 7288_CR18
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201700092
– volume: 55
  start-page: 4922
  year: 2011
  ident: 7288_CR117
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00704-11
– volume: 7
  start-page: 52349
  year: 2012
  ident: 7288_CR106
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052349
– volume: 7
  start-page: 45527
  year: 2017
  ident: 7288_CR77
  publication-title: Sci. Rep.
  doi: 10.1038/srep45527
SSID ssj0061342
Score 2.342077
SecondaryResourceType review_article
Snippet The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent...
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent...
SourceID nrf
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 837
SubjectTerms Acinetobacter
Acinetobacter baumannii - drug effects
Acinetobacter baumannii - pathogenicity
Acinetobacter Infections - drug therapy
Acinetobacter Infections - microbiology
Adjuvants
Adjuvants, Pharmaceutic
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
Antimicrobial agents
Antimicrobial resistance
beta-lactamase
Biofilms - drug effects
Biomedical and Life Sciences
Carbapenems
Carbapenems - pharmacology
Cephalosporinase
Disease resistance
Drug development
Drug efficacy
Drug resistance
Drug Resistance, Multiple, Bacterial - genetics
Drug Therapy, Combination
Drugs
Efflux
Genes
hospitals
Humans
Infectious diseases
Life Sciences
Membrane permeability
Microbial Sensitivity Tests
Microbiology
Minireview
Molecular modelling
Mutation
Permeability
Species
therapeutics
transporters
생물학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA96pdCXYj89tZIWn1oC2Xxt8nhI5RT0qQfiS8hmk1Isu3J3Pvjfd2Y_Tota6NM-zOySnY9khslvhpAjpVyUNhlmRSiZKoJmLijNqsBVMiHGnLGie35h5gt1dqkvBxz3arztPpYku536HuwmRIkXzUpWClCv2iYvNKTueI9vIWbj9gvHUzcxB7g1Aw-SYynzqU_8dRhtN8v8VJz5qEbaHT0nO-T1EDPSWa_kN2QrNW_Jy36K5N07cjVrEPjRApVC8owBIWiStpniuOEWLAQIMyygo_Nic2aK-EpIkWloaooIYZxUREEMkCZ3mqI9LOvuPVmcfP9xPGfDyAQWlRVrZrPjdVZcipghGDAia1FZ7IkXlJEySJGdVYLLVFZFciUP2SVeBFvwHHWo5Qcyadom7RIKiYiLvMgiI9o0Ztg2TVVDuOdsXZnAp4SPsvNx6CeOYy1--_tOyChuD-L2KG6vpuTr5pWbvpnGv5i_gEL8dfzlsQU2Pn-2_nrpIdA_9ZC1uUKaKTkY9eUH51v5wuHarbF6Sj5vyOA2WAsJTWpvex5lcGTq8zyIYtLGOg3f-djbwmbZwmFJ0wDl22gcDxbw3D_t_Rf3Pnkl0FY75OMBmayXt-kThEDr6rAz-T-U3fqN
  priority: 102
  providerName: Springer Nature
Title Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy
URI https://link.springer.com/article/10.1007/s12275-017-7288-4
https://www.ncbi.nlm.nih.gov/pubmed/29076065
https://www.proquest.com/docview/1957698685
https://www.proquest.com/docview/1957465900
https://www.proquest.com/docview/2000568955
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002275538
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of Microbiology, 2017, 55(11), , pp.837-849
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_cXQRfxO9bPZcoPinBNE3T5Emq7HkqHiIurL6ENG1ETtpzb-_h_ntn-rGn6N1ToUlLOl-ZyXTmB_BMKRtSU2tupM-5SnzGrVcZL71QtfYhxEgZ3Y9H-nCl3q-z9XDgdjr8VjnaxM5QV22gM_KXiUXP2BptslcnvzihRlF2dYDQmMAMTbDJpjB7vTz69Hm0xbhXdfA5CUotR3VKx7xmVzwnZU4_ruU8lygu6q-dadJs4v-czn8Spt0-dHALbg4OJCt6jt-Ga3VzB673kJLnd-Fb0VAVSIujDCNp8g6RrayNjLCHWxQXHCgom06aTJ2aGRVbYrzMfFMxKhcm2CKGRMGYuWMb62u0zu_B6mD55c0hH_ATeFBGbrmJVlRRiVSGiJ6BljGTpaEGeV7pNPWpjNYoKdI6L5Pa5sJHW4vEm0TEkPkqvQ_Tpm3qPWBE-yCSKCOVnoaINlSXFfp-1lSl9mIOYqSdC0NzccK4-Oku2iITuR2S2xG5nZrD890jJ31njasmP0WGuOPww1E_bLp-b93xxqHX_85hCGeTVM9hf-SXGzTx1F3IzRye7IZRhygx4pu6PevnKE34qZfPoZKmTBub4Xse9LKwW7a0lN_UOPJiFI4_FnDZNz28ermP4IYk4ezqHvdhut2c1Y_RAdqWC5jk63wBs-Lt1w_LxSDzeHcli98F_gL3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELb6EIJLVd4pBQyCC8jC6_V67QNCAVoltI0QaqWqF-P12ggV7ZY0Fcqf4jd2Zh8pCNpbTznYWTkz34xnMjvzEfJCSuNTHRTTwuVMJi5jxsmMFY7LoJz3MWJFd2-iRgfy02F2uER-970w-Fpl7xMbR13WHv8jf5MYiIyNVjp7d_KTIWsUVld7Co0WFjth_gtSttO344-g35dCbG_tfxixjlWAeanFjOloeBklT4WPcF8qETNRaBwb56RKU5eKaLQUPA15kQSTcxdN4InTCY8-c2UKz10mqxBmGLCi1fdbk89fet8Pd2ND15OAlTAw37SvozbNekLk-KJcznIB8JR_3YTL1TT-L8j9p0Db3Hvb62StC1jpsEXYbbIUqjvkRkthOb9LjoYVdp3UsEohc8doFGBE60iR67gGeMLCEKv36DlwMjTF5k7Iz6mrSortyUiTREEJkKM3MKFtT9j8Hjm4FsneJytVXYWHhKKuPU-iiNjq6iP4bFWUEGsaXRbK8QHhveys74aZI6fGD3sxhhnFbUHcFsVt5YC8WnzlpJ3kcdXm56AQe-y_W5y_jZ_fans8tZBljC2kjCZJ1YBs9vqyneWf2gucDsizxTLYLBZiXBXqs3aPVMjXevkebKHKlDYZPOdBi4XFsYXBeqqCldc9OP44wGW_aePq4z4lN0f7e7t2dzzZeURuCQRq03O5SVZm07PwGIKvWfGkQzwlX6_byM4BTa07HA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrUBceD8WChjECeTWcRzHPq6gS0uh4kClwsV1nBihRUm1zR7Kr2dmk2x5tEiIUw4zsfwY2zMaf98APFfKhtRUmhvpc64Sn3HrVcYLL1SlfQgxUkb3_b7eOVBvD7PDvs7pyfDafUhJdpgGYmmq263jMm6dAd-kzOnRWc5ziUut1mBdETf7CNYnbz7tbQ-HMV5Wy_o5qJ9x3E_pkNg8r5Ffrqa1eh7P8zr_yJguL6LpdTgahtC9P5ltLtpiM3z_jd3xP8Z4A671TiqbdFZ1Ey5V9S243JWtPL0Nnyc1IU0alDKM1skDRdNhTWRU37hBk0TBhDL2dFoQGzQjQCfG5MzXJSNIMpVGYtgnjMuXpsE6HNjpHTiYbn98tcP7Gg08KCNbbqIVZVQilSGi96FlzGRhiITPK52mPpXRGiVFWuVFUtlc-GgrkXiTiBgyX6Z3YVQ3dXUfGEY-Nogkykjw1hDxnNZFif6lNWWhvRiDGJbHhZ7AnOpofHNn1Ms0ZQ6nzNGUOTWGF6tfjjv2jr8pP8M1d7Pw1RHnNn2_NG42dxhZ7DoME22S6jFsDCbh-t1-4hJLfTfaZGN4uhLjPqXki6-rZtHpKE01Wi_WIdhUpo3NsJ17nbmtui0t5VA1Sl4OpvNTBy4a04N_0n4CVz68nrp3u_t7D-GqJNNboi43YNTOF9UjdL_a4nG_xX4Aq8YjQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibiotic+resistance+of+pathogenic+Acinetobacter+species+and+emerging+combination+therapy&rft.jtitle=The+journal+of+microbiology&rft.au=Shin%2C+Bora&rft.au=Park%2C+Woojun&rft.date=2017-11-01&rft.issn=1225-8873&rft.eissn=1976-3794&rft.volume=55&rft.issue=11&rft.spage=837&rft.epage=849&rft_id=info:doi/10.1007%2Fs12275-017-7288-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12275_017_7288_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-8873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-8873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-8873&client=summon