Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeut...
Saved in:
Published in | The journal of microbiology Vol. 55; no. 11; pp. 837 - 849 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Microbiological Society of Korea
01.11.2017
Springer Nature B.V 한국미생물학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1225-8873 1976-3794 1976-3794 |
DOI | 10.1007/s12275-017-7288-4 |
Cover
Loading…
Abstract | The increasing antibiotic resistance of
Acinetobacter
species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat
Acinetobacter
-associated infectious diseases. Among the many pathogenic
Acinetobacter
species,
A. baumannii
has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as
bla
ADC
(
Acinetobacter
-derived cephalosporinase). The AMR of pathogenic
Acinetobacter
species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of
Acinetobacter
infections. Understanding the molecular mechanisms behind
Acinetobacter
AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of
Acinetobacter
AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of
A. baumannii
infections. |
---|---|
AbstractList | The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections. The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as blaADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections. The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections. The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as blaADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections. KCI Citation Count: 32 The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter -associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC ( Acinetobacter -derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections. The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as bla ADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections. |
Author | Park, Woojun Shin, Bora |
Author_xml | – sequence: 1 givenname: Bora surname: Shin fullname: Shin, Bora organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University – sequence: 2 givenname: Woojun surname: Park fullname: Park, Woojun email: wpark@korea.ac.kr organization: Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29076065$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002275538$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqFkU1rFTEUhoNU7If-ADcy4MYuRk8yk6_lpWgtFASpGzchk3syTXsnuSa5i_57595pQQrq6gTyvC85eU7JUUwRCXlL4SMFkJ8KZUzyFqhsJVOq7V-QE6qlaDup-6P5zBhvlZLdMTkt5Q5A0K5nr8gx0yAFCH5Cfq5iDUNINbgmYwml2uiwSb7Z2nqbRozzxcqFiDUN1lXMTdmiC1gaG9cNTpjHEMfGpWkI0daQYlNvMdvtw2vy0ttNwTeP84z8-PL55uJre_3t8upidd26XrHaKq9h7XvomPMguWCes0FJxcD2outsx7xWPYMO5UBRS7BeI1CrKHjH7bo7I-dLb8ze3Ltgkg2HOSZzn83q-82VYVxr2omZ_bCw25x-7bBUM4XicLOxEdOuGAYAXCjN-X9RqrnsBdcAM_r-GXqXdjnOSx8ooZVQ-8J3j9RumHBttjlMNj-YJxkzIBfA5VRKRm9cqIcvrdmGjaFg9trNot3M2s1eu-nnJH2WfCr_V4YtmTKzccT8x6P_GvoNDwS87Q |
CitedBy_id | crossref_primary_10_1038_s41598_019_50852_3 crossref_primary_10_1016_j_diagmicrobio_2020_115280 crossref_primary_10_1089_mdr_2018_0153 crossref_primary_10_1893_BIOS_D_17_00040 crossref_primary_10_1055_a_1890_5559 crossref_primary_10_3390_antibiotics12061071 crossref_primary_10_3389_fvets_2018_00166 crossref_primary_10_1080_14656566_2018_1559817 crossref_primary_10_3390_antibiotics11040455 crossref_primary_10_1590_0037_8682_0237_2019 crossref_primary_10_1016_j_burns_2019_07_006 crossref_primary_10_1016_j_diagmicrobio_2020_114999 crossref_primary_10_1099_jmm_0_001060 crossref_primary_10_1128_AAC_00794_19 crossref_primary_10_1016_j_ijantimicag_2019_06_009 crossref_primary_10_33483_jfpau_1496909 crossref_primary_10_1007_s12275_019_8511_2 crossref_primary_10_1016_j_jmii_2024_01_008 crossref_primary_10_1007_s10096_020_03884_x crossref_primary_10_1038_s41429_022_00509_7 crossref_primary_10_3390_biom10050720 crossref_primary_10_1111_jam_15297 crossref_primary_10_3389_fmicb_2023_1177951 crossref_primary_10_1016_j_jgar_2018_12_004 crossref_primary_10_1128_msystems_00037_22 crossref_primary_10_15789_2220_7619_ABI_2091 crossref_primary_10_1080_14787210_2018_1503054 crossref_primary_10_1007_s12275_021_1085_9 crossref_primary_10_1007_s40572_023_00393_9 crossref_primary_10_1186_s12866_024_03468_1 crossref_primary_10_3390_antibiotics10050558 crossref_primary_10_1007_s12275_019_8491_2 crossref_primary_10_1128_AAC_01089_18 crossref_primary_10_1007_s00253_019_10317_z crossref_primary_10_1111_jam_15245 crossref_primary_10_1007_s12275_022_1620_3 crossref_primary_10_1128_JCM_01563_18 crossref_primary_10_2174_1567201816666190627141931 |
Cites_doi | 10.1128/mBio.01982-14 10.1093/jac/dkq273 10.1128/AAC.02556-12 10.1016/j.ijantimicag.2013.05.010 10.4014/jmb.1307.07059 10.1128/AAC.00367-09 10.1128/AAC.00230-11 10.1016/j.ijantimicag.2017.01.007 10.1128/AAC.00732-07 10.1590/S1517-838246420140101 10.1093/jac/39.6.757 10.1128/CMR.00117-13 10.1128/AAC.01388-10 10.1016/j.jep.2015.12.008 10.1128/AAC.02473-13 10.1128/AAC.01624-13 10.2147/TCRM.S4328 10.1093/jac/dkq095 10.3389/fmicb.2012.00148 10.1093/jac/dkm208 10.1016/j.diagmicrobio.2010.12.023 10.1128/CMR.00059-12 10.1128/MMBR.67.4.593-656.2003 10.1371/journal.pone.0018485 10.1128/AAC.48.6.2075-2080.2004 10.1016/j.phymed.2016.11.007 10.1093/jac/28.6.791 10.1128/JB.00011-17 10.1128/AAC.00871-13 10.1128/AAC.00550-10 10.3389/fmicb.2016.01402 10.1016/j.ijantimicag.2016.11.031 10.1016/j.mib.2009.06.018 10.1128/mBio.00697-16 10.1016/j.ijantimicag.2009.10.005 10.1128/CMR.00058-16 10.1128/AAC.01343-15 10.1080/23744235.2017.1296183 10.1128/AAC.02994-15 10.1016/j.phymed.2014.08.013 10.1128/AAC.00839-16 10.1021/acsinfecdis.6b00058 10.1099/jmm.0.000315 10.1128/AAC.02143-15 10.1017/S095026881200194X 10.1128/AAC.01803-10 10.1021/pr101012s 10.1128/AAC.00584-09 10.1128/JB.00647-09 10.1016/j.ijantimicag.2012.08.009 10.1146/annurev.biochem.78.082907.145923 10.1016/j.diagmicrobio.2010.01.004 10.1159/000356755 10.1016/j.bjid.2012.10.029 10.1128/AAC.49.10.4362-4364.2005 10.1016/j.bjm.2016.06.005 10.1128/AAC.00922-10 10.1007/s10096-013-1870-4 10.1099/jmm.0.000048 10.1016/j.micres.2013.09.004 10.2174/157489110791233522 10.1128/AAC.00155-10 10.1002/iub.532 10.1093/jac/dkq195 10.1371/journal.pone.0110215 10.1007/s12275-017-6408-5 10.1016/j.ijpharm.2015.11.042 10.1111/j.1469-0691.2005.01351.x 10.1093/jac/dkx002 10.1038/ncomms13414 10.1099/jmm.0.000147 10.1128/JB.00435-12 10.1007/s00253-015-6439-y 10.1111/j.1574-695X.2011.00926.x 10.1586/14787210.2014.956093 10.1128/AAC.01768-09 10.3389/fmicb.2015.00618 10.1093/jac/dkg344 10.1128/AAC.45.3.994-995.2001 10.1155/2016/8603964 10.1371/journal.ppat.1004691 10.1128/AAC.00748-09 10.3855/jidc.6195 10.1016/j.febslet.2007.10.063 10.1016/j.ejphar.2014.02.015 10.1128/AAC.04110-14 10.3389/fmicb.2016.00760 10.1016/j.femsre.2004.04.001 10.1128/AAC.48.10.4054-4055.2004 10.1016/j.tim.2017.01.005 10.1128/AAC.49.5.1802-1807.2005 10.1080/07315724.2006.10719518 10.1016/S1995-7645(14)60074-2 10.1038/srep21121 10.1016/j.pdpdt.2017.01.003 10.1128/AAC.01082-16 10.1166/jbn.2013.1550 10.1016/j.phymed.2011.11.010 10.3892/etm.2013.1039 10.1128/AAC.00050-10 10.1371/journal.pgen.0020007 10.1099/mic.0.26541-0 10.2147/IJN.S104166 10.1016/j.diagmicrobio.2014.03.025 10.1016/j.ijantimicag.2005.10.012 10.9734/ARRB/2014/7357 10.1093/jac/dkp428 10.1016/j.resmic.2011.02.006 10.1186/1471-2334-11-109 10.1099/jmm.0.46433-0 10.1128/JCM.02607-10 10.1128/mBio.01379-14 10.1128/AAC.00963-09 10.1016/j.ajic.2011.10.009 10.1038/nrmicro3380 10.1128/AAC.00515-15 10.1007/s10096-014-2070-6 10.3389/fmicb.2016.01126 10.1073/pnas.082092899 10.4103/2231-0770.197508 10.2174/092986710792231996 10.1016/j.jgar.2016.04.007 10.1093/cid/cit253 10.1371/journal.pone.0111660 10.1099/jmm.0.008904-0 10.1371/journal.pone.0046537 10.1002/cbdv.201700092 10.1128/AAC.00704-11 10.1371/journal.pone.0052349 10.1038/srep45527 |
ContentType | Journal Article |
Copyright | The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017 Journal of Microbiology is a copyright of Springer, 2017. |
Copyright_xml | – notice: The Microbiological Society of Korea and Springer-Verlag GmbH Germany 2017 – notice: Journal of Microbiology is a copyright of Springer, 2017. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T7 7TM 7TN 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH GNUQQ H94 H95 HCIFZ K9. L.G LK8 M0S M1P M7N M7P P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 ACYCR |
DOI | 10.1007/s12275-017-7288-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oceanic Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Oceanic Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Central Student AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1976-3794 |
EndPage | 849 |
ExternalDocumentID | oai_kci_go_kr_ARTI_2599136 29076065 10_1007_s12275_017_7288_4 |
Genre | Journal Article Review |
GroupedDBID | --- -Y2 .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X 9ZL A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJBLW AJRNO AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAWUL BBNVY BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DBRKI DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GW5 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 KVFHK LK8 LLZTM M1P M4Y M7P MA- MM. N9A NPVJJ NQJWS NU0 O9- O9J OK1 P2P PCBAR PF0 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TDB TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T7 7TM 7TN 7U9 7XB 88A 8FD 8FK AZQEC C1K DWQXO F1W FR3 GNUQQ H94 H95 K9. L.G M7N P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO 7S9 ESTFP L.6 AASML ABAKF ACAOD ACYCR AEFQL AIGIU |
ID | FETCH-LOGICAL-c482t-8f90df4032cf07562f52b87820a4633a32f984203e7b1e970af9e01a810fc5ad3 |
IEDL.DBID | BENPR |
ISSN | 1225-8873 1976-3794 |
IngestDate | Sun Mar 09 07:53:54 EDT 2025 Fri Sep 05 08:35:40 EDT 2025 Fri Sep 05 13:06:29 EDT 2025 Fri Jul 25 18:57:56 EDT 2025 Mon Apr 14 01:48:04 EDT 2025 Tue Jul 01 01:01:32 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Mon Jul 21 06:08:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | multidrug resistance natural compounds membrane permeability biofilm adjuvants Acinetobacter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-8f90df4032cf07562f52b87820a4633a32f984203e7b1e970af9e01a810fc5ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s12275-017-7288-4.pdf |
PMID | 29076065 |
PQID | 1957698685 |
PQPubID | 54654 |
PageCount | 13 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_2599136 proquest_miscellaneous_2000568955 proquest_miscellaneous_1957465900 proquest_journals_1957698685 pubmed_primary_29076065 crossref_citationtrail_10_1007_s12275_017_7288_4 crossref_primary_10_1007_s12275_017_7288_4 springer_journals_10_1007_s12275_017_7288_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171100 2017-11-00 2017-Nov 20171101 2017-11 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 20171100 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Korea (South) |
PublicationTitle | The journal of microbiology |
PublicationTitleAbbrev | J Microbiol |
PublicationTitleAlternate | J Microbiol |
PublicationYear | 2017 |
Publisher | The Microbiological Society of Korea Springer Nature B.V 한국미생물학회 |
Publisher_xml | – name: The Microbiological Society of Korea – name: Springer Nature B.V – name: 한국미생물학회 |
References | R.K. Shields (7288_CR106) 2012; 7 W.J. Wei (7288_CR129) 2017; 49 Y.S. Yang (7288_CR132) 2016; 60 A. Nemec (7288_CR83) 2011; 162 Y. Nait Chabane (7288_CR82) 2014; 9 R. Thummeepak (7288_CR116) 2016; 7 A. Rosato (7288_CR102) 2010; 17 E. Sugawara (7288_CR112) 2012; 194 M.A. Mussi (7288_CR80) 2007; 581 M. Anwar (7288_CR2) 2016; 2016 L. Huang (7288_CR58) 2011; 55 M. Nepka (7288_CR84) 2016; 60 A.P. Tomaras (7288_CR120) 2003; 149 D.R. Bowers (7288_CR14) 2015; 59 E.J. Yoon (7288_CR134) 2016; 7 T. Tsai (7288_CR122) 2011; 55 S. Farajnia (7288_CR40) 2013; 16 G.R. Yilmaz (7288_CR133) 2015; 9 S. Coyne (7288_CR27) 2011; 55 E.J. Yoon (7288_CR135) 2013; 57 H. Aydemir (7288_CR4) 2013; 141 G. Rajamohan (7288_CR95) 2010; 65 Y. Doi (7288_CR34) 2004; 48 S.H. Yun (7288_CR137) 2011; 10 A.R. Atasoy (7288_CR3) 2015; 8 S. Chusri (7288_CR25) 2014; 169 A. Batirel (7288_CR8) 2014; 33 Y. Sun (7288_CR113) 2014; 729 O. Azizi (7288_CR5) 2016; 65 S. Bae (7288_CR6) 2016; 60 A. Beceiro (7288_CR9) 2013; 26 J.M. Blair (7288_CR11) 2015; 13 B. Fan (7288_CR39) 2016; 11 W. Liang (7288_CR72) 2011; 11 E. Geisinger (7288_CR44) 2015; 11 S. Scandorieiro (7288_CR103) 2016; 7 D. Wong (7288_CR130) 2017; 30 T. Naas (7288_CR81) 2011; 49 M. Pagano (7288_CR89) 2016; 47 A.C. Gales (7288_CR42) 2006; 12 F. Temocin (7288_CR115) 2015; 46 G.A. Pankuch (7288_CR90) 2010; 67 L. Poirel (7288_CR92) 2011; 63 R.K. Shields (7288_CR107) 2011; 70 F. Rafii (7288_CR94) 2008; 4 M.S. Ramírez (7288_CR96) 2015; 64 V. Aleksic (7288_CR1) 2014; 21 H. Chu (7288_CR24) 2013; 17 M. Obara (7288_CR87) 1991; 28 S.L. Chau (7288_CR20) 2004; 48 F. Chaib (7288_CR18) 2017; 14 S. Schwarz (7288_CR104) 2004; 28 M.H. Maifiah (7288_CR77) 2017; 7 C. Valcourt (7288_CR125) 2016; 498 C.Y. Chin (7288_CR21) 2015; 59 E. Durante-Mangoni (7288_CR36) 2013; 57 G.B. Tian (7288_CR117) 2011; 55 R. Djeribi (7288_CR33) 2012; 40 I.A. Jang (7288_CR60) 2016; 6 D.J. Dwyer (7288_CR37) 2009; 12 K. Karthikeyan (7288_CR64) 2010; 65 N.C. Gordon (7288_CR48) 2010; 54 I. Roca (7288_CR98) 2012; 3 V.B. Srinivasan (7288_CR109) 2009; 53 H. Nikaido (7288_CR85) 2003; 67 G. Dinc (7288_CR32) 2013; 59 M.E. Falagas (7288_CR38) 2010; 35 R. Gopal (7288_CR47) 2014; 58 A.H. Choi (7288_CR22) 2009; 191 V. Post (7288_CR93) 2010; 65 X. Wu (7288_CR131) 2016; 7 G. Dinc (7288_CR31) 2015; 38 J.M. Rodríguez-Martínez (7288_CR101) 2010; 54 T. Dai (7288_CR29) 2010; 5 P.J. Stogios (7288_CR110) 2017; 3 G.L. Muller (7288_CR79) 2017; 199 X. Cai (7288_CR17) 2017; 49 N. Petrosillo (7288_CR91) 2014; 58 J.H. Tran (7288_CR121) 2002; 99 A. Heo (7288_CR53) 2014; 9 V. Tiwari (7288_CR119) 2015; 6 M.I. Hood (7288_CR55) 2010; 54 L. Malone (7288_CR78) 2013; 41 J. Jung (7288_CR62) 2015; 99 I. Lutsar (7288_CR76) 2014; 12 T. Bajpai (7288_CR7) 2017; 7 N. Karah (7288_CR63) 2016; 60 S. Li (7288_CR70) 2013; 9 C. Urban (7288_CR123) 2010; 54 M. Hornsey (7288_CR56) 2013; 42 G. Wan (7288_CR127) 2016; 11 Y.T. Liao (7288_CR73) 2015; 59 S. Coyne (7288_CR28) 2010; 54 E. Guclu (7288_CR49) 2014; 4 I. Roca (7288_CR99) 2009; 53 Y.S. Yu (7288_CR136) 2007; 60 J.R. Lenhard (7288_CR69) 2017; 72 H. Nikaido (7288_CR86) 2009; 78 K.A. Hassan (7288_CR51) 2015; 6 S. Chatterjee (7288_CR19) 2016; 7 A. Duarte (7288_CR35) 2012; 19 S. Ghosh (7288_CR46) 2012; 7 A.C. Jacobs (7288_CR59) 2012; 64 G.H. Shen (7288_CR105) 2012; 7 B. Shin (7288_CR108) 2015; 10 M.F. Lin (7288_CR75) 2017; 55 W.H. Gaze (7288_CR43) 2005; 49 S. Lee (7288_CR67) 2017; 24 S. Chusri (7288_CR26) 2014; 7 X.Z. Su (7288_CR111) 2005; 49 E. Boluki (7288_CR12) 2017; 18 Y. Briers (7288_CR15) 2014; 5 A. Ribera (7288_CR97) 2003; 52 J. Kim (7288_CR65) 2013; 23 T.P. Lim (7288_CR74) 2011; 6 T. Tangden (7288_CR114) 2017; 49 S. He (7288_CR52) 2015; 6 C. Cabrera (7288_CR16) 2006; 25 B.S. Weber (7288_CR128) 2017; 25 L. Damier-Piolle (7288_CR30) 2008; 52 M. Hornsey (7288_CR57) 2011; 55 A. Benjamin (7288_CR10) 2014; 27 F. Ghasemi (7288_CR45) 2016; 6 M. Hagihara (7288_CR50) 2014; 58 F. Timurkaynak (7288_CR118) 2006; 27 J. Vila (7288_CR126) 1997; 39 Y.W. Chu (7288_CR23) 2006; 55 C.H. Rodríguez (7288_CR100) 2015; 64 P. Knezevic (7288_CR66) 2016; 178 P.E. Fournier (7288_CR41) 2006; 2 Y. Zhang (7288_CR138) 2013; 5 M.E. Pachon-Ibanez (7288_CR88) 2010; 54 J. Li (7288_CR71) 2017 X. Jiang (7288_CR61) 2014; 79 P.G. Higgins (7288_CR54) 2010; 65 Y.T. Lee (7288_CR68) 2013; 32 T.W. Boo (7288_CR13) 2009; 58 C. Urban (7288_CR124) 2001; 45 |
References_xml | – volume: 6 start-page: 01982 year: 2015 ident: 7288_CR51 publication-title: MBio doi: 10.1128/mBio.01982-14 – volume: 65 start-page: 2253 year: 2010 ident: 7288_CR64 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkq273 – volume: 57 start-page: 2989 year: 2013 ident: 7288_CR135 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02556-12 – volume: 42 start-page: 343 year: 2013 ident: 7288_CR56 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2013.05.010 – volume: 23 start-page: 1293 year: 2013 ident: 7288_CR65 publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1307.07059 – volume: 54 start-page: 1165 year: 2010 ident: 7288_CR88 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00367-09 – volume: 55 start-page: 3534 year: 2011 ident: 7288_CR57 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00230-11 – volume: 49 start-page: 609 year: 2017 ident: 7288_CR17 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2017.01.007 – volume: 52 start-page: 557 year: 2008 ident: 7288_CR30 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00732-07 – volume: 46 start-page: 1119 year: 2015 ident: 7288_CR115 publication-title: Braz. J. Microbiol. doi: 10.1590/S1517-838246420140101 – volume: 39 start-page: 757 year: 1997 ident: 7288_CR126 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/39.6.757 – volume: 27 start-page: 241 year: 2014 ident: 7288_CR10 publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00117-13 – volume: 55 start-page: 947 year: 2011 ident: 7288_CR27 publication-title: Agents Chemother. doi: 10.1128/AAC.01388-10 – volume: 178 start-page: 125 year: 2016 ident: 7288_CR66 publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2015.12.008 – volume: 58 start-page: 1622 year: 2014 ident: 7288_CR47 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02473-13 – volume: 58 start-page: 874 year: 2014 ident: 7288_CR50 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01624-13 – volume: 4 start-page: 1343 year: 2008 ident: 7288_CR94 publication-title: Ther. Clin. Risk Manag. doi: 10.2147/TCRM.S4328 – volume: 65 start-page: 1162 year: 2010 ident: 7288_CR93 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkq095 – volume: 3 start-page: 148 year: 2012 ident: 7288_CR98 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00148 – volume: 60 start-page: 454 year: 2007 ident: 7288_CR136 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkm208 – volume: 70 start-page: 246 year: 2011 ident: 7288_CR107 publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/j.diagmicrobio.2010.12.023 – volume: 26 start-page: 185 year: 2013 ident: 7288_CR9 publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00059-12 – volume: 7 start-page: 483 year: 2012 ident: 7288_CR46 publication-title: Int. J. Nanomedicine – volume-title: Microb. Drug. Resist. year: 2017 ident: 7288_CR71 – volume: 67 start-page: 593 year: 2003 ident: 7288_CR85 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.67.4.593-656.2003 – volume: 6 start-page: 18485 year: 2011 ident: 7288_CR74 publication-title: PLoS One doi: 10.1371/journal.pone.0018485 – volume: 48 start-page: 2075 year: 2004 ident: 7288_CR34 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.6.2075-2080.2004 – volume: 24 start-page: 49 year: 2017 ident: 7288_CR67 publication-title: Phytomedicine doi: 10.1016/j.phymed.2016.11.007 – volume: 28 start-page: 791 year: 1991 ident: 7288_CR87 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/28.6.791 – volume: 199 start-page: 00011 year: 2017 ident: 7288_CR79 publication-title: J. Bacteriol. doi: 10.1128/JB.00011-17 – volume: 58 start-page: 851 year: 2014 ident: 7288_CR91 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00871-13 – volume: 55 start-page: 1883 year: 2011 ident: 7288_CR122 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00550-10 – volume: 7 start-page: 1402 year: 2016 ident: 7288_CR116 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01402 – volume: 49 start-page: 321 year: 2017 ident: 7288_CR129 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2016.11.031 – volume: 12 start-page: 482 year: 2009 ident: 7288_CR37 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2009.06.018 – volume: 7 start-page: 00697 year: 2016 ident: 7288_CR134 publication-title: MBio doi: 10.1128/mBio.00697-16 – volume: 35 start-page: 194 year: 2010 ident: 7288_CR38 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2009.10.005 – volume: 30 start-page: 409 year: 2017 ident: 7288_CR130 publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00058-16 – volume: 59 start-page: 7346 year: 2015 ident: 7288_CR73 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01343-15 – volume: 49 start-page: 521 year: 2017 ident: 7288_CR114 publication-title: Infect. Dis. (Lond.) doi: 10.1080/23744235.2017.1296183 – volume: 60 start-page: 4047 year: 2016 ident: 7288_CR132 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02994-15 – volume: 16 start-page: 751 year: 2013 ident: 7288_CR40 publication-title: Iran J. Basic Med. Sci. – volume: 21 start-page: 1666 year: 2014 ident: 7288_CR1 publication-title: Phytomedicine doi: 10.1016/j.phymed.2014.08.013 – volume: 60 start-page: 6774 year: 2016 ident: 7288_CR6 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00839-16 – volume: 3 start-page: 132 year: 2017 ident: 7288_CR110 publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.6b00058 – volume: 65 start-page: 928 year: 2016 ident: 7288_CR5 publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.000315 – volume: 60 start-page: 1801 year: 2016 ident: 7288_CR63 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02143-15 – volume: 10 start-page: 0137751 year: 2015 ident: 7288_CR108 publication-title: PLoS One – volume: 141 start-page: 1214 year: 2013 ident: 7288_CR4 publication-title: Epidemiol. Infect. doi: 10.1017/S095026881200194X – volume: 55 start-page: 3432 year: 2011 ident: 7288_CR58 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01803-10 – volume: 10 start-page: 459 year: 2011 ident: 7288_CR137 publication-title: J. Proteome Res. doi: 10.1021/pr101012s – volume: 53 start-page: 4013 year: 2009 ident: 7288_CR99 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00584-09 – volume: 191 start-page: 5953 year: 2009 ident: 7288_CR22 publication-title: J. Bacteriol. doi: 10.1128/JB.00647-09 – volume: 41 start-page: 70 year: 2013 ident: 7288_CR78 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2012.08.009 – volume: 78 start-page: 119 year: 2009 ident: 7288_CR86 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.78.082907.145923 – volume: 67 start-page: 191 year: 2010 ident: 7288_CR90 publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/j.diagmicrobio.2010.01.004 – volume: 59 start-page: 325 year: 2013 ident: 7288_CR32 publication-title: Chemotherapy doi: 10.1159/000356755 – volume: 17 start-page: 389 year: 2013 ident: 7288_CR24 publication-title: Braz. J. Infect. Dis. doi: 10.1016/j.bjid.2012.10.029 – volume: 49 start-page: 4362 year: 2005 ident: 7288_CR111 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.10.4362-4364.2005 – volume: 47 start-page: 785 year: 2016 ident: 7288_CR89 publication-title: Braz. J. Microbiol. doi: 10.1016/j.bjm.2016.06.005 – volume: 54 start-page: 5316 year: 2010 ident: 7288_CR48 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00922-10 – volume: 32 start-page: 1211 year: 2013 ident: 7288_CR68 publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-013-1870-4 – volume: 64 start-page: 525 year: 2015 ident: 7288_CR96 publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.000048 – volume: 169 start-page: 417 year: 2014 ident: 7288_CR25 publication-title: Microbiol. Res. doi: 10.1016/j.micres.2013.09.004 – volume: 5 start-page: 124 year: 2010 ident: 7288_CR29 publication-title: Recent Pat. Antiinfect. Drug Discov. doi: 10.2174/157489110791233522 – volume: 54 start-page: 4389 year: 2010 ident: 7288_CR28 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00155-10 – volume: 63 start-page: 1061 year: 2011 ident: 7288_CR92 publication-title: IUBMB Life doi: 10.1002/iub.532 – volume: 65 start-page: 1919 year: 2010 ident: 7288_CR95 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkq195 – volume: 9 start-page: 110215 year: 2014 ident: 7288_CR53 publication-title: PLoS One doi: 10.1371/journal.pone.0110215 – volume: 55 start-page: 130 year: 2017 ident: 7288_CR75 publication-title: J. Microbiol. doi: 10.1007/s12275-017-6408-5 – volume: 498 start-page: 23 year: 2016 ident: 7288_CR125 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.11.042 – volume: 12 start-page: 315 year: 2006 ident: 7288_CR42 publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2005.01351.x – volume: 8 start-page: 2874 year: 2015 ident: 7288_CR3 publication-title: Int. J. Clin. Exp. Med. – volume: 72 start-page: 1415 year: 2017 ident: 7288_CR69 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkx002 – volume: 7 start-page: 13414 year: 2016 ident: 7288_CR131 publication-title: Nat. Commun. doi: 10.1038/ncomms13414 – volume: 64 start-page: 1196 year: 2015 ident: 7288_CR100 publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.000147 – volume: 194 start-page: 4089 year: 2012 ident: 7288_CR112 publication-title: J. Bacteriol. doi: 10.1128/JB.00435-12 – volume: 99 start-page: 2533 year: 2015 ident: 7288_CR62 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6439-y – volume: 64 start-page: 403 year: 2012 ident: 7288_CR59 publication-title: FEMS Immunol. Med. Microbiol. doi: 10.1111/j.1574-695X.2011.00926.x – volume: 12 start-page: 1237 year: 2014 ident: 7288_CR76 publication-title: Expert Rev. Anti. Infect. Ther. doi: 10.1586/14787210.2014.956093 – volume: 54 start-page: 2732 year: 2010 ident: 7288_CR123 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01768-09 – volume: 6 start-page: 618 year: 2015 ident: 7288_CR119 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00618 – volume: 52 start-page: 477 year: 2003 ident: 7288_CR97 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkg344 – volume: 45 start-page: 994 year: 2001 ident: 7288_CR124 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.45.3.994-995.2001 – volume: 2016 start-page: 8603964 year: 2016 ident: 7288_CR2 publication-title: J. Pathog. doi: 10.1155/2016/8603964 – volume: 11 start-page: 1004691 year: 2015 ident: 7288_CR44 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004691 – volume: 53 start-page: 5312 year: 2009 ident: 7288_CR109 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00748-09 – volume: 9 start-page: 476 year: 2015 ident: 7288_CR133 publication-title: J. Infect. Dev. Ctries. doi: 10.3855/jidc.6195 – volume: 581 start-page: 5573 year: 2007 ident: 7288_CR80 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.10.063 – volume: 6 start-page: 507 year: 2015 ident: 7288_CR52 publication-title: Front. Microbiol. – volume: 729 start-page: 116 year: 2014 ident: 7288_CR113 publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2014.02.015 – volume: 59 start-page: 2720 year: 2015 ident: 7288_CR14 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.04110-14 – volume: 7 start-page: 760 year: 2016 ident: 7288_CR103 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00760 – volume: 28 start-page: 519 year: 2004 ident: 7288_CR104 publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2004.04.001 – volume: 48 start-page: 4054 year: 2004 ident: 7288_CR20 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.10.4054-4055.2004 – volume: 25 start-page: 532 year: 2017 ident: 7288_CR128 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2017.01.005 – volume: 49 start-page: 1802 year: 2005 ident: 7288_CR43 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.5.1802-1807.2005 – volume: 25 start-page: 79 year: 2006 ident: 7288_CR16 publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2006.10719518 – volume: 7 start-page: 456 year: 2014 ident: 7288_CR26 publication-title: Asian Pac. J. Trop. Med. doi: 10.1016/S1995-7645(14)60074-2 – volume: 6 start-page: 21121 year: 2016 ident: 7288_CR60 publication-title: Sci. Rep. doi: 10.1038/srep21121 – volume: 18 start-page: 1 year: 2017 ident: 7288_CR12 publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2017.01.003 – volume: 60 start-page: 6903 year: 2016 ident: 7288_CR84 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01082-16 – volume: 9 start-page: 393 year: 2013 ident: 7288_CR70 publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2013.1550 – volume: 19 start-page: 236 year: 2012 ident: 7288_CR35 publication-title: Phytomedicine doi: 10.1016/j.phymed.2011.11.010 – volume: 5 start-page: 1737 year: 2013 ident: 7288_CR138 publication-title: Exp. Ther. Med. doi: 10.3892/etm.2013.1039 – volume: 54 start-page: 3484 year: 2010 ident: 7288_CR101 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00050-10 – volume: 2 start-page: 7 year: 2006 ident: 7288_CR41 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020007 – volume: 149 start-page: 3473 year: 2003 ident: 7288_CR120 publication-title: Microbiology doi: 10.1099/mic.0.26541-0 – volume: 11 start-page: 0157757 year: 2016 ident: 7288_CR39 publication-title: PLoS One – volume: 38 start-page: 67 year: 2015 ident: 7288_CR31 publication-title: New Microbiol. – volume: 11 start-page: 3789 year: 2016 ident: 7288_CR127 publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S104166 – volume: 79 start-page: 381 year: 2014 ident: 7288_CR61 publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/j.diagmicrobio.2014.03.025 – volume: 27 start-page: 224 year: 2006 ident: 7288_CR118 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2005.10.012 – volume: 4 start-page: 1099 year: 2014 ident: 7288_CR49 publication-title: Annu. Res. Rev. Biol. doi: 10.9734/ARRB/2014/7357 – volume: 65 start-page: 233 year: 2010 ident: 7288_CR54 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkp428 – volume: 162 start-page: 393 year: 2011 ident: 7288_CR83 publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2011.02.006 – volume: 11 start-page: 109 year: 2011 ident: 7288_CR72 publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-11-109 – volume: 55 start-page: 477 year: 2006 ident: 7288_CR23 publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.46433-0 – volume: 49 start-page: 1608 year: 2011 ident: 7288_CR81 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.02607-10 – volume: 5 start-page: 01379 year: 2014 ident: 7288_CR15 publication-title: MBio doi: 10.1128/mBio.01379-14 – volume: 54 start-page: 1029 year: 2010 ident: 7288_CR55 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00963-09 – volume: 40 start-page: 854 year: 2012 ident: 7288_CR33 publication-title: Am. J. Infect. Control. doi: 10.1016/j.ajic.2011.10.009 – volume: 13 start-page: 42 year: 2015 ident: 7288_CR11 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3380 – volume: 59 start-page: 7911 year: 2015 ident: 7288_CR21 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00515-15 – volume: 33 start-page: 1311 year: 2014 ident: 7288_CR8 publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-014-2070-6 – volume: 7 start-page: 1126 year: 2016 ident: 7288_CR19 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01126 – volume: 99 start-page: 5638 year: 2002 ident: 7288_CR121 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.082092899 – volume: 7 start-page: 12 year: 2017 ident: 7288_CR7 publication-title: Avicenna. J. Med. doi: 10.4103/2231-0770.197508 – volume: 17 start-page: 3289 year: 2010 ident: 7288_CR102 publication-title: Curr. Med. Chem. doi: 10.2174/092986710792231996 – volume: 6 start-page: 118 year: 2016 ident: 7288_CR45 publication-title: J. Glob. Antimicrob. Resist. doi: 10.1016/j.jgar.2016.04.007 – volume: 57 start-page: 349 year: 2013 ident: 7288_CR36 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/cit253 – volume: 9 start-page: 111660 year: 2014 ident: 7288_CR82 publication-title: PLoS One doi: 10.1371/journal.pone.0111660 – volume: 58 start-page: 839 year: 2009 ident: 7288_CR13 publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.008904-0 – volume: 7 start-page: 46537 year: 2012 ident: 7288_CR105 publication-title: PLoS One doi: 10.1371/journal.pone.0046537 – volume: 14 start-page: 1700092 year: 2017 ident: 7288_CR18 publication-title: Chem. Biodivers. doi: 10.1002/cbdv.201700092 – volume: 55 start-page: 4922 year: 2011 ident: 7288_CR117 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00704-11 – volume: 7 start-page: 52349 year: 2012 ident: 7288_CR106 publication-title: PLoS One doi: 10.1371/journal.pone.0052349 – volume: 7 start-page: 45527 year: 2017 ident: 7288_CR77 publication-title: Sci. Rep. doi: 10.1038/srep45527 |
SSID | ssj0061342 |
Score | 2.342077 |
SecondaryResourceType | review_article |
Snippet | The increasing antibiotic resistance of
Acinetobacter
species in both natural and hospital environments has become a serious problem worldwide in recent... The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent... |
SourceID | nrf proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 837 |
SubjectTerms | Acinetobacter Acinetobacter baumannii - drug effects Acinetobacter baumannii - pathogenicity Acinetobacter Infections - drug therapy Acinetobacter Infections - microbiology Adjuvants Adjuvants, Pharmaceutic Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotics Antiinfectives and antibacterials Antimicrobial agents Antimicrobial resistance beta-lactamase Biofilms - drug effects Biomedical and Life Sciences Carbapenems Carbapenems - pharmacology Cephalosporinase Disease resistance Drug development Drug efficacy Drug resistance Drug Resistance, Multiple, Bacterial - genetics Drug Therapy, Combination Drugs Efflux Genes hospitals Humans Infectious diseases Life Sciences Membrane permeability Microbial Sensitivity Tests Microbiology Minireview Molecular modelling Mutation Permeability Species therapeutics transporters 생물학 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA96pdCXYj89tZIWn1oC2Xxt8nhI5RT0qQfiS8hmk1Isu3J3Pvjfd2Y_Tota6NM-zOySnY9khslvhpAjpVyUNhlmRSiZKoJmLijNqsBVMiHGnLGie35h5gt1dqkvBxz3arztPpYku536HuwmRIkXzUpWClCv2iYvNKTueI9vIWbj9gvHUzcxB7g1Aw-SYynzqU_8dRhtN8v8VJz5qEbaHT0nO-T1EDPSWa_kN2QrNW_Jy36K5N07cjVrEPjRApVC8owBIWiStpniuOEWLAQIMyygo_Nic2aK-EpIkWloaooIYZxUREEMkCZ3mqI9LOvuPVmcfP9xPGfDyAQWlRVrZrPjdVZcipghGDAia1FZ7IkXlJEySJGdVYLLVFZFciUP2SVeBFvwHHWo5Qcyadom7RIKiYiLvMgiI9o0Ztg2TVVDuOdsXZnAp4SPsvNx6CeOYy1--_tOyChuD-L2KG6vpuTr5pWbvpnGv5i_gEL8dfzlsQU2Pn-2_nrpIdA_9ZC1uUKaKTkY9eUH51v5wuHarbF6Sj5vyOA2WAsJTWpvex5lcGTq8zyIYtLGOg3f-djbwmbZwmFJ0wDl22gcDxbw3D_t_Rf3Pnkl0FY75OMBmayXt-kThEDr6rAz-T-U3fqN priority: 102 providerName: Springer Nature |
Title | Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy |
URI | https://link.springer.com/article/10.1007/s12275-017-7288-4 https://www.ncbi.nlm.nih.gov/pubmed/29076065 https://www.proquest.com/docview/1957698685 https://www.proquest.com/docview/1957465900 https://www.proquest.com/docview/2000568955 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002275538 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of Microbiology, 2017, 55(11), , pp.837-849 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_cXQRfxO9bPZcoPinBNE3T5Emq7HkqHiIurL6ENG1ETtpzb-_h_ntn-rGn6N1ToUlLOl-ZyXTmB_BMKRtSU2tupM-5SnzGrVcZL71QtfYhxEgZ3Y9H-nCl3q-z9XDgdjr8VjnaxM5QV22gM_KXiUXP2BptslcnvzihRlF2dYDQmMAMTbDJpjB7vTz69Hm0xbhXdfA5CUotR3VKx7xmVzwnZU4_ruU8lygu6q-dadJs4v-czn8Spt0-dHALbg4OJCt6jt-Ga3VzB673kJLnd-Fb0VAVSIujDCNp8g6RrayNjLCHWxQXHCgom06aTJ2aGRVbYrzMfFMxKhcm2CKGRMGYuWMb62u0zu_B6mD55c0hH_ATeFBGbrmJVlRRiVSGiJ6BljGTpaEGeV7pNPWpjNYoKdI6L5Pa5sJHW4vEm0TEkPkqvQ_Tpm3qPWBE-yCSKCOVnoaINlSXFfp-1lSl9mIOYqSdC0NzccK4-Oku2iITuR2S2xG5nZrD890jJ31njasmP0WGuOPww1E_bLp-b93xxqHX_85hCGeTVM9hf-SXGzTx1F3IzRye7IZRhygx4pu6PevnKE34qZfPoZKmTBub4Xse9LKwW7a0lN_UOPJiFI4_FnDZNz28ermP4IYk4ezqHvdhut2c1Y_RAdqWC5jk63wBs-Lt1w_LxSDzeHcli98F_gL3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELb6EIJLVd4pBQyCC8jC6_V67QNCAVoltI0QaqWqF-P12ggV7ZY0Fcqf4jd2Zh8pCNpbTznYWTkz34xnMjvzEfJCSuNTHRTTwuVMJi5jxsmMFY7LoJz3MWJFd2-iRgfy02F2uER-970w-Fpl7xMbR13WHv8jf5MYiIyNVjp7d_KTIWsUVld7Co0WFjth_gtSttO344-g35dCbG_tfxixjlWAeanFjOloeBklT4WPcF8qETNRaBwb56RKU5eKaLQUPA15kQSTcxdN4InTCY8-c2UKz10mqxBmGLCi1fdbk89fet8Pd2ND15OAlTAw37SvozbNekLk-KJcznIB8JR_3YTL1TT-L8j9p0Db3Hvb62StC1jpsEXYbbIUqjvkRkthOb9LjoYVdp3UsEohc8doFGBE60iR67gGeMLCEKv36DlwMjTF5k7Iz6mrSortyUiTREEJkKM3MKFtT9j8Hjm4FsneJytVXYWHhKKuPU-iiNjq6iP4bFWUEGsaXRbK8QHhveys74aZI6fGD3sxhhnFbUHcFsVt5YC8WnzlpJ3kcdXm56AQe-y_W5y_jZ_fans8tZBljC2kjCZJ1YBs9vqyneWf2gucDsizxTLYLBZiXBXqs3aPVMjXevkebKHKlDYZPOdBi4XFsYXBeqqCldc9OP44wGW_aePq4z4lN0f7e7t2dzzZeURuCQRq03O5SVZm07PwGIKvWfGkQzwlX6_byM4BTa07HA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrUBceD8WChjECeTWcRzHPq6gS0uh4kClwsV1nBihRUm1zR7Kr2dmk2x5tEiIUw4zsfwY2zMaf98APFfKhtRUmhvpc64Sn3HrVcYLL1SlfQgxUkb3_b7eOVBvD7PDvs7pyfDafUhJdpgGYmmq263jMm6dAd-kzOnRWc5ziUut1mBdETf7CNYnbz7tbQ-HMV5Wy_o5qJ9x3E_pkNg8r5Ffrqa1eh7P8zr_yJguL6LpdTgahtC9P5ltLtpiM3z_jd3xP8Z4A671TiqbdFZ1Ey5V9S243JWtPL0Nnyc1IU0alDKM1skDRdNhTWRU37hBk0TBhDL2dFoQGzQjQCfG5MzXJSNIMpVGYtgnjMuXpsE6HNjpHTiYbn98tcP7Gg08KCNbbqIVZVQilSGi96FlzGRhiITPK52mPpXRGiVFWuVFUtlc-GgrkXiTiBgyX6Z3YVQ3dXUfGEY-Nogkykjw1hDxnNZFif6lNWWhvRiDGJbHhZ7AnOpofHNn1Ms0ZQ6nzNGUOTWGF6tfjjv2jr8pP8M1d7Pw1RHnNn2_NG42dxhZ7DoME22S6jFsDCbh-t1-4hJLfTfaZGN4uhLjPqXki6-rZtHpKE01Wi_WIdhUpo3NsJ17nbmtui0t5VA1Sl4OpvNTBy4a04N_0n4CVz68nrp3u_t7D-GqJNNboi43YNTOF9UjdL_a4nG_xX4Aq8YjQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibiotic+resistance+of+pathogenic+Acinetobacter+species+and+emerging+combination+therapy&rft.jtitle=The+journal+of+microbiology&rft.au=Shin%2C+Bora&rft.au=Park%2C+Woojun&rft.date=2017-11-01&rft.issn=1225-8873&rft.eissn=1976-3794&rft.volume=55&rft.issue=11&rft.spage=837&rft.epage=849&rft_id=info:doi/10.1007%2Fs12275-017-7288-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12275_017_7288_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-8873&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-8873&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-8873&client=summon |