Macroscopic multiple-station short-turning model in case of complete railway blockages
•A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for short-turning at multiple stations while taking the platform track occupation into consideration.•Accounting for the traffic on both sides of the disrup...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 89; pp. 113 - 132 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0968-090X 1879-2359 |
DOI | 10.1016/j.trc.2018.02.006 |
Cover
Loading…
Abstract | •A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for short-turning at multiple stations while taking the platform track occupation into consideration.•Accounting for the traffic on both sides of the disrupted location during the three phases.•Demonstrating how the disruption length affects the optimal periodic short-turning solution of the second phase.
In case of railway disruptions, traffic controllers are responsible for dealing with disrupted traffic and reduce the negative impact for the rest of the network. In case of a complete blockage when no train can use an entire track, a common practice is to short-turn trains. Trains approaching the blockage cannot proceed according to their original plans and have to short-turn at a station close to the disruption on both sides. This paper presents a Mixed Integer Linear Program that computes the optimal station and times for short-turning the affected train services during the three phases of a disruption. The proposed solution approach takes into account the interaction of the traffic between both sides of the blockage before and after the disruption. The model is applied to a busy corridor of the Dutch railway network. The computation time meets the real-time solution requirement. The case study gives insight into the importance of the disruption period in computing the optimal solution. It is concluded that different optimal short-turning solutions may exist depending on the start time of the disruption and the disruption length. For periodic timetables, the optimal short-turning choices repeat due to the periodicity of the timetable. In addition, it is observed that a minor extension of the disruption length may result in less delay propagation at the cost of more cancellations. |
---|---|
AbstractList | •A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for short-turning at multiple stations while taking the platform track occupation into consideration.•Accounting for the traffic on both sides of the disrupted location during the three phases.•Demonstrating how the disruption length affects the optimal periodic short-turning solution of the second phase.
In case of railway disruptions, traffic controllers are responsible for dealing with disrupted traffic and reduce the negative impact for the rest of the network. In case of a complete blockage when no train can use an entire track, a common practice is to short-turn trains. Trains approaching the blockage cannot proceed according to their original plans and have to short-turn at a station close to the disruption on both sides. This paper presents a Mixed Integer Linear Program that computes the optimal station and times for short-turning the affected train services during the three phases of a disruption. The proposed solution approach takes into account the interaction of the traffic between both sides of the blockage before and after the disruption. The model is applied to a busy corridor of the Dutch railway network. The computation time meets the real-time solution requirement. The case study gives insight into the importance of the disruption period in computing the optimal solution. It is concluded that different optimal short-turning solutions may exist depending on the start time of the disruption and the disruption length. For periodic timetables, the optimal short-turning choices repeat due to the periodicity of the timetable. In addition, it is observed that a minor extension of the disruption length may result in less delay propagation at the cost of more cancellations. |
Author | Goverde, Rob M.P. Cats, Oded Ghaemi, Nadjla |
Author_xml | – sequence: 1 givenname: Nadjla surname: Ghaemi fullname: Ghaemi, Nadjla email: N.Ghaemi@tudelft.nl – sequence: 2 givenname: Oded orcidid: 0000-0001-8840-4488 surname: Cats fullname: Cats, Oded – sequence: 3 givenname: Rob M.P. surname: Goverde fullname: Goverde, Rob M.P. |
BookMark | eNp9kD1PwzAQQC1UJErhB7D5DyScncRJxIQqvqQiFkBslnu5FJc0rmwX1H9PojIxdLrl3uneO2eT3vXE2JWAVIBQ1-s0ekwliCoFmQKoEzYVVVknMivqCZtCraoEavg4Y-chrAFA1EU5Ze_PBr0L6LYW-WbXRbvtKAnRROt6Hj6dj0nc-d72K75xDXXc9hxNIO5ajm4zbEfi3tjux-z5snP4ZVYULthpa7pAl39zxt7u717nj8ni5eFpfrtIMK9kTKoWjIK2bhrZtnUhy0JSWVAuUCgihbiEpRK5aasGcXhZYUOosqrIjCmLOs9mTBzujhLBU6u33m6M32sBegyj13oIo8cwGqQewgxM-Y9Be_CNo8dR8uZA0qD0bcnrgJZ6pMZ6wqgbZ4_Qvw8ugkI |
CitedBy_id | crossref_primary_10_3390_su151713040 crossref_primary_10_1109_TCSS_2021_3069754 crossref_primary_10_3390_app131910695 crossref_primary_10_1177_03611981231220631 crossref_primary_10_1016_j_scs_2025_106276 crossref_primary_10_1080_19439962_2019_1645773 crossref_primary_10_1142_S1752890921500203 crossref_primary_10_1016_j_trc_2025_105078 crossref_primary_10_1109_TITS_2022_3224413 crossref_primary_10_1016_j_trpro_2020_08_012 crossref_primary_10_1016_j_ejor_2021_11_019 crossref_primary_10_1109_TITS_2024_3386728 crossref_primary_10_1016_j_trc_2021_103368 crossref_primary_10_1016_j_jrtpm_2018_02_002 crossref_primary_10_1016_j_trb_2019_02_015 crossref_primary_10_1109_TITS_2023_3236004 crossref_primary_10_1177_03611981211052960 crossref_primary_10_1016_j_trc_2021_103080 crossref_primary_10_1016_j_ijtst_2024_09_001 crossref_primary_10_1177_0020294018785187 crossref_primary_10_1109_TITS_2021_3125781 crossref_primary_10_3390_app12041919 crossref_primary_10_1016_j_trb_2024_103067 crossref_primary_10_1016_j_cie_2023_109742 crossref_primary_10_1016_j_ijtst_2025_03_001 crossref_primary_10_1080_21680566_2023_2203847 crossref_primary_10_1016_j_hspr_2023_10_002 crossref_primary_10_1007_s12469_022_00301_8 crossref_primary_10_1016_j_trb_2021_08_003 crossref_primary_10_1155_2019_6090742 crossref_primary_10_1016_j_physa_2020_124317 crossref_primary_10_1080_23249935_2021_1877369 crossref_primary_10_1109_TASE_2020_3040940 crossref_primary_10_1080_23249935_2023_2204965 crossref_primary_10_1080_21680566_2024_2336041 crossref_primary_10_1016_j_omega_2024_103040 crossref_primary_10_1016_j_trb_2020_09_001 crossref_primary_10_1016_j_trb_2023_102786 crossref_primary_10_1016_j_ejor_2020_03_034 crossref_primary_10_1155_2021_5398316 crossref_primary_10_1371_journal_pone_0246077 crossref_primary_10_1109_TITS_2021_3093570 crossref_primary_10_1016_j_trb_2020_11_006 crossref_primary_10_1016_j_trc_2024_104893 crossref_primary_10_1016_j_trb_2019_12_005 crossref_primary_10_1109_TASE_2023_3338695 crossref_primary_10_1016_j_physa_2020_124950 crossref_primary_10_1016_j_tre_2021_102492 crossref_primary_10_1016_j_jrtpm_2020_100196 crossref_primary_10_1016_j_cie_2025_111018 |
Cites_doi | 10.1016/j.trc.2016.12.010 10.1016/j.trb.2015.04.001 10.1016/j.trb.2017.03.013 10.1007/s12469-017-0157-z 10.1016/j.trb.2017.10.002 10.2495/CR060551 10.1109/ICIRT.2016.7588734 10.1016/j.cor.2012.01.003 10.1016/j.trb.2013.10.013 10.1016/j.jrtpm.2013.10.006 10.1016/j.trb.2014.01.009 10.1007/978-3-642-05465-5_18 10.1016/j.trc.2017.02.001 10.1016/j.trb.2011.05.001 10.1016/j.trc.2016.04.018 10.1016/j.ejor.2012.01.037 10.1016/j.trb.2017.05.008 10.1016/j.tre.2016.07.015 10.1016/j.ejor.2013.12.020 10.1287/trsc.1110.0388 10.1287/trsc.2015.0618 10.1016/j.cie.2012.08.004 10.1016/j.trc.2017.04.012 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2018.02.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
EndPage | 132 |
ExternalDocumentID | 10_1016_j_trc_2018_02_006 S0968090X18301529 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c482t-8f0a60f9dd2ff952752e75e41c16ee6ccb0b614af8dcc0016cdec63853aa75943 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Thu Apr 24 22:53:59 EDT 2025 Tue Jul 01 01:45:09 EDT 2025 Fri Feb 23 02:16:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Railway disruption Optimization Short-turning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-8f0a60f9dd2ff952752e75e41c16ee6ccb0b614af8dcc0016cdec63853aa75943 |
ORCID | 0000-0001-8840-4488 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0968090X18301529 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1016_j_trc_2018_02_006 crossref_citationtrail_10_1016_j_trc_2018_02_006 elsevier_sciencedirect_doi_10_1016_j_trc_2018_02_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Löfberg, J., 2004. Yalmip: A toolbox for modeling and optimization in matlab. In: In Proceedings of the CACSD Conference. Taipei, Taiwan. Nakamura, T., Hirai, C., Nishioka, Y., 2011. A practical train rescheduling algorithm using three predetermined factors. Tech. rep. Wagenaar, Kroon, Fragkos (b0120) 2017; 101 Zhan, Kroon, Veelenturf, Wagenaar (b0130) 2015; 78 Ghaemi, Cats, Goverde (b0040) 2017; 9 Hirai, Tomii, Tashiro, Kondou, Fujimori (b0050) 2006; 1 Zilko, Kurowicka, Goverde (b0140) 2016; 68 Cacchiani, Caprara, Galli, Kroon, Maróti, Toth (b0010) 2012; 46 Samá, Pellegrini, D’Ariano, Rodriguez, Pacciarelli (b0095) 2017; 76 Veelenturf, Kidd, Cacchiani, Kroon, Toth (b0110) 2016; 50 Louwerse, Huisman (b0065) 2014; 235 Nielsen, Kroon, Maróti (b0085) 2012; 220 Veelenturf, Kroon, Maróti (b0115) 2017; 80 Pellegrini, Marlière, Rodriguez (b0090) 2014; 59 Binder, Maknoon, Bierlaire (b0005) 2017; 78 Coor, G.T., 1997. Analysis of the short-turning strategy on high-frequency transit lines by. Tech. rep., Massachusetts Institute of Technology. Ghaemi, Cats, Goverde (b0035) 2017; 105 Meng, Zhou (b0070) 2011; 45 Chu, Oetting (b0025) 2013; 3 Ghaemi, N., Goverde, R.M.P., Cats, O., 2016. Railway disruption timetable: Short-turnings in case of complete blockage. In: 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT). pp. 210–218. Jespersen-groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., 2009. Disruption management in passenger railway transportation, pp. 399–421. Shen, Wilson (b0100) 2001 van Zon, F., Wink, M., 2014. Lean transformation: Communication during disruptions. Tech. rep., ProRail. Zhan, Kroon, Zhao, Peng (b0135) 2016; 95 Cacchiani, Huisman, Kidd, Kroon, Toth, Veelenturf, Wagenaar (b0015) 2014; 63 Narayanaswami, Rangaraj (b0080) 2013; 64 Caimi, Fuchsberger, Laumanns, Luthi (b0020) 2012; 39 Xu, Corman, Peng, Luan (b0125) 2017; 104 Cacchiani (10.1016/j.trc.2018.02.006_b0010) 2012; 46 Ghaemi (10.1016/j.trc.2018.02.006_b0035) 2017; 105 Louwerse (10.1016/j.trc.2018.02.006_b0065) 2014; 235 Xu (10.1016/j.trc.2018.02.006_b0125) 2017; 104 Veelenturf (10.1016/j.trc.2018.02.006_b0110) 2016; 50 Binder (10.1016/j.trc.2018.02.006_b0005) 2017; 78 Narayanaswami (10.1016/j.trc.2018.02.006_b0080) 2013; 64 Hirai (10.1016/j.trc.2018.02.006_b0050) 2006; 1 Cacchiani (10.1016/j.trc.2018.02.006_b0015) 2014; 63 Meng (10.1016/j.trc.2018.02.006_b0070) 2011; 45 10.1016/j.trc.2018.02.006_b0055 Zhan (10.1016/j.trc.2018.02.006_b0130) 2015; 78 10.1016/j.trc.2018.02.006_b0075 10.1016/j.trc.2018.02.006_b0030 Pellegrini (10.1016/j.trc.2018.02.006_b0090) 2014; 59 Veelenturf (10.1016/j.trc.2018.02.006_b0115) 2017; 80 Caimi (10.1016/j.trc.2018.02.006_b0020) 2012; 39 10.1016/j.trc.2018.02.006_b0105 Shen (10.1016/j.trc.2018.02.006_b0100) 2001 Samá (10.1016/j.trc.2018.02.006_b0095) 2017; 76 Zhan (10.1016/j.trc.2018.02.006_b0135) 2016; 95 Wagenaar (10.1016/j.trc.2018.02.006_b0120) 2017; 101 Zilko (10.1016/j.trc.2018.02.006_b0140) 2016; 68 Nielsen (10.1016/j.trc.2018.02.006_b0085) 2012; 220 10.1016/j.trc.2018.02.006_b0060 Ghaemi (10.1016/j.trc.2018.02.006_b0040) 2017; 9 Chu (10.1016/j.trc.2018.02.006_b0025) 2013; 3 10.1016/j.trc.2018.02.006_b0045 |
References_xml | – volume: 59 start-page: 58 year: 2014 end-page: 80 ident: b0090 article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions publication-title: Transp. Res. Part B: Methodol. – reference: Ghaemi, N., Goverde, R.M.P., Cats, O., 2016. Railway disruption timetable: Short-turnings in case of complete blockage. In: 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT). pp. 210–218. – volume: 39 start-page: 2578 year: 2012 end-page: 2593 ident: b0020 article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas publication-title: Comput. Oper. Res. – volume: 101 start-page: 140 year: 2017 end-page: 161 ident: b0120 article-title: Rolling stock rescheduling in passenger railway transportation using dead-heading trips and adjusted passenger demand publication-title: Transp. Res. Part B: Methodol. – volume: 220 start-page: 496 year: 2012 end-page: 509 ident: b0085 article-title: A rolling horizon approach for disruption management of railway rolling stock publication-title: Eur. J. Oper. Res. – volume: 78 start-page: 182 year: 2015 end-page: 201 ident: b0130 article-title: Real-time high-speed train rescheduling in case of a complete blockage publication-title: Transp. Res. Part B: Methodol. – reference: Jespersen-groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., 2009. Disruption management in passenger railway transportation, pp. 399–421. – reference: Coor, G.T., 1997. Analysis of the short-turning strategy on high-frequency transit lines by. Tech. rep., Massachusetts Institute of Technology. – volume: 1 start-page: 551 year: 2006 end-page: 561 ident: b0050 article-title: An algorithm for train rescheduling using rescheduling pattern description language R publication-title: Comput. Railways X – volume: 95 start-page: 32 year: 2016 end-page: 61 ident: b0135 article-title: A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage publication-title: Transp. Res. Part E: Logist. Transp. Rev. – volume: 78 start-page: 78 year: 2017 end-page: 94 ident: b0005 article-title: The multi-objective railway timetable rescheduling problem publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 63 start-page: 15 year: 2014 end-page: 37 ident: b0015 article-title: An overview of recovery models and algorithms for real-time railway rescheduling publication-title: Transp. Res. Part B: Methodol. – volume: 105 start-page: 423 year: 2017 end-page: 437 ident: b0035 article-title: A microscopic model for optimal train short-turnings during complete blockages publication-title: Transp. Res. Part B: Methodol. – volume: 104 start-page: 638 year: 2017 end-page: 666 ident: b0125 article-title: A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system publication-title: Transp. Res. Part B: Methodol. – volume: 68 start-page: 350 year: 2016 end-page: 368 ident: b0140 article-title: Modeling railway disruption lengths with copula bayesian networks publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 3 start-page: 54 year: 2013 end-page: 67 ident: b0025 article-title: Modeling capacity consumption considering disruption program characteristics and the transition phase to steady operations during disruptions publication-title: J. Rail Transp. Plann. Manage. – volume: 235 start-page: 583 year: 2014 end-page: 593 ident: b0065 article-title: Adjusting a railway timetable in case of partial or complete blockades publication-title: Eur. J. Oper. Res. – volume: 76 start-page: 1 year: 2017 end-page: 15 ident: b0095 article-title: On the tactical and operational train routing selection problem publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 80 start-page: 133 year: 2017 end-page: 147 ident: b0115 article-title: Passenger oriented railway disruption management by adapting timetables and rolling stock schedules publication-title: Transp. Res. Part C: Emerg. Technol. – reference: van Zon, F., Wink, M., 2014. Lean transformation: Communication during disruptions. Tech. rep., ProRail. – volume: 50 start-page: 841 year: 2016 end-page: 862 ident: b0110 article-title: A railway timetable rescheduling approach for handling large-scale disruptions publication-title: Transp. Sci. – reference: Löfberg, J., 2004. Yalmip: A toolbox for modeling and optimization in matlab. In: In Proceedings of the CACSD Conference. Taipei, Taiwan. – volume: 45 start-page: 1080 year: 2011 end-page: 1102 ident: b0070 article-title: Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon solution approach publication-title: Transp. Res. Part B – volume: 64 start-page: 469 year: 2013 end-page: 481 ident: b0080 article-title: Modelling disruptions and resolving conflicts optimally in a railway schedule publication-title: Comput. Indust. Eng. – start-page: 335 year: 2001 end-page: 363 ident: b0100 article-title: An optimal integrated real-time disruption control model for rail transit systems publication-title: Computer-aided Scheduling of Public Transport – reference: Nakamura, T., Hirai, C., Nishioka, Y., 2011. A practical train rescheduling algorithm using three predetermined factors. Tech. rep. – volume: 46 start-page: 217 year: 2012 end-page: 232 ident: b0010 article-title: Railway rolling stock planning: Robustness against large disruptions publication-title: Transp. Sci. – volume: 9 start-page: 343 year: 2017 end-page: 364 ident: b0040 article-title: Railway disruption management challenges and possible solution directions publication-title: Public Transp. – ident: 10.1016/j.trc.2018.02.006_b0060 – volume: 76 start-page: 1 year: 2017 ident: 10.1016/j.trc.2018.02.006_b0095 article-title: On the tactical and operational train routing selection problem publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2016.12.010 – volume: 78 start-page: 182 year: 2015 ident: 10.1016/j.trc.2018.02.006_b0130 article-title: Real-time high-speed train rescheduling in case of a complete blockage publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2015.04.001 – volume: 101 start-page: 140 year: 2017 ident: 10.1016/j.trc.2018.02.006_b0120 article-title: Rolling stock rescheduling in passenger railway transportation using dead-heading trips and adjusted passenger demand publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.03.013 – volume: 9 start-page: 343 issue: 1 year: 2017 ident: 10.1016/j.trc.2018.02.006_b0040 article-title: Railway disruption management challenges and possible solution directions publication-title: Public Transp. doi: 10.1007/s12469-017-0157-z – volume: 105 start-page: 423 year: 2017 ident: 10.1016/j.trc.2018.02.006_b0035 article-title: A microscopic model for optimal train short-turnings during complete blockages publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.10.002 – volume: 1 start-page: 551 year: 2006 ident: 10.1016/j.trc.2018.02.006_b0050 article-title: An algorithm for train rescheduling using rescheduling pattern description language R publication-title: Comput. Railways X doi: 10.2495/CR060551 – ident: 10.1016/j.trc.2018.02.006_b0045 doi: 10.1109/ICIRT.2016.7588734 – volume: 39 start-page: 2578 issue: 11 year: 2012 ident: 10.1016/j.trc.2018.02.006_b0020 article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.01.003 – volume: 59 start-page: 58 year: 2014 ident: 10.1016/j.trc.2018.02.006_b0090 article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2013.10.013 – volume: 3 start-page: 54 year: 2013 ident: 10.1016/j.trc.2018.02.006_b0025 article-title: Modeling capacity consumption considering disruption program characteristics and the transition phase to steady operations during disruptions publication-title: J. Rail Transp. Plann. Manage. doi: 10.1016/j.jrtpm.2013.10.006 – volume: 63 start-page: 15 year: 2014 ident: 10.1016/j.trc.2018.02.006_b0015 article-title: An overview of recovery models and algorithms for real-time railway rescheduling publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2014.01.009 – ident: 10.1016/j.trc.2018.02.006_b0055 doi: 10.1007/978-3-642-05465-5_18 – start-page: 335 year: 2001 ident: 10.1016/j.trc.2018.02.006_b0100 article-title: An optimal integrated real-time disruption control model for rail transit systems – volume: 78 start-page: 78 year: 2017 ident: 10.1016/j.trc.2018.02.006_b0005 article-title: The multi-objective railway timetable rescheduling problem publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.02.001 – volume: 45 start-page: 1080 issue: 7 year: 2011 ident: 10.1016/j.trc.2018.02.006_b0070 article-title: Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon solution approach publication-title: Transp. Res. Part B doi: 10.1016/j.trb.2011.05.001 – volume: 68 start-page: 350 year: 2016 ident: 10.1016/j.trc.2018.02.006_b0140 article-title: Modeling railway disruption lengths with copula bayesian networks publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2016.04.018 – volume: 220 start-page: 496 issue: 2 year: 2012 ident: 10.1016/j.trc.2018.02.006_b0085 article-title: A rolling horizon approach for disruption management of railway rolling stock publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.01.037 – volume: 104 start-page: 638 year: 2017 ident: 10.1016/j.trc.2018.02.006_b0125 article-title: A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.05.008 – volume: 95 start-page: 32 year: 2016 ident: 10.1016/j.trc.2018.02.006_b0135 article-title: A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2016.07.015 – ident: 10.1016/j.trc.2018.02.006_b0030 – volume: 235 start-page: 583 issue: 3 year: 2014 ident: 10.1016/j.trc.2018.02.006_b0065 article-title: Adjusting a railway timetable in case of partial or complete blockades publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.12.020 – ident: 10.1016/j.trc.2018.02.006_b0105 – ident: 10.1016/j.trc.2018.02.006_b0075 – volume: 46 start-page: 217 issue: 2 year: 2012 ident: 10.1016/j.trc.2018.02.006_b0010 article-title: Railway rolling stock planning: Robustness against large disruptions publication-title: Transp. Sci. doi: 10.1287/trsc.1110.0388 – volume: 50 start-page: 841 issue: 3 year: 2016 ident: 10.1016/j.trc.2018.02.006_b0110 article-title: A railway timetable rescheduling approach for handling large-scale disruptions publication-title: Transp. Sci. doi: 10.1287/trsc.2015.0618 – volume: 64 start-page: 469 issue: 1 year: 2013 ident: 10.1016/j.trc.2018.02.006_b0080 article-title: Modelling disruptions and resolving conflicts optimally in a railway schedule publication-title: Comput. Indust. Eng. doi: 10.1016/j.cie.2012.08.004 – volume: 80 start-page: 133 year: 2017 ident: 10.1016/j.trc.2018.02.006_b0115 article-title: Passenger oriented railway disruption management by adapting timetables and rolling stock schedules publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.04.012 |
SSID | ssj0001957 |
Score | 2.4439304 |
Snippet | •A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113 |
SubjectTerms | Optimization Railway disruption Short-turning |
Title | Macroscopic multiple-station short-turning model in case of complete railway blockages |
URI | https://dx.doi.org/10.1016/j.trc.2018.02.006 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgADggKiPCoPTEiheThOMlYVVQG1CxRli-yLIwJVWjVBiIXfzjkPKBIwMCayo-js3H3xffcdIedC6tyappUraRqM-8yQQiSGLT3FTYmYoOxDNpny8YzdhG7YIsOmFkbTKmvfX_n00lvXd_q1NfvLNO3fIfj2zcAMcVNiTLN1ER9jntbPv3z_onlYQaX2iYP1mUTYZDZLjlex0iqGll_JdvKfY9NavBntkp0aKNJB9S57pKWyDtls6ojzDtlekxLcJw8ToR8Ki2UKtGEJGnmVaKf5I6JsA6OLPgWhZfcbmmYUMITRRUJLXjmiZ7oS6fxVvFGJIe4ZPU1-QGajq_vh2Kh7JhjAfLsw_MQU3EyCOLaTJHBtz7WV5ypmgcWV4gASF8BiIvFjAI33IFaA36DrCOG5AXMOSTtbZOqI0BgczqQlfcsBhj-CgQTpgKMUi4FJzrrEbKwVQS0orvtazKOGOfYUoYEjbeDItCM0cJdcfE5ZVmoafw1mzRJE37ZEhN7-92nH_5t2Qrb0VUXKOSXtYvWizhBvFLJXbqge2Rhc346nH_qa1gM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADYhU7PnBCCs3iOMkRIVCBthda1JtlTxwRqNqqLUJc-HbGWVgk4MA1saNoPJl58Ty_AThR2tbWLK3caNfhIuaOVipzfB0Z4WrCBEUfsnZHNHv8ph_25-CiPgtjaZVV7C9jehGtqyuNypqNcZ437gh8x27i9skpKaf5yTws8jCIrGufvX3yPLyklPuk0XZTol-XNguS12xiZQy9uNTtFD8npy8J52oNViukyM7Ll1mHOTPcgKX6IPF0A1a-aAluwn1b2YfiaJwjq2mCzrSstLPpA8Fsh9KL3QZhRfsblg8ZUg5jo4wVxHKCz2yi8sGLemWactwThZrpFvSuLrsXTadqmuAgj_2ZE2euEm6WpKmfZUnoR6FvotBwDz1hjEDUtAIeV1mcIlrAh6lB-gjDQKkoTHiwDQvD0dDsAEsxEFx7OvYC5PQnmGjUAQbG8BS5FnwX3NpaEitFcdvYYiBr6tijJANLa2Dp-pIMvAunH1PGpZzGX4N5vQTym09ICve_T9v737RjWGp22y3Zuu7c7sOyvVMydA5gYTZ5NocEPmb6qHCudxbd15k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroscopic+multiple-station+short-turning+model+in+case+of+complete+railway+blockages&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ghaemi%2C+Nadjla&rft.au=Cats%2C+Oded&rft.au=Goverde%2C+Rob+M.P.&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=89&rft.spage=113&rft.epage=132&rft_id=info:doi/10.1016%2Fj.trc.2018.02.006&rft.externalDocID=S0968090X18301529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |