Macroscopic multiple-station short-turning model in case of complete railway blockages

•A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for short-turning at multiple stations while taking the platform track occupation into consideration.•Accounting for the traffic on both sides of the disrup...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 89; pp. 113 - 132
Main Authors Ghaemi, Nadjla, Cats, Oded, Goverde, Rob M.P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2018
Subjects
Online AccessGet full text
ISSN0968-090X
1879-2359
DOI10.1016/j.trc.2018.02.006

Cover

Loading…
Abstract •A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for short-turning at multiple stations while taking the platform track occupation into consideration.•Accounting for the traffic on both sides of the disrupted location during the three phases.•Demonstrating how the disruption length affects the optimal periodic short-turning solution of the second phase. In case of railway disruptions, traffic controllers are responsible for dealing with disrupted traffic and reduce the negative impact for the rest of the network. In case of a complete blockage when no train can use an entire track, a common practice is to short-turn trains. Trains approaching the blockage cannot proceed according to their original plans and have to short-turn at a station close to the disruption on both sides. This paper presents a Mixed Integer Linear Program that computes the optimal station and times for short-turning the affected train services during the three phases of a disruption. The proposed solution approach takes into account the interaction of the traffic between both sides of the blockage before and after the disruption. The model is applied to a busy corridor of the Dutch railway network. The computation time meets the real-time solution requirement. The case study gives insight into the importance of the disruption period in computing the optimal solution. It is concluded that different optimal short-turning solutions may exist depending on the start time of the disruption and the disruption length. For periodic timetables, the optimal short-turning choices repeat due to the periodicity of the timetable. In addition, it is observed that a minor extension of the disruption length may result in less delay propagation at the cost of more cancellations.
AbstractList •A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for short-turning at multiple stations while taking the platform track occupation into consideration.•Accounting for the traffic on both sides of the disrupted location during the three phases.•Demonstrating how the disruption length affects the optimal periodic short-turning solution of the second phase. In case of railway disruptions, traffic controllers are responsible for dealing with disrupted traffic and reduce the negative impact for the rest of the network. In case of a complete blockage when no train can use an entire track, a common practice is to short-turn trains. Trains approaching the blockage cannot proceed according to their original plans and have to short-turn at a station close to the disruption on both sides. This paper presents a Mixed Integer Linear Program that computes the optimal station and times for short-turning the affected train services during the three phases of a disruption. The proposed solution approach takes into account the interaction of the traffic between both sides of the blockage before and after the disruption. The model is applied to a busy corridor of the Dutch railway network. The computation time meets the real-time solution requirement. The case study gives insight into the importance of the disruption period in computing the optimal solution. It is concluded that different optimal short-turning solutions may exist depending on the start time of the disruption and the disruption length. For periodic timetables, the optimal short-turning choices repeat due to the periodicity of the timetable. In addition, it is observed that a minor extension of the disruption length may result in less delay propagation at the cost of more cancellations.
Author Goverde, Rob M.P.
Cats, Oded
Ghaemi, Nadjla
Author_xml – sequence: 1
  givenname: Nadjla
  surname: Ghaemi
  fullname: Ghaemi, Nadjla
  email: N.Ghaemi@tudelft.nl
– sequence: 2
  givenname: Oded
  orcidid: 0000-0001-8840-4488
  surname: Cats
  fullname: Cats, Oded
– sequence: 3
  givenname: Rob M.P.
  surname: Goverde
  fullname: Goverde, Rob M.P.
BookMark eNp9kD1PwzAQQC1UJErhB7D5DyScncRJxIQqvqQiFkBslnu5FJc0rmwX1H9PojIxdLrl3uneO2eT3vXE2JWAVIBQ1-s0ekwliCoFmQKoEzYVVVknMivqCZtCraoEavg4Y-chrAFA1EU5Ze_PBr0L6LYW-WbXRbvtKAnRROt6Hj6dj0nc-d72K75xDXXc9hxNIO5ajm4zbEfi3tjux-z5snP4ZVYULthpa7pAl39zxt7u717nj8ni5eFpfrtIMK9kTKoWjIK2bhrZtnUhy0JSWVAuUCgihbiEpRK5aasGcXhZYUOosqrIjCmLOs9mTBzujhLBU6u33m6M32sBegyj13oIo8cwGqQewgxM-Y9Be_CNo8dR8uZA0qD0bcnrgJZ6pMZ6wqgbZ4_Qvw8ugkI
CitedBy_id crossref_primary_10_3390_su151713040
crossref_primary_10_1109_TCSS_2021_3069754
crossref_primary_10_3390_app131910695
crossref_primary_10_1177_03611981231220631
crossref_primary_10_1016_j_scs_2025_106276
crossref_primary_10_1080_19439962_2019_1645773
crossref_primary_10_1142_S1752890921500203
crossref_primary_10_1016_j_trc_2025_105078
crossref_primary_10_1109_TITS_2022_3224413
crossref_primary_10_1016_j_trpro_2020_08_012
crossref_primary_10_1016_j_ejor_2021_11_019
crossref_primary_10_1109_TITS_2024_3386728
crossref_primary_10_1016_j_trc_2021_103368
crossref_primary_10_1016_j_jrtpm_2018_02_002
crossref_primary_10_1016_j_trb_2019_02_015
crossref_primary_10_1109_TITS_2023_3236004
crossref_primary_10_1177_03611981211052960
crossref_primary_10_1016_j_trc_2021_103080
crossref_primary_10_1016_j_ijtst_2024_09_001
crossref_primary_10_1177_0020294018785187
crossref_primary_10_1109_TITS_2021_3125781
crossref_primary_10_3390_app12041919
crossref_primary_10_1016_j_trb_2024_103067
crossref_primary_10_1016_j_cie_2023_109742
crossref_primary_10_1016_j_ijtst_2025_03_001
crossref_primary_10_1080_21680566_2023_2203847
crossref_primary_10_1016_j_hspr_2023_10_002
crossref_primary_10_1007_s12469_022_00301_8
crossref_primary_10_1016_j_trb_2021_08_003
crossref_primary_10_1155_2019_6090742
crossref_primary_10_1016_j_physa_2020_124317
crossref_primary_10_1080_23249935_2021_1877369
crossref_primary_10_1109_TASE_2020_3040940
crossref_primary_10_1080_23249935_2023_2204965
crossref_primary_10_1080_21680566_2024_2336041
crossref_primary_10_1016_j_omega_2024_103040
crossref_primary_10_1016_j_trb_2020_09_001
crossref_primary_10_1016_j_trb_2023_102786
crossref_primary_10_1016_j_ejor_2020_03_034
crossref_primary_10_1155_2021_5398316
crossref_primary_10_1371_journal_pone_0246077
crossref_primary_10_1109_TITS_2021_3093570
crossref_primary_10_1016_j_trb_2020_11_006
crossref_primary_10_1016_j_trc_2024_104893
crossref_primary_10_1016_j_trb_2019_12_005
crossref_primary_10_1109_TASE_2023_3338695
crossref_primary_10_1016_j_physa_2020_124950
crossref_primary_10_1016_j_tre_2021_102492
crossref_primary_10_1016_j_jrtpm_2020_100196
crossref_primary_10_1016_j_cie_2025_111018
Cites_doi 10.1016/j.trc.2016.12.010
10.1016/j.trb.2015.04.001
10.1016/j.trb.2017.03.013
10.1007/s12469-017-0157-z
10.1016/j.trb.2017.10.002
10.2495/CR060551
10.1109/ICIRT.2016.7588734
10.1016/j.cor.2012.01.003
10.1016/j.trb.2013.10.013
10.1016/j.jrtpm.2013.10.006
10.1016/j.trb.2014.01.009
10.1007/978-3-642-05465-5_18
10.1016/j.trc.2017.02.001
10.1016/j.trb.2011.05.001
10.1016/j.trc.2016.04.018
10.1016/j.ejor.2012.01.037
10.1016/j.trb.2017.05.008
10.1016/j.tre.2016.07.015
10.1016/j.ejor.2013.12.020
10.1287/trsc.1110.0388
10.1287/trsc.2015.0618
10.1016/j.cie.2012.08.004
10.1016/j.trc.2017.04.012
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2018.02.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 132
ExternalDocumentID 10_1016_j_trc_2018_02_006
S0968090X18301529
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c482t-8f0a60f9dd2ff952752e75e41c16ee6ccb0b614af8dcc0016cdec63853aa75943
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Thu Apr 24 22:53:59 EDT 2025
Tue Jul 01 01:45:09 EDT 2025
Fri Feb 23 02:16:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Railway disruption
Optimization
Short-turning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-8f0a60f9dd2ff952752e75e41c16ee6ccb0b614af8dcc0016cdec63853aa75943
ORCID 0000-0001-8840-4488
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0968090X18301529
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_trc_2018_02_006
crossref_citationtrail_10_1016_j_trc_2018_02_006
elsevier_sciencedirect_doi_10_1016_j_trc_2018_02_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Löfberg, J., 2004. Yalmip: A toolbox for modeling and optimization in matlab. In: In Proceedings of the CACSD Conference. Taipei, Taiwan.
Nakamura, T., Hirai, C., Nishioka, Y., 2011. A practical train rescheduling algorithm using three predetermined factors. Tech. rep.
Wagenaar, Kroon, Fragkos (b0120) 2017; 101
Zhan, Kroon, Veelenturf, Wagenaar (b0130) 2015; 78
Ghaemi, Cats, Goverde (b0040) 2017; 9
Hirai, Tomii, Tashiro, Kondou, Fujimori (b0050) 2006; 1
Zilko, Kurowicka, Goverde (b0140) 2016; 68
Cacchiani, Caprara, Galli, Kroon, Maróti, Toth (b0010) 2012; 46
Samá, Pellegrini, D’Ariano, Rodriguez, Pacciarelli (b0095) 2017; 76
Veelenturf, Kidd, Cacchiani, Kroon, Toth (b0110) 2016; 50
Louwerse, Huisman (b0065) 2014; 235
Nielsen, Kroon, Maróti (b0085) 2012; 220
Veelenturf, Kroon, Maróti (b0115) 2017; 80
Pellegrini, Marlière, Rodriguez (b0090) 2014; 59
Binder, Maknoon, Bierlaire (b0005) 2017; 78
Coor, G.T., 1997. Analysis of the short-turning strategy on high-frequency transit lines by. Tech. rep., Massachusetts Institute of Technology.
Ghaemi, Cats, Goverde (b0035) 2017; 105
Meng, Zhou (b0070) 2011; 45
Chu, Oetting (b0025) 2013; 3
Ghaemi, N., Goverde, R.M.P., Cats, O., 2016. Railway disruption timetable: Short-turnings in case of complete blockage. In: 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT). pp. 210–218.
Jespersen-groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., 2009. Disruption management in passenger railway transportation, pp. 399–421.
Shen, Wilson (b0100) 2001
van Zon, F., Wink, M., 2014. Lean transformation: Communication during disruptions. Tech. rep., ProRail.
Zhan, Kroon, Zhao, Peng (b0135) 2016; 95
Cacchiani, Huisman, Kidd, Kroon, Toth, Veelenturf, Wagenaar (b0015) 2014; 63
Narayanaswami, Rangaraj (b0080) 2013; 64
Caimi, Fuchsberger, Laumanns, Luthi (b0020) 2012; 39
Xu, Corman, Peng, Luan (b0125) 2017; 104
Cacchiani (10.1016/j.trc.2018.02.006_b0010) 2012; 46
Ghaemi (10.1016/j.trc.2018.02.006_b0035) 2017; 105
Louwerse (10.1016/j.trc.2018.02.006_b0065) 2014; 235
Xu (10.1016/j.trc.2018.02.006_b0125) 2017; 104
Veelenturf (10.1016/j.trc.2018.02.006_b0110) 2016; 50
Binder (10.1016/j.trc.2018.02.006_b0005) 2017; 78
Narayanaswami (10.1016/j.trc.2018.02.006_b0080) 2013; 64
Hirai (10.1016/j.trc.2018.02.006_b0050) 2006; 1
Cacchiani (10.1016/j.trc.2018.02.006_b0015) 2014; 63
Meng (10.1016/j.trc.2018.02.006_b0070) 2011; 45
10.1016/j.trc.2018.02.006_b0055
Zhan (10.1016/j.trc.2018.02.006_b0130) 2015; 78
10.1016/j.trc.2018.02.006_b0075
10.1016/j.trc.2018.02.006_b0030
Pellegrini (10.1016/j.trc.2018.02.006_b0090) 2014; 59
Veelenturf (10.1016/j.trc.2018.02.006_b0115) 2017; 80
Caimi (10.1016/j.trc.2018.02.006_b0020) 2012; 39
10.1016/j.trc.2018.02.006_b0105
Shen (10.1016/j.trc.2018.02.006_b0100) 2001
Samá (10.1016/j.trc.2018.02.006_b0095) 2017; 76
Zhan (10.1016/j.trc.2018.02.006_b0135) 2016; 95
Wagenaar (10.1016/j.trc.2018.02.006_b0120) 2017; 101
Zilko (10.1016/j.trc.2018.02.006_b0140) 2016; 68
Nielsen (10.1016/j.trc.2018.02.006_b0085) 2012; 220
10.1016/j.trc.2018.02.006_b0060
Ghaemi (10.1016/j.trc.2018.02.006_b0040) 2017; 9
Chu (10.1016/j.trc.2018.02.006_b0025) 2013; 3
10.1016/j.trc.2018.02.006_b0045
References_xml – volume: 59
  start-page: 58
  year: 2014
  end-page: 80
  ident: b0090
  article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions
  publication-title: Transp. Res. Part B: Methodol.
– reference: Ghaemi, N., Goverde, R.M.P., Cats, O., 2016. Railway disruption timetable: Short-turnings in case of complete blockage. In: 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT). pp. 210–218.
– volume: 39
  start-page: 2578
  year: 2012
  end-page: 2593
  ident: b0020
  article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas
  publication-title: Comput. Oper. Res.
– volume: 101
  start-page: 140
  year: 2017
  end-page: 161
  ident: b0120
  article-title: Rolling stock rescheduling in passenger railway transportation using dead-heading trips and adjusted passenger demand
  publication-title: Transp. Res. Part B: Methodol.
– volume: 220
  start-page: 496
  year: 2012
  end-page: 509
  ident: b0085
  article-title: A rolling horizon approach for disruption management of railway rolling stock
  publication-title: Eur. J. Oper. Res.
– volume: 78
  start-page: 182
  year: 2015
  end-page: 201
  ident: b0130
  article-title: Real-time high-speed train rescheduling in case of a complete blockage
  publication-title: Transp. Res. Part B: Methodol.
– reference: Jespersen-groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., 2009. Disruption management in passenger railway transportation, pp. 399–421.
– reference: Coor, G.T., 1997. Analysis of the short-turning strategy on high-frequency transit lines by. Tech. rep., Massachusetts Institute of Technology.
– volume: 1
  start-page: 551
  year: 2006
  end-page: 561
  ident: b0050
  article-title: An algorithm for train rescheduling using rescheduling pattern description language R
  publication-title: Comput. Railways X
– volume: 95
  start-page: 32
  year: 2016
  end-page: 61
  ident: b0135
  article-title: A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
– volume: 78
  start-page: 78
  year: 2017
  end-page: 94
  ident: b0005
  article-title: The multi-objective railway timetable rescheduling problem
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 63
  start-page: 15
  year: 2014
  end-page: 37
  ident: b0015
  article-title: An overview of recovery models and algorithms for real-time railway rescheduling
  publication-title: Transp. Res. Part B: Methodol.
– volume: 105
  start-page: 423
  year: 2017
  end-page: 437
  ident: b0035
  article-title: A microscopic model for optimal train short-turnings during complete blockages
  publication-title: Transp. Res. Part B: Methodol.
– volume: 104
  start-page: 638
  year: 2017
  end-page: 666
  ident: b0125
  article-title: A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system
  publication-title: Transp. Res. Part B: Methodol.
– volume: 68
  start-page: 350
  year: 2016
  end-page: 368
  ident: b0140
  article-title: Modeling railway disruption lengths with copula bayesian networks
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 3
  start-page: 54
  year: 2013
  end-page: 67
  ident: b0025
  article-title: Modeling capacity consumption considering disruption program characteristics and the transition phase to steady operations during disruptions
  publication-title: J. Rail Transp. Plann. Manage.
– volume: 235
  start-page: 583
  year: 2014
  end-page: 593
  ident: b0065
  article-title: Adjusting a railway timetable in case of partial or complete blockades
  publication-title: Eur. J. Oper. Res.
– volume: 76
  start-page: 1
  year: 2017
  end-page: 15
  ident: b0095
  article-title: On the tactical and operational train routing selection problem
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 80
  start-page: 133
  year: 2017
  end-page: 147
  ident: b0115
  article-title: Passenger oriented railway disruption management by adapting timetables and rolling stock schedules
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: van Zon, F., Wink, M., 2014. Lean transformation: Communication during disruptions. Tech. rep., ProRail.
– volume: 50
  start-page: 841
  year: 2016
  end-page: 862
  ident: b0110
  article-title: A railway timetable rescheduling approach for handling large-scale disruptions
  publication-title: Transp. Sci.
– reference: Löfberg, J., 2004. Yalmip: A toolbox for modeling and optimization in matlab. In: In Proceedings of the CACSD Conference. Taipei, Taiwan.
– volume: 45
  start-page: 1080
  year: 2011
  end-page: 1102
  ident: b0070
  article-title: Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon solution approach
  publication-title: Transp. Res. Part B
– volume: 64
  start-page: 469
  year: 2013
  end-page: 481
  ident: b0080
  article-title: Modelling disruptions and resolving conflicts optimally in a railway schedule
  publication-title: Comput. Indust. Eng.
– start-page: 335
  year: 2001
  end-page: 363
  ident: b0100
  article-title: An optimal integrated real-time disruption control model for rail transit systems
  publication-title: Computer-aided Scheduling of Public Transport
– reference: Nakamura, T., Hirai, C., Nishioka, Y., 2011. A practical train rescheduling algorithm using three predetermined factors. Tech. rep.
– volume: 46
  start-page: 217
  year: 2012
  end-page: 232
  ident: b0010
  article-title: Railway rolling stock planning: Robustness against large disruptions
  publication-title: Transp. Sci.
– volume: 9
  start-page: 343
  year: 2017
  end-page: 364
  ident: b0040
  article-title: Railway disruption management challenges and possible solution directions
  publication-title: Public Transp.
– ident: 10.1016/j.trc.2018.02.006_b0060
– volume: 76
  start-page: 1
  year: 2017
  ident: 10.1016/j.trc.2018.02.006_b0095
  article-title: On the tactical and operational train routing selection problem
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.12.010
– volume: 78
  start-page: 182
  year: 2015
  ident: 10.1016/j.trc.2018.02.006_b0130
  article-title: Real-time high-speed train rescheduling in case of a complete blockage
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2015.04.001
– volume: 101
  start-page: 140
  year: 2017
  ident: 10.1016/j.trc.2018.02.006_b0120
  article-title: Rolling stock rescheduling in passenger railway transportation using dead-heading trips and adjusted passenger demand
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.03.013
– volume: 9
  start-page: 343
  issue: 1
  year: 2017
  ident: 10.1016/j.trc.2018.02.006_b0040
  article-title: Railway disruption management challenges and possible solution directions
  publication-title: Public Transp.
  doi: 10.1007/s12469-017-0157-z
– volume: 105
  start-page: 423
  year: 2017
  ident: 10.1016/j.trc.2018.02.006_b0035
  article-title: A microscopic model for optimal train short-turnings during complete blockages
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.10.002
– volume: 1
  start-page: 551
  year: 2006
  ident: 10.1016/j.trc.2018.02.006_b0050
  article-title: An algorithm for train rescheduling using rescheduling pattern description language R
  publication-title: Comput. Railways X
  doi: 10.2495/CR060551
– ident: 10.1016/j.trc.2018.02.006_b0045
  doi: 10.1109/ICIRT.2016.7588734
– volume: 39
  start-page: 2578
  issue: 11
  year: 2012
  ident: 10.1016/j.trc.2018.02.006_b0020
  article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.01.003
– volume: 59
  start-page: 58
  year: 2014
  ident: 10.1016/j.trc.2018.02.006_b0090
  article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2013.10.013
– volume: 3
  start-page: 54
  year: 2013
  ident: 10.1016/j.trc.2018.02.006_b0025
  article-title: Modeling capacity consumption considering disruption program characteristics and the transition phase to steady operations during disruptions
  publication-title: J. Rail Transp. Plann. Manage.
  doi: 10.1016/j.jrtpm.2013.10.006
– volume: 63
  start-page: 15
  year: 2014
  ident: 10.1016/j.trc.2018.02.006_b0015
  article-title: An overview of recovery models and algorithms for real-time railway rescheduling
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2014.01.009
– ident: 10.1016/j.trc.2018.02.006_b0055
  doi: 10.1007/978-3-642-05465-5_18
– start-page: 335
  year: 2001
  ident: 10.1016/j.trc.2018.02.006_b0100
  article-title: An optimal integrated real-time disruption control model for rail transit systems
– volume: 78
  start-page: 78
  year: 2017
  ident: 10.1016/j.trc.2018.02.006_b0005
  article-title: The multi-objective railway timetable rescheduling problem
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.02.001
– volume: 45
  start-page: 1080
  issue: 7
  year: 2011
  ident: 10.1016/j.trc.2018.02.006_b0070
  article-title: Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon solution approach
  publication-title: Transp. Res. Part B
  doi: 10.1016/j.trb.2011.05.001
– volume: 68
  start-page: 350
  year: 2016
  ident: 10.1016/j.trc.2018.02.006_b0140
  article-title: Modeling railway disruption lengths with copula bayesian networks
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.04.018
– volume: 220
  start-page: 496
  issue: 2
  year: 2012
  ident: 10.1016/j.trc.2018.02.006_b0085
  article-title: A rolling horizon approach for disruption management of railway rolling stock
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.01.037
– volume: 104
  start-page: 638
  year: 2017
  ident: 10.1016/j.trc.2018.02.006_b0125
  article-title: A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.05.008
– volume: 95
  start-page: 32
  year: 2016
  ident: 10.1016/j.trc.2018.02.006_b0135
  article-title: A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2016.07.015
– ident: 10.1016/j.trc.2018.02.006_b0030
– volume: 235
  start-page: 583
  issue: 3
  year: 2014
  ident: 10.1016/j.trc.2018.02.006_b0065
  article-title: Adjusting a railway timetable in case of partial or complete blockades
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.12.020
– ident: 10.1016/j.trc.2018.02.006_b0105
– ident: 10.1016/j.trc.2018.02.006_b0075
– volume: 46
  start-page: 217
  issue: 2
  year: 2012
  ident: 10.1016/j.trc.2018.02.006_b0010
  article-title: Railway rolling stock planning: Robustness against large disruptions
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1110.0388
– volume: 50
  start-page: 841
  issue: 3
  year: 2016
  ident: 10.1016/j.trc.2018.02.006_b0110
  article-title: A railway timetable rescheduling approach for handling large-scale disruptions
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.2015.0618
– volume: 64
  start-page: 469
  issue: 1
  year: 2013
  ident: 10.1016/j.trc.2018.02.006_b0080
  article-title: Modelling disruptions and resolving conflicts optimally in a railway schedule
  publication-title: Comput. Indust. Eng.
  doi: 10.1016/j.cie.2012.08.004
– volume: 80
  start-page: 133
  year: 2017
  ident: 10.1016/j.trc.2018.02.006_b0115
  article-title: Passenger oriented railway disruption management by adapting timetables and rolling stock schedules
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.04.012
SSID ssj0001957
Score 2.4439304
Snippet •A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption period.•Allowing for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Optimization
Railway disruption
Short-turning
Title Macroscopic multiple-station short-turning model in case of complete railway blockages
URI https://dx.doi.org/10.1016/j.trc.2018.02.006
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgADggKiPCoPTEiheThOMlYVVQG1CxRli-yLIwJVWjVBiIXfzjkPKBIwMCayo-js3H3xffcdIedC6tyappUraRqM-8yQQiSGLT3FTYmYoOxDNpny8YzdhG7YIsOmFkbTKmvfX_n00lvXd_q1NfvLNO3fIfj2zcAMcVNiTLN1ER9jntbPv3z_onlYQaX2iYP1mUTYZDZLjlex0iqGll_JdvKfY9NavBntkp0aKNJB9S57pKWyDtls6ojzDtlekxLcJw8ToR8Ki2UKtGEJGnmVaKf5I6JsA6OLPgWhZfcbmmYUMITRRUJLXjmiZ7oS6fxVvFGJIe4ZPU1-QGajq_vh2Kh7JhjAfLsw_MQU3EyCOLaTJHBtz7WV5ypmgcWV4gASF8BiIvFjAI33IFaA36DrCOG5AXMOSTtbZOqI0BgczqQlfcsBhj-CgQTpgKMUi4FJzrrEbKwVQS0orvtazKOGOfYUoYEjbeDItCM0cJdcfE5ZVmoafw1mzRJE37ZEhN7-92nH_5t2Qrb0VUXKOSXtYvWizhBvFLJXbqge2Rhc346nH_qa1gM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADYhU7PnBCCs3iOMkRIVCBthda1JtlTxwRqNqqLUJc-HbGWVgk4MA1saNoPJl58Ty_AThR2tbWLK3caNfhIuaOVipzfB0Z4WrCBEUfsnZHNHv8ph_25-CiPgtjaZVV7C9jehGtqyuNypqNcZ437gh8x27i9skpKaf5yTws8jCIrGufvX3yPLyklPuk0XZTol-XNguS12xiZQy9uNTtFD8npy8J52oNViukyM7Ll1mHOTPcgKX6IPF0A1a-aAluwn1b2YfiaJwjq2mCzrSstLPpA8Fsh9KL3QZhRfsblg8ZUg5jo4wVxHKCz2yi8sGLemWactwThZrpFvSuLrsXTadqmuAgj_2ZE2euEm6WpKmfZUnoR6FvotBwDz1hjEDUtAIeV1mcIlrAh6lB-gjDQKkoTHiwDQvD0dDsAEsxEFx7OvYC5PQnmGjUAQbG8BS5FnwX3NpaEitFcdvYYiBr6tijJANLa2Dp-pIMvAunH1PGpZzGX4N5vQTym09ICve_T9v737RjWGp22y3Zuu7c7sOyvVMydA5gYTZ5NocEPmb6qHCudxbd15k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroscopic+multiple-station+short-turning+model+in+case+of+complete+railway+blockages&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ghaemi%2C+Nadjla&rft.au=Cats%2C+Oded&rft.au=Goverde%2C+Rob+M.P.&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=89&rft.spage=113&rft.epage=132&rft_id=info:doi/10.1016%2Fj.trc.2018.02.006&rft.externalDocID=S0968090X18301529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon