Dreaming of a Learning Task Is Associated with Enhanced Sleep-Dependent Memory Consolidation

It is now well established that postlearning sleep is beneficial for human memory performance [ 1–5]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [ 6–9]. NREM sleep processes appear...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 20; no. 9; pp. 850 - 855
Main Authors Wamsley, Erin J., Tucker, Matthew, Payne, Jessica D., Benavides, Joseph A., Stickgold, Robert
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 11.05.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is now well established that postlearning sleep is beneficial for human memory performance [ 1–5]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [ 6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [ 1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state. ►Improved spatial memory performance is predicted by task-related dream experience ►Task-related thoughts during waking are unrelated to memory performance ►Findings are discussed in light of models of sleep-dependent memory consolidation
AbstractList It is now well established that postlearning sleep is beneficial for human memory performance [[1], [2], [3], [4] and [5]]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [[6], [7], [8] and [9]]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [[1], [2], [3] and [10]]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state. Highlights - Improved spatial memory performance is predicted by task-related dream experience Task-related thoughts during waking are unrelated to memory performance Findings are discussed in light of models of sleep-dependent memory consolidation
It is now well established that postlearning sleep is beneficial for human memory performance [ 1–5]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [ 6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [ 1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state. ►Improved spatial memory performance is predicted by task-related dream experience ►Task-related thoughts during waking are unrelated to memory performance ►Findings are discussed in light of models of sleep-dependent memory consolidation
It is now well established that post-learning sleep is beneficial for human memory performance [ 1 – 5 ]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [ 6 – 9 ]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [ 1 – 3 , 10 ]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects ( n= 99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state.
It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state.It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state.
It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state.
Author Stickgold, Robert
Wamsley, Erin J.
Tucker, Matthew
Benavides, Joseph A.
Payne, Jessica D.
AuthorAffiliation b Harvard University, Department of Psychology
a Beth Israel Deaconess Medical Center/Harvard Medical School, Department of Psychiatry
AuthorAffiliation_xml – name: a Beth Israel Deaconess Medical Center/Harvard Medical School, Department of Psychiatry
– name: b Harvard University, Department of Psychology
Author_xml – sequence: 1
  givenname: Erin J.
  surname: Wamsley
  fullname: Wamsley, Erin J.
  organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA
– sequence: 2
  givenname: Matthew
  surname: Tucker
  fullname: Tucker, Matthew
  organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA
– sequence: 3
  givenname: Jessica D.
  surname: Payne
  fullname: Payne, Jessica D.
  organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA
– sequence: 4
  givenname: Joseph A.
  surname: Benavides
  fullname: Benavides, Joseph A.
  organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA
– sequence: 5
  givenname: Robert
  surname: Stickgold
  fullname: Stickgold, Robert
  email: rstickgold@hms.harvard.edu
  organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20417102$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEQhS1URNPCD-CC9sZpw9jrXdtCQqrSApWCOFBuSJbXnjQOu3awN63673FIqYBDOVlPfm_0Zr4TchRiQEJeUphToN2bzdzu-jmDoqGZAxNPyIxKoWrgvD0iM1Ad1EoydkxOct4AUCZV94wcM-BUUGAz8u08oRl9uK7iqjLVEk0Ke3Vl8vfqMldnOUfrzYSuuvXTuroIaxNsUV8GxG19jlsMDsNUfcIxprtqEUOOg3dm8jE8J09XZsj44v49JV_fX1wtPtbLzx8uF2fL2nLJploq0cuW9iCpwMaB5D23knLHoXUrcKZXyCwVLe1MxxvrbK860TYUHOUMTXNK3h3mbnf9iM6WPskMepv8aNKdjsbrv3-CX-vreKOZ7FSj2jLg9f2AFH_sME969NniMJiAcZe14K1gXHXy_86mKTVBseJ89Wephza_b18M9GCwKeaccPVgoaD3fPVGF756z1dDowvfkhH_ZKyfft267OWHR5NvD0ksIG48Jp2txz1Kn9BO2kX_SPonsym_Yg
CitedBy_id crossref_primary_10_3389_frym_2013_00003
crossref_primary_10_1016_j_neucom_2020_03_024
crossref_primary_10_1080_15402002_2013_845782
crossref_primary_10_1016_j_neubiorev_2012_05_010
crossref_primary_10_1007_s00424_011_1031_5
crossref_primary_10_3389_fpsyg_2015_01132
crossref_primary_10_1371_journal_pone_0083352
crossref_primary_10_1016_j_tics_2023_02_006
crossref_primary_10_1017_S0140525X12003135
crossref_primary_10_1093_sleep_zsad010
crossref_primary_10_3917_rppg_065_0085
crossref_primary_10_1371_journal_pone_0165141
crossref_primary_10_1016_j_conb_2011_02_005
crossref_primary_10_1017_S0140525X1300160X
crossref_primary_10_1186_s12909_016_0770_6
crossref_primary_10_1111_jsr_12754
crossref_primary_10_3389_frobt_2020_532375
crossref_primary_10_1016_j_nlm_2015_01_009
crossref_primary_10_1016_j_jsmc_2010_12_008
crossref_primary_10_1016_j_neuropharm_2021_108607
crossref_primary_10_1016_j_nlm_2015_01_008
crossref_primary_10_1016_j_nlm_2016_03_017
crossref_primary_10_1016_j_smrv_2016_07_005
crossref_primary_10_1111_psyp_13368
crossref_primary_10_2466_09_PR0_107_5_659_673
crossref_primary_10_3389_fpsyg_2020_00559
crossref_primary_10_1016_j_concog_2017_10_011
crossref_primary_10_1016_j_tics_2013_01_006
crossref_primary_10_1017_S0140525X13001222
crossref_primary_10_1093_cercor_bhs388
crossref_primary_10_3390_brainsci14060533
crossref_primary_10_1007_s10943_015_0093_7
crossref_primary_10_1016_j_concog_2011_04_004
crossref_primary_10_1038_s41467_024_48816_x
crossref_primary_10_1038_s41598_023_31361_w
crossref_primary_10_3389_frsle_2023_1239530
crossref_primary_10_1111_jsr_12749
crossref_primary_10_1521_pdps_2020_48_2_140
crossref_primary_10_1038_nn_3303
crossref_primary_10_1146_annurev_clinpsy_050718_095754
crossref_primary_10_1111_etho_12346
crossref_primary_10_1016_j_concog_2020_103071
crossref_primary_10_1016_j_concog_2020_102938
crossref_primary_10_1177_1745691614556680
crossref_primary_10_1016_j_sleep_2021_05_019
crossref_primary_10_1016_j_tins_2011_07_005
crossref_primary_10_1080_2057410X_2017_1665369
crossref_primary_10_1111_jsr_12697
crossref_primary_10_1152_physrev_00032_2012
crossref_primary_10_1016_j_concog_2010_07_006
crossref_primary_10_3917_jdp_325_0053
crossref_primary_10_1007_s11910_013_0433_5
crossref_primary_10_1007_s00426_011_0335_6
crossref_primary_10_1093_sleepadvances_zpae088
crossref_primary_10_1016_j_ijpsycho_2013_03_006
crossref_primary_10_1371_journal_pone_0242903
crossref_primary_10_1093_sleep_zsac292
crossref_primary_10_1007_s12078_014_9173_4
crossref_primary_10_1126_sciadv_abj5866
crossref_primary_10_1007_s11682_018_9964_3
crossref_primary_10_1111_jsr_12286
crossref_primary_10_3389_fpsyg_2016_00332
crossref_primary_10_1016_j_nlm_2014_09_007
crossref_primary_10_1038_s41598_018_23590_1
crossref_primary_10_3917_lapsy_181_0165
crossref_primary_10_1002_hipo_20961
crossref_primary_10_3389_fpsyg_2019_00459
crossref_primary_10_3390_clockssleep3030035
crossref_primary_10_1016_j_physbeh_2012_05_021
crossref_primary_10_5665_sleep_2808
crossref_primary_10_1038_s41598_019_51497_y
crossref_primary_10_1016_j_concog_2020_103006
crossref_primary_10_3389_frsle_2024_1258345
crossref_primary_10_1016_j_cub_2010_10_045
crossref_primary_10_1016_j_concog_2020_102955
crossref_primary_10_3390_healthcare6020032
crossref_primary_10_1007_s13164_020_00514_5
crossref_primary_10_1177_1056492612448463
crossref_primary_10_1111_etho_12030
crossref_primary_10_1016_j_concog_2011_05_015
crossref_primary_10_1093_texcom_tgac042
crossref_primary_10_1016_j_cub_2021_01_026
crossref_primary_10_1016_j_tics_2012_05_001
crossref_primary_10_1016_j_tins_2024_02_002
crossref_primary_10_1017_S0140525X13001428
crossref_primary_10_1556_2053_1_2016_003
crossref_primary_10_1016_j_tine_2014_02_004
crossref_primary_10_1371_journal_pone_0018056
crossref_primary_10_1016_j_neubiorev_2023_105104
crossref_primary_10_1016_j_concog_2024_103719
crossref_primary_10_1186_s12871_016_0214_1
crossref_primary_10_3758_s13423_017_1313_9
crossref_primary_10_5674_jjppp_2108si
crossref_primary_10_1016_j_concog_2014_06_011
crossref_primary_10_1016_j_concog_2015_06_012
crossref_primary_10_1016_j_nlm_2017_03_008
crossref_primary_10_1016_j_concog_2021_103155
crossref_primary_10_1523_JNEUROSCI_3575_10_2011
crossref_primary_10_3389_fpsyg_2015_01354
crossref_primary_10_1016_j_tics_2018_03_009
crossref_primary_10_1371_journal_pone_0084342
crossref_primary_10_1016_j_mehy_2018_12_001
crossref_primary_10_1371_journal_pbio_3002684
crossref_primary_10_1016_j_brainres_2019_05_030
crossref_primary_10_1016_j_cub_2011_09_029
crossref_primary_10_1371_journal_pone_0257738
crossref_primary_10_1038_s41598_024_58170_z
crossref_primary_10_1016_j_sleep_2021_08_020
crossref_primary_10_1093_sleep_zsad111
crossref_primary_10_5664_jcsm_10026
crossref_primary_10_1007_s40675_024_00305_9
crossref_primary_10_1016_j_neubiorev_2023_105117
crossref_primary_10_1016_j_concog_2020_102974
crossref_primary_10_1016_j_concog_2010_10_005
crossref_primary_10_3390_brainsci14070662
crossref_primary_10_7554_eLife_56211
crossref_primary_10_1038_s41598_018_35999_9
crossref_primary_10_1038_s41598_023_33767_y
crossref_primary_10_1101_lm_035196_114
crossref_primary_10_4000_12x5u
crossref_primary_10_1016_j_nlm_2021_107460
crossref_primary_10_1016_j_tics_2016_09_006
crossref_primary_10_1016_j_sleep_2017_10_003
crossref_primary_10_1038_npp_2014_6
crossref_primary_10_1111_1745_8315_12617
crossref_primary_10_1177_0305735619854533
crossref_primary_10_3390_brainsci13030468
crossref_primary_10_1089_cyber_2019_0385
crossref_primary_10_3389_fpsyg_2018_01398
crossref_primary_10_1038_s42003_021_01883_y
crossref_primary_10_1016_j_neuroimage_2022_119690
Cites_doi 10.1038/nn1758
10.1016/S0926-6410(02)00279-3
10.1162/jocn.1997.9.4.534
10.1038/nn1825
10.1016/S0896-6273(02)01096-6
10.1111/j.1365-2869.2008.00622.x
10.1111/j.1469-8986.1973.tb00801.x
10.1016/j.cub.2006.05.024
10.1093/sleep/6.3.265
10.1016/j.neuron.2004.10.007
10.1038/nature05278
10.1016/j.nlm.2006.03.005
10.1016/S0896-6273(00)80629-7
10.1167/6.5.3
10.1111/j.1460-9568.2009.06654.x
10.1017/S0140525X05000026
10.1093/sleep/27.7.1479
10.1111/j.1365-2869.2009.00740.x
10.1093/brain/awm146
10.1093/sleep/33.1.59
10.1016/j.tics.2007.09.001
10.1016/j.neulet.2006.04.035
10.1017/S0140525X0000399X
10.1126/science.290.5490.350
10.1518/001872006777724507
10.1037/h0023581
10.1073/pnas.0437938100
10.1093/sleep/31.2.197
10.1146/annurev.psych.55.090902.141555
10.1016/j.neuroscience.2005.01.011
10.1371/journal.pone.0006697
10.1523/JNEUROSCI.2464-06.2006
10.1016/j.brainresbull.2006.09.021
10.1523/JNEUROSCI.19-21-09497.1999
10.1073/pnas.0305404101
10.1016/S1364-6613(99)01365-0
10.1016/j.smrv.2005.05.002
10.1038/nature02663
10.1016/j.neulet.2009.09.036
10.1016/j.brainresbull.2003.12.008
10.1126/science.1138581
10.1523/JNEUROSCI.19-10-04090.1999
10.1093/brain/awn103
10.1126/science.8036517
10.1073/pnas.0510198103
ContentType Journal Article
Copyright 2010 Elsevier Ltd
(c) 2010 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: (c) 2010 Elsevier Ltd. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1016/j.cub.2010.03.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 855
ExternalDocumentID PMC2869395
20417102
10_1016_j_cub_2010_03_027
S0960982210003520
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007901
– fundername: NIMH NIH HHS
  grantid: R01 MH048832
– fundername: NIMH NIH HHS
  grantid: R01-MH48832
– fundername: NHLBI NIH HHS
  grantid: T32-HL07901
– fundername: NIMH NIH HHS
  grantid: R01-MH65292
– fundername: NIMH NIH HHS
  grantid: R01 MH065292
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
29F
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AGUBO
AHHHB
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CAG
COF
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
HVGLF
HZ~
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NCXOZ
O-L
O9-
OK1
OZT
P2P
R2-
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SEW
SSZ
TR2
UHS
WQ6
XIH
XPP
Y6R
ZA5
ZGI
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
EFKBS
ID FETCH-LOGICAL-c482t-897b851b0817e3d084b4c814d405df0dab9e2c17516a643cdcb9675310d142ea3
IEDL.DBID IXB
ISSN 0960-9822
1879-0445
IngestDate Thu Aug 21 14:08:21 EDT 2025
Fri Jul 11 15:14:21 EDT 2025
Fri Jul 11 04:36:53 EDT 2025
Sat May 31 02:08:36 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Tue Jul 01 04:07:49 EDT 2025
Fri Feb 23 02:33:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords SYSNEURO
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
(c) 2010 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-897b851b0817e3d084b4c814d405df0dab9e2c17516a643cdcb9675310d142ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Currently at Notre Dame University, Department of Psychology
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960982210003520
PMID 20417102
PQID 733516092
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2869395
proquest_miscellaneous_745724968
proquest_miscellaneous_733516092
pubmed_primary_20417102
crossref_primary_10_1016_j_cub_2010_03_027
crossref_citationtrail_10_1016_j_cub_2010_03_027
elsevier_sciencedirect_doi_10_1016_j_cub_2010_03_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-11
PublicationDateYYYYMMDD 2010-05-11
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-11
  day: 11
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2010
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Palagini, Gemignani, Feinberg, Guazzelli, Campbell (bib46) 2004; 63
Orban, Rauchs, Balteau, Degueldre, Luxen, Maquet, Peigneux (bib17) 2006; 103
Wamsley, Stickgold (bib11) 2008; 31
Clemens, Mölle, Eross, Barsi, Halász, Born (bib36) 2007; 130
Hoddes, Zarcone, Smythe, Phillips, Dement (bib41) 1973; 10
Lee, Wilson (bib25) 2002; 36
Ji, Wilson (bib6) 2007; 10
Vieilledent, Kosslyn, Berthoz, Giraudo (bib40) 2003; 16
Tucker, Hirota, Wamsley, Lau, Chaklader, Fishbein (bib1) 2006; 86
Huber, Ghilardi, Massimini, Tononi (bib27) 2004; 430
Walker (bib32) 2009
Walker (bib5) 2005; 28
Marshall, Helgadóttir, Mölle, Born (bib2) 2006; 444
Clemens, Fabó, Halász (bib18) 2006; 403
Stickgold, Malia, Maguire, Roddenberry, O'Connor (bib30) 2000; 290
Nádasdy, Hirase, Czurkó, Csicsvari, Buzsáki (bib26) 1999; 19
Lahl, Wispel, Willigens, Pietrowsky (bib12) 2008; 17
Tononi, Cirelli (bib21) 2006; 10
Schmidt, Peigneux, Muto, Schenkel, Knoblauch, Münch, de Quervain, Wirz-Justice, Cajochen (bib10) 2006; 26
Plihal, Born (bib3) 1997; 9
Tucker, Fishbein (bib42) 2008; 31
Walker, Lindsay (bib47) 2006; 48
Vogel (bib43) 1991
Hasselmo (bib35) 1999; 3
Kudrimoti, Barnes, McNaughton (bib8) 1999; 19
Wixted (bib20) 2004; 55
Clemens, Fabó, Halász (bib19) 2005; 132
Nielsen (bib23) 2000; 23
Sakthivel, Patterson, Cruz-Neira (bib48) 1999; 35
Rasch, Büchel, Gais, Born (bib16) 2007; 315
Ramadan, Eschenko, Sara (bib14) 2009; 4
Foulkes, Spear, Symonds (bib45) 1966; 71
Gais, Born (bib34) 2004; 101
Ellenbogen, Hulbert, Stickgold, Dinges, Thompson-Schill (bib4) 2006; 16
Schabus, Gruber, Parapatics, Sauter, Klösch, Anderer, Klimesch, Saletu, Zeitlhofer (bib31) 2004; 27
Wamsley, Hirota, Tucker, Smith, Antrobus (bib22) 2007; 71
Huber, Ghilardi, Massimini, Ferrarelli, Riedner, Peterson, Tononi (bib28) 2006; 9
Avanzino, Giannini, Tacchino, Pelosin, Ruggeri, Bove (bib39) 2009; 466
Tucker, Fishbein (bib13) 2009; 18
Axmacher, Elger, Fell (bib33) 2008; 131
Mölle, Eschenko, Gais, Sara, Born (bib15) 2009; 29
Wamsley, Perry, Djonlagic, Reaven, Stickgold (bib29) 2010; 33
Foulkes, Schmidt (bib44) 1983; 6
Marshall, Born (bib24) 2007; 11
Siapas, Wilson (bib38) 1998; 21
Fortenbaugh, Hicks, Hao, Turano (bib49) 2006; 6
Sirota, Csicsvari, Buhl, Buzsáki (bib37) 2003; 100
Peigneux, Laureys, Fuchs, Collette, Perrin, Reggers, Phillips, Degueldre, Del Fiore, Aerts (bib9) 2004; 44
Wilson, McNaughton (bib7) 1994; 265
Huber (10.1016/j.cub.2010.03.027_bib28) 2006; 9
Plihal (10.1016/j.cub.2010.03.027_bib3) 1997; 9
Gais (10.1016/j.cub.2010.03.027_bib34) 2004; 101
Hasselmo (10.1016/j.cub.2010.03.027_bib35) 1999; 3
Tucker (10.1016/j.cub.2010.03.027_bib1) 2006; 86
Nádasdy (10.1016/j.cub.2010.03.027_bib26) 1999; 19
Clemens (10.1016/j.cub.2010.03.027_bib36) 2007; 130
Walker (10.1016/j.cub.2010.03.027_bib47) 2006; 48
Ramadan (10.1016/j.cub.2010.03.027_bib14) 2009; 4
Rasch (10.1016/j.cub.2010.03.027_bib16) 2007; 315
Vogel (10.1016/j.cub.2010.03.027_bib43) 1991
Axmacher (10.1016/j.cub.2010.03.027_bib33) 2008; 131
Foulkes (10.1016/j.cub.2010.03.027_bib45) 1966; 71
Vieilledent (10.1016/j.cub.2010.03.027_bib40) 2003; 16
Tucker (10.1016/j.cub.2010.03.027_bib42) 2008; 31
Lahl (10.1016/j.cub.2010.03.027_bib12) 2008; 17
Siapas (10.1016/j.cub.2010.03.027_bib38) 1998; 21
Lee (10.1016/j.cub.2010.03.027_bib25) 2002; 36
Wamsley (10.1016/j.cub.2010.03.027_bib29) 2010; 33
Peigneux (10.1016/j.cub.2010.03.027_bib9) 2004; 44
Foulkes (10.1016/j.cub.2010.03.027_bib44) 1983; 6
Hoddes (10.1016/j.cub.2010.03.027_bib41) 1973; 10
Palagini (10.1016/j.cub.2010.03.027_bib46) 2004; 63
Schabus (10.1016/j.cub.2010.03.027_bib31) 2004; 27
Marshall (10.1016/j.cub.2010.03.027_bib24) 2007; 11
Fortenbaugh (10.1016/j.cub.2010.03.027_bib49) 2006; 6
Wamsley (10.1016/j.cub.2010.03.027_bib22) 2007; 71
Walker (10.1016/j.cub.2010.03.027_bib32) 2009; 5
Orban (10.1016/j.cub.2010.03.027_bib17) 2006; 103
Sakthivel (10.1016/j.cub.2010.03.027_bib48) 1999; 35
Wamsley (10.1016/j.cub.2010.03.027_bib11) 2008; 31
Ji (10.1016/j.cub.2010.03.027_bib6) 2007; 10
Tononi (10.1016/j.cub.2010.03.027_bib21) 2006; 10
Schmidt (10.1016/j.cub.2010.03.027_bib10) 2006; 26
Walker (10.1016/j.cub.2010.03.027_bib5) 2005; 28
Kudrimoti (10.1016/j.cub.2010.03.027_bib8) 1999; 19
Sirota (10.1016/j.cub.2010.03.027_bib37) 2003; 100
Avanzino (10.1016/j.cub.2010.03.027_bib39) 2009; 466
Stickgold (10.1016/j.cub.2010.03.027_bib30) 2000; 290
Clemens (10.1016/j.cub.2010.03.027_bib19) 2005; 132
Wilson (10.1016/j.cub.2010.03.027_bib7) 1994; 265
Tucker (10.1016/j.cub.2010.03.027_bib13) 2009; 18
Huber (10.1016/j.cub.2010.03.027_bib27) 2004; 430
Wixted (10.1016/j.cub.2010.03.027_bib20) 2004; 55
Marshall (10.1016/j.cub.2010.03.027_bib2) 2006; 444
Ellenbogen (10.1016/j.cub.2010.03.027_bib4) 2006; 16
Nielsen (10.1016/j.cub.2010.03.027_bib23) 2000; 23
Clemens (10.1016/j.cub.2010.03.027_bib18) 2006; 403
Mölle (10.1016/j.cub.2010.03.027_bib15) 2009; 29
References_xml – volume: 23
  year: 2000
  ident: bib23
  article-title: A review of mentation in REM and NREM sleep: “Covert” REM sleep as a possible reconciliation of two opposing models
  publication-title: Behav. Brain Sci.
– volume: 130
  start-page: 2868
  year: 2007
  end-page: 2878
  ident: bib36
  article-title: Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans
  publication-title: Brain
– volume: 31
  start-page: A386
  year: 2008
  ident: bib11
  article-title: Virtual maze learning is enhanced by a short daytime nap containing only NREM sleep
  publication-title: Sleep
– volume: 33
  start-page: 59
  year: 2010
  end-page: 68
  ident: bib29
  article-title: Cognitive replay of visuomotor learning at sleep onset: Temporal dynamics and relationship to task performance
  publication-title: Sleep
– volume: 3
  start-page: 351
  year: 1999
  end-page: 359
  ident: bib35
  article-title: Neuromodulation: Acetylcholine and memory consolidation
  publication-title: Trends Cogn. Sci.
– volume: 10
  start-page: 100
  year: 2007
  end-page: 107
  ident: bib6
  article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep
  publication-title: Nat. Neurosci.
– volume: 6
  start-page: 565
  year: 2006
  end-page: 579
  ident: bib49
  article-title: High-speed navigators: Using more than what meets the eye
  publication-title: J. Vis.
– volume: 265
  start-page: 676
  year: 1994
  end-page: 679
  ident: bib7
  article-title: Reactivation of hippocampal ensemble memories during sleep
  publication-title: Science
– volume: 101
  start-page: 2140
  year: 2004
  end-page: 2144
  ident: bib34
  article-title: Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: S20
  year: 2009
  end-page: S26
  ident: bib32
  article-title: The role of slow wave sleep in memory processing
  publication-title: J. Clin. Sleep Med.
– volume: 86
  start-page: 241
  year: 2006
  end-page: 247
  ident: bib1
  article-title: A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory
  publication-title: Neurobiol. Learn. Mem.
– volume: 403
  start-page: 52
  year: 2006
  end-page: 56
  ident: bib18
  article-title: Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles
  publication-title: Neurosci. Lett.
– volume: 100
  start-page: 2065
  year: 2003
  end-page: 2069
  ident: bib37
  article-title: Communication between neocortex and hippocampus during sleep in rodents
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: 535
  year: 2004
  end-page: 545
  ident: bib9
  article-title: Are spatial memories strengthened in the human hippocampus during slow wave sleep?
  publication-title: Neuron
– volume: 71
  start-page: 347
  year: 2007
  end-page: 354
  ident: bib22
  article-title: Circadian and ultradian influences on dreaming: A dual rhythm model
  publication-title: Brain Res. Bull.
– volume: 9
  start-page: 1169
  year: 2006
  end-page: 1176
  ident: bib28
  article-title: Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity
  publication-title: Nat. Neurosci.
– volume: 63
  start-page: 361
  year: 2004
  end-page: 368
  ident: bib46
  article-title: Mental activity after early afternoon nap awakenings in healthy subjects
  publication-title: Brain Res. Bull.
– volume: 444
  start-page: 610
  year: 2006
  end-page: 613
  ident: bib2
  article-title: Boosting slow oscillations during sleep potentiates memory
  publication-title: Nature
– volume: 36
  start-page: 1183
  year: 2002
  end-page: 1194
  ident: bib25
  article-title: Memory of sequential experience in the hippocampus during slow wave sleep
  publication-title: Neuron
– volume: 19
  start-page: 9497
  year: 1999
  end-page: 9507
  ident: bib26
  article-title: Replay and time compression of recurring spike sequences in the hippocampus
  publication-title: J. Neurosci.
– start-page: 125
  year: 1991
  end-page: 137
  ident: bib43
  article-title: Sleep onset mentation
  publication-title: The Mind in Sleep
– volume: 16
  start-page: 1290
  year: 2006
  end-page: 1294
  ident: bib4
  article-title: Interfering with theories of sleep and memory: Sleep, declarative memory, and associative interference
  publication-title: Curr. Biol.
– volume: 19
  start-page: 4090
  year: 1999
  end-page: 4101
  ident: bib8
  article-title: Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics
  publication-title: J. Neurosci.
– volume: 466
  start-page: 11
  year: 2009
  end-page: 15
  ident: bib39
  article-title: Motor imagery influences the execution of repetitive finger opposition movements
  publication-title: Neurosci. Lett.
– volume: 315
  start-page: 1426
  year: 2007
  end-page: 1429
  ident: bib16
  article-title: Odor cues during slow-wave sleep prompt declarative memory consolidation
  publication-title: Science
– volume: 11
  start-page: 442
  year: 2007
  end-page: 450
  ident: bib24
  article-title: The contribution of sleep to hippocampus-dependent memory consolidation
  publication-title: Trends Cogn. Sci.
– volume: 17
  start-page: 3
  year: 2008
  end-page: 10
  ident: bib12
  article-title: An ultra short episode of sleep is sufficient to promote declarative memory performance
  publication-title: J. Sleep Res.
– volume: 26
  start-page: 8976
  year: 2006
  end-page: 8982
  ident: bib10
  article-title: Encoding difficulty promotes postlearning changes in sleep spindle activity during napping
  publication-title: J. Neurosci.
– volume: 28
  year: 2005
  ident: bib5
  article-title: A refined model of sleep and the time course of memory formation
  publication-title: Behav. Brain Sci.
– volume: 16
  start-page: 238
  year: 2003
  end-page: 249
  ident: bib40
  article-title: Does mental simulation of following a path improve navigation performance without vision?
  publication-title: Brain Res. Cogn. Brain Res.
– volume: 18
  start-page: 304
  year: 2009
  end-page: 312
  ident: bib13
  article-title: The impact of sleep duration and subject intelligence on declarative and motor memory performance: How much is enough?
  publication-title: J. Sleep Res.
– volume: 132
  start-page: 529
  year: 2005
  end-page: 535
  ident: bib19
  article-title: Overnight verbal memory retention correlates with the number of sleep spindles
  publication-title: Neuroscience
– volume: 29
  start-page: 1071
  year: 2009
  end-page: 1081
  ident: bib15
  article-title: The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats
  publication-title: Eur. J. Neurosci.
– volume: 48
  start-page: 265
  year: 2006
  end-page: 278
  ident: bib47
  article-title: Navigation performance with a virtual auditory display: Effects of beacon sound, capture radius, and practice
  publication-title: Hum. Factors
– volume: 6
  start-page: 265
  year: 1983
  end-page: 280
  ident: bib44
  article-title: Temporal sequence and unit composition in dream reports from different stages of sleep
  publication-title: Sleep
– volume: 9
  start-page: 534
  year: 1997
  end-page: 547
  ident: bib3
  article-title: Effects of early and late nocturnal sleep on declarative and procedural memory
  publication-title: J. Cogn. Neurosci.
– volume: 27
  start-page: 1479
  year: 2004
  end-page: 1485
  ident: bib31
  article-title: Sleep spindles and their significance for declarative memory consolidation
  publication-title: Sleep
– volume: 31
  start-page: 197
  year: 2008
  end-page: 203
  ident: bib42
  article-title: Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition
  publication-title: Sleep
– volume: 103
  start-page: 7124
  year: 2006
  end-page: 7129
  ident: bib17
  article-title: Sleep after spatial learning promotes covert reorganization of brain activity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 49
  year: 2006
  end-page: 62
  ident: bib21
  article-title: Sleep function and synaptic homeostasis
  publication-title: Sleep Med. Rev.
– volume: 430
  start-page: 78
  year: 2004
  end-page: 81
  ident: bib27
  article-title: Local sleep and learning
  publication-title: Nature
– volume: 21
  start-page: 1123
  year: 1998
  end-page: 1128
  ident: bib38
  article-title: Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep
  publication-title: Neuron
– volume: 290
  start-page: 350
  year: 2000
  end-page: 353
  ident: bib30
  article-title: Replaying the game: Hypnagogic images in normals and amnesics
  publication-title: Science
– volume: 55
  start-page: 235
  year: 2004
  end-page: 269
  ident: bib20
  article-title: The psychology and neuroscience of forgetting
  publication-title: Annu. Rev. Psychol.
– volume: 35
  start-page: 353
  year: 1999
  end-page: 359
  ident: bib48
  article-title: Gender differences in navigating virtual worlds
  publication-title: Biomed. Sci. Instrum.
– volume: 131
  start-page: 1806
  year: 2008
  end-page: 1817
  ident: bib33
  article-title: Ripples in the medial temporal lobe are relevant for human memory consolidation
  publication-title: Brain
– volume: 71
  start-page: 280
  year: 1966
  end-page: 286
  ident: bib45
  article-title: Individual differences in mental activity at sleep onset
  publication-title: J. Abnorm. Psychol.
– volume: 4
  start-page: e6697
  year: 2009
  ident: bib14
  article-title: Hippocampal sharp wave/ripples during sleep for consolidation of associative memory
  publication-title: PLoS ONE
– volume: 10
  start-page: 431
  year: 1973
  end-page: 436
  ident: bib41
  article-title: Quantification of sleepiness: a new approach
  publication-title: Psychophysiology
– volume: 9
  start-page: 1169
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib28
  article-title: Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1758
– volume: 16
  start-page: 238
  year: 2003
  ident: 10.1016/j.cub.2010.03.027_bib40
  article-title: Does mental simulation of following a path improve navigation performance without vision?
  publication-title: Brain Res. Cogn. Brain Res.
  doi: 10.1016/S0926-6410(02)00279-3
– volume: 9
  start-page: 534
  year: 1997
  ident: 10.1016/j.cub.2010.03.027_bib3
  article-title: Effects of early and late nocturnal sleep on declarative and procedural memory
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1997.9.4.534
– volume: 10
  start-page: 100
  year: 2007
  ident: 10.1016/j.cub.2010.03.027_bib6
  article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1825
– volume: 31
  start-page: A386
  issue: Suppl
  year: 2008
  ident: 10.1016/j.cub.2010.03.027_bib11
  article-title: Virtual maze learning is enhanced by a short daytime nap containing only NREM sleep
  publication-title: Sleep
– volume: 36
  start-page: 1183
  year: 2002
  ident: 10.1016/j.cub.2010.03.027_bib25
  article-title: Memory of sequential experience in the hippocampus during slow wave sleep
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01096-6
– volume: 17
  start-page: 3
  year: 2008
  ident: 10.1016/j.cub.2010.03.027_bib12
  article-title: An ultra short episode of sleep is sufficient to promote declarative memory performance
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.2008.00622.x
– volume: 10
  start-page: 431
  year: 1973
  ident: 10.1016/j.cub.2010.03.027_bib41
  article-title: Quantification of sleepiness: a new approach
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1973.tb00801.x
– volume: 16
  start-page: 1290
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib4
  article-title: Interfering with theories of sleep and memory: Sleep, declarative memory, and associative interference
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.05.024
– volume: 6
  start-page: 265
  year: 1983
  ident: 10.1016/j.cub.2010.03.027_bib44
  article-title: Temporal sequence and unit composition in dream reports from different stages of sleep
  publication-title: Sleep
  doi: 10.1093/sleep/6.3.265
– volume: 44
  start-page: 535
  year: 2004
  ident: 10.1016/j.cub.2010.03.027_bib9
  article-title: Are spatial memories strengthened in the human hippocampus during slow wave sleep?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.10.007
– volume: 444
  start-page: 610
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib2
  article-title: Boosting slow oscillations during sleep potentiates memory
  publication-title: Nature
  doi: 10.1038/nature05278
– volume: 86
  start-page: 241
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib1
  article-title: A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2006.03.005
– volume: 21
  start-page: 1123
  year: 1998
  ident: 10.1016/j.cub.2010.03.027_bib38
  article-title: Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80629-7
– start-page: 125
  year: 1991
  ident: 10.1016/j.cub.2010.03.027_bib43
  article-title: Sleep onset mentation
– volume: 6
  start-page: 565
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib49
  article-title: High-speed navigators: Using more than what meets the eye
  publication-title: J. Vis.
  doi: 10.1167/6.5.3
– volume: 29
  start-page: 1071
  year: 2009
  ident: 10.1016/j.cub.2010.03.027_bib15
  article-title: The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2009.06654.x
– volume: 35
  start-page: 353
  year: 1999
  ident: 10.1016/j.cub.2010.03.027_bib48
  article-title: Gender differences in navigating virtual worlds
  publication-title: Biomed. Sci. Instrum.
– volume: 28
  year: 2005
  ident: 10.1016/j.cub.2010.03.027_bib5
  article-title: A refined model of sleep and the time course of memory formation
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X05000026
– volume: 27
  start-page: 1479
  year: 2004
  ident: 10.1016/j.cub.2010.03.027_bib31
  article-title: Sleep spindles and their significance for declarative memory consolidation
  publication-title: Sleep
  doi: 10.1093/sleep/27.7.1479
– volume: 18
  start-page: 304
  year: 2009
  ident: 10.1016/j.cub.2010.03.027_bib13
  article-title: The impact of sleep duration and subject intelligence on declarative and motor memory performance: How much is enough?
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.2009.00740.x
– volume: 130
  start-page: 2868
  year: 2007
  ident: 10.1016/j.cub.2010.03.027_bib36
  article-title: Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans
  publication-title: Brain
  doi: 10.1093/brain/awm146
– volume: 33
  start-page: 59
  year: 2010
  ident: 10.1016/j.cub.2010.03.027_bib29
  article-title: Cognitive replay of visuomotor learning at sleep onset: Temporal dynamics and relationship to task performance
  publication-title: Sleep
  doi: 10.1093/sleep/33.1.59
– volume: 11
  start-page: 442
  year: 2007
  ident: 10.1016/j.cub.2010.03.027_bib24
  article-title: The contribution of sleep to hippocampus-dependent memory consolidation
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2007.09.001
– volume: 403
  start-page: 52
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib18
  article-title: Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2006.04.035
– volume: 23
  year: 2000
  ident: 10.1016/j.cub.2010.03.027_bib23
  article-title: A review of mentation in REM and NREM sleep: “Covert” REM sleep as a possible reconciliation of two opposing models
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X0000399X
– volume: 290
  start-page: 350
  year: 2000
  ident: 10.1016/j.cub.2010.03.027_bib30
  article-title: Replaying the game: Hypnagogic images in normals and amnesics
  publication-title: Science
  doi: 10.1126/science.290.5490.350
– volume: 48
  start-page: 265
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib47
  article-title: Navigation performance with a virtual auditory display: Effects of beacon sound, capture radius, and practice
  publication-title: Hum. Factors
  doi: 10.1518/001872006777724507
– volume: 71
  start-page: 280
  year: 1966
  ident: 10.1016/j.cub.2010.03.027_bib45
  article-title: Individual differences in mental activity at sleep onset
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/h0023581
– volume: 100
  start-page: 2065
  year: 2003
  ident: 10.1016/j.cub.2010.03.027_bib37
  article-title: Communication between neocortex and hippocampus during sleep in rodents
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0437938100
– volume: 31
  start-page: 197
  year: 2008
  ident: 10.1016/j.cub.2010.03.027_bib42
  article-title: Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition
  publication-title: Sleep
  doi: 10.1093/sleep/31.2.197
– volume: 55
  start-page: 235
  year: 2004
  ident: 10.1016/j.cub.2010.03.027_bib20
  article-title: The psychology and neuroscience of forgetting
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.55.090902.141555
– volume: 132
  start-page: 529
  year: 2005
  ident: 10.1016/j.cub.2010.03.027_bib19
  article-title: Overnight verbal memory retention correlates with the number of sleep spindles
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.01.011
– volume: 4
  start-page: e6697
  year: 2009
  ident: 10.1016/j.cub.2010.03.027_bib14
  article-title: Hippocampal sharp wave/ripples during sleep for consolidation of associative memory
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006697
– volume: 26
  start-page: 8976
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib10
  article-title: Encoding difficulty promotes postlearning changes in sleep spindle activity during napping
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2464-06.2006
– volume: 71
  start-page: 347
  year: 2007
  ident: 10.1016/j.cub.2010.03.027_bib22
  article-title: Circadian and ultradian influences on dreaming: A dual rhythm model
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2006.09.021
– volume: 19
  start-page: 9497
  year: 1999
  ident: 10.1016/j.cub.2010.03.027_bib26
  article-title: Replay and time compression of recurring spike sequences in the hippocampus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-21-09497.1999
– volume: 101
  start-page: 2140
  year: 2004
  ident: 10.1016/j.cub.2010.03.027_bib34
  article-title: Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305404101
– volume: 3
  start-page: 351
  year: 1999
  ident: 10.1016/j.cub.2010.03.027_bib35
  article-title: Neuromodulation: Acetylcholine and memory consolidation
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(99)01365-0
– volume: 10
  start-page: 49
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib21
  article-title: Sleep function and synaptic homeostasis
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2005.05.002
– volume: 430
  start-page: 78
  year: 2004
  ident: 10.1016/j.cub.2010.03.027_bib27
  article-title: Local sleep and learning
  publication-title: Nature
  doi: 10.1038/nature02663
– volume: 5
  start-page: S20
  issue: 2, Suppl
  year: 2009
  ident: 10.1016/j.cub.2010.03.027_bib32
  article-title: The role of slow wave sleep in memory processing
  publication-title: J. Clin. Sleep Med.
– volume: 466
  start-page: 11
  year: 2009
  ident: 10.1016/j.cub.2010.03.027_bib39
  article-title: Motor imagery influences the execution of repetitive finger opposition movements
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.09.036
– volume: 63
  start-page: 361
  year: 2004
  ident: 10.1016/j.cub.2010.03.027_bib46
  article-title: Mental activity after early afternoon nap awakenings in healthy subjects
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2003.12.008
– volume: 315
  start-page: 1426
  year: 2007
  ident: 10.1016/j.cub.2010.03.027_bib16
  article-title: Odor cues during slow-wave sleep prompt declarative memory consolidation
  publication-title: Science
  doi: 10.1126/science.1138581
– volume: 19
  start-page: 4090
  year: 1999
  ident: 10.1016/j.cub.2010.03.027_bib8
  article-title: Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-10-04090.1999
– volume: 131
  start-page: 1806
  year: 2008
  ident: 10.1016/j.cub.2010.03.027_bib33
  article-title: Ripples in the medial temporal lobe are relevant for human memory consolidation
  publication-title: Brain
  doi: 10.1093/brain/awn103
– volume: 265
  start-page: 676
  year: 1994
  ident: 10.1016/j.cub.2010.03.027_bib7
  article-title: Reactivation of hippocampal ensemble memories during sleep
  publication-title: Science
  doi: 10.1126/science.8036517
– volume: 103
  start-page: 7124
  year: 2006
  ident: 10.1016/j.cub.2010.03.027_bib17
  article-title: Sleep after spatial learning promotes covert reorganization of brain activity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0510198103
SSID ssj0012896
Score 2.4393513
Snippet It is now well established that postlearning sleep is beneficial for human memory performance [ 1–5]. Meanwhile, human and animal studies have demonstrated...
It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that...
It is now well established that postlearning sleep is beneficial for human memory performance [[1], [2], [3], [4] and [5]]. Meanwhile, human and animal studies...
It is now well established that post-learning sleep is beneficial for human memory performance [ 1 – 5 ]. Meanwhile, human and animal studies demonstrate that...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 850
SubjectTerms Adolescent
Adult
Cognition - physiology
Dreams - physiology
Dreams - psychology
Female
Humans
Male
Maze Learning - physiology
Memory - physiology
Psychomotor Performance - physiology
Sleep Stages - physiology
SYSNEURO
Young Adult
Title Dreaming of a Learning Task Is Associated with Enhanced Sleep-Dependent Memory Consolidation
URI https://dx.doi.org/10.1016/j.cub.2010.03.027
https://www.ncbi.nlm.nih.gov/pubmed/20417102
https://www.proquest.com/docview/733516092
https://www.proquest.com/docview/745724968
https://pubmed.ncbi.nlm.nih.gov/PMC2869395
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCFAWyBGmbh_sIOHQKwFgiKZEaUztB2iAd8kA9BCD4cuzWlY3YHvLve6Qoo24LD12lI0DdkbyPuu_uEPoI66LgpTfEFZoTXrqMVCI3xFswt_G0FCLkO19_LS_v-ZdBMdhCvTYXJtAq09nfnOnxtE5Pukmb3dl43L2NxdLAv-UxHEbDvZ1xGZP4Bp9WkQS4UMR4JQiTIN1GNiPHyy5NYnex0yw0lvm3b_obe_5JofzNJ13sod0EJvFZM99XaMvXr9HLpr3k8xv00AdE-BN8E54OscaplOojvtPzH_jzHLem8Q6H37H4vB5FPgC-nXg_I_3UH3eBrwMd9xmH5p7TybjpwrSP7i_O73qXJHVTIJZLuiCyEgbglQEMIDxzmeSGW5lzB9Zyw8xpU3lqAU3kpQaYYp01FdwmAP65nFOv2QHarqe1Pwp53kxKS62WVsN4JgFHlMYODSucLrzooKzVo7Kp1HjoeDFRLafsuwLVq6B6lTEFqu-gk9WQWVNnY5Mwb42j1haLAj-waRhuDalgE4XIiK79dDlXgjH47KyiG0R4IeCqWsoOOmxMv5onzXgegFoHibVFsRIIJbzX39TjUSzlTWVZsap4-38f9A7ttGSGPH-PthdPS_8BMNLCHKMXZ1c3366O42b4BadDEMQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCFEG7BGmats6TQ6cArCWSEqmxzQN2GmeJA3goQPDlxq0jG7E95N_3KFFG3QQeskpHgLojed_pPt4h9AXWRcZzb4jLNCc8dwkpRGqIt2Bu42kuRLjv3LvJO3f8apANNtBZcxcm0Crj2V-f6dVpHZ-0ozbb09GofVsVSwP_llbpMApx-xtAAyL0b-gOvi9TCRBRVAlLkCZBvEltViQvuzCR3sW-JqGzzMvO6Tn4_J9D-Y9TutxB2xFN4m_1hN-jDV_uoq26v-TTB_TzHCDhAzgnPBlijWMt1V-4r2d_cHeGG9t4h8P_WHxR3leEAHw79n5KzmOD3DnuBT7uEw7dPSfjUd2GaQ_dXV70zzoktlMglks6J7IQBvCVARAgPHOJ5IZbmXIH5nLDxGlTeGoBTqS5BpxinTUFhBOA_1zKqdfsI9osJ6X_HC56MykttVpaDeOZBCCRGzs0LHM686KFkkaPysZa46HlxVg1pLLfClSvgupVwhSovoVOl0OmdaGNdcK8MY5aWS0KHMG6YbgxpIJdFFIjuvSTxUwJxuCzk4KuEeGZgFg1ly30qTb9cp404WlAai0kVhbFUiDU8F59U47uq1reVOYFK7L9133QCXrb6feu1XX35scBetcwG9L0EG3OHxf-CADT3BxXG-IvxUMSQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dreaming+of+a+Learning+Task+is+Associated+with+Enhanced+Sleep-Dependent+Memory+Consolidation&rft.jtitle=Current+biology&rft.au=Wamsley%2C+Erin+J.&rft.au=Tucker%2C+Matthew&rft.au=Payne%2C+Jessica+D.&rft.au=Benavides%2C+Joseph&rft.date=2010-05-11&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=20&rft.issue=9&rft.spage=850&rft.epage=855&rft_id=info:doi/10.1016%2Fj.cub.2010.03.027&rft_id=info%3Apmid%2F20417102&rft.externalDocID=PMC2869395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon