Dreaming of a Learning Task Is Associated with Enhanced Sleep-Dependent Memory Consolidation
It is now well established that postlearning sleep is beneficial for human memory performance [ 1–5]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [ 6–9]. NREM sleep processes appear...
Saved in:
Published in | Current biology Vol. 20; no. 9; pp. 850 - 855 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
11.05.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is now well established that postlearning sleep is beneficial for human memory performance [
1–5]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [
6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [
1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state.
►Improved spatial memory performance is predicted by task-related dream experience ►Task-related thoughts during waking are unrelated to memory performance ►Findings are discussed in light of models of sleep-dependent memory consolidation |
---|---|
AbstractList | It is now well established that postlearning sleep is beneficial for human memory performance [[1], [2], [3], [4] and [5]]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [[6], [7], [8] and [9]]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [[1], [2], [3] and [10]]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state. Highlights - Improved spatial memory performance is predicted by task-related dream experience Task-related thoughts during waking are unrelated to memory performance Findings are discussed in light of models of sleep-dependent memory consolidation It is now well established that postlearning sleep is beneficial for human memory performance [ 1–5]. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep [ 6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [ 1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state. ►Improved spatial memory performance is predicted by task-related dream experience ►Task-related thoughts during waking are unrelated to memory performance ►Findings are discussed in light of models of sleep-dependent memory consolidation It is now well established that post-learning sleep is beneficial for human memory performance [ 1 – 5 ]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [ 6 – 9 ]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [ 1 – 3 , 10 ]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects ( n= 99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state.It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state. It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state. |
Author | Stickgold, Robert Wamsley, Erin J. Tucker, Matthew Benavides, Joseph A. Payne, Jessica D. |
AuthorAffiliation | b Harvard University, Department of Psychology a Beth Israel Deaconess Medical Center/Harvard Medical School, Department of Psychiatry |
AuthorAffiliation_xml | – name: a Beth Israel Deaconess Medical Center/Harvard Medical School, Department of Psychiatry – name: b Harvard University, Department of Psychology |
Author_xml | – sequence: 1 givenname: Erin J. surname: Wamsley fullname: Wamsley, Erin J. organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA – sequence: 2 givenname: Matthew surname: Tucker fullname: Tucker, Matthew organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA – sequence: 3 givenname: Jessica D. surname: Payne fullname: Payne, Jessica D. organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA – sequence: 4 givenname: Joseph A. surname: Benavides fullname: Benavides, Joseph A. organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA – sequence: 5 givenname: Robert surname: Stickgold fullname: Stickgold, Robert email: rstickgold@hms.harvard.edu organization: Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Psychiatry, Boston, MA 02215, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20417102$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEQhS1URNPCD-CC9sZpw9jrXdtCQqrSApWCOFBuSJbXnjQOu3awN63673FIqYBDOVlPfm_0Zr4TchRiQEJeUphToN2bzdzu-jmDoqGZAxNPyIxKoWrgvD0iM1Ad1EoydkxOct4AUCZV94wcM-BUUGAz8u08oRl9uK7iqjLVEk0Ke3Vl8vfqMldnOUfrzYSuuvXTuroIaxNsUV8GxG19jlsMDsNUfcIxprtqEUOOg3dm8jE8J09XZsj44v49JV_fX1wtPtbLzx8uF2fL2nLJploq0cuW9iCpwMaB5D23knLHoXUrcKZXyCwVLe1MxxvrbK860TYUHOUMTXNK3h3mbnf9iM6WPskMepv8aNKdjsbrv3-CX-vreKOZ7FSj2jLg9f2AFH_sME969NniMJiAcZe14K1gXHXy_86mKTVBseJ89Wephza_b18M9GCwKeaccPVgoaD3fPVGF756z1dDowvfkhH_ZKyfft267OWHR5NvD0ksIG48Jp2txz1Kn9BO2kX_SPonsym_Yg |
CitedBy_id | crossref_primary_10_3389_frym_2013_00003 crossref_primary_10_1016_j_neucom_2020_03_024 crossref_primary_10_1080_15402002_2013_845782 crossref_primary_10_1016_j_neubiorev_2012_05_010 crossref_primary_10_1007_s00424_011_1031_5 crossref_primary_10_3389_fpsyg_2015_01132 crossref_primary_10_1371_journal_pone_0083352 crossref_primary_10_1016_j_tics_2023_02_006 crossref_primary_10_1017_S0140525X12003135 crossref_primary_10_1093_sleep_zsad010 crossref_primary_10_3917_rppg_065_0085 crossref_primary_10_1371_journal_pone_0165141 crossref_primary_10_1016_j_conb_2011_02_005 crossref_primary_10_1017_S0140525X1300160X crossref_primary_10_1186_s12909_016_0770_6 crossref_primary_10_1111_jsr_12754 crossref_primary_10_3389_frobt_2020_532375 crossref_primary_10_1016_j_nlm_2015_01_009 crossref_primary_10_1016_j_jsmc_2010_12_008 crossref_primary_10_1016_j_neuropharm_2021_108607 crossref_primary_10_1016_j_nlm_2015_01_008 crossref_primary_10_1016_j_nlm_2016_03_017 crossref_primary_10_1016_j_smrv_2016_07_005 crossref_primary_10_1111_psyp_13368 crossref_primary_10_2466_09_PR0_107_5_659_673 crossref_primary_10_3389_fpsyg_2020_00559 crossref_primary_10_1016_j_concog_2017_10_011 crossref_primary_10_1016_j_tics_2013_01_006 crossref_primary_10_1017_S0140525X13001222 crossref_primary_10_1093_cercor_bhs388 crossref_primary_10_3390_brainsci14060533 crossref_primary_10_1007_s10943_015_0093_7 crossref_primary_10_1016_j_concog_2011_04_004 crossref_primary_10_1038_s41467_024_48816_x crossref_primary_10_1038_s41598_023_31361_w crossref_primary_10_3389_frsle_2023_1239530 crossref_primary_10_1111_jsr_12749 crossref_primary_10_1521_pdps_2020_48_2_140 crossref_primary_10_1038_nn_3303 crossref_primary_10_1146_annurev_clinpsy_050718_095754 crossref_primary_10_1111_etho_12346 crossref_primary_10_1016_j_concog_2020_103071 crossref_primary_10_1016_j_concog_2020_102938 crossref_primary_10_1177_1745691614556680 crossref_primary_10_1016_j_sleep_2021_05_019 crossref_primary_10_1016_j_tins_2011_07_005 crossref_primary_10_1080_2057410X_2017_1665369 crossref_primary_10_1111_jsr_12697 crossref_primary_10_1152_physrev_00032_2012 crossref_primary_10_1016_j_concog_2010_07_006 crossref_primary_10_3917_jdp_325_0053 crossref_primary_10_1007_s11910_013_0433_5 crossref_primary_10_1007_s00426_011_0335_6 crossref_primary_10_1093_sleepadvances_zpae088 crossref_primary_10_1016_j_ijpsycho_2013_03_006 crossref_primary_10_1371_journal_pone_0242903 crossref_primary_10_1093_sleep_zsac292 crossref_primary_10_1007_s12078_014_9173_4 crossref_primary_10_1126_sciadv_abj5866 crossref_primary_10_1007_s11682_018_9964_3 crossref_primary_10_1111_jsr_12286 crossref_primary_10_3389_fpsyg_2016_00332 crossref_primary_10_1016_j_nlm_2014_09_007 crossref_primary_10_1038_s41598_018_23590_1 crossref_primary_10_3917_lapsy_181_0165 crossref_primary_10_1002_hipo_20961 crossref_primary_10_3389_fpsyg_2019_00459 crossref_primary_10_3390_clockssleep3030035 crossref_primary_10_1016_j_physbeh_2012_05_021 crossref_primary_10_5665_sleep_2808 crossref_primary_10_1038_s41598_019_51497_y crossref_primary_10_1016_j_concog_2020_103006 crossref_primary_10_3389_frsle_2024_1258345 crossref_primary_10_1016_j_cub_2010_10_045 crossref_primary_10_1016_j_concog_2020_102955 crossref_primary_10_3390_healthcare6020032 crossref_primary_10_1007_s13164_020_00514_5 crossref_primary_10_1177_1056492612448463 crossref_primary_10_1111_etho_12030 crossref_primary_10_1016_j_concog_2011_05_015 crossref_primary_10_1093_texcom_tgac042 crossref_primary_10_1016_j_cub_2021_01_026 crossref_primary_10_1016_j_tics_2012_05_001 crossref_primary_10_1016_j_tins_2024_02_002 crossref_primary_10_1017_S0140525X13001428 crossref_primary_10_1556_2053_1_2016_003 crossref_primary_10_1016_j_tine_2014_02_004 crossref_primary_10_1371_journal_pone_0018056 crossref_primary_10_1016_j_neubiorev_2023_105104 crossref_primary_10_1016_j_concog_2024_103719 crossref_primary_10_1186_s12871_016_0214_1 crossref_primary_10_3758_s13423_017_1313_9 crossref_primary_10_5674_jjppp_2108si crossref_primary_10_1016_j_concog_2014_06_011 crossref_primary_10_1016_j_concog_2015_06_012 crossref_primary_10_1016_j_nlm_2017_03_008 crossref_primary_10_1016_j_concog_2021_103155 crossref_primary_10_1523_JNEUROSCI_3575_10_2011 crossref_primary_10_3389_fpsyg_2015_01354 crossref_primary_10_1016_j_tics_2018_03_009 crossref_primary_10_1371_journal_pone_0084342 crossref_primary_10_1016_j_mehy_2018_12_001 crossref_primary_10_1371_journal_pbio_3002684 crossref_primary_10_1016_j_brainres_2019_05_030 crossref_primary_10_1016_j_cub_2011_09_029 crossref_primary_10_1371_journal_pone_0257738 crossref_primary_10_1038_s41598_024_58170_z crossref_primary_10_1016_j_sleep_2021_08_020 crossref_primary_10_1093_sleep_zsad111 crossref_primary_10_5664_jcsm_10026 crossref_primary_10_1007_s40675_024_00305_9 crossref_primary_10_1016_j_neubiorev_2023_105117 crossref_primary_10_1016_j_concog_2020_102974 crossref_primary_10_1016_j_concog_2010_10_005 crossref_primary_10_3390_brainsci14070662 crossref_primary_10_7554_eLife_56211 crossref_primary_10_1038_s41598_018_35999_9 crossref_primary_10_1038_s41598_023_33767_y crossref_primary_10_1101_lm_035196_114 crossref_primary_10_4000_12x5u crossref_primary_10_1016_j_nlm_2021_107460 crossref_primary_10_1016_j_tics_2016_09_006 crossref_primary_10_1016_j_sleep_2017_10_003 crossref_primary_10_1038_npp_2014_6 crossref_primary_10_1111_1745_8315_12617 crossref_primary_10_1177_0305735619854533 crossref_primary_10_3390_brainsci13030468 crossref_primary_10_1089_cyber_2019_0385 crossref_primary_10_3389_fpsyg_2018_01398 crossref_primary_10_1038_s42003_021_01883_y crossref_primary_10_1016_j_neuroimage_2022_119690 |
Cites_doi | 10.1038/nn1758 10.1016/S0926-6410(02)00279-3 10.1162/jocn.1997.9.4.534 10.1038/nn1825 10.1016/S0896-6273(02)01096-6 10.1111/j.1365-2869.2008.00622.x 10.1111/j.1469-8986.1973.tb00801.x 10.1016/j.cub.2006.05.024 10.1093/sleep/6.3.265 10.1016/j.neuron.2004.10.007 10.1038/nature05278 10.1016/j.nlm.2006.03.005 10.1016/S0896-6273(00)80629-7 10.1167/6.5.3 10.1111/j.1460-9568.2009.06654.x 10.1017/S0140525X05000026 10.1093/sleep/27.7.1479 10.1111/j.1365-2869.2009.00740.x 10.1093/brain/awm146 10.1093/sleep/33.1.59 10.1016/j.tics.2007.09.001 10.1016/j.neulet.2006.04.035 10.1017/S0140525X0000399X 10.1126/science.290.5490.350 10.1518/001872006777724507 10.1037/h0023581 10.1073/pnas.0437938100 10.1093/sleep/31.2.197 10.1146/annurev.psych.55.090902.141555 10.1016/j.neuroscience.2005.01.011 10.1371/journal.pone.0006697 10.1523/JNEUROSCI.2464-06.2006 10.1016/j.brainresbull.2006.09.021 10.1523/JNEUROSCI.19-21-09497.1999 10.1073/pnas.0305404101 10.1016/S1364-6613(99)01365-0 10.1016/j.smrv.2005.05.002 10.1038/nature02663 10.1016/j.neulet.2009.09.036 10.1016/j.brainresbull.2003.12.008 10.1126/science.1138581 10.1523/JNEUROSCI.19-10-04090.1999 10.1093/brain/awn103 10.1126/science.8036517 10.1073/pnas.0510198103 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd (c) 2010 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: (c) 2010 Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1016/j.cub.2010.03.027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 855 |
ExternalDocumentID | PMC2869395 20417102 10_1016_j_cub_2010_03_027 S0960982210003520 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL007901 – fundername: NIMH NIH HHS grantid: R01 MH048832 – fundername: NIMH NIH HHS grantid: R01-MH48832 – fundername: NHLBI NIH HHS grantid: T32-HL07901 – fundername: NIMH NIH HHS grantid: R01-MH65292 – fundername: NIMH NIH HHS grantid: R01 MH065292 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 29F 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV ADMUD AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AGUBO AHHHB AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CAG COF CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID G-2 HVGLF HZ~ IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 OZT P2P R2- RCE RIG ROL RPZ SCP SDG SES SEW SSZ TR2 UHS WQ6 XIH XPP Y6R ZA5 ZGI AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM EFKBS |
ID | FETCH-LOGICAL-c482t-897b851b0817e3d084b4c814d405df0dab9e2c17516a643cdcb9675310d142ea3 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 14:08:21 EDT 2025 Fri Jul 11 15:14:21 EDT 2025 Fri Jul 11 04:36:53 EDT 2025 Sat May 31 02:08:36 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Tue Jul 01 04:07:49 EDT 2025 Fri Feb 23 02:33:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | SYSNEURO |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 (c) 2010 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-897b851b0817e3d084b4c814d405df0dab9e2c17516a643cdcb9675310d142ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Currently at Notre Dame University, Department of Psychology |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960982210003520 |
PMID | 20417102 |
PQID | 733516092 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2869395 proquest_miscellaneous_745724968 proquest_miscellaneous_733516092 pubmed_primary_20417102 crossref_primary_10_1016_j_cub_2010_03_027 crossref_citationtrail_10_1016_j_cub_2010_03_027 elsevier_sciencedirect_doi_10_1016_j_cub_2010_03_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-11 |
PublicationDateYYYYMMDD | 2010-05-11 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2010 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Palagini, Gemignani, Feinberg, Guazzelli, Campbell (bib46) 2004; 63 Orban, Rauchs, Balteau, Degueldre, Luxen, Maquet, Peigneux (bib17) 2006; 103 Wamsley, Stickgold (bib11) 2008; 31 Clemens, Mölle, Eross, Barsi, Halász, Born (bib36) 2007; 130 Hoddes, Zarcone, Smythe, Phillips, Dement (bib41) 1973; 10 Lee, Wilson (bib25) 2002; 36 Ji, Wilson (bib6) 2007; 10 Vieilledent, Kosslyn, Berthoz, Giraudo (bib40) 2003; 16 Tucker, Hirota, Wamsley, Lau, Chaklader, Fishbein (bib1) 2006; 86 Huber, Ghilardi, Massimini, Tononi (bib27) 2004; 430 Walker (bib32) 2009 Walker (bib5) 2005; 28 Marshall, Helgadóttir, Mölle, Born (bib2) 2006; 444 Clemens, Fabó, Halász (bib18) 2006; 403 Stickgold, Malia, Maguire, Roddenberry, O'Connor (bib30) 2000; 290 Nádasdy, Hirase, Czurkó, Csicsvari, Buzsáki (bib26) 1999; 19 Lahl, Wispel, Willigens, Pietrowsky (bib12) 2008; 17 Tononi, Cirelli (bib21) 2006; 10 Schmidt, Peigneux, Muto, Schenkel, Knoblauch, Münch, de Quervain, Wirz-Justice, Cajochen (bib10) 2006; 26 Plihal, Born (bib3) 1997; 9 Tucker, Fishbein (bib42) 2008; 31 Walker, Lindsay (bib47) 2006; 48 Vogel (bib43) 1991 Hasselmo (bib35) 1999; 3 Kudrimoti, Barnes, McNaughton (bib8) 1999; 19 Wixted (bib20) 2004; 55 Clemens, Fabó, Halász (bib19) 2005; 132 Nielsen (bib23) 2000; 23 Sakthivel, Patterson, Cruz-Neira (bib48) 1999; 35 Rasch, Büchel, Gais, Born (bib16) 2007; 315 Ramadan, Eschenko, Sara (bib14) 2009; 4 Foulkes, Spear, Symonds (bib45) 1966; 71 Gais, Born (bib34) 2004; 101 Ellenbogen, Hulbert, Stickgold, Dinges, Thompson-Schill (bib4) 2006; 16 Schabus, Gruber, Parapatics, Sauter, Klösch, Anderer, Klimesch, Saletu, Zeitlhofer (bib31) 2004; 27 Wamsley, Hirota, Tucker, Smith, Antrobus (bib22) 2007; 71 Huber, Ghilardi, Massimini, Ferrarelli, Riedner, Peterson, Tononi (bib28) 2006; 9 Avanzino, Giannini, Tacchino, Pelosin, Ruggeri, Bove (bib39) 2009; 466 Tucker, Fishbein (bib13) 2009; 18 Axmacher, Elger, Fell (bib33) 2008; 131 Mölle, Eschenko, Gais, Sara, Born (bib15) 2009; 29 Wamsley, Perry, Djonlagic, Reaven, Stickgold (bib29) 2010; 33 Foulkes, Schmidt (bib44) 1983; 6 Marshall, Born (bib24) 2007; 11 Siapas, Wilson (bib38) 1998; 21 Fortenbaugh, Hicks, Hao, Turano (bib49) 2006; 6 Sirota, Csicsvari, Buhl, Buzsáki (bib37) 2003; 100 Peigneux, Laureys, Fuchs, Collette, Perrin, Reggers, Phillips, Degueldre, Del Fiore, Aerts (bib9) 2004; 44 Wilson, McNaughton (bib7) 1994; 265 Huber (10.1016/j.cub.2010.03.027_bib28) 2006; 9 Plihal (10.1016/j.cub.2010.03.027_bib3) 1997; 9 Gais (10.1016/j.cub.2010.03.027_bib34) 2004; 101 Hasselmo (10.1016/j.cub.2010.03.027_bib35) 1999; 3 Tucker (10.1016/j.cub.2010.03.027_bib1) 2006; 86 Nádasdy (10.1016/j.cub.2010.03.027_bib26) 1999; 19 Clemens (10.1016/j.cub.2010.03.027_bib36) 2007; 130 Walker (10.1016/j.cub.2010.03.027_bib47) 2006; 48 Ramadan (10.1016/j.cub.2010.03.027_bib14) 2009; 4 Rasch (10.1016/j.cub.2010.03.027_bib16) 2007; 315 Vogel (10.1016/j.cub.2010.03.027_bib43) 1991 Axmacher (10.1016/j.cub.2010.03.027_bib33) 2008; 131 Foulkes (10.1016/j.cub.2010.03.027_bib45) 1966; 71 Vieilledent (10.1016/j.cub.2010.03.027_bib40) 2003; 16 Tucker (10.1016/j.cub.2010.03.027_bib42) 2008; 31 Lahl (10.1016/j.cub.2010.03.027_bib12) 2008; 17 Siapas (10.1016/j.cub.2010.03.027_bib38) 1998; 21 Lee (10.1016/j.cub.2010.03.027_bib25) 2002; 36 Wamsley (10.1016/j.cub.2010.03.027_bib29) 2010; 33 Peigneux (10.1016/j.cub.2010.03.027_bib9) 2004; 44 Foulkes (10.1016/j.cub.2010.03.027_bib44) 1983; 6 Hoddes (10.1016/j.cub.2010.03.027_bib41) 1973; 10 Palagini (10.1016/j.cub.2010.03.027_bib46) 2004; 63 Schabus (10.1016/j.cub.2010.03.027_bib31) 2004; 27 Marshall (10.1016/j.cub.2010.03.027_bib24) 2007; 11 Fortenbaugh (10.1016/j.cub.2010.03.027_bib49) 2006; 6 Wamsley (10.1016/j.cub.2010.03.027_bib22) 2007; 71 Walker (10.1016/j.cub.2010.03.027_bib32) 2009; 5 Orban (10.1016/j.cub.2010.03.027_bib17) 2006; 103 Sakthivel (10.1016/j.cub.2010.03.027_bib48) 1999; 35 Wamsley (10.1016/j.cub.2010.03.027_bib11) 2008; 31 Ji (10.1016/j.cub.2010.03.027_bib6) 2007; 10 Tononi (10.1016/j.cub.2010.03.027_bib21) 2006; 10 Schmidt (10.1016/j.cub.2010.03.027_bib10) 2006; 26 Walker (10.1016/j.cub.2010.03.027_bib5) 2005; 28 Kudrimoti (10.1016/j.cub.2010.03.027_bib8) 1999; 19 Sirota (10.1016/j.cub.2010.03.027_bib37) 2003; 100 Avanzino (10.1016/j.cub.2010.03.027_bib39) 2009; 466 Stickgold (10.1016/j.cub.2010.03.027_bib30) 2000; 290 Clemens (10.1016/j.cub.2010.03.027_bib19) 2005; 132 Wilson (10.1016/j.cub.2010.03.027_bib7) 1994; 265 Tucker (10.1016/j.cub.2010.03.027_bib13) 2009; 18 Huber (10.1016/j.cub.2010.03.027_bib27) 2004; 430 Wixted (10.1016/j.cub.2010.03.027_bib20) 2004; 55 Marshall (10.1016/j.cub.2010.03.027_bib2) 2006; 444 Ellenbogen (10.1016/j.cub.2010.03.027_bib4) 2006; 16 Nielsen (10.1016/j.cub.2010.03.027_bib23) 2000; 23 Clemens (10.1016/j.cub.2010.03.027_bib18) 2006; 403 Mölle (10.1016/j.cub.2010.03.027_bib15) 2009; 29 |
References_xml | – volume: 23 year: 2000 ident: bib23 article-title: A review of mentation in REM and NREM sleep: “Covert” REM sleep as a possible reconciliation of two opposing models publication-title: Behav. Brain Sci. – volume: 130 start-page: 2868 year: 2007 end-page: 2878 ident: bib36 article-title: Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans publication-title: Brain – volume: 31 start-page: A386 year: 2008 ident: bib11 article-title: Virtual maze learning is enhanced by a short daytime nap containing only NREM sleep publication-title: Sleep – volume: 33 start-page: 59 year: 2010 end-page: 68 ident: bib29 article-title: Cognitive replay of visuomotor learning at sleep onset: Temporal dynamics and relationship to task performance publication-title: Sleep – volume: 3 start-page: 351 year: 1999 end-page: 359 ident: bib35 article-title: Neuromodulation: Acetylcholine and memory consolidation publication-title: Trends Cogn. Sci. – volume: 10 start-page: 100 year: 2007 end-page: 107 ident: bib6 article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep publication-title: Nat. Neurosci. – volume: 6 start-page: 565 year: 2006 end-page: 579 ident: bib49 article-title: High-speed navigators: Using more than what meets the eye publication-title: J. Vis. – volume: 265 start-page: 676 year: 1994 end-page: 679 ident: bib7 article-title: Reactivation of hippocampal ensemble memories during sleep publication-title: Science – volume: 101 start-page: 2140 year: 2004 end-page: 2144 ident: bib34 article-title: Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation publication-title: Proc. Natl. Acad. Sci. USA – start-page: S20 year: 2009 end-page: S26 ident: bib32 article-title: The role of slow wave sleep in memory processing publication-title: J. Clin. Sleep Med. – volume: 86 start-page: 241 year: 2006 end-page: 247 ident: bib1 article-title: A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory publication-title: Neurobiol. Learn. Mem. – volume: 403 start-page: 52 year: 2006 end-page: 56 ident: bib18 article-title: Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles publication-title: Neurosci. Lett. – volume: 100 start-page: 2065 year: 2003 end-page: 2069 ident: bib37 article-title: Communication between neocortex and hippocampus during sleep in rodents publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 535 year: 2004 end-page: 545 ident: bib9 article-title: Are spatial memories strengthened in the human hippocampus during slow wave sleep? publication-title: Neuron – volume: 71 start-page: 347 year: 2007 end-page: 354 ident: bib22 article-title: Circadian and ultradian influences on dreaming: A dual rhythm model publication-title: Brain Res. Bull. – volume: 9 start-page: 1169 year: 2006 end-page: 1176 ident: bib28 article-title: Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity publication-title: Nat. Neurosci. – volume: 63 start-page: 361 year: 2004 end-page: 368 ident: bib46 article-title: Mental activity after early afternoon nap awakenings in healthy subjects publication-title: Brain Res. Bull. – volume: 444 start-page: 610 year: 2006 end-page: 613 ident: bib2 article-title: Boosting slow oscillations during sleep potentiates memory publication-title: Nature – volume: 36 start-page: 1183 year: 2002 end-page: 1194 ident: bib25 article-title: Memory of sequential experience in the hippocampus during slow wave sleep publication-title: Neuron – volume: 19 start-page: 9497 year: 1999 end-page: 9507 ident: bib26 article-title: Replay and time compression of recurring spike sequences in the hippocampus publication-title: J. Neurosci. – start-page: 125 year: 1991 end-page: 137 ident: bib43 article-title: Sleep onset mentation publication-title: The Mind in Sleep – volume: 16 start-page: 1290 year: 2006 end-page: 1294 ident: bib4 article-title: Interfering with theories of sleep and memory: Sleep, declarative memory, and associative interference publication-title: Curr. Biol. – volume: 19 start-page: 4090 year: 1999 end-page: 4101 ident: bib8 article-title: Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics publication-title: J. Neurosci. – volume: 466 start-page: 11 year: 2009 end-page: 15 ident: bib39 article-title: Motor imagery influences the execution of repetitive finger opposition movements publication-title: Neurosci. Lett. – volume: 315 start-page: 1426 year: 2007 end-page: 1429 ident: bib16 article-title: Odor cues during slow-wave sleep prompt declarative memory consolidation publication-title: Science – volume: 11 start-page: 442 year: 2007 end-page: 450 ident: bib24 article-title: The contribution of sleep to hippocampus-dependent memory consolidation publication-title: Trends Cogn. Sci. – volume: 17 start-page: 3 year: 2008 end-page: 10 ident: bib12 article-title: An ultra short episode of sleep is sufficient to promote declarative memory performance publication-title: J. Sleep Res. – volume: 26 start-page: 8976 year: 2006 end-page: 8982 ident: bib10 article-title: Encoding difficulty promotes postlearning changes in sleep spindle activity during napping publication-title: J. Neurosci. – volume: 28 year: 2005 ident: bib5 article-title: A refined model of sleep and the time course of memory formation publication-title: Behav. Brain Sci. – volume: 16 start-page: 238 year: 2003 end-page: 249 ident: bib40 article-title: Does mental simulation of following a path improve navigation performance without vision? publication-title: Brain Res. Cogn. Brain Res. – volume: 18 start-page: 304 year: 2009 end-page: 312 ident: bib13 article-title: The impact of sleep duration and subject intelligence on declarative and motor memory performance: How much is enough? publication-title: J. Sleep Res. – volume: 132 start-page: 529 year: 2005 end-page: 535 ident: bib19 article-title: Overnight verbal memory retention correlates with the number of sleep spindles publication-title: Neuroscience – volume: 29 start-page: 1071 year: 2009 end-page: 1081 ident: bib15 article-title: The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats publication-title: Eur. J. Neurosci. – volume: 48 start-page: 265 year: 2006 end-page: 278 ident: bib47 article-title: Navigation performance with a virtual auditory display: Effects of beacon sound, capture radius, and practice publication-title: Hum. Factors – volume: 6 start-page: 265 year: 1983 end-page: 280 ident: bib44 article-title: Temporal sequence and unit composition in dream reports from different stages of sleep publication-title: Sleep – volume: 9 start-page: 534 year: 1997 end-page: 547 ident: bib3 article-title: Effects of early and late nocturnal sleep on declarative and procedural memory publication-title: J. Cogn. Neurosci. – volume: 27 start-page: 1479 year: 2004 end-page: 1485 ident: bib31 article-title: Sleep spindles and their significance for declarative memory consolidation publication-title: Sleep – volume: 31 start-page: 197 year: 2008 end-page: 203 ident: bib42 article-title: Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition publication-title: Sleep – volume: 103 start-page: 7124 year: 2006 end-page: 7129 ident: bib17 article-title: Sleep after spatial learning promotes covert reorganization of brain activity publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 49 year: 2006 end-page: 62 ident: bib21 article-title: Sleep function and synaptic homeostasis publication-title: Sleep Med. Rev. – volume: 430 start-page: 78 year: 2004 end-page: 81 ident: bib27 article-title: Local sleep and learning publication-title: Nature – volume: 21 start-page: 1123 year: 1998 end-page: 1128 ident: bib38 article-title: Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep publication-title: Neuron – volume: 290 start-page: 350 year: 2000 end-page: 353 ident: bib30 article-title: Replaying the game: Hypnagogic images in normals and amnesics publication-title: Science – volume: 55 start-page: 235 year: 2004 end-page: 269 ident: bib20 article-title: The psychology and neuroscience of forgetting publication-title: Annu. Rev. Psychol. – volume: 35 start-page: 353 year: 1999 end-page: 359 ident: bib48 article-title: Gender differences in navigating virtual worlds publication-title: Biomed. Sci. Instrum. – volume: 131 start-page: 1806 year: 2008 end-page: 1817 ident: bib33 article-title: Ripples in the medial temporal lobe are relevant for human memory consolidation publication-title: Brain – volume: 71 start-page: 280 year: 1966 end-page: 286 ident: bib45 article-title: Individual differences in mental activity at sleep onset publication-title: J. Abnorm. Psychol. – volume: 4 start-page: e6697 year: 2009 ident: bib14 article-title: Hippocampal sharp wave/ripples during sleep for consolidation of associative memory publication-title: PLoS ONE – volume: 10 start-page: 431 year: 1973 end-page: 436 ident: bib41 article-title: Quantification of sleepiness: a new approach publication-title: Psychophysiology – volume: 9 start-page: 1169 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib28 article-title: Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity publication-title: Nat. Neurosci. doi: 10.1038/nn1758 – volume: 16 start-page: 238 year: 2003 ident: 10.1016/j.cub.2010.03.027_bib40 article-title: Does mental simulation of following a path improve navigation performance without vision? publication-title: Brain Res. Cogn. Brain Res. doi: 10.1016/S0926-6410(02)00279-3 – volume: 9 start-page: 534 year: 1997 ident: 10.1016/j.cub.2010.03.027_bib3 article-title: Effects of early and late nocturnal sleep on declarative and procedural memory publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1997.9.4.534 – volume: 10 start-page: 100 year: 2007 ident: 10.1016/j.cub.2010.03.027_bib6 article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep publication-title: Nat. Neurosci. doi: 10.1038/nn1825 – volume: 31 start-page: A386 issue: Suppl year: 2008 ident: 10.1016/j.cub.2010.03.027_bib11 article-title: Virtual maze learning is enhanced by a short daytime nap containing only NREM sleep publication-title: Sleep – volume: 36 start-page: 1183 year: 2002 ident: 10.1016/j.cub.2010.03.027_bib25 article-title: Memory of sequential experience in the hippocampus during slow wave sleep publication-title: Neuron doi: 10.1016/S0896-6273(02)01096-6 – volume: 17 start-page: 3 year: 2008 ident: 10.1016/j.cub.2010.03.027_bib12 article-title: An ultra short episode of sleep is sufficient to promote declarative memory performance publication-title: J. Sleep Res. doi: 10.1111/j.1365-2869.2008.00622.x – volume: 10 start-page: 431 year: 1973 ident: 10.1016/j.cub.2010.03.027_bib41 article-title: Quantification of sleepiness: a new approach publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1973.tb00801.x – volume: 16 start-page: 1290 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib4 article-title: Interfering with theories of sleep and memory: Sleep, declarative memory, and associative interference publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.05.024 – volume: 6 start-page: 265 year: 1983 ident: 10.1016/j.cub.2010.03.027_bib44 article-title: Temporal sequence and unit composition in dream reports from different stages of sleep publication-title: Sleep doi: 10.1093/sleep/6.3.265 – volume: 44 start-page: 535 year: 2004 ident: 10.1016/j.cub.2010.03.027_bib9 article-title: Are spatial memories strengthened in the human hippocampus during slow wave sleep? publication-title: Neuron doi: 10.1016/j.neuron.2004.10.007 – volume: 444 start-page: 610 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib2 article-title: Boosting slow oscillations during sleep potentiates memory publication-title: Nature doi: 10.1038/nature05278 – volume: 86 start-page: 241 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib1 article-title: A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2006.03.005 – volume: 21 start-page: 1123 year: 1998 ident: 10.1016/j.cub.2010.03.027_bib38 article-title: Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep publication-title: Neuron doi: 10.1016/S0896-6273(00)80629-7 – start-page: 125 year: 1991 ident: 10.1016/j.cub.2010.03.027_bib43 article-title: Sleep onset mentation – volume: 6 start-page: 565 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib49 article-title: High-speed navigators: Using more than what meets the eye publication-title: J. Vis. doi: 10.1167/6.5.3 – volume: 29 start-page: 1071 year: 2009 ident: 10.1016/j.cub.2010.03.027_bib15 article-title: The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2009.06654.x – volume: 35 start-page: 353 year: 1999 ident: 10.1016/j.cub.2010.03.027_bib48 article-title: Gender differences in navigating virtual worlds publication-title: Biomed. Sci. Instrum. – volume: 28 year: 2005 ident: 10.1016/j.cub.2010.03.027_bib5 article-title: A refined model of sleep and the time course of memory formation publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X05000026 – volume: 27 start-page: 1479 year: 2004 ident: 10.1016/j.cub.2010.03.027_bib31 article-title: Sleep spindles and their significance for declarative memory consolidation publication-title: Sleep doi: 10.1093/sleep/27.7.1479 – volume: 18 start-page: 304 year: 2009 ident: 10.1016/j.cub.2010.03.027_bib13 article-title: The impact of sleep duration and subject intelligence on declarative and motor memory performance: How much is enough? publication-title: J. Sleep Res. doi: 10.1111/j.1365-2869.2009.00740.x – volume: 130 start-page: 2868 year: 2007 ident: 10.1016/j.cub.2010.03.027_bib36 article-title: Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans publication-title: Brain doi: 10.1093/brain/awm146 – volume: 33 start-page: 59 year: 2010 ident: 10.1016/j.cub.2010.03.027_bib29 article-title: Cognitive replay of visuomotor learning at sleep onset: Temporal dynamics and relationship to task performance publication-title: Sleep doi: 10.1093/sleep/33.1.59 – volume: 11 start-page: 442 year: 2007 ident: 10.1016/j.cub.2010.03.027_bib24 article-title: The contribution of sleep to hippocampus-dependent memory consolidation publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.09.001 – volume: 403 start-page: 52 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib18 article-title: Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2006.04.035 – volume: 23 year: 2000 ident: 10.1016/j.cub.2010.03.027_bib23 article-title: A review of mentation in REM and NREM sleep: “Covert” REM sleep as a possible reconciliation of two opposing models publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X0000399X – volume: 290 start-page: 350 year: 2000 ident: 10.1016/j.cub.2010.03.027_bib30 article-title: Replaying the game: Hypnagogic images in normals and amnesics publication-title: Science doi: 10.1126/science.290.5490.350 – volume: 48 start-page: 265 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib47 article-title: Navigation performance with a virtual auditory display: Effects of beacon sound, capture radius, and practice publication-title: Hum. Factors doi: 10.1518/001872006777724507 – volume: 71 start-page: 280 year: 1966 ident: 10.1016/j.cub.2010.03.027_bib45 article-title: Individual differences in mental activity at sleep onset publication-title: J. Abnorm. Psychol. doi: 10.1037/h0023581 – volume: 100 start-page: 2065 year: 2003 ident: 10.1016/j.cub.2010.03.027_bib37 article-title: Communication between neocortex and hippocampus during sleep in rodents publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0437938100 – volume: 31 start-page: 197 year: 2008 ident: 10.1016/j.cub.2010.03.027_bib42 article-title: Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition publication-title: Sleep doi: 10.1093/sleep/31.2.197 – volume: 55 start-page: 235 year: 2004 ident: 10.1016/j.cub.2010.03.027_bib20 article-title: The psychology and neuroscience of forgetting publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.55.090902.141555 – volume: 132 start-page: 529 year: 2005 ident: 10.1016/j.cub.2010.03.027_bib19 article-title: Overnight verbal memory retention correlates with the number of sleep spindles publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.01.011 – volume: 4 start-page: e6697 year: 2009 ident: 10.1016/j.cub.2010.03.027_bib14 article-title: Hippocampal sharp wave/ripples during sleep for consolidation of associative memory publication-title: PLoS ONE doi: 10.1371/journal.pone.0006697 – volume: 26 start-page: 8976 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib10 article-title: Encoding difficulty promotes postlearning changes in sleep spindle activity during napping publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2464-06.2006 – volume: 71 start-page: 347 year: 2007 ident: 10.1016/j.cub.2010.03.027_bib22 article-title: Circadian and ultradian influences on dreaming: A dual rhythm model publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2006.09.021 – volume: 19 start-page: 9497 year: 1999 ident: 10.1016/j.cub.2010.03.027_bib26 article-title: Replay and time compression of recurring spike sequences in the hippocampus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-21-09497.1999 – volume: 101 start-page: 2140 year: 2004 ident: 10.1016/j.cub.2010.03.027_bib34 article-title: Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305404101 – volume: 3 start-page: 351 year: 1999 ident: 10.1016/j.cub.2010.03.027_bib35 article-title: Neuromodulation: Acetylcholine and memory consolidation publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(99)01365-0 – volume: 10 start-page: 49 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib21 article-title: Sleep function and synaptic homeostasis publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2005.05.002 – volume: 430 start-page: 78 year: 2004 ident: 10.1016/j.cub.2010.03.027_bib27 article-title: Local sleep and learning publication-title: Nature doi: 10.1038/nature02663 – volume: 5 start-page: S20 issue: 2, Suppl year: 2009 ident: 10.1016/j.cub.2010.03.027_bib32 article-title: The role of slow wave sleep in memory processing publication-title: J. Clin. Sleep Med. – volume: 466 start-page: 11 year: 2009 ident: 10.1016/j.cub.2010.03.027_bib39 article-title: Motor imagery influences the execution of repetitive finger opposition movements publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.09.036 – volume: 63 start-page: 361 year: 2004 ident: 10.1016/j.cub.2010.03.027_bib46 article-title: Mental activity after early afternoon nap awakenings in healthy subjects publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2003.12.008 – volume: 315 start-page: 1426 year: 2007 ident: 10.1016/j.cub.2010.03.027_bib16 article-title: Odor cues during slow-wave sleep prompt declarative memory consolidation publication-title: Science doi: 10.1126/science.1138581 – volume: 19 start-page: 4090 year: 1999 ident: 10.1016/j.cub.2010.03.027_bib8 article-title: Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-10-04090.1999 – volume: 131 start-page: 1806 year: 2008 ident: 10.1016/j.cub.2010.03.027_bib33 article-title: Ripples in the medial temporal lobe are relevant for human memory consolidation publication-title: Brain doi: 10.1093/brain/awn103 – volume: 265 start-page: 676 year: 1994 ident: 10.1016/j.cub.2010.03.027_bib7 article-title: Reactivation of hippocampal ensemble memories during sleep publication-title: Science doi: 10.1126/science.8036517 – volume: 103 start-page: 7124 year: 2006 ident: 10.1016/j.cub.2010.03.027_bib17 article-title: Sleep after spatial learning promotes covert reorganization of brain activity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510198103 |
SSID | ssj0012896 |
Score | 2.4393513 |
Snippet | It is now well established that postlearning sleep is beneficial for human memory performance [
1–5]. Meanwhile, human and animal studies have demonstrated... It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that... It is now well established that postlearning sleep is beneficial for human memory performance [[1], [2], [3], [4] and [5]]. Meanwhile, human and animal studies... It is now well established that post-learning sleep is beneficial for human memory performance [ 1 – 5 ]. Meanwhile, human and animal studies demonstrate that... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 850 |
SubjectTerms | Adolescent Adult Cognition - physiology Dreams - physiology Dreams - psychology Female Humans Male Maze Learning - physiology Memory - physiology Psychomotor Performance - physiology Sleep Stages - physiology SYSNEURO Young Adult |
Title | Dreaming of a Learning Task Is Associated with Enhanced Sleep-Dependent Memory Consolidation |
URI | https://dx.doi.org/10.1016/j.cub.2010.03.027 https://www.ncbi.nlm.nih.gov/pubmed/20417102 https://www.proquest.com/docview/733516092 https://www.proquest.com/docview/745724968 https://pubmed.ncbi.nlm.nih.gov/PMC2869395 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCFAWyBGmbh_sIOHQKwFgiKZEaUztB2iAd8kA9BCD4cuzWlY3YHvLve6Qoo24LD12lI0DdkbyPuu_uEPoI66LgpTfEFZoTXrqMVCI3xFswt_G0FCLkO19_LS_v-ZdBMdhCvTYXJtAq09nfnOnxtE5Pukmb3dl43L2NxdLAv-UxHEbDvZ1xGZP4Bp9WkQS4UMR4JQiTIN1GNiPHyy5NYnex0yw0lvm3b_obe_5JofzNJ13sod0EJvFZM99XaMvXr9HLpr3k8xv00AdE-BN8E54OscaplOojvtPzH_jzHLem8Q6H37H4vB5FPgC-nXg_I_3UH3eBrwMd9xmH5p7TybjpwrSP7i_O73qXJHVTIJZLuiCyEgbglQEMIDxzmeSGW5lzB9Zyw8xpU3lqAU3kpQaYYp01FdwmAP65nFOv2QHarqe1Pwp53kxKS62WVsN4JgFHlMYODSucLrzooKzVo7Kp1HjoeDFRLafsuwLVq6B6lTEFqu-gk9WQWVNnY5Mwb42j1haLAj-waRhuDalgE4XIiK79dDlXgjH47KyiG0R4IeCqWsoOOmxMv5onzXgegFoHibVFsRIIJbzX39TjUSzlTWVZsap4-38f9A7ttGSGPH-PthdPS_8BMNLCHKMXZ1c3366O42b4BadDEMQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCFEG7BGmats6TQ6cArCWSEqmxzQN2GmeJA3goQPDlxq0jG7E95N_3KFFG3QQeskpHgLojed_pPt4h9AXWRcZzb4jLNCc8dwkpRGqIt2Bu42kuRLjv3LvJO3f8apANNtBZcxcm0Crj2V-f6dVpHZ-0ozbb09GofVsVSwP_llbpMApx-xtAAyL0b-gOvi9TCRBRVAlLkCZBvEltViQvuzCR3sW-JqGzzMvO6Tn4_J9D-Y9TutxB2xFN4m_1hN-jDV_uoq26v-TTB_TzHCDhAzgnPBlijWMt1V-4r2d_cHeGG9t4h8P_WHxR3leEAHw79n5KzmOD3DnuBT7uEw7dPSfjUd2GaQ_dXV70zzoktlMglks6J7IQBvCVARAgPHOJ5IZbmXIH5nLDxGlTeGoBTqS5BpxinTUFhBOA_1zKqdfsI9osJ6X_HC56MykttVpaDeOZBCCRGzs0LHM686KFkkaPysZa46HlxVg1pLLfClSvgupVwhSovoVOl0OmdaGNdcK8MY5aWS0KHMG6YbgxpIJdFFIjuvSTxUwJxuCzk4KuEeGZgFg1ly30qTb9cp404WlAai0kVhbFUiDU8F59U47uq1reVOYFK7L9133QCXrb6feu1XX35scBetcwG9L0EG3OHxf-CADT3BxXG-IvxUMSQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dreaming+of+a+Learning+Task+is+Associated+with+Enhanced+Sleep-Dependent+Memory+Consolidation&rft.jtitle=Current+biology&rft.au=Wamsley%2C+Erin+J.&rft.au=Tucker%2C+Matthew&rft.au=Payne%2C+Jessica+D.&rft.au=Benavides%2C+Joseph&rft.date=2010-05-11&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=20&rft.issue=9&rft.spage=850&rft.epage=855&rft_id=info:doi/10.1016%2Fj.cub.2010.03.027&rft_id=info%3Apmid%2F20417102&rft.externalDocID=PMC2869395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |