A data mining approach to identify cognitive NeuroRehabilitation Range in Traumatic Brain Injury patients

•A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical clinical data.•Zone of rehabilitation potential modeled using NeuroRehabilitation Range (NRR).•Analytical and visual tools are introduced and vali...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 11; pp. 5238 - 5251
Main Authors García-Rudolph, Alejandro, Gibert, Karina
Format Journal Article Publication
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.09.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2014.03.001

Cover

Loading…
Abstract •A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical clinical data.•Zone of rehabilitation potential modeled using NeuroRehabilitation Range (NRR).•Analytical and visual tools are introduced and validated to search data driven NRR.•Obtained results lead to actual clinical NRR hypothesis reconsideration. Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR.
AbstractList •A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical clinical data.•Zone of rehabilitation potential modeled using NeuroRehabilitation Range (NRR).•Analytical and visual tools are introduced and validated to search data driven NRR.•Obtained results lead to actual clinical NRR hypothesis reconsideration. Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR.
Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR. © 2014 Elsevier Ltd. All rights reserved. Peer Reviewed
Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR.
Author García-Rudolph, Alejandro
Gibert, Karina
Author_xml – sequence: 1
  givenname: Alejandro
  surname: García-Rudolph
  fullname: García-Rudolph, Alejandro
  email: agarciar@guttmann.com
  organization: Institut Guttmann, Hospital de Neurorehabilitació, Cami Can Ruti s/n, 08916 Badalona, Barcelona, Spain
– sequence: 2
  givenname: Karina
  surname: Gibert
  fullname: Gibert, Karina
  email: karina.gibert@upc.edu
  organization: Departament d’Estadística i Investigació Operativa, Universitat Politècnica de Catalunya – BarcelonaTech, Jordi Girona 1-3, 08034 Barcelona, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438256$$DView record in Pascal Francis
BookMark eNqFkU9r3DAQxU1JoZu0X6AnXQq92NEfW5KhlzS0TSC0ENKzmJXHGy1eaSvJCfvtK7NbCj2kByFmeL_hzbzz6swHj1X1ntGGUSYvtw2mZ2g4ZW1DRUMpe1WtmFailqoXZ9WK9p2qW6baN9V5StsiUJSqVeWuyAAZyM555zcE9vsYwD6SHIgb0Gc3HogNG--ye0LyHecY7vER1m5yGbILntyD3yBxnjxEmHelZ8nnCKW-9ds5Hsi-tMqg9LZ6PcKU8N3pv6h-fv3ycH1T3_34dnt9dVfbVvNcyxG1BqXXI_a216ofBFAYByW0hKFFgaOmHbeS9kpJwXkL0FpGbS9bXNtOXFTsONem2ZqIFqOFbAK4v8XyOFXc8I7JlhXm45Ep2_-aMWWzc8niNIHHMCfDpFJ9r7RQ_5d2UtGueFucfDhJIVmYxgjeumT20e0gHgzXrdC8k0WnT45jSCniaOzpuLkccjKMmiVkszVLyGYJ2VBhSoYF5f-gf6a_CH06QlhieHIYTbIlIouDKxfKZgjuJfw3CyLDDw
CitedBy_id crossref_primary_10_1016_j_cam_2015_01_031
crossref_primary_10_3233_IDA_184154
crossref_primary_10_3390_ijerph120809832
crossref_primary_10_2196_16077
crossref_primary_10_1016_j_engappai_2016_06_007
crossref_primary_10_1155_2015_823562
crossref_primary_10_3389_fneur_2022_886477
Cites_doi 10.1016/j.chb.2008.02.016
10.3171/jns.2002.97.2.0326
10.1016/j.eswa.2012.08.034
10.17705/1CAIS.01504
10.1086/422111
10.1089/0897715041526249
10.1111/j.1467-9280.2007.01853.x
10.1089/neu.2005.22.1040
10.1016/j.acn.2006.06.020
10.1146/annurev.neuro.27.070203.144216
10.3171/2009.11.JNS09857
10.1097/00001199-200607000-00003
10.1145/1656274.1656278
10.1038/nature01002
10.1037/a0013659
10.1044/1092-4388(2008/018)
10.1016/S1474-4422(08)70164-9
10.1097/01.PHM.0000078200.61840.2D
10.1007/978-3-540-73281-5_74
10.33588/rn.5111.2009652
10.1089/neu.2006.0113
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
XX2
DOI 10.1016/j.eswa.2014.03.001
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 5251
ExternalDocumentID oai_recercat_cat_2072_251641
28438256
10_1016_j_eswa_2014_03_001
S0957417414001249
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
08R
AAPBV
ABPIF
ABPTK
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
EFKBS
XX2
ID FETCH-LOGICAL-c482t-6fe88a78bfe9c9879d3a0afd7386ad4e3ef8052c6097763224aa4c10c964ebc53
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Aug 29 12:41:58 EDT 2025
Thu Jul 10 18:21:42 EDT 2025
Fri Jul 11 00:33:47 EDT 2025
Sun Oct 22 16:10:08 EDT 2023
Thu Apr 24 23:00:27 EDT 2025
Tue Jul 01 03:12:22 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Statistics
Algorithms
Machine learning
Proximal
Brain
Human operator
Cognitive disorder
Injury
Central nervous system
Cognition
Data driven modelling
Data mining
Modeling
Task analysis
Encephalon
Hierarchy
Formal specification
Graphical interface
Medical application
Monitoring
Repetition
Data analysis
Statistical analysis
Decision support system
Model driven architecture
Annotation
Cognitive theory
Surveillance
Learning (artificial intelligence)
Data models
Rehabilitation
Hierarchical system
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-6fe88a78bfe9c9879d3a0afd7386ad4e3ef8052c6097763224aa4c10c964ebc53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://recercat.cat/handle/2072/251641
PQID 1567059775
PQPubID 23500
PageCount 14
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_251641
proquest_miscellaneous_1677997837
proquest_miscellaneous_1567059775
pascalfrancis_primary_28438256
crossref_citationtrail_10_1016_j_eswa_2014_03_001
crossref_primary_10_1016_j_eswa_2014_03_001
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Witten, I. H., & Frank, E. (2005).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Andrews, Sleeman, Statham, McQuatt, Corruble, Jones (b0185) 2002; 97
Bernabeu, M., & Roig. T. (1999). La rehabilitación del traumatismo craneoencefálico: un enfoque interdisciplinar. Barcelona: Fundació Institut Guttmann.
Catherine. ISBN: 9781572306134.
(pp. 108–113). Valencia, Spain.
Whyte, Hart (b0175) 2003; 82
Segal, Goodman, Goldstein, Hauck, Whyte, Graham (b0220) 2006
Cicerone, Langenbahn, Braden, Malec, Kalmar (b0020) 2011; 92
Heuser, Kourtev, Winter, Fensterheim, Burdea, Hentz (b0065) 2008
Whalen, S. (1998). Revisiting the problem of match. In N. Colangelo, S. Assouline (Eds.)
Ecri. Cognitive rehabilitation therapy for traumatic brain injury: What we know and don’t know about its efficacy. EDITORIAL NOTE 10/11/11: IOM’s New Report on Brain Injury Treatments Draws Conclusions Similar to ECRI Institute’s Earlier Findings.
Tormos, Garcia-Molina, Garcia Rudolph, Roig (b0150) 2009; 9
.
Cicerone, Tupper (b0195) 1986
Sohlberg, M. M. (2001). In A. Mateer (Ed.)
Linkenhoker, Knudsen (b0080) 2002; 419
Ji, Smith, Huynh, Najarian (b0200) 2009; 9
Pang, Kuralmani, Joshi, Hongli, Lee, Ang (b0205) 2007; 24
Green, Bavelier (b0055) 2007; 18
Serra, J., Arcos, J. Ll., Garcia-Rudolph, A., García-Molina, A., Roig, T., & Tormos, J. M. (2013). Cognitive prognosis of acquired brain injury patients using machine learning techniques. In
Vygotsky (b0155) 1934
Vygotsky (b0160) 1978
Rohling, Faust (b0135) 2009; 23
Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. Harper perennial
Pascual-Leone (b0120) 2005; 28
Calero, Navarro (b0010) 2007; 22
Finneran, Zhang (b0040) 2005; 15
Quinlan (b0125) 1993
Rego, P., Moreira, P. M. & Reis, L. P. (2010). Serious games for rehabilitation a survey and a classification towards a taxonomy. In
Marcano, Chausa, Garcia-Rudolph, Cáceres, Tormos (b0100) 2013; 40
Rughani, Dumont, Lu, Josh Bongar, Horgan, Penar (b0215) 2010; 113
Brown, Malec, McClelland, Diehl, Englander, Cifu (b0190) 2005; 22
(pp. 1–6).
Kleim, Jones (b0075) 2008; 51
(3rd ed.).
Gibert, K., & García-Rudolph, A. (2007). Desarrollo de herramientas para evaluar el resultado de las tecnologías aplicadas al proceso rehabilitador Estudio a partir de dos modelos concretos: Lesión Medular y Daño Cerebral Adquirido. Cap 6: Posibilidades de aplicación de minería de datos para el descubrimiento de conocimiento a partir de la práctica clínica. Madrid: Plan Nacional para el Sistema Nacional de Salud del Ministerio de Sanidad y Consumo. Barcelona: Agència d’Avaluació de Tecnologia I Recerca Mèdiques. Informes de Evaluación de Tecnologias Sanitarias. AATRM núm. 2006/11. Barcelona.
Noreña, Rios-Lago, Bombin-Gonzalez, Sanchez-Cubillo, Garcia-Molina, Tirapu-Ustarroz (b0110) 2010; 51
Orvis, Horn, Belanich (b0115) 2008; 24
Green, C., & Bavelier, D. (2005). In Messaris & Humphreys (Eds.)
(5th ed.) American Society of Health-System Pharmacists (January 1) ISBN-13: 978-1585282418.
Luria (b0085) 1978
Walsh, Donal, Stephen, Muldoon (b0165) 2012
Hall, Frank, Holmes, Pfahringer Reutemann, Witten (b0060) 2009; 11
Mathwick, RigdonPlay (b0105) 2004; 31
DiPiro, J. T., & Spruill, W. J. (2010).
Ma, M., Charles, D., McDonough S., Crosbie, Oliver, L., & McGoldrick C., 2007. Adaptive virtual reality games for rehabilitation of motor disorders. Universal Access in Human–Computer Interaction, Ambient, Interaction.
Rovlias, Kotsou (b0210) 2004; 21
Jagaroo (b0070) 2009
Maas, Stocchetti, Bullock (b0095) 2008; 7
Orvis (10.1016/j.eswa.2014.03.001_b0115) 2008; 24
Heuser (10.1016/j.eswa.2014.03.001_b0065) 2008
Andrews (10.1016/j.eswa.2014.03.001_b0185) 2002; 97
Pang (10.1016/j.eswa.2014.03.001_b0205) 2007; 24
Finneran (10.1016/j.eswa.2014.03.001_b0040) 2005; 15
Jagaroo (10.1016/j.eswa.2014.03.001_b0070) 2009
Luria (10.1016/j.eswa.2014.03.001_b0085) 1978
10.1016/j.eswa.2014.03.001_b0005
Green (10.1016/j.eswa.2014.03.001_b0055) 2007; 18
Ji (10.1016/j.eswa.2014.03.001_b0200) 2009; 9
Cicerone (10.1016/j.eswa.2014.03.001_b0020) 2011; 92
Whyte (10.1016/j.eswa.2014.03.001_b0175) 2003; 82
10.1016/j.eswa.2014.03.001_b0045
10.1016/j.eswa.2014.03.001_b0145
10.1016/j.eswa.2014.03.001_b0025
Quinlan (10.1016/j.eswa.2014.03.001_b0125) 1993
Calero (10.1016/j.eswa.2014.03.001_b0010) 2007; 22
10.1016/j.eswa.2014.03.001_b0030
Mathwick (10.1016/j.eswa.2014.03.001_b0105) 2004; 31
10.1016/j.eswa.2014.03.001_b0130
Linkenhoker (10.1016/j.eswa.2014.03.001_b0080) 2002; 419
10.1016/j.eswa.2014.03.001_b0170
10.1016/j.eswa.2014.03.001_b0050
Rohling (10.1016/j.eswa.2014.03.001_b0135) 2009; 23
Vygotsky (10.1016/j.eswa.2014.03.001_b0155) 1934
Rughani (10.1016/j.eswa.2014.03.001_b0215) 2010; 113
10.1016/j.eswa.2014.03.001_b0090
Pascual-Leone (10.1016/j.eswa.2014.03.001_b0120) 2005; 28
Brown (10.1016/j.eswa.2014.03.001_b0190) 2005; 22
Kleim (10.1016/j.eswa.2014.03.001_b0075) 2008; 51
Vygotsky (10.1016/j.eswa.2014.03.001_b0160) 1978
Cicerone (10.1016/j.eswa.2014.03.001_b0195) 1986
Rovlias (10.1016/j.eswa.2014.03.001_b0210) 2004; 21
Tormos (10.1016/j.eswa.2014.03.001_b0150) 2009; 9
10.1016/j.eswa.2014.03.001_b0035
Marcano (10.1016/j.eswa.2014.03.001_b0100) 2013; 40
10.1016/j.eswa.2014.03.001_b0140
10.1016/j.eswa.2014.03.001_b0180
Noreña (10.1016/j.eswa.2014.03.001_b0110) 2010; 51
Walsh (10.1016/j.eswa.2014.03.001_b0165) 2012
Segal (10.1016/j.eswa.2014.03.001_b0220) 2006
Hall (10.1016/j.eswa.2014.03.001_b0060) 2009; 11
Maas (10.1016/j.eswa.2014.03.001_b0095) 2008; 7
References_xml – volume: 40
  start-page: 1054
  year: 2013
  end-page: 1060
  ident: b0100
  article-title: Data mining applied to the cognitive rehabilitation of patients with acquired brain injury. Data mining applied to the cognitive rehabilitation of patients with acquired brain injury
  publication-title: Expert Systems with Applications
– year: 2009
  ident: b0070
  article-title: Neuroinformatics for neuropsychologists
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: b0060
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explorations
– volume: 9
  start-page: e72
  year: 2009
  ident: b0150
  article-title: Information and communications technology in learning development and rehabilitation
  publication-title: International Journal of Integrated Care
– reference: Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. Harper perennial
– reference: Witten, I. H., & Frank, E. (2005).
– reference: . San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
– reference: Catherine. ISBN: 9781572306134.
– reference: Ecri. Cognitive rehabilitation therapy for traumatic brain injury: What we know and don’t know about its efficacy. EDITORIAL NOTE 10/11/11: IOM’s New Report on Brain Injury Treatments Draws Conclusions Similar to ECRI Institute’s Earlier Findings.
– volume: 7
  start-page: 728
  year: 2008
  end-page: 741
  ident: b0095
  article-title: Moderate and severe traumatic brain injury in adults
  publication-title: Lancet Neurology
– volume: 31
  start-page: 324
  year: 2004
  end-page: 332
  ident: b0105
  article-title: Flow, and the online search experience
  publication-title: Journal of Consumer Research
– start-page: 88
  year: 2008
  end-page: 93
  ident: b0065
  article-title: Tele-rehabilitation using the Rutgers master II glove following carpal tunnel release surgery
  publication-title: 2006 International workshop on virtual rehabilitation
– volume: 28
  start-page: 377
  year: 2005
  end-page: 401
  ident: b0120
  article-title: The plastic human brain cortex
  publication-title: Annual Review of Neuroscience
– year: 1978
  ident: b0160
  article-title: Mind and society: The development of higher mental processes
– volume: 21
  start-page: 886
  year: 2004
  end-page: 893
  ident: b0210
  article-title: Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables
  publication-title: Journal of Neurotrauma
– year: 2006
  ident: b0220
  article-title: The accuracy of artificial neural networks in predicting long-term outcome after traumatic brain injury
  publication-title: Journal of Head Trauma Rehabilitation
– volume: 92
  start-page: 19
  year: 2011
  end-page: 30
  ident: b0020
  article-title: Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008
  publication-title: Archives of Physical Medicine and Rehabilitation
– reference: Green, C., & Bavelier, D. (2005). In Messaris & Humphreys (Eds.),
– reference: (3rd ed.).
– year: 1993
  ident: b0125
  article-title: C4.5: Programs for machine learning
– volume: 51
  start-page: S225
  year: 2008
  end-page: S239
  ident: b0075
  article-title: Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage
  publication-title: Journal of Speech, Language, and Hearing Research
– volume: 23
  start-page: 20
  year: 2009
  end-page: 39
  ident: b0135
  article-title: Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al’.s (2000, 2005) systematic reviews
  publication-title: Neuropsychology
– volume: 24
  start-page: 2415
  year: 2008
  end-page: 2433
  ident: b0115
  article-title: The roles of task difficulty and prior videogame experience on performance and motivation in instructional videogames
  publication-title: Computers in Human Behavior
– volume: 24
  start-page: 136
  year: 2007
  end-page: 146
  ident: b0205
  article-title: Hybrid outcome prediction model for severe traumatic brain injury
  publication-title: Journal of Neurotrauma
– volume: 22
  start-page: 63
  year: 2007
  end-page: 72
  ident: b0010
  article-title: Cognitive plasticity as a modulating variable on the effects of memory training in elderly persons
  publication-title: Archives of Clinical Neuropsychology
– reference: Gibert, K., & García-Rudolph, A. (2007). Desarrollo de herramientas para evaluar el resultado de las tecnologías aplicadas al proceso rehabilitador Estudio a partir de dos modelos concretos: Lesión Medular y Daño Cerebral Adquirido. Cap 6: Posibilidades de aplicación de minería de datos para el descubrimiento de conocimiento a partir de la práctica clínica. Madrid: Plan Nacional para el Sistema Nacional de Salud del Ministerio de Sanidad y Consumo. Barcelona: Agència d’Avaluació de Tecnologia I Recerca Mèdiques. Informes de Evaluación de Tecnologias Sanitarias. AATRM núm. 2006/11. Barcelona.
– volume: 82
  start-page: 639
  year: 2003
  end-page: 652
  ident: b0175
  article-title: It’s more than a black box; it’s a Russian doll: Defining rehabilitation treatments
  publication-title: American Journal of Physical Medicine and Rehabilitation
– volume: 22
  start-page: 1040
  year: 2005
  end-page: 1051
  ident: b0190
  article-title: Clinical elements that predict outcome after traumatic brain injury: A prospective multicenter recursive partitioning (decision-tree) analysis
  publication-title: Journal of Neurotrauma
– reference: Ma, M., Charles, D., McDonough S., Crosbie, Oliver, L., & McGoldrick C., 2007. Adaptive virtual reality games for rehabilitation of motor disorders. Universal Access in Human–Computer Interaction, Ambient, Interaction.
– reference: Rego, P., Moreira, P. M. & Reis, L. P. (2010). Serious games for rehabilitation a survey and a classification towards a taxonomy. In
– reference: (pp. 1–6).
– volume: 113
  start-page: 585
  year: 2010
  end-page: 590
  ident: b0215
  article-title: Use of an artificial neural network to predict head injury outcome
  publication-title: Journal of Neurosurgery
– reference: Sohlberg, M. M. (2001). In A. Mateer (Ed.),
– volume: 97
  start-page: 326
  year: 2002
  end-page: 336
  ident: b0185
  article-title: Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression
  publication-title: Journal of Neurosurgery
– start-page: 59
  year: 1986
  end-page: 84
  ident: b0195
  article-title: Cognitive assessment in the neuropsychological rehabilitation of head-injured adults
  publication-title: Clinical neuropsychology of intervention
– start-page: 514
  year: 1978
  end-page: 515
  ident: b0085
  article-title: Neuropsychology
  publication-title: Great soviet encyclopedia: A translation of the third edition
– volume: 18
  start-page: 88
  year: 2007
  end-page: 94
  ident: b0055
  article-title: Action-video-game experience alters the spatial resolution of vision
  publication-title: Psychological Science
– reference: (5th ed.) American Society of Health-System Pharmacists (January 1) ISBN-13: 978-1585282418.
– reference: (pp. 108–113). Valencia, Spain.
– volume: 15
  start-page: 82
  year: 2005
  end-page: 101
  ident: b0040
  article-title: Flow in computer-mediated environments: Promises and challenges
  publication-title: Communications of the Association for Information Systems
– reference: Whalen, S. (1998). Revisiting the problem of match. In N. Colangelo, S. Assouline (Eds.),
– volume: 9
  year: 2009
  ident: b0200
  article-title: A comparative analysis of multilevel computer-assisted decision making systems for traumatic injuries
  publication-title: Medical Informatics and Decision Making
– volume: 51
  start-page: 687
  year: 2010
  end-page: 698
  ident: b0110
  article-title: Efectividad de la rehabilitación neuropsicológica en el daño cerebral adquirido (I): atención, velocidad de procesamiento, memoria y lenguaje
  publication-title: Revista de Neurologia
– reference: .
– reference: Bernabeu, M., & Roig. T. (1999). La rehabilitación del traumatismo craneoencefálico: un enfoque interdisciplinar. Barcelona: Fundació Institut Guttmann.
– start-page: 1
  year: 2012
  end-page: 15
  ident: b0165
  article-title: Acquired brain injury: Combining social psychological and neuropsychological perspectives
  publication-title: Health Psychology Review
– reference: DiPiro, J. T., & Spruill, W. J. (2010).
– reference: Serra, J., Arcos, J. Ll., Garcia-Rudolph, A., García-Molina, A., Roig, T., & Tormos, J. M. (2013). Cognitive prognosis of acquired brain injury patients using machine learning techniques. In
– start-page: 33
  year: 1934
  end-page: 52
  ident: b0155
  article-title: Dinamika umstvennogo razvitiia shkol’nika v sviazi s obucheniem
  publication-title: Umstvennoe razvitie detei v protsesse obucheniia
– volume: 419
  start-page: 293
  year: 2002
  end-page: 296
  ident: b0080
  article-title: Incremental training increases the plasticity of the auditory space map in adult barn owls
  publication-title: Nature
– ident: 10.1016/j.eswa.2014.03.001_b0180
– ident: 10.1016/j.eswa.2014.03.001_b0130
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2014.03.001_b0165
  article-title: Acquired brain injury: Combining social psychological and neuropsychological perspectives
  publication-title: Health Psychology Review
– year: 1993
  ident: 10.1016/j.eswa.2014.03.001_b0125
– year: 2009
  ident: 10.1016/j.eswa.2014.03.001_b0070
– ident: 10.1016/j.eswa.2014.03.001_b0025
– ident: 10.1016/j.eswa.2014.03.001_b0050
– volume: 24
  start-page: 2415
  year: 2008
  ident: 10.1016/j.eswa.2014.03.001_b0115
  article-title: The roles of task difficulty and prior videogame experience on performance and motivation in instructional videogames
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2008.02.016
– ident: 10.1016/j.eswa.2014.03.001_b0140
– volume: 92
  start-page: 19
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2014.03.001_b0020
  article-title: Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008
  publication-title: Archives of Physical Medicine and Rehabilitation
– ident: 10.1016/j.eswa.2014.03.001_b0035
– start-page: 33
  year: 1934
  ident: 10.1016/j.eswa.2014.03.001_b0155
  article-title: Dinamika umstvennogo razvitiia shkol’nika v sviazi s obucheniem
– volume: 9
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2014.03.001_b0200
  article-title: A comparative analysis of multilevel computer-assisted decision making systems for traumatic injuries
  publication-title: Medical Informatics and Decision Making
– volume: 97
  start-page: 326
  year: 2002
  ident: 10.1016/j.eswa.2014.03.001_b0185
  article-title: Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression
  publication-title: Journal of Neurosurgery
  doi: 10.3171/jns.2002.97.2.0326
– ident: 10.1016/j.eswa.2014.03.001_b0170
– volume: 40
  start-page: 1054
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2014.03.001_b0100
  article-title: Data mining applied to the cognitive rehabilitation of patients with acquired brain injury. Data mining applied to the cognitive rehabilitation of patients with acquired brain injury
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.08.034
– volume: 15
  start-page: 82
  year: 2005
  ident: 10.1016/j.eswa.2014.03.001_b0040
  article-title: Flow in computer-mediated environments: Promises and challenges
  publication-title: Communications of the Association for Information Systems
  doi: 10.17705/1CAIS.01504
– volume: 31
  start-page: 324
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2014.03.001_b0105
  article-title: Flow, and the online search experience
  publication-title: Journal of Consumer Research
  doi: 10.1086/422111
– volume: 21
  start-page: 886
  issue: 7
  year: 2004
  ident: 10.1016/j.eswa.2014.03.001_b0210
  article-title: Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables
  publication-title: Journal of Neurotrauma
  doi: 10.1089/0897715041526249
– volume: 18
  start-page: 88
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.03.001_b0055
  article-title: Action-video-game experience alters the spatial resolution of vision
  publication-title: Psychological Science
  doi: 10.1111/j.1467-9280.2007.01853.x
– volume: 22
  start-page: 1040
  issue: 10
  year: 2005
  ident: 10.1016/j.eswa.2014.03.001_b0190
  article-title: Clinical elements that predict outcome after traumatic brain injury: A prospective multicenter recursive partitioning (decision-tree) analysis
  publication-title: Journal of Neurotrauma
  doi: 10.1089/neu.2005.22.1040
– volume: 22
  start-page: 63
  year: 2007
  ident: 10.1016/j.eswa.2014.03.001_b0010
  article-title: Cognitive plasticity as a modulating variable on the effects of memory training in elderly persons
  publication-title: Archives of Clinical Neuropsychology
  doi: 10.1016/j.acn.2006.06.020
– start-page: 88
  year: 2008
  ident: 10.1016/j.eswa.2014.03.001_b0065
  article-title: Tele-rehabilitation using the Rutgers master II glove following carpal tunnel release surgery
– volume: 28
  start-page: 377
  year: 2005
  ident: 10.1016/j.eswa.2014.03.001_b0120
  article-title: The plastic human brain cortex
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.27.070203.144216
– volume: 113
  start-page: 585
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2014.03.001_b0215
  article-title: Use of an artificial neural network to predict head injury outcome
  publication-title: Journal of Neurosurgery
  doi: 10.3171/2009.11.JNS09857
– year: 2006
  ident: 10.1016/j.eswa.2014.03.001_b0220
  article-title: The accuracy of artificial neural networks in predicting long-term outcome after traumatic brain injury
  publication-title: Journal of Head Trauma Rehabilitation
  doi: 10.1097/00001199-200607000-00003
– start-page: 59
  year: 1986
  ident: 10.1016/j.eswa.2014.03.001_b0195
  article-title: Cognitive assessment in the neuropsychological rehabilitation of head-injured adults
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2014.03.001_b0060
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explorations
  doi: 10.1145/1656274.1656278
– year: 1978
  ident: 10.1016/j.eswa.2014.03.001_b0160
– ident: 10.1016/j.eswa.2014.03.001_b0045
– volume: 419
  start-page: 293
  issue: 6904
  year: 2002
  ident: 10.1016/j.eswa.2014.03.001_b0080
  article-title: Incremental training increases the plasticity of the auditory space map in adult barn owls
  publication-title: Nature
  doi: 10.1038/nature01002
– volume: 23
  start-page: 20
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2014.03.001_b0135
  article-title: Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al’.s (2000, 2005) systematic reviews
  publication-title: Neuropsychology
  doi: 10.1037/a0013659
– ident: 10.1016/j.eswa.2014.03.001_b0030
– volume: 51
  start-page: S225
  year: 2008
  ident: 10.1016/j.eswa.2014.03.001_b0075
  article-title: Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage
  publication-title: Journal of Speech, Language, and Hearing Research
  doi: 10.1044/1092-4388(2008/018)
– volume: 7
  start-page: 728
  issue: 8
  year: 2008
  ident: 10.1016/j.eswa.2014.03.001_b0095
  article-title: Moderate and severe traumatic brain injury in adults
  publication-title: Lancet Neurology
  doi: 10.1016/S1474-4422(08)70164-9
– volume: 82
  start-page: 639
  year: 2003
  ident: 10.1016/j.eswa.2014.03.001_b0175
  article-title: It’s more than a black box; it’s a Russian doll: Defining rehabilitation treatments
  publication-title: American Journal of Physical Medicine and Rehabilitation
  doi: 10.1097/01.PHM.0000078200.61840.2D
– start-page: 514
  year: 1978
  ident: 10.1016/j.eswa.2014.03.001_b0085
  article-title: Neuropsychology
– ident: 10.1016/j.eswa.2014.03.001_b0090
  doi: 10.1007/978-3-540-73281-5_74
– volume: 51
  start-page: 687
  year: 2010
  ident: 10.1016/j.eswa.2014.03.001_b0110
  article-title: Efectividad de la rehabilitación neuropsicológica en el daño cerebral adquirido (I): atención, velocidad de procesamiento, memoria y lenguaje
  publication-title: Revista de Neurologia
  doi: 10.33588/rn.5111.2009652
– ident: 10.1016/j.eswa.2014.03.001_b0145
– ident: 10.1016/j.eswa.2014.03.001_b0005
– volume: 24
  start-page: 136
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.03.001_b0205
  article-title: Hybrid outcome prediction model for severe traumatic brain injury
  publication-title: Journal of Neurotrauma
  doi: 10.1089/neu.2006.0113
– volume: 9
  start-page: e72
  issue: Supl
  year: 2009
  ident: 10.1016/j.eswa.2014.03.001_b0150
  article-title: Information and communications technology in learning development and rehabilitation
  publication-title: International Journal of Integrated Care
SSID ssj0017007
Score 2.1707819
Snippet •A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical...
Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a...
SourceID csuc
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5238
SubjectTerms 62H Multivariate analysis
Algorithms
Anàlisi multivariable
Anàlisi multivariant
Applied sciences
Biological and medical sciences
Child clinical studies
Cognitive tasks
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Construction
Construction equipment
Criteria
Data mining
Data processing. List processing. Character string processing
Decision theory. Utility theory
Estadística aplicada
Estadística biosanitària
Estadística matemàtica
Exact sciences and technology
Machine learning
Matemàtiques i estadística
Medical sciences
Memory organisation. Data processing
Multivariate analysis
Operational research and scientific management
Operational research. Management science
Organic mental disorders. Neuropsychology
Patients
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Software
Statistics
Tasks
Àrees temàtiques de la UPC
Title A data mining approach to identify cognitive NeuroRehabilitation Range in Traumatic Brain Injury patients
URI https://dx.doi.org/10.1016/j.eswa.2014.03.001
https://www.proquest.com/docview/1567059775
https://www.proquest.com/docview/1677997837
https://recercat.cat/handle/2072/251641
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BatwwEBVhewmUtklbukm7qNBTg7v2Spbs4zY0bFLIIU0gNyHLEjgk3iX2UnLJt2fGkg2msIeCfZCR8aAZzRvhmTeEfBOWOya4iwrByojbMo-KvCgjLVniIBxJnWf7vBSrG35xm97ukdO-FgbTKoPv9z6989bhyTys5nxTVfM_EBwAHMLFEbM5FvEhex3Y9I_nIc0D6eek59uTEc4OhTM-x8s2f5F7KOGe6DQZgdPENFszwqjXG93Ayjnf8uIf791B0tk78ibEknTpxT0ge7Y-JG_7Pg00bNtDso8RpSdkfk-qJcWsUPrQdYagPac4bde06op23RMdcopox91xNWLzpldYj0CrmgLObTvGV_oTG03Q8_oONEQDVWvzgdyc_bo-XUWh30JkeLZoI-FslmmZFc7mJs9kXjIda1diX1BdcsuswwYIRsQQNArwBFxrbpLY5ILbwqTsI5nU69p-IlQsJMAceFpbcM6NyAorkZkMPIQQPLNTkvQLrUwQH3ti3Ks-6-xOoXIUKkfFDFPvpuRkeGfjqTh2zv6O-lNgQ_bR6FYhj_YwwHsRy4WC8E5wmJz2WlYj61MALDs_MhuZxCAXgD6Ds7eYkq-9jSjYt_gzRtd2vW0UnJtljOR_6Y45QsIyyozJo_8U8Jjs48gnxX0mk_Zxa79AFNUWs26bzMir5fnv1eULv64cSA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBA6CNt6faRqtBTi1l7JUv2cRsadpt0D2kCuQlZlsCh9S6xl9B_3xlLNpjCHgr2wbaEB4003wjNfEPIJ2G5Y4K7qBCsjLgt86jIizLSkiUO3JHUebbPtVje8O-36e0BOetzYTCsMth-b9M7ax3ezMJozrZVNfsJzgHAIVwcMZvnj8ghslPxCTlcrC6W6-EwQcY-axraR9gh5M74MC_bPCD9UMI912kywqeJaXZmBFPHW93A4Dlf9eIfA96h0vkz8iS4k3ThJX5ODmx9Qp72pRpoWLkn5AidSs_J_IJUC4qBofR3VxyC9rTitN3QqsvbdX_oEFZEO_qOqxGhN73ClARa1RSgbteRvtKvWGuCruo7UBINbK3NS3Jz_u36bBmFkguR4dm8jYSzWaZlVjibmzyTecl0rF2JpUF1yS2zDmsgGBGD3yjAGHCtuUlikwtuC5OyV2RSb2r7mlAxl4B0YGxtwTk3IiusRHIyMBJC8MxOSdIPtDJBfCyL8Uv1gWd3CpWjUDkqZhh9NyVfhj5bz8axt_Vn1J-CaWTvjW4VUmkPD3jPYzlX4OEJDo3TXstqNAEVYMven5yOpsQgF-A-g-23mJKP_RxRsHTxPEbXdrNrFGydZYz8f-meNkLCMMqMyTf_KeAH8nh5_eNSXa7WF2_JEX7xMXLvyKS939n34FS1xWlYNH8Ba1ke-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+mining+approach+to+identify+cognitive+NeuroRehabilitation+Range+in+Traumatic+Brain+Injury+patients&rft.jtitle=Expert+systems+with+applications&rft.au=Garc%C3%ADa-Rudolph%2C+Alejandro&rft.au=Gibert%2C+Karina&rft.date=2014-09-01&rft.issn=0957-4174&rft.volume=41&rft.issue=11&rft.spage=5238&rft.epage=5251&rft_id=info:doi/10.1016%2Fj.eswa.2014.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2014_03_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon