A data mining approach to identify cognitive NeuroRehabilitation Range in Traumatic Brain Injury patients
•A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical clinical data.•Zone of rehabilitation potential modeled using NeuroRehabilitation Range (NRR).•Analytical and visual tools are introduced and vali...
Saved in:
Published in | Expert systems with applications Vol. 41; no. 11; pp. 5238 - 5251 |
---|---|
Main Authors | , |
Format | Journal Article Publication |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.09.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2014.03.001 |
Cover
Loading…
Abstract | •A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical clinical data.•Zone of rehabilitation potential modeled using NeuroRehabilitation Range (NRR).•Analytical and visual tools are introduced and validated to search data driven NRR.•Obtained results lead to actual clinical NRR hypothesis reconsideration.
Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR. |
---|---|
AbstractList | •A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical clinical data.•Zone of rehabilitation potential modeled using NeuroRehabilitation Range (NRR).•Analytical and visual tools are introduced and validated to search data driven NRR.•Obtained results lead to actual clinical NRR hypothesis reconsideration.
Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR. Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR. © 2014 Elsevier Ltd. All rights reserved. Peer Reviewed Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a progressively more demanding sequence. Active monitoring of the progress of the subjects is therefore required, and the difficulty of the tasks must be progressively increased, always pushing the subjects to reach a goal just beyond what they can attain. There is an important lack of well-established criteria by which to identify the right tasks to propose to the patient. In this paper, the NeuroRehabilitation Range (NRR) is introduced as a means of identifying formal operational models. These are to provide the therapist with dynamic decision support information for assigning the most appropriate CR plan to each patient. Data mining techniques are used to build data-driven models for NRR. The Sectorized and Annotated Plane (SAP) is proposed as a visual tool by which to identify NRR, and two data-driven methods to build the SAP are introduced and compared. Application to a specific representative cognitive task is presented. The results obtained suggest that the current clinical hypothesis about NRR might be reconsidered. Prior knowledge in the area is taken into account to introduce the number of task executions and task performance into NRR models and a new model is proposed which outperforms the current clinical hypothesis. The NRR is introduced as a key concept to provide an operational model identifying when a patient is experiencing activities in his or her Zone of Proximal Development and, consequently, experiencing maximum improvement. For the first time, data collected through a CR platform has been used to find a model for the NRR. |
Author | García-Rudolph, Alejandro Gibert, Karina |
Author_xml | – sequence: 1 givenname: Alejandro surname: García-Rudolph fullname: García-Rudolph, Alejandro email: agarciar@guttmann.com organization: Institut Guttmann, Hospital de Neurorehabilitació, Cami Can Ruti s/n, 08916 Badalona, Barcelona, Spain – sequence: 2 givenname: Karina surname: Gibert fullname: Gibert, Karina email: karina.gibert@upc.edu organization: Departament d’Estadística i Investigació Operativa, Universitat Politècnica de Catalunya – BarcelonaTech, Jordi Girona 1-3, 08034 Barcelona, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438256$$DView record in Pascal Francis |
BookMark | eNqFkU9r3DAQxU1JoZu0X6AnXQq92NEfW5KhlzS0TSC0ENKzmJXHGy1eaSvJCfvtK7NbCj2kByFmeL_hzbzz6swHj1X1ntGGUSYvtw2mZ2g4ZW1DRUMpe1WtmFailqoXZ9WK9p2qW6baN9V5StsiUJSqVeWuyAAZyM555zcE9vsYwD6SHIgb0Gc3HogNG--ye0LyHecY7vER1m5yGbILntyD3yBxnjxEmHelZ8nnCKW-9ds5Hsi-tMqg9LZ6PcKU8N3pv6h-fv3ycH1T3_34dnt9dVfbVvNcyxG1BqXXI_a216ofBFAYByW0hKFFgaOmHbeS9kpJwXkL0FpGbS9bXNtOXFTsONem2ZqIFqOFbAK4v8XyOFXc8I7JlhXm45Ep2_-aMWWzc8niNIHHMCfDpFJ9r7RQ_5d2UtGueFucfDhJIVmYxgjeumT20e0gHgzXrdC8k0WnT45jSCniaOzpuLkccjKMmiVkszVLyGYJ2VBhSoYF5f-gf6a_CH06QlhieHIYTbIlIouDKxfKZgjuJfw3CyLDDw |
CitedBy_id | crossref_primary_10_1016_j_cam_2015_01_031 crossref_primary_10_3233_IDA_184154 crossref_primary_10_3390_ijerph120809832 crossref_primary_10_2196_16077 crossref_primary_10_1016_j_engappai_2016_06_007 crossref_primary_10_1155_2015_823562 crossref_primary_10_3389_fneur_2022_886477 |
Cites_doi | 10.1016/j.chb.2008.02.016 10.3171/jns.2002.97.2.0326 10.1016/j.eswa.2012.08.034 10.17705/1CAIS.01504 10.1086/422111 10.1089/0897715041526249 10.1111/j.1467-9280.2007.01853.x 10.1089/neu.2005.22.1040 10.1016/j.acn.2006.06.020 10.1146/annurev.neuro.27.070203.144216 10.3171/2009.11.JNS09857 10.1097/00001199-200607000-00003 10.1145/1656274.1656278 10.1038/nature01002 10.1037/a0013659 10.1044/1092-4388(2008/018) 10.1016/S1474-4422(08)70164-9 10.1097/01.PHM.0000078200.61840.2D 10.1007/978-3-540-73281-5_74 10.33588/rn.5111.2009652 10.1089/neu.2006.0113 |
ContentType | Journal Article Publication |
Contributor | Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic |
Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa – sequence: 2 fullname: Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D XX2 |
DOI | 10.1016/j.eswa.2014.03.001 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Recercat |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Computer Science Applied Sciences |
EISSN | 1873-6793 |
EndPage | 5251 |
ExternalDocumentID | oai_recercat_cat_2072_251641 28438256 10_1016_j_eswa_2014_03_001 S0957417414001249 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT 08R AAPBV ABPIF ABPTK IQODW 7SC 8FD JQ2 L7M L~C L~D EFKBS XX2 |
ID | FETCH-LOGICAL-c482t-6fe88a78bfe9c9879d3a0afd7386ad4e3ef8052c6097763224aa4c10c964ebc53 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Aug 29 12:41:58 EDT 2025 Thu Jul 10 18:21:42 EDT 2025 Fri Jul 11 00:33:47 EDT 2025 Sun Oct 22 16:10:08 EDT 2023 Thu Apr 24 23:00:27 EDT 2025 Tue Jul 01 03:12:22 EDT 2025 Fri Feb 23 02:29:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Statistics Algorithms Machine learning Proximal Brain Human operator Cognitive disorder Injury Central nervous system Cognition Data driven modelling Data mining Modeling Task analysis Encephalon Hierarchy Formal specification Graphical interface Medical application Monitoring Repetition Data analysis Statistical analysis Decision support system Model driven architecture Annotation Cognitive theory Surveillance Learning (artificial intelligence) Data models Rehabilitation Hierarchical system |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-6fe88a78bfe9c9879d3a0afd7386ad4e3ef8052c6097763224aa4c10c964ebc53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://recercat.cat/handle/2072/251641 |
PQID | 1567059775 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_251641 proquest_miscellaneous_1677997837 proquest_miscellaneous_1567059775 pascalfrancis_primary_28438256 crossref_citationtrail_10_1016_j_eswa_2014_03_001 crossref_primary_10_1016_j_eswa_2014_03_001 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Expert systems with applications |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Witten, I. H., & Frank, E. (2005). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Andrews, Sleeman, Statham, McQuatt, Corruble, Jones (b0185) 2002; 97 Bernabeu, M., & Roig. T. (1999). La rehabilitación del traumatismo craneoencefálico: un enfoque interdisciplinar. Barcelona: Fundació Institut Guttmann. Catherine. ISBN: 9781572306134. (pp. 108–113). Valencia, Spain. Whyte, Hart (b0175) 2003; 82 Segal, Goodman, Goldstein, Hauck, Whyte, Graham (b0220) 2006 Cicerone, Langenbahn, Braden, Malec, Kalmar (b0020) 2011; 92 Heuser, Kourtev, Winter, Fensterheim, Burdea, Hentz (b0065) 2008 Whalen, S. (1998). Revisiting the problem of match. In N. Colangelo, S. Assouline (Eds.) Ecri. Cognitive rehabilitation therapy for traumatic brain injury: What we know and don’t know about its efficacy. EDITORIAL NOTE 10/11/11: IOM’s New Report on Brain Injury Treatments Draws Conclusions Similar to ECRI Institute’s Earlier Findings. Tormos, Garcia-Molina, Garcia Rudolph, Roig (b0150) 2009; 9 . Cicerone, Tupper (b0195) 1986 Sohlberg, M. M. (2001). In A. Mateer (Ed.) Linkenhoker, Knudsen (b0080) 2002; 419 Ji, Smith, Huynh, Najarian (b0200) 2009; 9 Pang, Kuralmani, Joshi, Hongli, Lee, Ang (b0205) 2007; 24 Green, Bavelier (b0055) 2007; 18 Serra, J., Arcos, J. Ll., Garcia-Rudolph, A., García-Molina, A., Roig, T., & Tormos, J. M. (2013). Cognitive prognosis of acquired brain injury patients using machine learning techniques. In Vygotsky (b0155) 1934 Vygotsky (b0160) 1978 Rohling, Faust (b0135) 2009; 23 Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. Harper perennial Pascual-Leone (b0120) 2005; 28 Calero, Navarro (b0010) 2007; 22 Finneran, Zhang (b0040) 2005; 15 Quinlan (b0125) 1993 Rego, P., Moreira, P. M. & Reis, L. P. (2010). Serious games for rehabilitation a survey and a classification towards a taxonomy. In Marcano, Chausa, Garcia-Rudolph, Cáceres, Tormos (b0100) 2013; 40 Rughani, Dumont, Lu, Josh Bongar, Horgan, Penar (b0215) 2010; 113 Brown, Malec, McClelland, Diehl, Englander, Cifu (b0190) 2005; 22 (pp. 1–6). Kleim, Jones (b0075) 2008; 51 (3rd ed.). Gibert, K., & García-Rudolph, A. (2007). Desarrollo de herramientas para evaluar el resultado de las tecnologías aplicadas al proceso rehabilitador Estudio a partir de dos modelos concretos: Lesión Medular y Daño Cerebral Adquirido. Cap 6: Posibilidades de aplicación de minería de datos para el descubrimiento de conocimiento a partir de la práctica clínica. Madrid: Plan Nacional para el Sistema Nacional de Salud del Ministerio de Sanidad y Consumo. Barcelona: Agència d’Avaluació de Tecnologia I Recerca Mèdiques. Informes de Evaluación de Tecnologias Sanitarias. AATRM núm. 2006/11. Barcelona. Noreña, Rios-Lago, Bombin-Gonzalez, Sanchez-Cubillo, Garcia-Molina, Tirapu-Ustarroz (b0110) 2010; 51 Orvis, Horn, Belanich (b0115) 2008; 24 Green, C., & Bavelier, D. (2005). In Messaris & Humphreys (Eds.) (5th ed.) American Society of Health-System Pharmacists (January 1) ISBN-13: 978-1585282418. Luria (b0085) 1978 Walsh, Donal, Stephen, Muldoon (b0165) 2012 Hall, Frank, Holmes, Pfahringer Reutemann, Witten (b0060) 2009; 11 Mathwick, RigdonPlay (b0105) 2004; 31 DiPiro, J. T., & Spruill, W. J. (2010). Ma, M., Charles, D., McDonough S., Crosbie, Oliver, L., & McGoldrick C., 2007. Adaptive virtual reality games for rehabilitation of motor disorders. Universal Access in Human–Computer Interaction, Ambient, Interaction. Rovlias, Kotsou (b0210) 2004; 21 Jagaroo (b0070) 2009 Maas, Stocchetti, Bullock (b0095) 2008; 7 Orvis (10.1016/j.eswa.2014.03.001_b0115) 2008; 24 Heuser (10.1016/j.eswa.2014.03.001_b0065) 2008 Andrews (10.1016/j.eswa.2014.03.001_b0185) 2002; 97 Pang (10.1016/j.eswa.2014.03.001_b0205) 2007; 24 Finneran (10.1016/j.eswa.2014.03.001_b0040) 2005; 15 Jagaroo (10.1016/j.eswa.2014.03.001_b0070) 2009 Luria (10.1016/j.eswa.2014.03.001_b0085) 1978 10.1016/j.eswa.2014.03.001_b0005 Green (10.1016/j.eswa.2014.03.001_b0055) 2007; 18 Ji (10.1016/j.eswa.2014.03.001_b0200) 2009; 9 Cicerone (10.1016/j.eswa.2014.03.001_b0020) 2011; 92 Whyte (10.1016/j.eswa.2014.03.001_b0175) 2003; 82 10.1016/j.eswa.2014.03.001_b0045 10.1016/j.eswa.2014.03.001_b0145 10.1016/j.eswa.2014.03.001_b0025 Quinlan (10.1016/j.eswa.2014.03.001_b0125) 1993 Calero (10.1016/j.eswa.2014.03.001_b0010) 2007; 22 10.1016/j.eswa.2014.03.001_b0030 Mathwick (10.1016/j.eswa.2014.03.001_b0105) 2004; 31 10.1016/j.eswa.2014.03.001_b0130 Linkenhoker (10.1016/j.eswa.2014.03.001_b0080) 2002; 419 10.1016/j.eswa.2014.03.001_b0170 10.1016/j.eswa.2014.03.001_b0050 Rohling (10.1016/j.eswa.2014.03.001_b0135) 2009; 23 Vygotsky (10.1016/j.eswa.2014.03.001_b0155) 1934 Rughani (10.1016/j.eswa.2014.03.001_b0215) 2010; 113 10.1016/j.eswa.2014.03.001_b0090 Pascual-Leone (10.1016/j.eswa.2014.03.001_b0120) 2005; 28 Brown (10.1016/j.eswa.2014.03.001_b0190) 2005; 22 Kleim (10.1016/j.eswa.2014.03.001_b0075) 2008; 51 Vygotsky (10.1016/j.eswa.2014.03.001_b0160) 1978 Cicerone (10.1016/j.eswa.2014.03.001_b0195) 1986 Rovlias (10.1016/j.eswa.2014.03.001_b0210) 2004; 21 Tormos (10.1016/j.eswa.2014.03.001_b0150) 2009; 9 10.1016/j.eswa.2014.03.001_b0035 Marcano (10.1016/j.eswa.2014.03.001_b0100) 2013; 40 10.1016/j.eswa.2014.03.001_b0140 10.1016/j.eswa.2014.03.001_b0180 Noreña (10.1016/j.eswa.2014.03.001_b0110) 2010; 51 Walsh (10.1016/j.eswa.2014.03.001_b0165) 2012 Segal (10.1016/j.eswa.2014.03.001_b0220) 2006 Hall (10.1016/j.eswa.2014.03.001_b0060) 2009; 11 Maas (10.1016/j.eswa.2014.03.001_b0095) 2008; 7 |
References_xml | – volume: 40 start-page: 1054 year: 2013 end-page: 1060 ident: b0100 article-title: Data mining applied to the cognitive rehabilitation of patients with acquired brain injury. Data mining applied to the cognitive rehabilitation of patients with acquired brain injury publication-title: Expert Systems with Applications – year: 2009 ident: b0070 article-title: Neuroinformatics for neuropsychologists – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: b0060 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explorations – volume: 9 start-page: e72 year: 2009 ident: b0150 article-title: Information and communications technology in learning development and rehabilitation publication-title: International Journal of Integrated Care – reference: Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. Harper perennial – reference: Witten, I. H., & Frank, E. (2005). – reference: . San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. – reference: Catherine. ISBN: 9781572306134. – reference: Ecri. Cognitive rehabilitation therapy for traumatic brain injury: What we know and don’t know about its efficacy. EDITORIAL NOTE 10/11/11: IOM’s New Report on Brain Injury Treatments Draws Conclusions Similar to ECRI Institute’s Earlier Findings. – volume: 7 start-page: 728 year: 2008 end-page: 741 ident: b0095 article-title: Moderate and severe traumatic brain injury in adults publication-title: Lancet Neurology – volume: 31 start-page: 324 year: 2004 end-page: 332 ident: b0105 article-title: Flow, and the online search experience publication-title: Journal of Consumer Research – start-page: 88 year: 2008 end-page: 93 ident: b0065 article-title: Tele-rehabilitation using the Rutgers master II glove following carpal tunnel release surgery publication-title: 2006 International workshop on virtual rehabilitation – volume: 28 start-page: 377 year: 2005 end-page: 401 ident: b0120 article-title: The plastic human brain cortex publication-title: Annual Review of Neuroscience – year: 1978 ident: b0160 article-title: Mind and society: The development of higher mental processes – volume: 21 start-page: 886 year: 2004 end-page: 893 ident: b0210 article-title: Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables publication-title: Journal of Neurotrauma – year: 2006 ident: b0220 article-title: The accuracy of artificial neural networks in predicting long-term outcome after traumatic brain injury publication-title: Journal of Head Trauma Rehabilitation – volume: 92 start-page: 19 year: 2011 end-page: 30 ident: b0020 article-title: Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008 publication-title: Archives of Physical Medicine and Rehabilitation – reference: Green, C., & Bavelier, D. (2005). In Messaris & Humphreys (Eds.), – reference: (3rd ed.). – year: 1993 ident: b0125 article-title: C4.5: Programs for machine learning – volume: 51 start-page: S225 year: 2008 end-page: S239 ident: b0075 article-title: Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage publication-title: Journal of Speech, Language, and Hearing Research – volume: 23 start-page: 20 year: 2009 end-page: 39 ident: b0135 article-title: Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al’.s (2000, 2005) systematic reviews publication-title: Neuropsychology – volume: 24 start-page: 2415 year: 2008 end-page: 2433 ident: b0115 article-title: The roles of task difficulty and prior videogame experience on performance and motivation in instructional videogames publication-title: Computers in Human Behavior – volume: 24 start-page: 136 year: 2007 end-page: 146 ident: b0205 article-title: Hybrid outcome prediction model for severe traumatic brain injury publication-title: Journal of Neurotrauma – volume: 22 start-page: 63 year: 2007 end-page: 72 ident: b0010 article-title: Cognitive plasticity as a modulating variable on the effects of memory training in elderly persons publication-title: Archives of Clinical Neuropsychology – reference: Gibert, K., & García-Rudolph, A. (2007). Desarrollo de herramientas para evaluar el resultado de las tecnologías aplicadas al proceso rehabilitador Estudio a partir de dos modelos concretos: Lesión Medular y Daño Cerebral Adquirido. Cap 6: Posibilidades de aplicación de minería de datos para el descubrimiento de conocimiento a partir de la práctica clínica. Madrid: Plan Nacional para el Sistema Nacional de Salud del Ministerio de Sanidad y Consumo. Barcelona: Agència d’Avaluació de Tecnologia I Recerca Mèdiques. Informes de Evaluación de Tecnologias Sanitarias. AATRM núm. 2006/11. Barcelona. – volume: 82 start-page: 639 year: 2003 end-page: 652 ident: b0175 article-title: It’s more than a black box; it’s a Russian doll: Defining rehabilitation treatments publication-title: American Journal of Physical Medicine and Rehabilitation – volume: 22 start-page: 1040 year: 2005 end-page: 1051 ident: b0190 article-title: Clinical elements that predict outcome after traumatic brain injury: A prospective multicenter recursive partitioning (decision-tree) analysis publication-title: Journal of Neurotrauma – reference: Ma, M., Charles, D., McDonough S., Crosbie, Oliver, L., & McGoldrick C., 2007. Adaptive virtual reality games for rehabilitation of motor disorders. Universal Access in Human–Computer Interaction, Ambient, Interaction. – reference: Rego, P., Moreira, P. M. & Reis, L. P. (2010). Serious games for rehabilitation a survey and a classification towards a taxonomy. In – reference: (pp. 1–6). – volume: 113 start-page: 585 year: 2010 end-page: 590 ident: b0215 article-title: Use of an artificial neural network to predict head injury outcome publication-title: Journal of Neurosurgery – reference: Sohlberg, M. M. (2001). In A. Mateer (Ed.), – volume: 97 start-page: 326 year: 2002 end-page: 336 ident: b0185 article-title: Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression publication-title: Journal of Neurosurgery – start-page: 59 year: 1986 end-page: 84 ident: b0195 article-title: Cognitive assessment in the neuropsychological rehabilitation of head-injured adults publication-title: Clinical neuropsychology of intervention – start-page: 514 year: 1978 end-page: 515 ident: b0085 article-title: Neuropsychology publication-title: Great soviet encyclopedia: A translation of the third edition – volume: 18 start-page: 88 year: 2007 end-page: 94 ident: b0055 article-title: Action-video-game experience alters the spatial resolution of vision publication-title: Psychological Science – reference: (5th ed.) American Society of Health-System Pharmacists (January 1) ISBN-13: 978-1585282418. – reference: (pp. 108–113). Valencia, Spain. – volume: 15 start-page: 82 year: 2005 end-page: 101 ident: b0040 article-title: Flow in computer-mediated environments: Promises and challenges publication-title: Communications of the Association for Information Systems – reference: Whalen, S. (1998). Revisiting the problem of match. In N. Colangelo, S. Assouline (Eds.), – volume: 9 year: 2009 ident: b0200 article-title: A comparative analysis of multilevel computer-assisted decision making systems for traumatic injuries publication-title: Medical Informatics and Decision Making – volume: 51 start-page: 687 year: 2010 end-page: 698 ident: b0110 article-title: Efectividad de la rehabilitación neuropsicológica en el daño cerebral adquirido (I): atención, velocidad de procesamiento, memoria y lenguaje publication-title: Revista de Neurologia – reference: . – reference: Bernabeu, M., & Roig. T. (1999). La rehabilitación del traumatismo craneoencefálico: un enfoque interdisciplinar. Barcelona: Fundació Institut Guttmann. – start-page: 1 year: 2012 end-page: 15 ident: b0165 article-title: Acquired brain injury: Combining social psychological and neuropsychological perspectives publication-title: Health Psychology Review – reference: DiPiro, J. T., & Spruill, W. J. (2010). – reference: Serra, J., Arcos, J. Ll., Garcia-Rudolph, A., García-Molina, A., Roig, T., & Tormos, J. M. (2013). Cognitive prognosis of acquired brain injury patients using machine learning techniques. In – start-page: 33 year: 1934 end-page: 52 ident: b0155 article-title: Dinamika umstvennogo razvitiia shkol’nika v sviazi s obucheniem publication-title: Umstvennoe razvitie detei v protsesse obucheniia – volume: 419 start-page: 293 year: 2002 end-page: 296 ident: b0080 article-title: Incremental training increases the plasticity of the auditory space map in adult barn owls publication-title: Nature – ident: 10.1016/j.eswa.2014.03.001_b0180 – ident: 10.1016/j.eswa.2014.03.001_b0130 – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2014.03.001_b0165 article-title: Acquired brain injury: Combining social psychological and neuropsychological perspectives publication-title: Health Psychology Review – year: 1993 ident: 10.1016/j.eswa.2014.03.001_b0125 – year: 2009 ident: 10.1016/j.eswa.2014.03.001_b0070 – ident: 10.1016/j.eswa.2014.03.001_b0025 – ident: 10.1016/j.eswa.2014.03.001_b0050 – volume: 24 start-page: 2415 year: 2008 ident: 10.1016/j.eswa.2014.03.001_b0115 article-title: The roles of task difficulty and prior videogame experience on performance and motivation in instructional videogames publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2008.02.016 – ident: 10.1016/j.eswa.2014.03.001_b0140 – volume: 92 start-page: 19 issue: 5 year: 2011 ident: 10.1016/j.eswa.2014.03.001_b0020 article-title: Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008 publication-title: Archives of Physical Medicine and Rehabilitation – ident: 10.1016/j.eswa.2014.03.001_b0035 – start-page: 33 year: 1934 ident: 10.1016/j.eswa.2014.03.001_b0155 article-title: Dinamika umstvennogo razvitiia shkol’nika v sviazi s obucheniem – volume: 9 issue: 2 year: 2009 ident: 10.1016/j.eswa.2014.03.001_b0200 article-title: A comparative analysis of multilevel computer-assisted decision making systems for traumatic injuries publication-title: Medical Informatics and Decision Making – volume: 97 start-page: 326 year: 2002 ident: 10.1016/j.eswa.2014.03.001_b0185 article-title: Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression publication-title: Journal of Neurosurgery doi: 10.3171/jns.2002.97.2.0326 – ident: 10.1016/j.eswa.2014.03.001_b0170 – volume: 40 start-page: 1054 issue: 4 year: 2013 ident: 10.1016/j.eswa.2014.03.001_b0100 article-title: Data mining applied to the cognitive rehabilitation of patients with acquired brain injury. Data mining applied to the cognitive rehabilitation of patients with acquired brain injury publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.08.034 – volume: 15 start-page: 82 year: 2005 ident: 10.1016/j.eswa.2014.03.001_b0040 article-title: Flow in computer-mediated environments: Promises and challenges publication-title: Communications of the Association for Information Systems doi: 10.17705/1CAIS.01504 – volume: 31 start-page: 324 issue: 2 year: 2004 ident: 10.1016/j.eswa.2014.03.001_b0105 article-title: Flow, and the online search experience publication-title: Journal of Consumer Research doi: 10.1086/422111 – volume: 21 start-page: 886 issue: 7 year: 2004 ident: 10.1016/j.eswa.2014.03.001_b0210 article-title: Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables publication-title: Journal of Neurotrauma doi: 10.1089/0897715041526249 – volume: 18 start-page: 88 issue: 1 year: 2007 ident: 10.1016/j.eswa.2014.03.001_b0055 article-title: Action-video-game experience alters the spatial resolution of vision publication-title: Psychological Science doi: 10.1111/j.1467-9280.2007.01853.x – volume: 22 start-page: 1040 issue: 10 year: 2005 ident: 10.1016/j.eswa.2014.03.001_b0190 article-title: Clinical elements that predict outcome after traumatic brain injury: A prospective multicenter recursive partitioning (decision-tree) analysis publication-title: Journal of Neurotrauma doi: 10.1089/neu.2005.22.1040 – volume: 22 start-page: 63 year: 2007 ident: 10.1016/j.eswa.2014.03.001_b0010 article-title: Cognitive plasticity as a modulating variable on the effects of memory training in elderly persons publication-title: Archives of Clinical Neuropsychology doi: 10.1016/j.acn.2006.06.020 – start-page: 88 year: 2008 ident: 10.1016/j.eswa.2014.03.001_b0065 article-title: Tele-rehabilitation using the Rutgers master II glove following carpal tunnel release surgery – volume: 28 start-page: 377 year: 2005 ident: 10.1016/j.eswa.2014.03.001_b0120 article-title: The plastic human brain cortex publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.27.070203.144216 – volume: 113 start-page: 585 issue: 3 year: 2010 ident: 10.1016/j.eswa.2014.03.001_b0215 article-title: Use of an artificial neural network to predict head injury outcome publication-title: Journal of Neurosurgery doi: 10.3171/2009.11.JNS09857 – year: 2006 ident: 10.1016/j.eswa.2014.03.001_b0220 article-title: The accuracy of artificial neural networks in predicting long-term outcome after traumatic brain injury publication-title: Journal of Head Trauma Rehabilitation doi: 10.1097/00001199-200607000-00003 – start-page: 59 year: 1986 ident: 10.1016/j.eswa.2014.03.001_b0195 article-title: Cognitive assessment in the neuropsychological rehabilitation of head-injured adults – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.eswa.2014.03.001_b0060 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explorations doi: 10.1145/1656274.1656278 – year: 1978 ident: 10.1016/j.eswa.2014.03.001_b0160 – ident: 10.1016/j.eswa.2014.03.001_b0045 – volume: 419 start-page: 293 issue: 6904 year: 2002 ident: 10.1016/j.eswa.2014.03.001_b0080 article-title: Incremental training increases the plasticity of the auditory space map in adult barn owls publication-title: Nature doi: 10.1038/nature01002 – volume: 23 start-page: 20 issue: 1 year: 2009 ident: 10.1016/j.eswa.2014.03.001_b0135 article-title: Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al’.s (2000, 2005) systematic reviews publication-title: Neuropsychology doi: 10.1037/a0013659 – ident: 10.1016/j.eswa.2014.03.001_b0030 – volume: 51 start-page: S225 year: 2008 ident: 10.1016/j.eswa.2014.03.001_b0075 article-title: Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage publication-title: Journal of Speech, Language, and Hearing Research doi: 10.1044/1092-4388(2008/018) – volume: 7 start-page: 728 issue: 8 year: 2008 ident: 10.1016/j.eswa.2014.03.001_b0095 article-title: Moderate and severe traumatic brain injury in adults publication-title: Lancet Neurology doi: 10.1016/S1474-4422(08)70164-9 – volume: 82 start-page: 639 year: 2003 ident: 10.1016/j.eswa.2014.03.001_b0175 article-title: It’s more than a black box; it’s a Russian doll: Defining rehabilitation treatments publication-title: American Journal of Physical Medicine and Rehabilitation doi: 10.1097/01.PHM.0000078200.61840.2D – start-page: 514 year: 1978 ident: 10.1016/j.eswa.2014.03.001_b0085 article-title: Neuropsychology – ident: 10.1016/j.eswa.2014.03.001_b0090 doi: 10.1007/978-3-540-73281-5_74 – volume: 51 start-page: 687 year: 2010 ident: 10.1016/j.eswa.2014.03.001_b0110 article-title: Efectividad de la rehabilitación neuropsicológica en el daño cerebral adquirido (I): atención, velocidad de procesamiento, memoria y lenguaje publication-title: Revista de Neurologia doi: 10.33588/rn.5111.2009652 – ident: 10.1016/j.eswa.2014.03.001_b0145 – ident: 10.1016/j.eswa.2014.03.001_b0005 – volume: 24 start-page: 136 issue: 1 year: 2007 ident: 10.1016/j.eswa.2014.03.001_b0205 article-title: Hybrid outcome prediction model for severe traumatic brain injury publication-title: Journal of Neurotrauma doi: 10.1089/neu.2006.0113 – volume: 9 start-page: e72 issue: Supl year: 2009 ident: 10.1016/j.eswa.2014.03.001_b0150 article-title: Information and communications technology in learning development and rehabilitation publication-title: International Journal of Integrated Care |
SSID | ssj0017007 |
Score | 2.1707819 |
Snippet | •A platform to search for data driven flow experiences in patients is introduced.•Traumatic Brain Injury patients rehabilitation plans based on empirical... Cognitive rehabilitation (CR) treatment consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions in a... |
SourceID | csuc proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5238 |
SubjectTerms | 62H Multivariate analysis Algorithms Anàlisi multivariable Anàlisi multivariant Applied sciences Biological and medical sciences Child clinical studies Cognitive tasks Computer science; control theory; systems Computer systems and distributed systems. User interface Construction Construction equipment Criteria Data mining Data processing. List processing. Character string processing Decision theory. Utility theory Estadística aplicada Estadística biosanitària Estadística matemàtica Exact sciences and technology Machine learning Matemàtiques i estadística Medical sciences Memory organisation. Data processing Multivariate analysis Operational research and scientific management Operational research. Management science Organic mental disorders. Neuropsychology Patients Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Software Statistics Tasks Àrees temàtiques de la UPC |
Title | A data mining approach to identify cognitive NeuroRehabilitation Range in Traumatic Brain Injury patients |
URI | https://dx.doi.org/10.1016/j.eswa.2014.03.001 https://www.proquest.com/docview/1567059775 https://www.proquest.com/docview/1677997837 https://recercat.cat/handle/2072/251641 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BatwwEBVhewmUtklbukm7qNBTg7v2Spbs4zY0bFLIIU0gNyHLEjgk3iX2UnLJt2fGkg2msIeCfZCR8aAZzRvhmTeEfBOWOya4iwrByojbMo-KvCgjLVniIBxJnWf7vBSrG35xm97ukdO-FgbTKoPv9z6989bhyTys5nxTVfM_EBwAHMLFEbM5FvEhex3Y9I_nIc0D6eek59uTEc4OhTM-x8s2f5F7KOGe6DQZgdPENFszwqjXG93Ayjnf8uIf791B0tk78ibEknTpxT0ge7Y-JG_7Pg00bNtDso8RpSdkfk-qJcWsUPrQdYagPac4bde06op23RMdcopox91xNWLzpldYj0CrmgLObTvGV_oTG03Q8_oONEQDVWvzgdyc_bo-XUWh30JkeLZoI-FslmmZFc7mJs9kXjIda1diX1BdcsuswwYIRsQQNArwBFxrbpLY5ILbwqTsI5nU69p-IlQsJMAceFpbcM6NyAorkZkMPIQQPLNTkvQLrUwQH3ti3Ks-6-xOoXIUKkfFDFPvpuRkeGfjqTh2zv6O-lNgQ_bR6FYhj_YwwHsRy4WC8E5wmJz2WlYj61MALDs_MhuZxCAXgD6Ds7eYkq-9jSjYt_gzRtd2vW0UnJtljOR_6Y45QsIyyozJo_8U8Jjs48gnxX0mk_Zxa79AFNUWs26bzMir5fnv1eULv64cSA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBA6CNt6faRqtBTi1l7JUv2cRsadpt0D2kCuQlZlsCh9S6xl9B_3xlLNpjCHgr2wbaEB4003wjNfEPIJ2G5Y4K7qBCsjLgt86jIizLSkiUO3JHUebbPtVje8O-36e0BOetzYTCsMth-b9M7ax3ezMJozrZVNfsJzgHAIVwcMZvnj8ghslPxCTlcrC6W6-EwQcY-axraR9gh5M74MC_bPCD9UMI912kywqeJaXZmBFPHW93A4Dlf9eIfA96h0vkz8iS4k3ThJX5ODmx9Qp72pRpoWLkn5AidSs_J_IJUC4qBofR3VxyC9rTitN3QqsvbdX_oEFZEO_qOqxGhN73ClARa1RSgbteRvtKvWGuCruo7UBINbK3NS3Jz_u36bBmFkguR4dm8jYSzWaZlVjibmzyTecl0rF2JpUF1yS2zDmsgGBGD3yjAGHCtuUlikwtuC5OyV2RSb2r7mlAxl4B0YGxtwTk3IiusRHIyMBJC8MxOSdIPtDJBfCyL8Uv1gWd3CpWjUDkqZhh9NyVfhj5bz8axt_Vn1J-CaWTvjW4VUmkPD3jPYzlX4OEJDo3TXstqNAEVYMven5yOpsQgF-A-g-23mJKP_RxRsHTxPEbXdrNrFGydZYz8f-meNkLCMMqMyTf_KeAH8nh5_eNSXa7WF2_JEX7xMXLvyKS939n34FS1xWlYNH8Ba1ke-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+mining+approach+to+identify+cognitive+NeuroRehabilitation+Range+in+Traumatic+Brain+Injury+patients&rft.jtitle=Expert+systems+with+applications&rft.au=Garc%C3%ADa-Rudolph%2C+Alejandro&rft.au=Gibert%2C+Karina&rft.date=2014-09-01&rft.issn=0957-4174&rft.volume=41&rft.issue=11&rft.spage=5238&rft.epage=5251&rft_id=info:doi/10.1016%2Fj.eswa.2014.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2014_03_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |