An investigation to determine if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones

Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this stud...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 35; no. 7; pp. 875 - 883
Main Authors Eberle, Sebastian, Göttlinger, Michael, Augat, Peter
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2013
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2012.08.022

Cover

Loading…
Abstract Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density–elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of −11% in strain prediction, a mean error of −23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density–elasticity relationship. However, it was also found that the most appropriate density–elasticity relationship was specimen-specific.
AbstractList Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density-elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of -11% in strain prediction, a mean error of -23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density-elasticity relationship. However, it was also found that the most appropriate density-elasticity relationship was specimen-specific.
Abstract Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density–elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of −11% in strain prediction, a mean error of −23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density–elasticity relationship. However, it was also found that the most appropriate density–elasticity relationship was specimen-specific.
Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density–elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of −11% in strain prediction, a mean error of −23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density–elasticity relationship. However, it was also found that the most appropriate density–elasticity relationship was specimen-specific.
Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density-elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of -11% in strain prediction, a mean error of -23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density-elasticity relationship. However, it was also found that the most appropriate density-elasticity relationship was specimen-specific.Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density-elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of -11% in strain prediction, a mean error of -23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density-elasticity relationship. However, it was also found that the most appropriate density-elasticity relationship was specimen-specific.
Author Eberle, Sebastian
Augat, Peter
Göttlinger, Michael
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Eberle
  fullname: Eberle, Sebastian
  email: sebastian.eberle@bgu-murnau.de
  organization: Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany
– sequence: 2
  givenname: Michael
  surname: Göttlinger
  fullname: Göttlinger, Michael
  organization: Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany
– sequence: 3
  givenname: Peter
  surname: Augat
  fullname: Augat, Peter
  organization: Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23010570$$D View this record in MEDLINE/PubMed
BookMark eNqNks2OFCEUhStmjPOjr6As3XR7i_rthZrOxL9kEhfqmlBw6aGloAWqk975Dr6Bj-aTeMuecTGJcVZAOOcA3-G8OPHBY1E8K2FZQtm-2C5H1Og3u-vDkkPJl9AvgfMHxVnZd9WihgpOaF41sKibqjotzlPaAkBdt9Wj4pRXUELTwVnxc-2Z9XtM2W5ktsGzHJjGjHG0Hpk1TLJk_cYh20tntcyoad8nmw-_vv9AJ8mpaMEizeeAdG13TEnPBmRTIrUJkaVp2KLKLO1QWWMVM9bbjAwdjugzk166Q8LEgmHX00huF_yGDfTq9Lh4aKRL-ORmvCi-vH3z-fL94urjuw-X66uFqnueF00Dg1qpVaOh0xXyptV9a8p6MLgyHHkPqlnpodO6bRvV1wAIsmt7Lfu6NAjVRfH8mLuL4dtERMRok0LnpMcwJUE026qDpqxJ-vRGOg1UhNhFO8p4ELdcSfDyKFAxpBTRCGL0B0-O0jpRgph7FFvxt0cx9yigF9Qj-bs7_tsj_u9cH51IqPYWo0jKoleobaQGhA72Hhmv7mQoR30p6b7iAdM2TJH6IiIikUd8mv_Z_M1KDsDr1czn9b8D7nWF3_dz7Dg
CitedBy_id crossref_primary_10_1016_j_jbiomech_2013_10_033
crossref_primary_10_1016_j_medengphy_2020_07_026
crossref_primary_10_1016_j_jocd_2019_02_005
crossref_primary_10_1016_j_jmbbm_2018_10_013
crossref_primary_10_1016_j_medengphy_2018_10_007
crossref_primary_10_1016_j_matpr_2022_01_222
crossref_primary_10_1016_j_medengphy_2024_104274
crossref_primary_10_1038_s41598_019_43028_6
crossref_primary_10_3390_ma13010106
crossref_primary_10_1016_j_clinbiomech_2015_05_002
crossref_primary_10_1016_j_jor_2015_01_009
crossref_primary_10_1016_j_medengphy_2015_10_002
crossref_primary_10_1016_j_jbiomech_2018_04_042
crossref_primary_10_1016_j_jmbbm_2022_105392
crossref_primary_10_1016_j_medengphy_2021_03_011
crossref_primary_10_1115_1_4040122
crossref_primary_10_1186_s40634_016_0072_2
crossref_primary_10_1016_j_medengphy_2019_02_002
crossref_primary_10_1080_10255842_2019_1661386
crossref_primary_10_1016_j_medengphy_2015_05_011
crossref_primary_10_1007_s00774_021_01217_2
crossref_primary_10_3389_fbioe_2024_1370837
crossref_primary_10_3389_fbioe_2024_1420047
crossref_primary_10_1080_10255842_2019_1615481
crossref_primary_10_1002_jor_25138
crossref_primary_10_1007_s10439_024_03668_w
crossref_primary_10_1016_j_medengphy_2019_09_007
crossref_primary_10_1016_j_medengphy_2021_07_012
crossref_primary_10_1016_j_medengphy_2016_03_006
crossref_primary_10_1007_s40846_017_0323_4
crossref_primary_10_1177_0391398818815479
crossref_primary_10_1002_jbmr_2572
crossref_primary_10_1177_0954411919856138
crossref_primary_10_1098_rsif_2014_0186
crossref_primary_10_1016_j_jbiomech_2022_111271
crossref_primary_10_1016_j_matpr_2021_08_197
crossref_primary_10_1080_10255842_2022_2098016
crossref_primary_10_1098_rsif_2013_1146
crossref_primary_10_1016_j_jbiomech_2014_11_042
crossref_primary_10_1016_j_jmbbm_2020_104115
crossref_primary_10_1016_j_jmbbm_2020_103866
crossref_primary_10_1007_s42452_021_04760_9
crossref_primary_10_1080_10255842_2020_1789863
crossref_primary_10_1016_j_jbiomech_2013_07_045
Cites_doi 10.1080/10255840601160484
10.1016/S0140-6736(86)90837-8
10.1007/BF01623175
10.1016/j.jbiomech.2007.06.017
10.1016/j.medengphy.2010.10.002
10.1002/jor.21360
10.1504/IJECB.2009.029190
10.1016/S0021-9290(03)00071-X
10.1016/j.jbiomech.2008.05.017
10.1016/j.jbiomech.2005.07.018
10.1016/j.medengphy.2007.05.006
10.1016/j.medengphy.2005.06.003
10.1016/S1350-4533(03)00081-X
10.1016/j.cmpb.2008.05.009
10.1098/rsta.2010.0041
10.1016/j.medengphy.2010.09.018
10.1002/jor.1100120610
10.1243/09544119JEIM553
10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A
10.1002/sim.3086
10.1016/j.jbiomech.2009.09.051
10.1016/j.jbiomech.2011.03.024
10.1002/jor.1100090315
10.1016/j.medengphy.2007.12.009
10.1016/j.jbiomech.2006.09.018
10.1243/09544119JEIM649
10.1016/j.jbiomech.2007.09.009
10.1109/TBME.2006.879473
10.1016/j.compbiomed.2010.02.011
10.1016/j.jmbbm.2011.02.006
10.1016/j.jbiomech.2008.08.017
10.1016/j.jbiomech.2007.02.010
10.1016/0021-9290(94)90056-6
10.1016/j.jbiomech.2006.10.038
10.1016/j.clinbiomech.2007.08.024
10.1016/j.cmpb.2009.11.009
ContentType Journal Article
Copyright 2012 IPEM
IPEM
Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 IPEM
– notice: IPEM
– notice: Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.medengphy.2012.08.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 883
ExternalDocumentID 23010570
10_1016_j_medengphy_2012_08_022
S1350453312002494
1_s2_0_S1350453312002494
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c482t-550bc9c95d07d3e256d86f14bfe9f2e280c59db7dd665c8400e0a768da841fe03
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Mon Jul 21 09:36:14 EDT 2025
Thu Apr 03 07:08:55 EDT 2025
Thu Apr 24 23:01:09 EDT 2025
Tue Jul 01 04:24:47 EDT 2025
Fri Feb 23 02:29:18 EST 2024
Sun Feb 23 10:19:58 EST 2025
Tue Aug 26 16:32:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Finite element method
Validation
Femur
Density–elasticity relationship
Subject-specific
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-550bc9c95d07d3e256d86f14bfe9f2e280c59db7dd665c8400e0a768da841fe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23010570
PQID 1356370514
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1356370514
pubmed_primary_23010570
crossref_citationtrail_10_1016_j_medengphy_2012_08_022
crossref_primary_10_1016_j_medengphy_2012_08_022
elsevier_sciencedirect_doi_10_1016_j_medengphy_2012_08_022
elsevier_clinicalkeyesjournals_1_s2_0_S1350453312002494
elsevier_clinicalkey_doi_10_1016_j_medengphy_2012_08_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yosibash, Trabelsi, Milgrom (bib0080) 2007; 40
Au, Palathinkal, Liggins, Raso, Carey, Lambert (bib0155) 2008; 92
Schileo, Dall’ara, Taddei, Malandrino, Schotkamp, Baleani (bib0095) 2008; 41
Austman, Milner, Holdsworth, Dunning (bib0150) 2009; 223
Cong, Buijs, Dragomir-Daescu (bib0075) 2011; 33
Au, Liggins, Raso, Carey, Amirfazli (bib0175) 2010; 99
Henninger, Reese, Anderson, Weiss (bib0090) 2010; 224
Huang, Tsai, Lin, Chien, Hsu (bib0070) 2010; 40
Trabelsi, Yosibash, Wutte, Augat, Eberle (bib0010) 2011; 44
Zioupos, Currey, Hamer (bib0180) 1999; 45
Dressler, Au, Carey, Amirfazli (bib0160) 2009; 1
Anderson, Ellis, Weiss (bib0085) 2007; 10
Keller (bib0055) 1994; 27
Taddei, Martelli, Reggiani, Cristofolini, Viceconti (bib0125) 2006; 53
Les, Keyak, Stover, Taylor, Kaneps (bib0105) 1994; 12
Baca, Horak, Mikulenka, Dzupa (bib0165) 2008; 30
Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0005) 2007; 40
Krouwer (bib0140) 2008; 27
Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0050) 2008; 23
Weis, Miga, Granero-Moltó, Spagnoli (bib0040) 2010; 43
Faulkner, Glüer, Grampp, Genant (bib0115) 1993; 3
Chen, McKittrick (bib0185) 2011; 4
Keyak, Falkinstein (bib0100) 2003; 25
Bland, Altman (bib0135) 1986; 1
Morgan, Bayraktar, Keaveny (bib0060) 2003; 36
Peng, Bai, Zeng, Zhou (bib0170) 2006; 28
Austman, Milner, Holdsworth, Dunning (bib0020) 2008; 41
Bosisio, Talmant, Skalli, Laugier, Mitton (bib0065) 2007; 40
Schileo, Taddei, Cristofolini, Viceconti (bib0025) 2008; 41
Austman, King, Dunning (bib0035) 2011; 29
Speirs, Heller, Duda, Taylor (bib0110) 2007; 40
Edwards, Troy (bib0015) 2011
Wille, Rank, Yosibash (bib0190) 2012
Snyder, Schneider (bib0145) 1991; 9
Rathnayaka, Sahama, Schuetz, Schmutz (bib0130) 2011; 33
Christen, Webster, Müller (bib0030) 2010; 368
Taddei, Cristofolini, Martelli, Gill, Viceconti (bib0045) 2006; 39
Helgason, Taddei, Pálsson, Schileo, Cristofolini, Viceconti (bib0120) 2008; 30
Taddei (10.1016/j.medengphy.2012.08.022_bib0045) 2006; 39
Krouwer (10.1016/j.medengphy.2012.08.022_bib0140) 2008; 27
Helgason (10.1016/j.medengphy.2012.08.022_bib0120) 2008; 30
Morgan (10.1016/j.medengphy.2012.08.022_bib0060) 2003; 36
Baca (10.1016/j.medengphy.2012.08.022_bib0165) 2008; 30
Schileo (10.1016/j.medengphy.2012.08.022_bib0025) 2008; 41
Weis (10.1016/j.medengphy.2012.08.022_bib0040) 2010; 43
Helgason (10.1016/j.medengphy.2012.08.022_bib0050) 2008; 23
Taddei (10.1016/j.medengphy.2012.08.022_bib0125) 2006; 53
Les (10.1016/j.medengphy.2012.08.022_bib0105) 1994; 12
Snyder (10.1016/j.medengphy.2012.08.022_bib0145) 1991; 9
Schileo (10.1016/j.medengphy.2012.08.022_bib0095) 2008; 41
Speirs (10.1016/j.medengphy.2012.08.022_bib0110) 2007; 40
Schileo (10.1016/j.medengphy.2012.08.022_bib0005) 2007; 40
Anderson (10.1016/j.medengphy.2012.08.022_bib0085) 2007; 10
Peng (10.1016/j.medengphy.2012.08.022_bib0170) 2006; 28
Yosibash (10.1016/j.medengphy.2012.08.022_bib0080) 2007; 40
Huang (10.1016/j.medengphy.2012.08.022_bib0070) 2010; 40
Keyak (10.1016/j.medengphy.2012.08.022_bib0100) 2003; 25
Austman (10.1016/j.medengphy.2012.08.022_bib0150) 2009; 223
Austman (10.1016/j.medengphy.2012.08.022_bib0035) 2011; 29
Christen (10.1016/j.medengphy.2012.08.022_bib0030) 2010; 368
Trabelsi (10.1016/j.medengphy.2012.08.022_bib0010) 2011; 44
Henninger (10.1016/j.medengphy.2012.08.022_bib0090) 2010; 224
Rathnayaka (10.1016/j.medengphy.2012.08.022_bib0130) 2011; 33
Cong (10.1016/j.medengphy.2012.08.022_bib0075) 2011; 33
Bland (10.1016/j.medengphy.2012.08.022_bib0135) 1986; 1
Au (10.1016/j.medengphy.2012.08.022_bib0155) 2008; 92
Edwards (10.1016/j.medengphy.2012.08.022_bib0015) 2011
Dressler (10.1016/j.medengphy.2012.08.022_bib0160) 2009; 1
Austman (10.1016/j.medengphy.2012.08.022_bib0020) 2008; 41
Faulkner (10.1016/j.medengphy.2012.08.022_bib0115) 1993; 3
Keller (10.1016/j.medengphy.2012.08.022_bib0055) 1994; 27
Bosisio (10.1016/j.medengphy.2012.08.022_bib0065) 2007; 40
Chen (10.1016/j.medengphy.2012.08.022_bib0185) 2011; 4
Au (10.1016/j.medengphy.2012.08.022_bib0175) 2010; 99
Wille (10.1016/j.medengphy.2012.08.022_bib0190) 2012
Zioupos (10.1016/j.medengphy.2012.08.022_bib0180) 1999; 45
References_xml – volume: 30
  start-page: 924
  year: 2008
  end-page: 930
  ident: bib0165
  article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses
  publication-title: Med Eng Phys
– volume: 33
  start-page: 226
  year: 2011
  end-page: 233
  ident: bib0130
  article-title: Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions
  publication-title: Med Eng Phys
– volume: 99
  start-page: 154
  year: 2010
  end-page: 171
  ident: bib0175
  article-title: Representation of bone heterogeneity in subject-specific finite element models for knee
  publication-title: Comput Methods Programs Biomed
– volume: 28
  start-page: 227
  year: 2006
  end-page: 233
  ident: bib0170
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med Eng Phys
– volume: 40
  start-page: 2982
  year: 2007
  end-page: 2989
  ident: bib0005
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
– volume: 25
  start-page: 781
  year: 2003
  end-page: 787
  ident: bib0100
  article-title: Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load
  publication-title: Med Eng Phys
– volume: 27
  start-page: 778
  year: 2008
  end-page: 780
  ident: bib0140
  article-title: Why Bland–Altman plots should use
  publication-title: Stat Med
– volume: 40
  start-page: 2022
  year: 2007
  end-page: 2028
  ident: bib0065
  article-title: Apparent Young's modulus of human radius using inverse finite-element method
  publication-title: J Biomech
– volume: 92
  start-page: 20
  year: 2008
  end-page: 34
  ident: bib0155
  article-title: A NURBS-based technique for subject-specific construction of knee bone geometry
  publication-title: Comput Methods Programs Biomed
– volume: 368
  start-page: 2653
  year: 2010
  end-page: 2668
  ident: bib0030
  article-title: Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk
  publication-title: Philos Trans R Soc Ser A: Math Phys Eng Sci
– volume: 43
  start-page: 557
  year: 2010
  end-page: 562
  ident: bib0040
  article-title: A finite element inverse analysis to assess functional improvement during the fracture healing process
  publication-title: J Biomech
– volume: 39
  start-page: 2457
  year: 2006
  end-page: 2467
  ident: bib0045
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: J Biomech
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib0060
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
– volume: 29
  start-page: 1418
  year: 2011
  end-page: 1423
  ident: bib0035
  article-title: Bone stresses before and after insertion of two commercially available distal ulnar implants using finite element analysis
  publication-title: J Orthop Res
– volume: 33
  start-page: 164
  year: 2011
  end-page: 173
  ident: bib0075
  article-title: In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur
  publication-title: Med Eng Phys
– volume: 40
  start-page: 3688
  year: 2007
  end-page: 3699
  ident: bib0080
  article-title: Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations
  publication-title: J Biomech
– volume: 40
  start-page: 464
  year: 2010
  end-page: 468
  ident: bib0070
  article-title: A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach
  publication-title: Comput Biol Med
– volume: 30
  start-page: 444
  year: 2008
  end-page: 453
  ident: bib0120
  article-title: A modified method for assigning material properties to FE models of bones
  publication-title: Med Eng Phys
– volume: 10
  start-page: 171
  year: 2007
  end-page: 184
  ident: bib0085
  article-title: Verification, validation and sensitivity studies in computational biomechanics
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 3
  start-page: 36
  year: 1993
  end-page: 42
  ident: bib0115
  article-title: Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data
  publication-title: Osteoporos Int
– volume: 27
  start-page: 1159
  year: 1994
  end-page: 1168
  ident: bib0055
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J Biomech
– volume: 41
  start-page: 2483
  year: 2008
  end-page: 2491
  ident: bib0095
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J Biomech
– volume: 9
  start-page: 422
  year: 1991
  end-page: 431
  ident: bib0145
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: J Orthop Res
– volume: 223
  start-page: 787
  year: 2009
  end-page: 794
  ident: bib0150
  article-title: Development of a customized density–modulus relationship for use in subject-specific finite element models of the ulna
  publication-title: Proc Inst Mech Eng H: J Eng Med
– start-page: 1
  year: 2012
  end-page: 9
  ident: bib0190
  article-title: Prediction of the mechanical response of the femur with uncertain elastic properties
  publication-title: J Biomech
– volume: 12
  start-page: 822
  year: 1994
  end-page: 833
  ident: bib0105
  article-title: Estimation of material properties in the equine metacarpus with use of quantitative computed tomography
  publication-title: J Orthop Res
– volume: 41
  start-page: 3171
  year: 2008
  end-page: 3176
  ident: bib0020
  article-title: The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone
  publication-title: J Biomech
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: bib0050
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech (Bristol, Avon).
– volume: 45
  start-page: 108
  year: 1999
  end-page: 116
  ident: bib0180
  article-title: The role of collagen in the declining mechanical properties of aging human cortical bone
  publication-title: J Biomed Mater Res
– volume: 40
  start-page: 2318
  year: 2007
  end-page: 2323
  ident: bib0110
  article-title: Physiologically based boundary conditions in finite element modelling
  publication-title: J Biomech
– volume: 44
  start-page: 1666
  year: 2011
  end-page: 1672
  ident: bib0010
  article-title: Patient-specific finite element analysis of the human femur – a double-blinded biomechanical validation
  publication-title: J Biomech
– volume: 1
  start-page: 307
  year: 1986
  end-page: 310
  ident: bib0135
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– year: 2011
  ident: bib0015
  article-title: Finite element prediction of surface strain and fracture strength at the distal radius
  publication-title: Med Eng Phys
– volume: 41
  start-page: 356
  year: 2008
  end-page: 367
  ident: bib0025
  article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro
  publication-title: J Biomech
– volume: 53
  start-page: 2194
  year: 2006
  end-page: 2200
  ident: bib0125
  article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties
  publication-title: IEEE Trans Biomed Eng
– volume: 1
  start-page: 146
  year: 2009
  end-page: 171
  ident: bib0160
  article-title: Subject-specific finite element model of knee: experimental validation using composite and bovine specimens
  publication-title: Int J Exp Comput Biomech
– volume: 224
  start-page: 801
  year: 2010
  end-page: 812
  ident: bib0090
  article-title: Validation of computational models in biomechanics
  publication-title: Proc Inst Mech Eng H: J Eng Med
– volume: 4
  start-page: 961
  year: 2011
  end-page: 973
  ident: bib0185
  article-title: Compressive mechanical properties of demineralized and deproteinized cancellous bone
  publication-title: J Mech Behav Biomed Mater
– volume: 10
  start-page: 171
  issue: 3
  year: 2007
  ident: 10.1016/j.medengphy.2012.08.022_bib0085
  article-title: Verification, validation and sensitivity studies in computational biomechanics
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255840601160484
– volume: 1
  start-page: 307
  issue: 8476
  year: 1986
  ident: 10.1016/j.medengphy.2012.08.022_bib0135
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 3
  start-page: 36
  issue: 1
  year: 1993
  ident: 10.1016/j.medengphy.2012.08.022_bib0115
  article-title: Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data
  publication-title: Osteoporos Int
  doi: 10.1007/BF01623175
– volume: 40
  start-page: 3688
  issue: 16
  year: 2007
  ident: 10.1016/j.medengphy.2012.08.022_bib0080
  article-title: Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.06.017
– volume: 33
  start-page: 226
  issue: 2
  year: 2011
  ident: 10.1016/j.medengphy.2012.08.022_bib0130
  article-title: Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.10.002
– volume: 29
  start-page: 1418
  issue: 9
  year: 2011
  ident: 10.1016/j.medengphy.2012.08.022_bib0035
  article-title: Bone stresses before and after insertion of two commercially available distal ulnar implants using finite element analysis
  publication-title: J Orthop Res
  doi: 10.1002/jor.21360
– volume: 1
  start-page: 146
  issue: 2
  year: 2009
  ident: 10.1016/j.medengphy.2012.08.022_bib0160
  article-title: Subject-specific finite element model of knee: experimental validation using composite and bovine specimens
  publication-title: Int J Exp Comput Biomech
  doi: 10.1504/IJECB.2009.029190
– volume: 36
  start-page: 897
  issue: 7
  year: 2003
  ident: 10.1016/j.medengphy.2012.08.022_bib0060
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 41
  start-page: 2483
  issue: 11
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0095
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.05.017
– volume: 39
  start-page: 2457
  issue: 13
  year: 2006
  ident: 10.1016/j.medengphy.2012.08.022_bib0045
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2005.07.018
– volume: 30
  start-page: 444
  issue: 4
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0120
  article-title: A modified method for assigning material properties to FE models of bones
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.05.006
– volume: 28
  start-page: 227
  issue: 3
  year: 2006
  ident: 10.1016/j.medengphy.2012.08.022_bib0170
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2005.06.003
– volume: 25
  start-page: 781
  issue: 9
  year: 2003
  ident: 10.1016/j.medengphy.2012.08.022_bib0100
  article-title: Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(03)00081-X
– volume: 92
  start-page: 20
  issue: 1
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0155
  article-title: A NURBS-based technique for subject-specific construction of knee bone geometry
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2008.05.009
– volume: 368
  start-page: 2653
  issue: 1920
  year: 2010
  ident: 10.1016/j.medengphy.2012.08.022_bib0030
  article-title: Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk
  publication-title: Philos Trans R Soc Ser A: Math Phys Eng Sci
  doi: 10.1098/rsta.2010.0041
– volume: 33
  start-page: 164
  issue: 2
  year: 2011
  ident: 10.1016/j.medengphy.2012.08.022_bib0075
  article-title: In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.09.018
– volume: 12
  start-page: 822
  issue: 6
  year: 1994
  ident: 10.1016/j.medengphy.2012.08.022_bib0105
  article-title: Estimation of material properties in the equine metacarpus with use of quantitative computed tomography
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100120610
– volume: 223
  start-page: 787
  issue: 6
  year: 2009
  ident: 10.1016/j.medengphy.2012.08.022_bib0150
  article-title: Development of a customized density–modulus relationship for use in subject-specific finite element models of the ulna
  publication-title: Proc Inst Mech Eng H: J Eng Med
  doi: 10.1243/09544119JEIM553
– volume: 45
  start-page: 108
  issue: 2
  year: 1999
  ident: 10.1016/j.medengphy.2012.08.022_bib0180
  article-title: The role of collagen in the declining mechanical properties of aging human cortical bone
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A
– volume: 27
  start-page: 778
  issue: 5
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0140
  article-title: Why Bland–Altman plots should use X, not (Y+X)/2 when X is a reference method
  publication-title: Stat Med
  doi: 10.1002/sim.3086
– volume: 43
  start-page: 557
  issue: 3
  year: 2010
  ident: 10.1016/j.medengphy.2012.08.022_bib0040
  article-title: A finite element inverse analysis to assess functional improvement during the fracture healing process
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.09.051
– volume: 44
  start-page: 1666
  issue: 9
  year: 2011
  ident: 10.1016/j.medengphy.2012.08.022_bib0010
  article-title: Patient-specific finite element analysis of the human femur – a double-blinded biomechanical validation
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.03.024
– volume: 9
  start-page: 422
  issue: 3
  year: 1991
  ident: 10.1016/j.medengphy.2012.08.022_bib0145
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100090315
– volume: 30
  start-page: 924
  issue: 7
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0165
  article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.12.009
– volume: 40
  start-page: 2022
  issue: 9
  year: 2007
  ident: 10.1016/j.medengphy.2012.08.022_bib0065
  article-title: Apparent Young's modulus of human radius using inverse finite-element method
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.09.018
– volume: 224
  start-page: 801
  issue: 7
  year: 2010
  ident: 10.1016/j.medengphy.2012.08.022_bib0090
  article-title: Validation of computational models in biomechanics
  publication-title: Proc Inst Mech Eng H: J Eng Med
  doi: 10.1243/09544119JEIM649
– volume: 41
  start-page: 356
  issue: 2
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0025
  article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.09.009
– start-page: 1
  issue: 2007
  year: 2012
  ident: 10.1016/j.medengphy.2012.08.022_bib0190
  article-title: Prediction of the mechanical response of the femur with uncertain elastic properties
  publication-title: J Biomech
– volume: 53
  start-page: 2194
  issue: 11
  year: 2006
  ident: 10.1016/j.medengphy.2012.08.022_bib0125
  article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.879473
– volume: 40
  start-page: 464
  issue: 4
  year: 2010
  ident: 10.1016/j.medengphy.2012.08.022_bib0070
  article-title: A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2010.02.011
– volume: 4
  start-page: 961
  issue: 7
  year: 2011
  ident: 10.1016/j.medengphy.2012.08.022_bib0185
  article-title: Compressive mechanical properties of demineralized and deproteinized cancellous bone
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2011.02.006
– volume: 41
  start-page: 3171
  issue: 15
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0020
  article-title: The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.08.017
– volume: 40
  start-page: 2982
  issue: 13
  year: 2007
  ident: 10.1016/j.medengphy.2012.08.022_bib0005
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 27
  start-page: 1159
  issue: 9
  year: 1994
  ident: 10.1016/j.medengphy.2012.08.022_bib0055
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J Biomech
  doi: 10.1016/0021-9290(94)90056-6
– volume: 40
  start-page: 2318
  issue: 10
  year: 2007
  ident: 10.1016/j.medengphy.2012.08.022_bib0110
  article-title: Physiologically based boundary conditions in finite element modelling
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.10.038
– year: 2011
  ident: 10.1016/j.medengphy.2012.08.022_bib0015
  article-title: Finite element prediction of surface strain and fracture strength at the distal radius
  publication-title: Med Eng Phys
– volume: 23
  start-page: 135
  issue: 2
  year: 2008
  ident: 10.1016/j.medengphy.2012.08.022_bib0050
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech (Bristol, Avon).
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 99
  start-page: 154
  issue: 2
  year: 2010
  ident: 10.1016/j.medengphy.2012.08.022_bib0175
  article-title: Representation of bone heterogeneity in subject-specific finite element models for knee
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2009.11.009
SSID ssj0004463
Score 2.2572162
Snippet Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of...
Abstract Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 875
SubjectTerms Aged
Aged, 80 and over
Bone Density
Density–elasticity relationship
Elasticity
Female
Femur
Femur - diagnostic imaging
Femur - physiology
Finite Element Analysis
Finite element method
Humans
Male
Middle Aged
Precision Medicine
Radiology
Reproducibility of Results
Subject-specific
Tomography, X-Ray Computed
Validation
Title An investigation to determine if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453312002494
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453312002494
https://dx.doi.org/10.1016/j.medengphy.2012.08.022
https://www.ncbi.nlm.nih.gov/pubmed/23010570
https://www.proquest.com/docview/1356370514
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VReJxQBBe4VENElcTe3f94hZFVAHUXqBSbyvbu1tcRXZUOwcuVf8D_4Cfxi9hxo-UCqoicU12vIlnPPvN-ttvAN4kmWIY7rzY2MRTirsBxsZ5LpO-8Z1IY8dbAweH0fJIfTwOj3dgMZ6FYVrlkPv7nN5l6-GT2XA3Z-uynH0OZEh4RMpAdLp3rAmqVMxR_vb8kuZB5U5HsqfBHo--wvGiBcdWJ_R_mOMlOi1PIa5boa5DoN1KtP8A7g8QEuf9r3wIO7aawJ3F2LltAvd-ExmcwO2D4fX5I_gxr7C8FNaoK2xrNAMhxmLpMEPeO1hZpAAseTPA0PcV8zZ-Xny3hLSZhN1-w7ORQ_e1XCN5B3OLm4ZGEwbGZpPz7g7yKU5mIqErGdmi7anqmHVCKLbB2mHXIxBXdXWCObcNeAxH---_LJbe0KTBK1QiWo8qnLxIizQ0fmykJQRlksgFKnc2dcKKxC_C1OSxMVEUFlRO-tbPqMYxWaICZ335BHYruv4zwMhQueIUH46VKs9swsoxki4WyYKATzaFaHSMLgYFc26ksdIjVe1Ubz2q2aOaW2wKMQV_a7juRTxuNklGz-vxjCplVU0Lzc2m8d9MbTNkh0YHuqHB-o8InsK7reWVh-Dfpn09BqimeOP3Plll6w1NJ8NIxix0P4WnfeRubwNVoNzp2X_-P1O_gLui6xLCLOaXsNuebewrwmptvtc9jHtwa_7h0_LwF47MQlI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VVKJwQBB-Gn4HiasVe3f9E25RRJXSJhdaqbeV7d1tjSInqp1Db7wDb8Cj8STMOHZKBVWRuCY73sQz3v1m_c18AB-SVDEMd15sbOIpxWqAsXGeS6VvfCdGseOjgdk8mp6qz2fh2Q5MuloYplW2a_9mTW9W6_aTYXs3h6uiGH4JZEh4RMpANH3v1D3Y5e5UYQ92x4dH0_l1eaRqBNV4vMcGN2hetOfY8pz-EtO8RNPOU4jbNqnbQGizGR08hkctisTx5oc-gR1b9mFv0om39eHhb30G-3B_1r5Bfwo_xiUW1701liXWSzQtJ8Zi4TBFPj5YWKQYLPg8wND3JVM3fn77bglsMw-7vsLLjkZ3UayQHISZxXVFowkGY7XO-IAHuZCTyUjoCga3aDdsdUybXii2wqXDRiYQF8vyHDNWDngGpwefTiZTr9Vp8HKViNqjJCfLR_koNH5spCUQZZLIBSpzduSEFYmfhyOTxcZEUZhTRulbP6U0x6SJCpz15XPolXT9fcDIUMbiFNfHSpWlNuHmMZIuFsmcsE86gKhzjM7bJuaspbHQHVvtq956VLNHNatsCjEAf2u42vTxuNsk6TyvuzJVWlg17TV3m8Z_M7VVu0BUOtAVDdZ_BPEAPm4tbzwH_zbt-y5ANcUbv_pJS7tc03QyjGTMve4H8GITudvbQEkoiz37L_9n6newNz2ZHevjw_nRK3ggGtEQJjW_hl59ubZvCLrV2dv20fwFbElFAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+to+determine+if+a+single+validated+density-elasticity+relationship+can+be+used+for+subject+specific+finite+element+analyses+of+human+long+bones&rft.jtitle=Medical+engineering+%26+physics&rft.au=Eberle%2C+Sebastian&rft.au=G%C3%B6ttlinger%2C+Michael&rft.au=Augat%2C+Peter&rft.date=2013-07-01&rft.eissn=1873-4030&rft.volume=35&rft.issue=7&rft.spage=875&rft_id=info:doi/10.1016%2Fj.medengphy.2012.08.022&rft_id=info%3Apmid%2F23010570&rft.externalDocID=23010570
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453313X00062%2Fcov150h.gif