An investigation to determine if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones
Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this stud...
Saved in:
Published in | Medical engineering & physics Vol. 35; no. 7; pp. 875 - 883 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1350-4533 1873-4030 1873-4030 |
DOI | 10.1016/j.medengphy.2012.08.022 |
Cover
Loading…
Abstract | Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density–elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of −11% in strain prediction, a mean error of −23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density–elasticity relationship. However, it was also found that the most appropriate density–elasticity relationship was specimen-specific. |
---|---|
AbstractList | Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density-elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of -11% in strain prediction, a mean error of -23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density-elasticity relationship. However, it was also found that the most appropriate density-elasticity relationship was specimen-specific. Abstract Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density–elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of −11% in strain prediction, a mean error of −23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density–elasticity relationship. However, it was also found that the most appropriate density–elasticity relationship was specimen-specific. Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density–elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of −11% in strain prediction, a mean error of −23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density–elasticity relationship. However, it was also found that the most appropriate density–elasticity relationship was specimen-specific. Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density-elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of -11% in strain prediction, a mean error of -23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density-elasticity relationship. However, it was also found that the most appropriate density-elasticity relationship was specimen-specific.Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of the main aspects in subject-specific FE-models of bones regarding accuracy is the modeling of the material inhomogeneity. The goal of this study was therefore to develop FE-models of human femurs and investigate if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones, when the task is to predict the bone's mechanical response to load. To this aim, 23 human cadaver femurs were tested in axial compression with a load of 1000 N. Strains, local displacements, and axial bone stiffness were determined. Subject-specific FE-models were developed for each bone based on quantitative CT-scans. Three different density-elasticity relationships were retrieved from the literature, and were implemented in the FE-models. The predicted mechanical values depended largely on the used equation. The most reasonable equation showed a mean error of -11% in strain prediction, a mean error of -23% in local displacement prediction, and a mean error of +23% in axial stiffness prediction. The scatter of the predictions was very low in all three categories of measurements with a 1.96 standard deviation of about 30% to the mean errors. In conclusion, a framework for subject-specific FE-models was developed that was able to predict surface strains and bone deformation with good accuracy by using a single density-elasticity relationship. However, it was also found that the most appropriate density-elasticity relationship was specimen-specific. |
Author | Eberle, Sebastian Augat, Peter Göttlinger, Michael |
Author_xml | – sequence: 1 givenname: Sebastian surname: Eberle fullname: Eberle, Sebastian email: sebastian.eberle@bgu-murnau.de organization: Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany – sequence: 2 givenname: Michael surname: Göttlinger fullname: Göttlinger, Michael organization: Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany – sequence: 3 givenname: Peter surname: Augat fullname: Augat, Peter organization: Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23010570$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2OFCEUhStmjPOjr6As3XR7i_rthZrOxL9kEhfqmlBw6aGloAWqk975Dr6Bj-aTeMuecTGJcVZAOOcA3-G8OPHBY1E8K2FZQtm-2C5H1Og3u-vDkkPJl9AvgfMHxVnZd9WihgpOaF41sKibqjotzlPaAkBdt9Wj4pRXUELTwVnxc-2Z9XtM2W5ktsGzHJjGjHG0Hpk1TLJk_cYh20tntcyoad8nmw-_vv9AJ8mpaMEizeeAdG13TEnPBmRTIrUJkaVp2KLKLO1QWWMVM9bbjAwdjugzk166Q8LEgmHX00huF_yGDfTq9Lh4aKRL-ORmvCi-vH3z-fL94urjuw-X66uFqnueF00Dg1qpVaOh0xXyptV9a8p6MLgyHHkPqlnpodO6bRvV1wAIsmt7Lfu6NAjVRfH8mLuL4dtERMRok0LnpMcwJUE026qDpqxJ-vRGOg1UhNhFO8p4ELdcSfDyKFAxpBTRCGL0B0-O0jpRgph7FFvxt0cx9yigF9Qj-bs7_tsj_u9cH51IqPYWo0jKoleobaQGhA72Hhmv7mQoR30p6b7iAdM2TJH6IiIikUd8mv_Z_M1KDsDr1czn9b8D7nWF3_dz7Dg |
CitedBy_id | crossref_primary_10_1016_j_jbiomech_2013_10_033 crossref_primary_10_1016_j_medengphy_2020_07_026 crossref_primary_10_1016_j_jocd_2019_02_005 crossref_primary_10_1016_j_jmbbm_2018_10_013 crossref_primary_10_1016_j_medengphy_2018_10_007 crossref_primary_10_1016_j_matpr_2022_01_222 crossref_primary_10_1016_j_medengphy_2024_104274 crossref_primary_10_1038_s41598_019_43028_6 crossref_primary_10_3390_ma13010106 crossref_primary_10_1016_j_clinbiomech_2015_05_002 crossref_primary_10_1016_j_jor_2015_01_009 crossref_primary_10_1016_j_medengphy_2015_10_002 crossref_primary_10_1016_j_jbiomech_2018_04_042 crossref_primary_10_1016_j_jmbbm_2022_105392 crossref_primary_10_1016_j_medengphy_2021_03_011 crossref_primary_10_1115_1_4040122 crossref_primary_10_1186_s40634_016_0072_2 crossref_primary_10_1016_j_medengphy_2019_02_002 crossref_primary_10_1080_10255842_2019_1661386 crossref_primary_10_1016_j_medengphy_2015_05_011 crossref_primary_10_1007_s00774_021_01217_2 crossref_primary_10_3389_fbioe_2024_1370837 crossref_primary_10_3389_fbioe_2024_1420047 crossref_primary_10_1080_10255842_2019_1615481 crossref_primary_10_1002_jor_25138 crossref_primary_10_1007_s10439_024_03668_w crossref_primary_10_1016_j_medengphy_2019_09_007 crossref_primary_10_1016_j_medengphy_2021_07_012 crossref_primary_10_1016_j_medengphy_2016_03_006 crossref_primary_10_1007_s40846_017_0323_4 crossref_primary_10_1177_0391398818815479 crossref_primary_10_1002_jbmr_2572 crossref_primary_10_1177_0954411919856138 crossref_primary_10_1098_rsif_2014_0186 crossref_primary_10_1016_j_jbiomech_2022_111271 crossref_primary_10_1016_j_matpr_2021_08_197 crossref_primary_10_1080_10255842_2022_2098016 crossref_primary_10_1098_rsif_2013_1146 crossref_primary_10_1016_j_jbiomech_2014_11_042 crossref_primary_10_1016_j_jmbbm_2020_104115 crossref_primary_10_1016_j_jmbbm_2020_103866 crossref_primary_10_1007_s42452_021_04760_9 crossref_primary_10_1080_10255842_2020_1789863 crossref_primary_10_1016_j_jbiomech_2013_07_045 |
Cites_doi | 10.1080/10255840601160484 10.1016/S0140-6736(86)90837-8 10.1007/BF01623175 10.1016/j.jbiomech.2007.06.017 10.1016/j.medengphy.2010.10.002 10.1002/jor.21360 10.1504/IJECB.2009.029190 10.1016/S0021-9290(03)00071-X 10.1016/j.jbiomech.2008.05.017 10.1016/j.jbiomech.2005.07.018 10.1016/j.medengphy.2007.05.006 10.1016/j.medengphy.2005.06.003 10.1016/S1350-4533(03)00081-X 10.1016/j.cmpb.2008.05.009 10.1098/rsta.2010.0041 10.1016/j.medengphy.2010.09.018 10.1002/jor.1100120610 10.1243/09544119JEIM553 10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A 10.1002/sim.3086 10.1016/j.jbiomech.2009.09.051 10.1016/j.jbiomech.2011.03.024 10.1002/jor.1100090315 10.1016/j.medengphy.2007.12.009 10.1016/j.jbiomech.2006.09.018 10.1243/09544119JEIM649 10.1016/j.jbiomech.2007.09.009 10.1109/TBME.2006.879473 10.1016/j.compbiomed.2010.02.011 10.1016/j.jmbbm.2011.02.006 10.1016/j.jbiomech.2008.08.017 10.1016/j.jbiomech.2007.02.010 10.1016/0021-9290(94)90056-6 10.1016/j.jbiomech.2006.10.038 10.1016/j.clinbiomech.2007.08.024 10.1016/j.cmpb.2009.11.009 |
ContentType | Journal Article |
Copyright | 2012 IPEM IPEM Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 IPEM – notice: IPEM – notice: Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.medengphy.2012.08.022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 883 |
ExternalDocumentID | 23010570 10_1016_j_medengphy_2012_08_022 S1350453312002494 1_s2_0_S1350453312002494 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c482t-550bc9c95d07d3e256d86f14bfe9f2e280c59db7dd665c8400e0a768da841fe03 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Mon Jul 21 09:36:14 EDT 2025 Thu Apr 03 07:08:55 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Tue Jul 01 04:24:47 EDT 2025 Fri Feb 23 02:29:18 EST 2024 Sun Feb 23 10:19:58 EST 2025 Tue Aug 26 16:32:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Finite element method Validation Femur Density–elasticity relationship Subject-specific |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-550bc9c95d07d3e256d86f14bfe9f2e280c59db7dd665c8400e0a768da841fe03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23010570 |
PQID | 1356370514 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1356370514 pubmed_primary_23010570 crossref_citationtrail_10_1016_j_medengphy_2012_08_022 crossref_primary_10_1016_j_medengphy_2012_08_022 elsevier_sciencedirect_doi_10_1016_j_medengphy_2012_08_022 elsevier_clinicalkeyesjournals_1_s2_0_S1350453312002494 elsevier_clinicalkey_doi_10_1016_j_medengphy_2012_08_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yosibash, Trabelsi, Milgrom (bib0080) 2007; 40 Au, Palathinkal, Liggins, Raso, Carey, Lambert (bib0155) 2008; 92 Schileo, Dall’ara, Taddei, Malandrino, Schotkamp, Baleani (bib0095) 2008; 41 Austman, Milner, Holdsworth, Dunning (bib0150) 2009; 223 Cong, Buijs, Dragomir-Daescu (bib0075) 2011; 33 Au, Liggins, Raso, Carey, Amirfazli (bib0175) 2010; 99 Henninger, Reese, Anderson, Weiss (bib0090) 2010; 224 Huang, Tsai, Lin, Chien, Hsu (bib0070) 2010; 40 Trabelsi, Yosibash, Wutte, Augat, Eberle (bib0010) 2011; 44 Zioupos, Currey, Hamer (bib0180) 1999; 45 Dressler, Au, Carey, Amirfazli (bib0160) 2009; 1 Anderson, Ellis, Weiss (bib0085) 2007; 10 Keller (bib0055) 1994; 27 Taddei, Martelli, Reggiani, Cristofolini, Viceconti (bib0125) 2006; 53 Les, Keyak, Stover, Taylor, Kaneps (bib0105) 1994; 12 Baca, Horak, Mikulenka, Dzupa (bib0165) 2008; 30 Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0005) 2007; 40 Krouwer (bib0140) 2008; 27 Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0050) 2008; 23 Weis, Miga, Granero-Moltó, Spagnoli (bib0040) 2010; 43 Faulkner, Glüer, Grampp, Genant (bib0115) 1993; 3 Chen, McKittrick (bib0185) 2011; 4 Keyak, Falkinstein (bib0100) 2003; 25 Bland, Altman (bib0135) 1986; 1 Morgan, Bayraktar, Keaveny (bib0060) 2003; 36 Peng, Bai, Zeng, Zhou (bib0170) 2006; 28 Austman, Milner, Holdsworth, Dunning (bib0020) 2008; 41 Bosisio, Talmant, Skalli, Laugier, Mitton (bib0065) 2007; 40 Schileo, Taddei, Cristofolini, Viceconti (bib0025) 2008; 41 Austman, King, Dunning (bib0035) 2011; 29 Speirs, Heller, Duda, Taylor (bib0110) 2007; 40 Edwards, Troy (bib0015) 2011 Wille, Rank, Yosibash (bib0190) 2012 Snyder, Schneider (bib0145) 1991; 9 Rathnayaka, Sahama, Schuetz, Schmutz (bib0130) 2011; 33 Christen, Webster, Müller (bib0030) 2010; 368 Taddei, Cristofolini, Martelli, Gill, Viceconti (bib0045) 2006; 39 Helgason, Taddei, Pálsson, Schileo, Cristofolini, Viceconti (bib0120) 2008; 30 Taddei (10.1016/j.medengphy.2012.08.022_bib0045) 2006; 39 Krouwer (10.1016/j.medengphy.2012.08.022_bib0140) 2008; 27 Helgason (10.1016/j.medengphy.2012.08.022_bib0120) 2008; 30 Morgan (10.1016/j.medengphy.2012.08.022_bib0060) 2003; 36 Baca (10.1016/j.medengphy.2012.08.022_bib0165) 2008; 30 Schileo (10.1016/j.medengphy.2012.08.022_bib0025) 2008; 41 Weis (10.1016/j.medengphy.2012.08.022_bib0040) 2010; 43 Helgason (10.1016/j.medengphy.2012.08.022_bib0050) 2008; 23 Taddei (10.1016/j.medengphy.2012.08.022_bib0125) 2006; 53 Les (10.1016/j.medengphy.2012.08.022_bib0105) 1994; 12 Snyder (10.1016/j.medengphy.2012.08.022_bib0145) 1991; 9 Schileo (10.1016/j.medengphy.2012.08.022_bib0095) 2008; 41 Speirs (10.1016/j.medengphy.2012.08.022_bib0110) 2007; 40 Schileo (10.1016/j.medengphy.2012.08.022_bib0005) 2007; 40 Anderson (10.1016/j.medengphy.2012.08.022_bib0085) 2007; 10 Peng (10.1016/j.medengphy.2012.08.022_bib0170) 2006; 28 Yosibash (10.1016/j.medengphy.2012.08.022_bib0080) 2007; 40 Huang (10.1016/j.medengphy.2012.08.022_bib0070) 2010; 40 Keyak (10.1016/j.medengphy.2012.08.022_bib0100) 2003; 25 Austman (10.1016/j.medengphy.2012.08.022_bib0150) 2009; 223 Austman (10.1016/j.medengphy.2012.08.022_bib0035) 2011; 29 Christen (10.1016/j.medengphy.2012.08.022_bib0030) 2010; 368 Trabelsi (10.1016/j.medengphy.2012.08.022_bib0010) 2011; 44 Henninger (10.1016/j.medengphy.2012.08.022_bib0090) 2010; 224 Rathnayaka (10.1016/j.medengphy.2012.08.022_bib0130) 2011; 33 Cong (10.1016/j.medengphy.2012.08.022_bib0075) 2011; 33 Bland (10.1016/j.medengphy.2012.08.022_bib0135) 1986; 1 Au (10.1016/j.medengphy.2012.08.022_bib0155) 2008; 92 Edwards (10.1016/j.medengphy.2012.08.022_bib0015) 2011 Dressler (10.1016/j.medengphy.2012.08.022_bib0160) 2009; 1 Austman (10.1016/j.medengphy.2012.08.022_bib0020) 2008; 41 Faulkner (10.1016/j.medengphy.2012.08.022_bib0115) 1993; 3 Keller (10.1016/j.medengphy.2012.08.022_bib0055) 1994; 27 Bosisio (10.1016/j.medengphy.2012.08.022_bib0065) 2007; 40 Chen (10.1016/j.medengphy.2012.08.022_bib0185) 2011; 4 Au (10.1016/j.medengphy.2012.08.022_bib0175) 2010; 99 Wille (10.1016/j.medengphy.2012.08.022_bib0190) 2012 Zioupos (10.1016/j.medengphy.2012.08.022_bib0180) 1999; 45 |
References_xml | – volume: 30 start-page: 924 year: 2008 end-page: 930 ident: bib0165 article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses publication-title: Med Eng Phys – volume: 33 start-page: 226 year: 2011 end-page: 233 ident: bib0130 article-title: Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions publication-title: Med Eng Phys – volume: 99 start-page: 154 year: 2010 end-page: 171 ident: bib0175 article-title: Representation of bone heterogeneity in subject-specific finite element models for knee publication-title: Comput Methods Programs Biomed – volume: 28 start-page: 227 year: 2006 end-page: 233 ident: bib0170 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med Eng Phys – volume: 40 start-page: 2982 year: 2007 end-page: 2989 ident: bib0005 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech – volume: 25 start-page: 781 year: 2003 end-page: 787 ident: bib0100 article-title: Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load publication-title: Med Eng Phys – volume: 27 start-page: 778 year: 2008 end-page: 780 ident: bib0140 article-title: Why Bland–Altman plots should use publication-title: Stat Med – volume: 40 start-page: 2022 year: 2007 end-page: 2028 ident: bib0065 article-title: Apparent Young's modulus of human radius using inverse finite-element method publication-title: J Biomech – volume: 92 start-page: 20 year: 2008 end-page: 34 ident: bib0155 article-title: A NURBS-based technique for subject-specific construction of knee bone geometry publication-title: Comput Methods Programs Biomed – volume: 368 start-page: 2653 year: 2010 end-page: 2668 ident: bib0030 article-title: Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk publication-title: Philos Trans R Soc Ser A: Math Phys Eng Sci – volume: 43 start-page: 557 year: 2010 end-page: 562 ident: bib0040 article-title: A finite element inverse analysis to assess functional improvement during the fracture healing process publication-title: J Biomech – volume: 39 start-page: 2457 year: 2006 end-page: 2467 ident: bib0045 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: J Biomech – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib0060 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech – volume: 29 start-page: 1418 year: 2011 end-page: 1423 ident: bib0035 article-title: Bone stresses before and after insertion of two commercially available distal ulnar implants using finite element analysis publication-title: J Orthop Res – volume: 33 start-page: 164 year: 2011 end-page: 173 ident: bib0075 article-title: In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur publication-title: Med Eng Phys – volume: 40 start-page: 3688 year: 2007 end-page: 3699 ident: bib0080 article-title: Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations publication-title: J Biomech – volume: 40 start-page: 464 year: 2010 end-page: 468 ident: bib0070 article-title: A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach publication-title: Comput Biol Med – volume: 30 start-page: 444 year: 2008 end-page: 453 ident: bib0120 article-title: A modified method for assigning material properties to FE models of bones publication-title: Med Eng Phys – volume: 10 start-page: 171 year: 2007 end-page: 184 ident: bib0085 article-title: Verification, validation and sensitivity studies in computational biomechanics publication-title: Comput Methods Biomech Biomed Eng – volume: 3 start-page: 36 year: 1993 end-page: 42 ident: bib0115 article-title: Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data publication-title: Osteoporos Int – volume: 27 start-page: 1159 year: 1994 end-page: 1168 ident: bib0055 article-title: Predicting the compressive mechanical behavior of bone publication-title: J Biomech – volume: 41 start-page: 2483 year: 2008 end-page: 2491 ident: bib0095 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J Biomech – volume: 9 start-page: 422 year: 1991 end-page: 431 ident: bib0145 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: J Orthop Res – volume: 223 start-page: 787 year: 2009 end-page: 794 ident: bib0150 article-title: Development of a customized density–modulus relationship for use in subject-specific finite element models of the ulna publication-title: Proc Inst Mech Eng H: J Eng Med – start-page: 1 year: 2012 end-page: 9 ident: bib0190 article-title: Prediction of the mechanical response of the femur with uncertain elastic properties publication-title: J Biomech – volume: 12 start-page: 822 year: 1994 end-page: 833 ident: bib0105 article-title: Estimation of material properties in the equine metacarpus with use of quantitative computed tomography publication-title: J Orthop Res – volume: 41 start-page: 3171 year: 2008 end-page: 3176 ident: bib0020 article-title: The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone publication-title: J Biomech – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: bib0050 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech (Bristol, Avon). – volume: 45 start-page: 108 year: 1999 end-page: 116 ident: bib0180 article-title: The role of collagen in the declining mechanical properties of aging human cortical bone publication-title: J Biomed Mater Res – volume: 40 start-page: 2318 year: 2007 end-page: 2323 ident: bib0110 article-title: Physiologically based boundary conditions in finite element modelling publication-title: J Biomech – volume: 44 start-page: 1666 year: 2011 end-page: 1672 ident: bib0010 article-title: Patient-specific finite element analysis of the human femur – a double-blinded biomechanical validation publication-title: J Biomech – volume: 1 start-page: 307 year: 1986 end-page: 310 ident: bib0135 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet – year: 2011 ident: bib0015 article-title: Finite element prediction of surface strain and fracture strength at the distal radius publication-title: Med Eng Phys – volume: 41 start-page: 356 year: 2008 end-page: 367 ident: bib0025 article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro publication-title: J Biomech – volume: 53 start-page: 2194 year: 2006 end-page: 2200 ident: bib0125 article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties publication-title: IEEE Trans Biomed Eng – volume: 1 start-page: 146 year: 2009 end-page: 171 ident: bib0160 article-title: Subject-specific finite element model of knee: experimental validation using composite and bovine specimens publication-title: Int J Exp Comput Biomech – volume: 224 start-page: 801 year: 2010 end-page: 812 ident: bib0090 article-title: Validation of computational models in biomechanics publication-title: Proc Inst Mech Eng H: J Eng Med – volume: 4 start-page: 961 year: 2011 end-page: 973 ident: bib0185 article-title: Compressive mechanical properties of demineralized and deproteinized cancellous bone publication-title: J Mech Behav Biomed Mater – volume: 10 start-page: 171 issue: 3 year: 2007 ident: 10.1016/j.medengphy.2012.08.022_bib0085 article-title: Verification, validation and sensitivity studies in computational biomechanics publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255840601160484 – volume: 1 start-page: 307 issue: 8476 year: 1986 ident: 10.1016/j.medengphy.2012.08.022_bib0135 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet doi: 10.1016/S0140-6736(86)90837-8 – volume: 3 start-page: 36 issue: 1 year: 1993 ident: 10.1016/j.medengphy.2012.08.022_bib0115 article-title: Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data publication-title: Osteoporos Int doi: 10.1007/BF01623175 – volume: 40 start-page: 3688 issue: 16 year: 2007 ident: 10.1016/j.medengphy.2012.08.022_bib0080 article-title: Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.06.017 – volume: 33 start-page: 226 issue: 2 year: 2011 ident: 10.1016/j.medengphy.2012.08.022_bib0130 article-title: Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.10.002 – volume: 29 start-page: 1418 issue: 9 year: 2011 ident: 10.1016/j.medengphy.2012.08.022_bib0035 article-title: Bone stresses before and after insertion of two commercially available distal ulnar implants using finite element analysis publication-title: J Orthop Res doi: 10.1002/jor.21360 – volume: 1 start-page: 146 issue: 2 year: 2009 ident: 10.1016/j.medengphy.2012.08.022_bib0160 article-title: Subject-specific finite element model of knee: experimental validation using composite and bovine specimens publication-title: Int J Exp Comput Biomech doi: 10.1504/IJECB.2009.029190 – volume: 36 start-page: 897 issue: 7 year: 2003 ident: 10.1016/j.medengphy.2012.08.022_bib0060 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech doi: 10.1016/S0021-9290(03)00071-X – volume: 41 start-page: 2483 issue: 11 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0095 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.05.017 – volume: 39 start-page: 2457 issue: 13 year: 2006 ident: 10.1016/j.medengphy.2012.08.022_bib0045 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.07.018 – volume: 30 start-page: 444 issue: 4 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0120 article-title: A modified method for assigning material properties to FE models of bones publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.05.006 – volume: 28 start-page: 227 issue: 3 year: 2006 ident: 10.1016/j.medengphy.2012.08.022_bib0170 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2005.06.003 – volume: 25 start-page: 781 issue: 9 year: 2003 ident: 10.1016/j.medengphy.2012.08.022_bib0100 article-title: Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load publication-title: Med Eng Phys doi: 10.1016/S1350-4533(03)00081-X – volume: 92 start-page: 20 issue: 1 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0155 article-title: A NURBS-based technique for subject-specific construction of knee bone geometry publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2008.05.009 – volume: 368 start-page: 2653 issue: 1920 year: 2010 ident: 10.1016/j.medengphy.2012.08.022_bib0030 article-title: Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk publication-title: Philos Trans R Soc Ser A: Math Phys Eng Sci doi: 10.1098/rsta.2010.0041 – volume: 33 start-page: 164 issue: 2 year: 2011 ident: 10.1016/j.medengphy.2012.08.022_bib0075 article-title: In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.09.018 – volume: 12 start-page: 822 issue: 6 year: 1994 ident: 10.1016/j.medengphy.2012.08.022_bib0105 article-title: Estimation of material properties in the equine metacarpus with use of quantitative computed tomography publication-title: J Orthop Res doi: 10.1002/jor.1100120610 – volume: 223 start-page: 787 issue: 6 year: 2009 ident: 10.1016/j.medengphy.2012.08.022_bib0150 article-title: Development of a customized density–modulus relationship for use in subject-specific finite element models of the ulna publication-title: Proc Inst Mech Eng H: J Eng Med doi: 10.1243/09544119JEIM553 – volume: 45 start-page: 108 issue: 2 year: 1999 ident: 10.1016/j.medengphy.2012.08.022_bib0180 article-title: The role of collagen in the declining mechanical properties of aging human cortical bone publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A – volume: 27 start-page: 778 issue: 5 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0140 article-title: Why Bland–Altman plots should use X, not (Y+X)/2 when X is a reference method publication-title: Stat Med doi: 10.1002/sim.3086 – volume: 43 start-page: 557 issue: 3 year: 2010 ident: 10.1016/j.medengphy.2012.08.022_bib0040 article-title: A finite element inverse analysis to assess functional improvement during the fracture healing process publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.09.051 – volume: 44 start-page: 1666 issue: 9 year: 2011 ident: 10.1016/j.medengphy.2012.08.022_bib0010 article-title: Patient-specific finite element analysis of the human femur – a double-blinded biomechanical validation publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.03.024 – volume: 9 start-page: 422 issue: 3 year: 1991 ident: 10.1016/j.medengphy.2012.08.022_bib0145 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: J Orthop Res doi: 10.1002/jor.1100090315 – volume: 30 start-page: 924 issue: 7 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0165 article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.12.009 – volume: 40 start-page: 2022 issue: 9 year: 2007 ident: 10.1016/j.medengphy.2012.08.022_bib0065 article-title: Apparent Young's modulus of human radius using inverse finite-element method publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.09.018 – volume: 224 start-page: 801 issue: 7 year: 2010 ident: 10.1016/j.medengphy.2012.08.022_bib0090 article-title: Validation of computational models in biomechanics publication-title: Proc Inst Mech Eng H: J Eng Med doi: 10.1243/09544119JEIM649 – volume: 41 start-page: 356 issue: 2 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0025 article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.09.009 – start-page: 1 issue: 2007 year: 2012 ident: 10.1016/j.medengphy.2012.08.022_bib0190 article-title: Prediction of the mechanical response of the femur with uncertain elastic properties publication-title: J Biomech – volume: 53 start-page: 2194 issue: 11 year: 2006 ident: 10.1016/j.medengphy.2012.08.022_bib0125 article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.879473 – volume: 40 start-page: 464 issue: 4 year: 2010 ident: 10.1016/j.medengphy.2012.08.022_bib0070 article-title: A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2010.02.011 – volume: 4 start-page: 961 issue: 7 year: 2011 ident: 10.1016/j.medengphy.2012.08.022_bib0185 article-title: Compressive mechanical properties of demineralized and deproteinized cancellous bone publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2011.02.006 – volume: 41 start-page: 3171 issue: 15 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0020 article-title: The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.08.017 – volume: 40 start-page: 2982 issue: 13 year: 2007 ident: 10.1016/j.medengphy.2012.08.022_bib0005 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.02.010 – volume: 27 start-page: 1159 issue: 9 year: 1994 ident: 10.1016/j.medengphy.2012.08.022_bib0055 article-title: Predicting the compressive mechanical behavior of bone publication-title: J Biomech doi: 10.1016/0021-9290(94)90056-6 – volume: 40 start-page: 2318 issue: 10 year: 2007 ident: 10.1016/j.medengphy.2012.08.022_bib0110 article-title: Physiologically based boundary conditions in finite element modelling publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.10.038 – year: 2011 ident: 10.1016/j.medengphy.2012.08.022_bib0015 article-title: Finite element prediction of surface strain and fracture strength at the distal radius publication-title: Med Eng Phys – volume: 23 start-page: 135 issue: 2 year: 2008 ident: 10.1016/j.medengphy.2012.08.022_bib0050 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech (Bristol, Avon). doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 99 start-page: 154 issue: 2 year: 2010 ident: 10.1016/j.medengphy.2012.08.022_bib0175 article-title: Representation of bone heterogeneity in subject-specific finite element models for knee publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2009.11.009 |
SSID | ssj0004463 |
Score | 2.2572162 |
Snippet | Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting. One of... Abstract Subject-specific FE-models of human long bones have to predict mechanical parameters with sufficient accuracy to be applicable in a clinical setting.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 875 |
SubjectTerms | Aged Aged, 80 and over Bone Density Density–elasticity relationship Elasticity Female Femur Femur - diagnostic imaging Femur - physiology Finite Element Analysis Finite element method Humans Male Middle Aged Precision Medicine Radiology Reproducibility of Results Subject-specific Tomography, X-Ray Computed Validation |
Title | An investigation to determine if a single validated density–elasticity relationship can be used for subject specific finite element analyses of human long bones |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453312002494 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453312002494 https://dx.doi.org/10.1016/j.medengphy.2012.08.022 https://www.ncbi.nlm.nih.gov/pubmed/23010570 https://www.proquest.com/docview/1356370514 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VReJxQBBe4VENElcTe3f94hZFVAHUXqBSbyvbu1tcRXZUOwcuVf8D_4Cfxi9hxo-UCqoicU12vIlnPPvN-ttvAN4kmWIY7rzY2MRTirsBxsZ5LpO-8Z1IY8dbAweH0fJIfTwOj3dgMZ6FYVrlkPv7nN5l6-GT2XA3Z-uynH0OZEh4RMpAdLp3rAmqVMxR_vb8kuZB5U5HsqfBHo--wvGiBcdWJ_R_mOMlOi1PIa5boa5DoN1KtP8A7g8QEuf9r3wIO7aawJ3F2LltAvd-ExmcwO2D4fX5I_gxr7C8FNaoK2xrNAMhxmLpMEPeO1hZpAAseTPA0PcV8zZ-Xny3hLSZhN1-w7ORQ_e1XCN5B3OLm4ZGEwbGZpPz7g7yKU5mIqErGdmi7anqmHVCKLbB2mHXIxBXdXWCObcNeAxH---_LJbe0KTBK1QiWo8qnLxIizQ0fmykJQRlksgFKnc2dcKKxC_C1OSxMVEUFlRO-tbPqMYxWaICZ335BHYruv4zwMhQueIUH46VKs9swsoxki4WyYKATzaFaHSMLgYFc26ksdIjVe1Ubz2q2aOaW2wKMQV_a7juRTxuNklGz-vxjCplVU0Lzc2m8d9MbTNkh0YHuqHB-o8InsK7reWVh-Dfpn09BqimeOP3Plll6w1NJ8NIxix0P4WnfeRubwNVoNzp2X_-P1O_gLui6xLCLOaXsNuebewrwmptvtc9jHtwa_7h0_LwF47MQlI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VVKJwQBB-Gn4HiasVe3f9E25RRJXSJhdaqbeV7d1tjSInqp1Db7wDb8Cj8STMOHZKBVWRuCY73sQz3v1m_c18AB-SVDEMd15sbOIpxWqAsXGeS6VvfCdGseOjgdk8mp6qz2fh2Q5MuloYplW2a_9mTW9W6_aTYXs3h6uiGH4JZEh4RMpANH3v1D3Y5e5UYQ92x4dH0_l1eaRqBNV4vMcGN2hetOfY8pz-EtO8RNPOU4jbNqnbQGizGR08hkctisTx5oc-gR1b9mFv0om39eHhb30G-3B_1r5Bfwo_xiUW1701liXWSzQtJ8Zi4TBFPj5YWKQYLPg8wND3JVM3fn77bglsMw-7vsLLjkZ3UayQHISZxXVFowkGY7XO-IAHuZCTyUjoCga3aDdsdUybXii2wqXDRiYQF8vyHDNWDngGpwefTiZTr9Vp8HKViNqjJCfLR_koNH5spCUQZZLIBSpzduSEFYmfhyOTxcZEUZhTRulbP6U0x6SJCpz15XPolXT9fcDIUMbiFNfHSpWlNuHmMZIuFsmcsE86gKhzjM7bJuaspbHQHVvtq956VLNHNatsCjEAf2u42vTxuNsk6TyvuzJVWlg17TV3m8Z_M7VVu0BUOtAVDdZ_BPEAPm4tbzwH_zbt-y5ANcUbv_pJS7tc03QyjGTMve4H8GITudvbQEkoiz37L_9n6newNz2ZHevjw_nRK3ggGtEQJjW_hl59ubZvCLrV2dv20fwFbElFAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+to+determine+if+a+single+validated+density-elasticity+relationship+can+be+used+for+subject+specific+finite+element+analyses+of+human+long+bones&rft.jtitle=Medical+engineering+%26+physics&rft.au=Eberle%2C+Sebastian&rft.au=G%C3%B6ttlinger%2C+Michael&rft.au=Augat%2C+Peter&rft.date=2013-07-01&rft.eissn=1873-4030&rft.volume=35&rft.issue=7&rft.spage=875&rft_id=info:doi/10.1016%2Fj.medengphy.2012.08.022&rft_id=info%3Apmid%2F23010570&rft.externalDocID=23010570 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453313X00062%2Fcov150h.gif |