From boundary data to bound states
A bstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections b...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 1; pp. 72 - 49 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We introduce a — somewhat
holographic —
dictionary between gravitational observables for scattering processes (measured at the
boundary)
and adiabatic invariants for bound orbits (in the
bulk),
to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the twobody problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω(
E
)
,
directly from scattering information. As an example, using the results in Bernet al. [
36
,
37
], we readily derive Ω(
E
) and ∆Φ(
J
,
E
) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a
no-recoil
approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy. |
---|---|
AbstractList | We introduce a - somewhat holographic - dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the two-body problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance increment phi) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, omega(E), directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive omega(E) and increment phi(J, E) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy. We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the twobody problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω( E ) , directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive Ω( E ) and ∆Φ( J , E ) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy. Abstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the twobody problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω(E), directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive Ω(E) and ∆Φ(J, E) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy. We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the twobody problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω(E), directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive Ω(E) and ∆Φ(J, E) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy. A bstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the twobody problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω( E ) , directly from scattering information. As an example, using the results in Bernet al. [ 36 , 37 ], we readily derive Ω( E ) and ∆Φ( J , E ) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy. |
ArticleNumber | 72 |
Author | Porto, Rafael A. Kälin, Gregor |
Author_xml | – sequence: 1 givenname: Gregor surname: Kälin fullname: Kälin, Gregor organization: Department of Physics and Astronomy, Uppsala University – sequence: 2 givenname: Rafael A. surname: Porto fullname: Porto, Rafael A. email: rafael.porto@desy.de organization: Deutsches Elektronen-Synchrotron DESY, The Abdus Salam International Center for Theoretical Physics |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-407189$$DView record from Swedish Publication Index |
BookMark | eNp9UUtLAzEQDqKgVs9ei14UrE6yySY5ilqtCHpQr2Gymy1b6qYmu4j_3tgtvkBPMwzfY2a-bbLe-MYRskfhhALI05vry3ughwwYHIFka2SLAtMjxaVe_9Zvku0YZwBUUA1bZH8c_PPQ-q4pMbwNS2xx2Pp-MIwtti7ukI0K59HtruqAPI4vH86vR7d3V5Pzs9tRwRVrR9wxgYAOuHLWuYrbopSCOlaBEsiQWsXBUl5Z5QqXIxTSZpgJqSUFzmU2IJNet_Q4M4tQP6eNjMfaLAc-TA2Gti7mzshS5RWi1NoCF8LastJloZN1JZjUmLSOe6346had_aF2UT-dLdW6znCQVOkEP-jhi-BfOhdbM_NdaNK1JqM5ywVVIv8PxTLOM8mkEAl12qOK4GMMrvo0p2A-kjJ9UuYjKZOSSgzxi1HU6fO1b9qA9fwfHqyOTA7N1IWvff6ivAPmUaVi |
CitedBy_id | crossref_primary_10_1007_JHEP03_2022_071 crossref_primary_10_1103_PhysRevLett_132_201602 crossref_primary_10_1007_JHEP05_2021_056 crossref_primary_10_1007_JHEP01_2022_045 crossref_primary_10_1103_PhysRevD_102_046014 crossref_primary_10_1007_JHEP06_2020_144 crossref_primary_10_1103_PhysRevD_101_084009 crossref_primary_10_1103_PhysRevD_104_046016 crossref_primary_10_1007_JHEP05_2024_265 crossref_primary_10_1088_1361_6633_abf97e crossref_primary_10_1103_PhysRevD_105_026004 crossref_primary_10_1007_JHEP07_2023_128 crossref_primary_10_1007_JHEP05_2024_148 crossref_primary_10_1007_JHEP09_2022_108 crossref_primary_10_1103_PhysRevD_109_L041504 crossref_primary_10_1007_JHEP02_2020_046 crossref_primary_10_1007_JHEP09_2023_162 crossref_primary_10_1103_PhysRevD_102_024062 crossref_primary_10_1103_PhysRevD_103_026001 crossref_primary_10_1007_JHEP05_2023_177 crossref_primary_10_1103_PhysRevD_108_106003 crossref_primary_10_1007_JHEP11_2021_087 crossref_primary_10_1103_PhysRevD_102_024060 crossref_primary_10_1103_PhysRevD_108_126017 crossref_primary_10_1007_JHEP05_2021_188 crossref_primary_10_1103_PhysRevD_110_076018 crossref_primary_10_1007_JHEP03_2020_173 crossref_primary_10_1007_JHEP06_2023_004 crossref_primary_10_1007_JHEP12_2020_076 crossref_primary_10_1103_PhysRevD_108_064017 crossref_primary_10_1007_JHEP05_2024_034 crossref_primary_10_1103_PhysRevLett_126_061602 crossref_primary_10_1007_JHEP06_2022_021 crossref_primary_10_1088_1751_8121_ac8846 crossref_primary_10_1103_PhysRevLett_130_021601 crossref_primary_10_1103_PhysRevD_102_064019 crossref_primary_10_1103_PhysRevD_102_124008 crossref_primary_10_1103_PhysRevLett_128_011101 crossref_primary_10_1007_JHEP02_2025_016 crossref_primary_10_1103_PhysRevD_110_064033 crossref_primary_10_1103_PhysRevD_106_026013 crossref_primary_10_1007_JHEP03_2024_108 crossref_primary_10_1007_JHEP05_2021_214 crossref_primary_10_1007_JHEP10_2021_008 crossref_primary_10_1103_PhysRevD_105_126007 crossref_primary_10_1007_JHEP03_2025_144 crossref_primary_10_1007_JHEP05_2023_088 crossref_primary_10_1016_j_physrep_2024_06_002 crossref_primary_10_1007_JHEP07_2024_272 crossref_primary_10_1007_JHEP10_2022_105 crossref_primary_10_1007_JHEP06_2024_181 crossref_primary_10_1007_JHEP03_2021_201 crossref_primary_10_1103_PhysRevD_106_056007 crossref_primary_10_1007_JHEP02_2022_156 crossref_primary_10_1007_JHEP11_2020_023 crossref_primary_10_1103_PhysRevD_106_024042 crossref_primary_10_1007_JHEP08_2020_038 crossref_primary_10_1140_epjc_s10052_021_09626_3 crossref_primary_10_1007_JHEP11_2021_228 crossref_primary_10_1103_PhysRevLett_131_241402 crossref_primary_10_1007_JHEP01_2023_140 crossref_primary_10_1103_PhysRevD_109_106020 crossref_primary_10_1007_JHEP10_2021_011 crossref_primary_10_1103_PhysRevD_108_124052 crossref_primary_10_1103_PhysRevD_110_L041502 crossref_primary_10_1103_PhysRevD_108_084065 crossref_primary_10_1103_PhysRevD_105_124001 crossref_primary_10_1103_PhysRevLett_131_011603 crossref_primary_10_1007_JHEP03_2022_141 crossref_primary_10_1103_PhysRevD_104_024014 crossref_primary_10_1007_JHEP11_2020_160 crossref_primary_10_1007_JHEP03_2024_125 crossref_primary_10_1007_JHEP08_2020_147 crossref_primary_10_1007_JHEP08_2024_080 crossref_primary_10_1007_JHEP08_2022_131 crossref_primary_10_1103_PhysRevLett_129_141102 crossref_primary_10_1007_JHEP03_2024_089 crossref_primary_10_1007_JHEP09_2024_053 crossref_primary_10_1103_PhysRevLett_132_101401 crossref_primary_10_1103_PhysRevD_106_104031 crossref_primary_10_1007_JHEP05_2021_239 crossref_primary_10_1103_PhysRevD_102_124025 crossref_primary_10_1007_JHEP08_2024_243 crossref_primary_10_1103_PhysRevD_102_124024 crossref_primary_10_1007_JHEP10_2021_148 crossref_primary_10_1103_PhysRevD_106_124026 crossref_primary_10_1103_PhysRevD_110_064050 crossref_primary_10_1103_PhysRevD_107_064051 crossref_primary_10_1103_PhysRevD_104_044034 crossref_primary_10_1007_JHEP04_2024_058 crossref_primary_10_1103_PhysRevD_106_124030 crossref_primary_10_1103_PhysRevD_108_064049 crossref_primary_10_1007_JHEP12_2023_118 crossref_primary_10_1007_JHEP05_2020_051 crossref_primary_10_1007_JHEP10_2022_128 crossref_primary_10_1088_1751_8121_ad8b02 crossref_primary_10_1007_JHEP08_2023_188 crossref_primary_10_1140_epjc_s10052_021_08915_1 crossref_primary_10_1103_PhysRevLett_126_201103 crossref_primary_10_1007_JHEP02_2020_092 crossref_primary_10_1103_PhysRevLett_126_171601 crossref_primary_10_21468_SciPostPhysProc_7_023 crossref_primary_10_1007_JHEP07_2021_169 crossref_primary_10_1007_JHEP08_2021_172 crossref_primary_10_1007_JHEP01_2022_006 crossref_primary_10_1088_1475_7516_2023_11_034 crossref_primary_10_1007_JHEP04_2021_234 crossref_primary_10_1103_PhysRevD_101_044039 crossref_primary_10_1103_PhysRevD_108_024025 crossref_primary_10_1103_PhysRevD_107_044033 crossref_primary_10_1103_PhysRevD_104_065014 crossref_primary_10_1103_PhysRevLett_129_121101 crossref_primary_10_1103_PhysRevD_104_104029 crossref_primary_10_1007_JHEP07_2020_122 crossref_primary_10_1088_1361_6382_adaabc crossref_primary_10_1007_JHEP09_2023_109 crossref_primary_10_1103_PhysRevD_104_024037 crossref_primary_10_1007_JHEP06_2023_048 crossref_primary_10_1103_PhysRevD_103_045015 crossref_primary_10_1103_PhysRevLett_131_221401 crossref_primary_10_1103_PhysRevLett_133_221401 crossref_primary_10_1007_JHEP02_2020_120 crossref_primary_10_1007_JHEP07_2021_037 crossref_primary_10_1007_JHEP05_2024_117 crossref_primary_10_1007_JHEP01_2022_017 crossref_primary_10_1103_PhysRevD_108_024033 crossref_primary_10_1007_JHEP08_2023_109 crossref_primary_10_1103_PhysRevD_102_084047 crossref_primary_10_1007_JHEP05_2022_055 crossref_primary_10_1103_PhysRevLett_128_141102 crossref_primary_10_1103_PhysRevLett_132_091402 crossref_primary_10_1007_JHEP02_2023_105 crossref_primary_10_1007_JHEP11_2021_213 crossref_primary_10_1007_JHEP07_2023_181 crossref_primary_10_1007_JHEP12_2020_024 crossref_primary_10_1103_PhysRevD_105_104035 crossref_primary_10_1007_JHEP05_2021_015 crossref_primary_10_1007_JHEP12_2024_207 crossref_primary_10_1007_JHEP01_2022_027 crossref_primary_10_1103_PhysRevLett_132_251603 crossref_primary_10_1103_PhysRevD_104_105012 crossref_primary_10_1103_PhysRevD_106_044013 crossref_primary_10_1103_PhysRevLett_132_251601 crossref_primary_10_1103_PhysRevLett_126_201602 crossref_primary_10_1007_JHEP03_2021_247 crossref_primary_10_1103_PhysRevD_110_044038 crossref_primary_10_1103_PhysRevD_111_064048 crossref_primary_10_1007_JHEP03_2023_136 crossref_primary_10_1103_PhysRevD_110_044039 crossref_primary_10_1007_JHEP03_2021_097 crossref_primary_10_1103_PhysRevLett_129_121601 crossref_primary_10_1007_JHEP05_2024_050 crossref_primary_10_1007_JHEP05_2020_105 crossref_primary_10_1098_rsta_2021_0181 crossref_primary_10_1103_PhysRevD_110_064005 crossref_primary_10_1103_PhysRevD_101_066004 crossref_primary_10_1007_JHEP06_2021_012 crossref_primary_10_1007_JHEP09_2023_183 crossref_primary_10_1007_JHEP07_2022_072 crossref_primary_10_1007_JHEP11_2020_106 crossref_primary_10_1103_PhysRevD_104_124015 crossref_primary_10_1103_PhysRevD_104_024041 crossref_primary_10_1007_JHEP04_2022_154 crossref_primary_10_1103_PhysRevLett_128_161104 crossref_primary_10_1007_JHEP05_2021_268 crossref_primary_10_1103_PhysRevResearch_4_013127 crossref_primary_10_1103_PhysRevD_108_124016 crossref_primary_10_1007_JHEP10_2020_026 crossref_primary_10_1007_JHEP02_2021_165 crossref_primary_10_1007_JHEP12_2023_103 crossref_primary_10_1103_PhysRevLett_125_191601 crossref_primary_10_1007_JHEP10_2022_135 crossref_primary_10_1007_JHEP02_2021_048 crossref_primary_10_1103_PhysRevLett_132_221401 crossref_primary_10_1103_PhysRevLett_125_261103 crossref_primary_10_1103_PhysRevD_110_044028 crossref_primary_10_1103_PhysRevD_110_124005 crossref_primary_10_1103_PhysRevD_106_086009 crossref_primary_10_1007_JHEP03_2023_130 crossref_primary_10_1103_PhysRevD_103_024030 crossref_primary_10_1103_PhysRevLett_130_101401 crossref_primary_10_1088_1361_6382_ad210f crossref_primary_10_1007_JHEP08_2024_161 crossref_primary_10_1103_PhysRevD_108_024050 crossref_primary_10_1007_JHEP08_2022_172 crossref_primary_10_1007_JHEP09_2023_059 crossref_primary_10_1007_JHEP03_2022_214 |
Cites_doi | 10.1103/PhysRevD.97.044023 10.1016/j.physrep.2016.04.003 10.1016/j.nuclphysb.2013.09.007 10.1103/PhysRevD.95.044026 10.1103/PhysRevD.96.104043 10.1103/PhysRevD.100.024048 10.1103/PhysRevLett.121.251101 10.1103/PhysRevD.99.064054 10.1007/s10714-014-1726-y 10.1103/PhysRevD.89.064058 10.3847/2041-8213/aa91c9 10.1016/0550-3213(94)00488-Z 10.1007/JHEP04(2019)156 10.1103/PhysRevD.97.044038 10.1002/prop.201600064 10.1142/9789813233348_0008 10.1103/PhysRevD.94.104015 10.1103/PhysRevD.77.064026 10.1103/PhysRevD.96.024062 10.1103/PhysRevD.100.084040 10.1103/PhysRevD.89.024019 10.1007/s41114-018-0016-5 10.1007/JHEP09(2019)040 10.1143/PTP.46.1587 10.1007/JHEP10(2019)206 10.1007/JHEP07(2019)179 10.1103/PhysRevD.100.086006 10.1103/PhysRevLett.122.201603 10.1103/PhysRevD.99.024021 10.12942/lrr-2014-2 10.1103/PhysRevLett.105.061602 10.1088/0264-9381/27/19/194002 10.1016/j.physletb.2019.135100 10.1007/JHEP12(2014)056 10.1103/PhysRevD.100.066028 10.1088/0264-9381/27/20/205001 10.1103/PhysRevD.73.104031 10.1103/PhysRevD.100.104024 10.1103/PhysRevD.85.064039 10.1103/PhysRevD.78.044012 10.1103/PhysRevLett.123.231104 10.1088/1361-6382/aaa3a8 10.1103/PhysRevLett.122.241605 10.1088/0264-9381/31/4/043001 10.1103/PhysRevD.100.024047 10.1103/PhysRevD.91.024017 10.1007/JHEP12(2019)156 10.1016/0550-3213(94)90179-1 10.1007/JHEP09(2019)056 10.1007/JHEP04(2019)033 10.1103/PhysRevD.96.084064 10.1103/PhysRevD.94.084009 10.1016/S0550-3213(98)00138-2 10.1007/BF02817047 10.1103/PhysRevD.78.085011 10.1103/PhysRevD.62.044024 10.1103/PhysRevLett.121.171601 10.1103/PhysRevD.100.023007 10.1007/JHEP11(2013)096 10.1007/978-3-319-19416-5_7 10.1103/PhysRevD.96.024063 10.1103/PhysRevD.96.084065 10.1103/PhysRevD.97.085019 10.1103/PhysRevD.97.064010 10.1007/JHEP02(2019)137 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved. Copyright Springer Nature B.V. Jan 2020 |
Copyright_xml | – notice: The Author(s) 2020 – notice: Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved. – notice: Copyright Springer Nature B.V. Jan 2020 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
DOI | 10.1007/JHEP01(2020)072 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 49 |
ExternalDocumentID | oai_doaj_org_article_7d86faa799b0455bbdf9dc9048f5279a oai_DiVA_org_uu_407189 10_1007_JHEP01_2020_072 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYZH ABFSG ACAFW ACARI ACBXY ACNBI ACSTC ADKPE ADRFC ADTPV AEFHF AEINN AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AOWAS ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU D8T DF2 EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ZZAVC PUEGO |
ID | FETCH-LOGICAL-c482t-4e25a0ae048ebeef4bcd751e2f085a2a1b840b14fb8ece6a0c7b3a35797104473 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 1126-6708 |
IngestDate | Wed Aug 27 01:09:21 EDT 2025 Thu Aug 21 07:00:45 EDT 2025 Fri Jul 25 10:00:00 EDT 2025 Fri Jul 25 23:03:19 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Tue Jul 01 03:54:58 EDT 2025 Fri Feb 21 02:38:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Classical Theories of Gravity Scattering Amplitudes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-4e25a0ae048ebeef4bcd751e2f085a2a1b840b14fb8ece6a0c7b3a35797104473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2344372755?pq-origsite=%requestingapplication% |
PQID | 2344372755 |
PQPubID | 2034718 |
PageCount | 49 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7d86faa799b0455bbdf9dc9048f5279a swepub_primary_oai_DiVA_org_uu_407189 proquest_journals_3162651856 proquest_journals_2344372755 crossref_primary_10_1007_JHEP01_2020_072 crossref_citationtrail_10_1007_JHEP01_2020_072 springer_journals_10_1007_JHEP01_2020_072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | 12145_CR91 12145_CR92 CR Galley (12145_CR19) 2016; D 93 J Blümlein (12145_CR25) 2020; B 800 12145_CR55 12145_CR54 12145_CR56 A Guevara (12145_CR82) 2019; 04 12145_CR51 12145_CR50 12145_CR53 Stefano Foffa (12145_CR14) 2014; 31 Z Bern (12145_CR37) 2019; 10 R Monteiro (12145_CR41) 2014; 12 A Antonelli (12145_CR59) 2019; D 99 DA Kosower (12145_CR43) 2019; 02 WD Goldberger (12145_CR90) 2006; D 73 T Damour (12145_CR64) 2016; 905 Z Bern (12145_CR36) 2019; 122 IZ Rothstein (12145_CR13) 2014; 46 12145_CR60 RA Porto (12145_CR73) 2010; 27 12145_CR22 12145_CR66 12145_CR21 12145_CR23 Zvi Bern (12145_CR34) 1994; 425 B Maybee (12145_CR44) 2019; 12 OB Firsov (12145_CR65) 1953; 24 12145_CR62 12145_CR61 12145_CR20 M. Beneke (12145_CR26) 1998; 522 12145_CR63 12145_CR15 12145_CR58 12145_CR17 12145_CR16 WD Goldberger (12145_CR12) 2006; D 73 RA Porto (12145_CR6) 2016; 64 NEJ Bjerrum-Bohr (12145_CR52) 2018; 121 S Foffa (12145_CR24) 2019; 122 M-Z Chung (12145_CR48) 2019; 04 WD Goldberger (12145_CR68) 2010; D 81 L Blanchet (12145_CR9) 2014; 17 CR Galley (12145_CR39) 2013; 11 S Caron-Huot (12145_CR49) 2019; 07 12145_CR71 12145_CR70 D Neill (12145_CR38) 2013; B 877 12145_CR33 12145_CR77 A Guevara (12145_CR80) 2019; 09 12145_CR32 12145_CR76 12145_CR35 12145_CR79 12145_CR78 12145_CR72 12145_CR31 12145_CR75 12145_CR30 12145_CR74 P Jaranowski (12145_CR18) 2015; D 92 12145_CR29 G Schäfer (12145_CR10) 2018; 21 12145_CR69 12145_CR28 12145_CR27 M Punturo (12145_CR7) 2010; 27 12145_CR5 12145_CR8 C Cheung (12145_CR47) 2018; 121 12145_CR81 RA Porto (12145_CR11) 2016; 633 12145_CR88 12145_CR87 12145_CR45 12145_CR89 12145_CR1 12145_CR40 12145_CR84 12145_CR2 12145_CR3 12145_CR42 12145_CR86 12145_CR4 12145_CR85 D Bini (12145_CR67) 2019; 123 K. Westpfahl (12145_CR83) 1979; 26 J Li (12145_CR46) 2018; D 97 H Johansson (12145_CR57) 2019; 09 |
References_xml | – ident: 12145_CR16 doi: 10.1103/PhysRevD.97.044023 – volume: 633 start-page: 1 year: 2016 ident: 12145_CR11 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2016.04.003 – volume: B 877 start-page: 177 year: 2013 ident: 12145_CR38 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2013.09.007 – ident: 12145_CR86 doi: 10.1103/PhysRevD.95.044026 – ident: 12145_CR15 doi: 10.1103/PhysRevD.96.104043 – ident: 12145_CR23 doi: 10.1103/PhysRevD.100.024048 – volume: 121 start-page: 251101 year: 2018 ident: 12145_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.251101 – ident: 12145_CR62 doi: 10.1103/PhysRevD.99.064054 – volume: 46 start-page: 1726 year: 2014 ident: 12145_CR13 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-014-1726-y – ident: 12145_CR17 doi: 10.1103/PhysRevD.89.064058 – ident: 12145_CR54 – volume: 24 start-page: 279 year: 1953 ident: 12145_CR65 publication-title: Zh. Eksp. Teor. Fi z. – ident: 12145_CR1 doi: 10.3847/2041-8213/aa91c9 – ident: 12145_CR35 doi: 10.1016/0550-3213(94)00488-Z – ident: 12145_CR31 – volume: 04 start-page: 156 year: 2019 ident: 12145_CR48 publication-title: JHEP doi: 10.1007/JHEP04(2019)156 – ident: 12145_CR61 doi: 10.1103/PhysRevD.97.044038 – volume: 64 start-page: 723 year: 2016 ident: 12145_CR6 publication-title: Fortsch. Phys. doi: 10.1002/prop.201600064 – ident: 12145_CR28 doi: 10.1142/9789813233348_0008 – ident: 12145_CR87 – ident: 12145_CR60 doi: 10.1103/PhysRevD.94.104015 – ident: 12145_CR91 doi: 10.1103/PhysRevD.77.064026 – ident: 12145_CR21 doi: 10.1103/PhysRevD.96.024062 – ident: 12145_CR51 doi: 10.1103/PhysRevD.100.084040 – volume: D 81 start-page: 124015 year: 2010 ident: 12145_CR68 publication-title: Phys. Rev. – ident: 12145_CR88 doi: 10.1103/PhysRevD.89.024019 – volume: 21 start-page: 7 year: 2018 ident: 12145_CR10 publication-title: Living Rev. Rel. doi: 10.1007/s41114-018-0016-5 – volume: 09 start-page: 040 year: 2019 ident: 12145_CR57 publication-title: JHEP doi: 10.1007/JHEP09(2019)040 – ident: 12145_CR58 doi: 10.1143/PTP.46.1587 – volume: 10 start-page: 206 year: 2019 ident: 12145_CR37 publication-title: JHEP doi: 10.1007/JHEP10(2019)206 – ident: 12145_CR77 – volume: D 73 start-page: 104030 year: 2006 ident: 12145_CR90 publication-title: Phys. Rev. – ident: 12145_CR29 – volume: 07 start-page: 179 year: 2019 ident: 12145_CR49 publication-title: JHEP doi: 10.1007/JHEP07(2019)179 – ident: 12145_CR53 – ident: 12145_CR50 doi: 10.1103/PhysRevD.100.086006 – volume: 122 start-page: 201603 year: 2019 ident: 12145_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.201603 – ident: 12145_CR45 doi: 10.1103/PhysRevD.99.024021 – volume: D 92 start-page: 124043 year: 2015 ident: 12145_CR18 publication-title: Phys. Rev. – ident: 12145_CR84 – ident: 12145_CR3 – ident: 12145_CR63 – volume: 17 start-page: 2 year: 2014 ident: 12145_CR9 publication-title: Living Rev. Rel. doi: 10.12942/lrr-2014-2 – ident: 12145_CR33 doi: 10.1103/PhysRevLett.105.061602 – volume: 27 start-page: 194002 year: 2010 ident: 12145_CR7 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/19/194002 – volume: B 800 start-page: 135100 year: 2020 ident: 12145_CR25 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2019.135100 – volume: 12 start-page: 056 year: 2014 ident: 12145_CR41 publication-title: JHEP doi: 10.1007/JHEP12(2014)056 – ident: 12145_CR56 doi: 10.1103/PhysRevD.100.066028 – ident: 12145_CR89 – volume: 27 start-page: 205001 year: 2010 ident: 12145_CR73 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/20/205001 – ident: 12145_CR71 doi: 10.1103/PhysRevD.73.104031 – ident: 12145_CR81 doi: 10.1103/PhysRevD.100.104024 – ident: 12145_CR66 doi: 10.1103/PhysRevD.85.064039 – ident: 12145_CR72 – ident: 12145_CR74 doi: 10.1103/PhysRevD.78.044012 – volume: 123 start-page: 231104 year: 2019 ident: 12145_CR67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.231104 – ident: 12145_CR78 doi: 10.1088/1361-6382/aaa3a8 – volume: 122 start-page: 241605 year: 2019 ident: 12145_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.241605 – ident: 12145_CR79 – volume: 31 start-page: 043001 issue: 4 year: 2014 ident: 12145_CR14 publication-title: Classical and Quantum Gravity doi: 10.1088/0264-9381/31/4/043001 – ident: 12145_CR22 doi: 10.1103/PhysRevD.100.024047 – ident: 12145_CR40 doi: 10.1103/PhysRevD.91.024017 – volume: 12 start-page: 156 year: 2019 ident: 12145_CR44 publication-title: JHEP doi: 10.1007/JHEP12(2019)156 – volume: D 99 start-page: 104004 year: 2019 ident: 12145_CR59 publication-title: Phys. Rev. – volume: 425 start-page: 217 issue: 1-2 year: 1994 ident: 12145_CR34 publication-title: Nuclear Physics B doi: 10.1016/0550-3213(94)90179-1 – volume: 09 start-page: 056 year: 2019 ident: 12145_CR80 publication-title: JHEP doi: 10.1007/JHEP09(2019)056 – volume: 04 start-page: 033 year: 2019 ident: 12145_CR82 publication-title: JHEP doi: 10.1007/JHEP04(2019)033 – ident: 12145_CR69 doi: 10.1103/PhysRevD.96.084064 – ident: 12145_CR92 doi: 10.1103/PhysRevD.94.084009 – volume: 522 start-page: 321 issue: 1-2 year: 1998 ident: 12145_CR26 publication-title: Nuclear Physics B doi: 10.1016/S0550-3213(98)00138-2 – volume: 26 start-page: 573 issue: 17 year: 1979 ident: 12145_CR83 publication-title: Lettere al Nuovo Cimento doi: 10.1007/BF02817047 – ident: 12145_CR32 doi: 10.1103/PhysRevD.78.085011 – ident: 12145_CR85 doi: 10.1103/PhysRevD.62.044024 – ident: 12145_CR8 – volume: D 97 start-page: 105019 year: 2018 ident: 12145_CR46 publication-title: Phys. Rev. – volume: 121 start-page: 171601 year: 2018 ident: 12145_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.171601 – ident: 12145_CR4 doi: 10.1103/PhysRevD.100.023007 – volume: D 93 start-page: 124010 year: 2016 ident: 12145_CR19 publication-title: Phys. Rev. – volume: 11 start-page: 096 year: 2013 ident: 12145_CR39 publication-title: JHEP doi: 10.1007/JHEP11(2013)096 – ident: 12145_CR75 doi: 10.1103/PhysRevD.78.044012 – ident: 12145_CR2 – volume: D 73 start-page: 104029 year: 2006 ident: 12145_CR12 publication-title: Phys. Rev. – volume: 905 start-page: 273 year: 2016 ident: 12145_CR64 publication-title: Lect. Notes Phys. doi: 10.1007/978-3-319-19416-5_7 – ident: 12145_CR20 doi: 10.1103/PhysRevD.96.024063 – ident: 12145_CR70 doi: 10.1103/PhysRevD.96.084065 – ident: 12145_CR27 – ident: 12145_CR55 – ident: 12145_CR42 doi: 10.1103/PhysRevD.97.085019 – ident: 12145_CR30 – ident: 12145_CR5 – ident: 12145_CR76 doi: 10.1103/PhysRevD.97.064010 – volume: 02 start-page: 137 year: 2019 ident: 12145_CR43 publication-title: JHEP doi: 10.1007/JHEP02(2019)137 |
SSID | ssj0015190 |
Score | 2.6823063 |
Snippet | A
bstract
We introduce a — somewhat
holographic —
dictionary between gravitational observables for scattering processes (measured at the
boundary)
and... We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic... We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic... We introduce a - somewhat holographic - dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic... Abstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic... |
SourceID | doaj swepub proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 72 |
SubjectTerms | Circular orbits Classical and Quantum Gravitation Classical Theories of Gravity Elementary Particles Fourier transforms Gravitational waves Gravity High energy physics Interdisciplinary subjects Invariants Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Recoil Regular Article - Theoretical Physics Relativity Theory Scattering amplitude Scattering Amplitudes Scattering angle String Theory Theoretical physics Theory of relativity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64viijooZqmSZMcfS2LoHhQ8RaSaQqC7so-Dv57J2m7uqJ48ZqkdPJN2nyTxzeEHOQgOOB_LpWsUBiglDRVCiBVQCUo8Kwqw9LAzW3Re-DXT-LpS6qvcCaslgeugTuVpSoqa6XWDtmHcK6sdAkaB14lmNSRGuGc1wZTzf4B8hLaCvlQeXrdu7qj2REG-vSYSjYzB0Wp_hl-Od0S_SYfGqec7jJZarhiclbbuELmfH-VLMQzmzBaI_vd4eA1cTEv0vA9CWc9k_GgLkjiRaHROnnoXt1f9NIm5UEKXLFxyj0TllqP3UN0fcUdlFJkCBlSI8ts5jAgcxmvnPLgC0tButzmQmpkCpzLfIPM9wd9v0kSh3WU516VKuOgra4cUpfCWSZyyQA65KQFwUCjBx7SUryYVsm4Rs0E1Ayi1iFH0wfeaimM35ueB1SnzYKGdSxAz5rGs-Yvz3bITusT03xYI8NyHnYapRA_VucZBmgCOUjRIcetGz-rfzX3sPbzjMGXz49n0eDJxISwV-mt_-jWNlkM762XcXbI_Hg48btIbMZuL47hD4EO8ZU priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iCF7EFceNIgp6qKRp0iRHt2EQFA8q3kLymoqgMzLLwX_vS9qOjMvBW8hS0veyfC8v7wshhzkIDrjOpZIVCg2UkqZKAaQKqAQFnlVlOBq4uS16D_z6STzNkayNhYm33VuXZFyp22C3697VHc2O0VinJ1TiqrsgMB0G9UUIcGgcBwhIaMvg87PRzOYTOfpngOXUF_qNNzTuNd0VstyAxOSs1uoqmfP9NbIYL2vCaJ0cdIeDt8TFB5GGH0m45JmMB3VGEiOERhvkoXt1f9FLm7cOUuCKjVPumbDUepxQKFZfcQelFBnKCjGRZTZzaIm5jFdOefCFpSBdbnMhNUIEzmW-Seb7g77fIonDMspzr0qVcdBWVw4xS-EsE7lkAB1y2grBQEMEHt6jeDUthXEtNROkZlBqHXI8bfBec2D8XfU8SHVaLZBXx4zB8Nk0c8HIUhWVtVJrh4BSOFdWugSNv14JJrXtkN1WJ6aZUSPDch5cjFKIX4vzDC0zgeCj6JCTVo1fxX9296jW80yHL18ez2KHJxMT7F2lt__xzR2yFJL1Mc0umR8PJ34PgcvY7ceh-glbp-PF priority: 102 providerName: Springer Nature |
Title | From boundary data to bound states |
URI | https://link.springer.com/article/10.1007/JHEP01(2020)072 https://www.proquest.com/docview/2344372755 https://www.proquest.com/docview/3162651856 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-407189 https://doaj.org/article/7d86faa799b0455bbdf9dc9048f5279a |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2AvZZ8sWxfM2KB98CrLkiU9jTRLFgorZSyjb0I6y2WwxW0-Hvbf7yTLKRnrXgS2ZHO-k06_u5PvCHlXguCAei6XrFJooNQ0VwogV0AlKPCsqYNr4MtFNZvz8ytxlRxuq3SssteJUVHXLQQf-SkreQgxSSE-3tzmoWpUiK6mEhp75ABVsELj6-BscnH5dRtHQHxC-4Q-VJ6ezyaXtDhGg5-eUMl29qKYsn8HZ25Do3-lEY1bz_QxOUyYMRt1Qn5CHvjFU_Iwnt2E1TPydrpsf2Uu1kda_s7Cmc9s3XY3svjD0Oo5mU8n38azPJU-yIErts65Z8JS63F9IZd9wx3UUhTIOoRIltnCoWHmCt445cFXloJ0pS2F1IgYOJflC7K_aBf-Jckc9lFeelWrgoO2unEIYSpnmUB-AgzIh54JBlJe8FCe4qfpMxp3XDOBawa5NiDH2wduupQY9w89C1zdDgu5rOONdnlt0tIwslZVY63U2iG-FM7Vja5B46c3gkltB-Sol4lJC2xl7qbDP7vLAg01gVikGpCTXox33feS-76T8w7Bn358H0WCNxsTzF-lX_2fotfkUXhj56g5Ivvr5ca_QeiydkOyp6afh2mW4tWY8dBW42F0BmA7Z6M_cbvuOw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMsFIgQldpDqONHbB8QKrTL9ikOLerN2I6DkGBT9iHUP8VvZOwkWy2i3Hq1E2s8D_sbjz0D8Jp5wT2uc7mkpUIHpSK5Ut7nyhPplQ-0ruLRwNFxOTrl-2fibAV-929h4rXKfk1MC3XV-HhGvkUZjyEmKcS78595rBoVo6t9CY1WLQ7CxS902aZv93ZQvuuUDndPPozyrqpA7rmis5wHKiyxAVUXJxBq7nwlRYFUIfqw1BYOfR5X8Nqp4ENpiZeOWSakxs2Yc8lw3BtwkzOmo0Wp4cdF1ALREOnTBxG5tT_a_USKDYqIbJNIurTzpQIBS6h2EYj9K2lp2uiG9-Buh1Cz7Val7sNKGD-AW-mmqJ8-hFfDSfMjc6ka0-QiizdMs1nTNmTpedL0EZxeC0sew-q4GYcnkDnsI5wFVamCe2117RAwlc5SgdLzfgBveiYY32Uhj8Uwvps-f3LLNRO5ZpBrA9hY_HDeJuC4-tP3kauLz2Lm7NTQTL6azhCNrFRZWyu1dohmhXNVrSuvceq1oFLbAaz1MjGdOU_NpfL9s5sV6BYKRD7lADZ7MV52X0nueivnJYJ3vn3eTgTP5yY620o__T9FL-H26OTo0BzuHR88gztx9PaIaA1WZ5N5eI6gaeZeJE3N4Mt1m8YfrxUmFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuqLxEoJQVolJ7WOL12mv7gKq2SZS2EEWIot6M7fUiJMiWPIT61_h1jPeRKohy69XetcYzY_sbz3gG4E3qOHO4z8WCZhINlJzEUjoXS0eEk87TIg9XAx_G2eicnV7wiw343b6FCWGV7Z5YbdR56cIdeY-mLLiYBOe9ogmLmPSHB5c_41BBKnha23IatYqc-atfaL7N3530Uda7lA4Hn45HcVNhIHZM0kXMPOWGGI9qjJPxBbMuFzxBChGJGGoSi_aPTVhhpXc-M8QJm5qUC4UHM2MixXHvwKZAq4h0YPNoMJ58XPkwEBuRNpkQEb3T0WBCkj2K-GyfCLp2DlblAtYw7sot-1cK0-rYG27BgwavRoe1gj2EDT99BHeruFE3fwyvh7PyR2Sr2kyzqyjEm0aLsm6IqsdK8ydwfitMeQqdaTn1zyCy2EdY6mUuE-aUUYVF-JRZQznK0rkuvG2ZoF2TkzyUxviu22zKNdd04JpGrnVhb_XDZZ2O4-ZPjwJXV5-FPNpVQzn7qptlqUUus8IYoZRFbMutzQuVO4VTLzgVynRhu5WJbhb3XF-r4j-70wSNRI44KOvCfivG6-4byd2t5bxGcP_b58OK4OVSB9Nbquf_p-gV3MNlod-fjM9ewP0weH1ftA2dxWzpXyKCWtidRlUj-HLbq-MPZH8rpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+boundary+data+to+bound+states&rft.jtitle=The+journal+of+high+energy+physics&rft.au=K%C3%A4lin+Gregor&rft.au=Porto%2C+Rafael+A&rft.date=2020&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282020%29072&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |