From boundary data to bound states

A bstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections b...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 1; pp. 72 - 49
Main Authors Kälin, Gregor, Porto, Rafael A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the two­body problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω( E ) , directly from scattering information. As an example, using the results in Bernet al. [ 36 , 37 ], we readily derive Ω( E ) and ∆Φ( J , E ) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy.
AbstractList We introduce a - somewhat holographic - dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the two-body problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance increment phi) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, omega(E), directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive omega(E) and increment phi(J, E) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy.
We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the two­body problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω( E ) , directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive Ω( E ) and ∆Φ( J , E ) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy.
Abstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the two­body problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω(E), directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive Ω(E) and ∆Φ(J, E) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy.
We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the two­body problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω(E), directly from scattering information. As an example, using the results in Bernet al. [36, 37], we readily derive Ω(E) and ∆Φ(J, E) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy.
A bstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic invariants for bound orbits (in the bulk), to all orders in the Post-Minkowskian (PM) expansion. Our map relies on remarkable connections between the relative momentum of the two­body problem, the classical limit of the scattering amplitude and the deflection angle in hyperbolic motion. These relationships allow us to compute observables for generic orbits (such as the periastron advance ∆Φ) through analytic continuation, via a radial action depending only on boundary data. A simplified (more geometrical) map can be obtained for circular orbits, enabling us to extract the orbital frequency as a function of the (conserved) binding energy, Ω( E ) , directly from scattering information. As an example, using the results in Bernet al. [ 36 , 37 ], we readily derive Ω( E ) and ∆Φ( J , E ) to two-loop orders. We also provide closed-form expressions for the orbital frequency and periastron advance at tree-level and one-loop order, respectively, which capture a series of exact terms in the Post-Newtonian expansion. We then perform a partial PM resummation, using a no-recoil approximation for the amplitude. This limit is behind the map between the scattering angle for a test-particle and the two-body dynamics to 2PM. We show that it also captures a subset of higher order terms beyond the test-particle limit. While a (rather lengthy) Hamiltonian may be derived as an intermediate step, our map applies directly between gauge invariant quantities. Our findings provide a starting point for an alternative approach to the binary problem. We conclude with future directions and some speculations on the classical double copy.
ArticleNumber 72
Author Porto, Rafael A.
Kälin, Gregor
Author_xml – sequence: 1
  givenname: Gregor
  surname: Kälin
  fullname: Kälin, Gregor
  organization: Department of Physics and Astronomy, Uppsala University
– sequence: 2
  givenname: Rafael A.
  surname: Porto
  fullname: Porto, Rafael A.
  email: rafael.porto@desy.de
  organization: Deutsches Elektronen-Synchrotron DESY, The Abdus Salam International Center for Theoretical Physics
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-407189$$DView record from Swedish Publication Index
BookMark eNp9UUtLAzEQDqKgVs9ei14UrE6yySY5ilqtCHpQr2Gymy1b6qYmu4j_3tgtvkBPMwzfY2a-bbLe-MYRskfhhALI05vry3ughwwYHIFka2SLAtMjxaVe_9Zvku0YZwBUUA1bZH8c_PPQ-q4pMbwNS2xx2Pp-MIwtti7ukI0K59HtruqAPI4vH86vR7d3V5Pzs9tRwRVrR9wxgYAOuHLWuYrbopSCOlaBEsiQWsXBUl5Z5QqXIxTSZpgJqSUFzmU2IJNet_Q4M4tQP6eNjMfaLAc-TA2Gti7mzshS5RWi1NoCF8LastJloZN1JZjUmLSOe6346had_aF2UT-dLdW6znCQVOkEP-jhi-BfOhdbM_NdaNK1JqM5ywVVIv8PxTLOM8mkEAl12qOK4GMMrvo0p2A-kjJ9UuYjKZOSSgzxi1HU6fO1b9qA9fwfHqyOTA7N1IWvff6ivAPmUaVi
CitedBy_id crossref_primary_10_1007_JHEP03_2022_071
crossref_primary_10_1103_PhysRevLett_132_201602
crossref_primary_10_1007_JHEP05_2021_056
crossref_primary_10_1007_JHEP01_2022_045
crossref_primary_10_1103_PhysRevD_102_046014
crossref_primary_10_1007_JHEP06_2020_144
crossref_primary_10_1103_PhysRevD_101_084009
crossref_primary_10_1103_PhysRevD_104_046016
crossref_primary_10_1007_JHEP05_2024_265
crossref_primary_10_1088_1361_6633_abf97e
crossref_primary_10_1103_PhysRevD_105_026004
crossref_primary_10_1007_JHEP07_2023_128
crossref_primary_10_1007_JHEP05_2024_148
crossref_primary_10_1007_JHEP09_2022_108
crossref_primary_10_1103_PhysRevD_109_L041504
crossref_primary_10_1007_JHEP02_2020_046
crossref_primary_10_1007_JHEP09_2023_162
crossref_primary_10_1103_PhysRevD_102_024062
crossref_primary_10_1103_PhysRevD_103_026001
crossref_primary_10_1007_JHEP05_2023_177
crossref_primary_10_1103_PhysRevD_108_106003
crossref_primary_10_1007_JHEP11_2021_087
crossref_primary_10_1103_PhysRevD_102_024060
crossref_primary_10_1103_PhysRevD_108_126017
crossref_primary_10_1007_JHEP05_2021_188
crossref_primary_10_1103_PhysRevD_110_076018
crossref_primary_10_1007_JHEP03_2020_173
crossref_primary_10_1007_JHEP06_2023_004
crossref_primary_10_1007_JHEP12_2020_076
crossref_primary_10_1103_PhysRevD_108_064017
crossref_primary_10_1007_JHEP05_2024_034
crossref_primary_10_1103_PhysRevLett_126_061602
crossref_primary_10_1007_JHEP06_2022_021
crossref_primary_10_1088_1751_8121_ac8846
crossref_primary_10_1103_PhysRevLett_130_021601
crossref_primary_10_1103_PhysRevD_102_064019
crossref_primary_10_1103_PhysRevD_102_124008
crossref_primary_10_1103_PhysRevLett_128_011101
crossref_primary_10_1007_JHEP02_2025_016
crossref_primary_10_1103_PhysRevD_110_064033
crossref_primary_10_1103_PhysRevD_106_026013
crossref_primary_10_1007_JHEP03_2024_108
crossref_primary_10_1007_JHEP05_2021_214
crossref_primary_10_1007_JHEP10_2021_008
crossref_primary_10_1103_PhysRevD_105_126007
crossref_primary_10_1007_JHEP03_2025_144
crossref_primary_10_1007_JHEP05_2023_088
crossref_primary_10_1016_j_physrep_2024_06_002
crossref_primary_10_1007_JHEP07_2024_272
crossref_primary_10_1007_JHEP10_2022_105
crossref_primary_10_1007_JHEP06_2024_181
crossref_primary_10_1007_JHEP03_2021_201
crossref_primary_10_1103_PhysRevD_106_056007
crossref_primary_10_1007_JHEP02_2022_156
crossref_primary_10_1007_JHEP11_2020_023
crossref_primary_10_1103_PhysRevD_106_024042
crossref_primary_10_1007_JHEP08_2020_038
crossref_primary_10_1140_epjc_s10052_021_09626_3
crossref_primary_10_1007_JHEP11_2021_228
crossref_primary_10_1103_PhysRevLett_131_241402
crossref_primary_10_1007_JHEP01_2023_140
crossref_primary_10_1103_PhysRevD_109_106020
crossref_primary_10_1007_JHEP10_2021_011
crossref_primary_10_1103_PhysRevD_108_124052
crossref_primary_10_1103_PhysRevD_110_L041502
crossref_primary_10_1103_PhysRevD_108_084065
crossref_primary_10_1103_PhysRevD_105_124001
crossref_primary_10_1103_PhysRevLett_131_011603
crossref_primary_10_1007_JHEP03_2022_141
crossref_primary_10_1103_PhysRevD_104_024014
crossref_primary_10_1007_JHEP11_2020_160
crossref_primary_10_1007_JHEP03_2024_125
crossref_primary_10_1007_JHEP08_2020_147
crossref_primary_10_1007_JHEP08_2024_080
crossref_primary_10_1007_JHEP08_2022_131
crossref_primary_10_1103_PhysRevLett_129_141102
crossref_primary_10_1007_JHEP03_2024_089
crossref_primary_10_1007_JHEP09_2024_053
crossref_primary_10_1103_PhysRevLett_132_101401
crossref_primary_10_1103_PhysRevD_106_104031
crossref_primary_10_1007_JHEP05_2021_239
crossref_primary_10_1103_PhysRevD_102_124025
crossref_primary_10_1007_JHEP08_2024_243
crossref_primary_10_1103_PhysRevD_102_124024
crossref_primary_10_1007_JHEP10_2021_148
crossref_primary_10_1103_PhysRevD_106_124026
crossref_primary_10_1103_PhysRevD_110_064050
crossref_primary_10_1103_PhysRevD_107_064051
crossref_primary_10_1103_PhysRevD_104_044034
crossref_primary_10_1007_JHEP04_2024_058
crossref_primary_10_1103_PhysRevD_106_124030
crossref_primary_10_1103_PhysRevD_108_064049
crossref_primary_10_1007_JHEP12_2023_118
crossref_primary_10_1007_JHEP05_2020_051
crossref_primary_10_1007_JHEP10_2022_128
crossref_primary_10_1088_1751_8121_ad8b02
crossref_primary_10_1007_JHEP08_2023_188
crossref_primary_10_1140_epjc_s10052_021_08915_1
crossref_primary_10_1103_PhysRevLett_126_201103
crossref_primary_10_1007_JHEP02_2020_092
crossref_primary_10_1103_PhysRevLett_126_171601
crossref_primary_10_21468_SciPostPhysProc_7_023
crossref_primary_10_1007_JHEP07_2021_169
crossref_primary_10_1007_JHEP08_2021_172
crossref_primary_10_1007_JHEP01_2022_006
crossref_primary_10_1088_1475_7516_2023_11_034
crossref_primary_10_1007_JHEP04_2021_234
crossref_primary_10_1103_PhysRevD_101_044039
crossref_primary_10_1103_PhysRevD_108_024025
crossref_primary_10_1103_PhysRevD_107_044033
crossref_primary_10_1103_PhysRevD_104_065014
crossref_primary_10_1103_PhysRevLett_129_121101
crossref_primary_10_1103_PhysRevD_104_104029
crossref_primary_10_1007_JHEP07_2020_122
crossref_primary_10_1088_1361_6382_adaabc
crossref_primary_10_1007_JHEP09_2023_109
crossref_primary_10_1103_PhysRevD_104_024037
crossref_primary_10_1007_JHEP06_2023_048
crossref_primary_10_1103_PhysRevD_103_045015
crossref_primary_10_1103_PhysRevLett_131_221401
crossref_primary_10_1103_PhysRevLett_133_221401
crossref_primary_10_1007_JHEP02_2020_120
crossref_primary_10_1007_JHEP07_2021_037
crossref_primary_10_1007_JHEP05_2024_117
crossref_primary_10_1007_JHEP01_2022_017
crossref_primary_10_1103_PhysRevD_108_024033
crossref_primary_10_1007_JHEP08_2023_109
crossref_primary_10_1103_PhysRevD_102_084047
crossref_primary_10_1007_JHEP05_2022_055
crossref_primary_10_1103_PhysRevLett_128_141102
crossref_primary_10_1103_PhysRevLett_132_091402
crossref_primary_10_1007_JHEP02_2023_105
crossref_primary_10_1007_JHEP11_2021_213
crossref_primary_10_1007_JHEP07_2023_181
crossref_primary_10_1007_JHEP12_2020_024
crossref_primary_10_1103_PhysRevD_105_104035
crossref_primary_10_1007_JHEP05_2021_015
crossref_primary_10_1007_JHEP12_2024_207
crossref_primary_10_1007_JHEP01_2022_027
crossref_primary_10_1103_PhysRevLett_132_251603
crossref_primary_10_1103_PhysRevD_104_105012
crossref_primary_10_1103_PhysRevD_106_044013
crossref_primary_10_1103_PhysRevLett_132_251601
crossref_primary_10_1103_PhysRevLett_126_201602
crossref_primary_10_1007_JHEP03_2021_247
crossref_primary_10_1103_PhysRevD_110_044038
crossref_primary_10_1103_PhysRevD_111_064048
crossref_primary_10_1007_JHEP03_2023_136
crossref_primary_10_1103_PhysRevD_110_044039
crossref_primary_10_1007_JHEP03_2021_097
crossref_primary_10_1103_PhysRevLett_129_121601
crossref_primary_10_1007_JHEP05_2024_050
crossref_primary_10_1007_JHEP05_2020_105
crossref_primary_10_1098_rsta_2021_0181
crossref_primary_10_1103_PhysRevD_110_064005
crossref_primary_10_1103_PhysRevD_101_066004
crossref_primary_10_1007_JHEP06_2021_012
crossref_primary_10_1007_JHEP09_2023_183
crossref_primary_10_1007_JHEP07_2022_072
crossref_primary_10_1007_JHEP11_2020_106
crossref_primary_10_1103_PhysRevD_104_124015
crossref_primary_10_1103_PhysRevD_104_024041
crossref_primary_10_1007_JHEP04_2022_154
crossref_primary_10_1103_PhysRevLett_128_161104
crossref_primary_10_1007_JHEP05_2021_268
crossref_primary_10_1103_PhysRevResearch_4_013127
crossref_primary_10_1103_PhysRevD_108_124016
crossref_primary_10_1007_JHEP10_2020_026
crossref_primary_10_1007_JHEP02_2021_165
crossref_primary_10_1007_JHEP12_2023_103
crossref_primary_10_1103_PhysRevLett_125_191601
crossref_primary_10_1007_JHEP10_2022_135
crossref_primary_10_1007_JHEP02_2021_048
crossref_primary_10_1103_PhysRevLett_132_221401
crossref_primary_10_1103_PhysRevLett_125_261103
crossref_primary_10_1103_PhysRevD_110_044028
crossref_primary_10_1103_PhysRevD_110_124005
crossref_primary_10_1103_PhysRevD_106_086009
crossref_primary_10_1007_JHEP03_2023_130
crossref_primary_10_1103_PhysRevD_103_024030
crossref_primary_10_1103_PhysRevLett_130_101401
crossref_primary_10_1088_1361_6382_ad210f
crossref_primary_10_1007_JHEP08_2024_161
crossref_primary_10_1103_PhysRevD_108_024050
crossref_primary_10_1007_JHEP08_2022_172
crossref_primary_10_1007_JHEP09_2023_059
crossref_primary_10_1007_JHEP03_2022_214
Cites_doi 10.1103/PhysRevD.97.044023
10.1016/j.physrep.2016.04.003
10.1016/j.nuclphysb.2013.09.007
10.1103/PhysRevD.95.044026
10.1103/PhysRevD.96.104043
10.1103/PhysRevD.100.024048
10.1103/PhysRevLett.121.251101
10.1103/PhysRevD.99.064054
10.1007/s10714-014-1726-y
10.1103/PhysRevD.89.064058
10.3847/2041-8213/aa91c9
10.1016/0550-3213(94)00488-Z
10.1007/JHEP04(2019)156
10.1103/PhysRevD.97.044038
10.1002/prop.201600064
10.1142/9789813233348_0008
10.1103/PhysRevD.94.104015
10.1103/PhysRevD.77.064026
10.1103/PhysRevD.96.024062
10.1103/PhysRevD.100.084040
10.1103/PhysRevD.89.024019
10.1007/s41114-018-0016-5
10.1007/JHEP09(2019)040
10.1143/PTP.46.1587
10.1007/JHEP10(2019)206
10.1007/JHEP07(2019)179
10.1103/PhysRevD.100.086006
10.1103/PhysRevLett.122.201603
10.1103/PhysRevD.99.024021
10.12942/lrr-2014-2
10.1103/PhysRevLett.105.061602
10.1088/0264-9381/27/19/194002
10.1016/j.physletb.2019.135100
10.1007/JHEP12(2014)056
10.1103/PhysRevD.100.066028
10.1088/0264-9381/27/20/205001
10.1103/PhysRevD.73.104031
10.1103/PhysRevD.100.104024
10.1103/PhysRevD.85.064039
10.1103/PhysRevD.78.044012
10.1103/PhysRevLett.123.231104
10.1088/1361-6382/aaa3a8
10.1103/PhysRevLett.122.241605
10.1088/0264-9381/31/4/043001
10.1103/PhysRevD.100.024047
10.1103/PhysRevD.91.024017
10.1007/JHEP12(2019)156
10.1016/0550-3213(94)90179-1
10.1007/JHEP09(2019)056
10.1007/JHEP04(2019)033
10.1103/PhysRevD.96.084064
10.1103/PhysRevD.94.084009
10.1016/S0550-3213(98)00138-2
10.1007/BF02817047
10.1103/PhysRevD.78.085011
10.1103/PhysRevD.62.044024
10.1103/PhysRevLett.121.171601
10.1103/PhysRevD.100.023007
10.1007/JHEP11(2013)096
10.1007/978-3-319-19416-5_7
10.1103/PhysRevD.96.024063
10.1103/PhysRevD.96.084065
10.1103/PhysRevD.97.085019
10.1103/PhysRevD.97.064010
10.1007/JHEP02(2019)137
ContentType Journal Article
Copyright The Author(s) 2020
Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.
Copyright Springer Nature B.V. Jan 2020
Copyright_xml – notice: The Author(s) 2020
– notice: Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.
– notice: Copyright Springer Nature B.V. Jan 2020
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1007/JHEP01(2020)072
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 49
ExternalDocumentID oai_doaj_org_article_7d86faa799b0455bbdf9dc9048f5279a
oai_DiVA_org_uu_407189
10_1007_JHEP01_2020_072
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYZH
ABFSG
ACAFW
ACARI
ACBXY
ACNBI
ACSTC
ADKPE
ADRFC
ADTPV
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AOWAS
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
D8T
DF2
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ZZAVC
PUEGO
ID FETCH-LOGICAL-c482t-4e25a0ae048ebeef4bcd751e2f085a2a1b840b14fb8ece6a0c7b3a35797104473
IEDL.DBID BENPR
ISSN 1029-8479
1126-6708
IngestDate Wed Aug 27 01:09:21 EDT 2025
Thu Aug 21 07:00:45 EDT 2025
Fri Jul 25 10:00:00 EDT 2025
Fri Jul 25 23:03:19 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 03:54:58 EDT 2025
Fri Feb 21 02:38:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Classical Theories of Gravity
Scattering Amplitudes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-4e25a0ae048ebeef4bcd751e2f085a2a1b840b14fb8ece6a0c7b3a35797104473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2344372755?pq-origsite=%requestingapplication%
PQID 2344372755
PQPubID 2034718
PageCount 49
ParticipantIDs doaj_primary_oai_doaj_org_article_7d86faa799b0455bbdf9dc9048f5279a
swepub_primary_oai_DiVA_org_uu_407189
proquest_journals_3162651856
proquest_journals_2344372755
crossref_primary_10_1007_JHEP01_2020_072
crossref_citationtrail_10_1007_JHEP01_2020_072
springer_journals_10_1007_JHEP01_2020_072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References 12145_CR91
12145_CR92
CR Galley (12145_CR19) 2016; D 93
J Blümlein (12145_CR25) 2020; B 800
12145_CR55
12145_CR54
12145_CR56
A Guevara (12145_CR82) 2019; 04
12145_CR51
12145_CR50
12145_CR53
Stefano Foffa (12145_CR14) 2014; 31
Z Bern (12145_CR37) 2019; 10
R Monteiro (12145_CR41) 2014; 12
A Antonelli (12145_CR59) 2019; D 99
DA Kosower (12145_CR43) 2019; 02
WD Goldberger (12145_CR90) 2006; D 73
T Damour (12145_CR64) 2016; 905
Z Bern (12145_CR36) 2019; 122
IZ Rothstein (12145_CR13) 2014; 46
12145_CR60
RA Porto (12145_CR73) 2010; 27
12145_CR22
12145_CR66
12145_CR21
12145_CR23
Zvi Bern (12145_CR34) 1994; 425
B Maybee (12145_CR44) 2019; 12
OB Firsov (12145_CR65) 1953; 24
12145_CR62
12145_CR61
12145_CR20
M. Beneke (12145_CR26) 1998; 522
12145_CR63
12145_CR15
12145_CR58
12145_CR17
12145_CR16
WD Goldberger (12145_CR12) 2006; D 73
RA Porto (12145_CR6) 2016; 64
NEJ Bjerrum-Bohr (12145_CR52) 2018; 121
S Foffa (12145_CR24) 2019; 122
M-Z Chung (12145_CR48) 2019; 04
WD Goldberger (12145_CR68) 2010; D 81
L Blanchet (12145_CR9) 2014; 17
CR Galley (12145_CR39) 2013; 11
S Caron-Huot (12145_CR49) 2019; 07
12145_CR71
12145_CR70
D Neill (12145_CR38) 2013; B 877
12145_CR33
12145_CR77
A Guevara (12145_CR80) 2019; 09
12145_CR32
12145_CR76
12145_CR35
12145_CR79
12145_CR78
12145_CR72
12145_CR31
12145_CR75
12145_CR30
12145_CR74
P Jaranowski (12145_CR18) 2015; D 92
12145_CR29
G Schäfer (12145_CR10) 2018; 21
12145_CR69
12145_CR28
12145_CR27
M Punturo (12145_CR7) 2010; 27
12145_CR5
12145_CR8
C Cheung (12145_CR47) 2018; 121
12145_CR81
RA Porto (12145_CR11) 2016; 633
12145_CR88
12145_CR87
12145_CR45
12145_CR89
12145_CR1
12145_CR40
12145_CR84
12145_CR2
12145_CR3
12145_CR42
12145_CR86
12145_CR4
12145_CR85
D Bini (12145_CR67) 2019; 123
K. Westpfahl (12145_CR83) 1979; 26
J Li (12145_CR46) 2018; D 97
H Johansson (12145_CR57) 2019; 09
References_xml – ident: 12145_CR16
  doi: 10.1103/PhysRevD.97.044023
– volume: 633
  start-page: 1
  year: 2016
  ident: 12145_CR11
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2016.04.003
– volume: B 877
  start-page: 177
  year: 2013
  ident: 12145_CR38
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2013.09.007
– ident: 12145_CR86
  doi: 10.1103/PhysRevD.95.044026
– ident: 12145_CR15
  doi: 10.1103/PhysRevD.96.104043
– ident: 12145_CR23
  doi: 10.1103/PhysRevD.100.024048
– volume: 121
  start-page: 251101
  year: 2018
  ident: 12145_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.251101
– ident: 12145_CR62
  doi: 10.1103/PhysRevD.99.064054
– volume: 46
  start-page: 1726
  year: 2014
  ident: 12145_CR13
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-014-1726-y
– ident: 12145_CR17
  doi: 10.1103/PhysRevD.89.064058
– ident: 12145_CR54
– volume: 24
  start-page: 279
  year: 1953
  ident: 12145_CR65
  publication-title: Zh. Eksp. Teor. Fi z.
– ident: 12145_CR1
  doi: 10.3847/2041-8213/aa91c9
– ident: 12145_CR35
  doi: 10.1016/0550-3213(94)00488-Z
– ident: 12145_CR31
– volume: 04
  start-page: 156
  year: 2019
  ident: 12145_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)156
– ident: 12145_CR61
  doi: 10.1103/PhysRevD.97.044038
– volume: 64
  start-page: 723
  year: 2016
  ident: 12145_CR6
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201600064
– ident: 12145_CR28
  doi: 10.1142/9789813233348_0008
– ident: 12145_CR87
– ident: 12145_CR60
  doi: 10.1103/PhysRevD.94.104015
– ident: 12145_CR91
  doi: 10.1103/PhysRevD.77.064026
– ident: 12145_CR21
  doi: 10.1103/PhysRevD.96.024062
– ident: 12145_CR51
  doi: 10.1103/PhysRevD.100.084040
– volume: D 81
  start-page: 124015
  year: 2010
  ident: 12145_CR68
  publication-title: Phys. Rev.
– ident: 12145_CR88
  doi: 10.1103/PhysRevD.89.024019
– volume: 21
  start-page: 7
  year: 2018
  ident: 12145_CR10
  publication-title: Living Rev. Rel.
  doi: 10.1007/s41114-018-0016-5
– volume: 09
  start-page: 040
  year: 2019
  ident: 12145_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP09(2019)040
– ident: 12145_CR58
  doi: 10.1143/PTP.46.1587
– volume: 10
  start-page: 206
  year: 2019
  ident: 12145_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)206
– ident: 12145_CR77
– volume: D 73
  start-page: 104030
  year: 2006
  ident: 12145_CR90
  publication-title: Phys. Rev.
– ident: 12145_CR29
– volume: 07
  start-page: 179
  year: 2019
  ident: 12145_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)179
– ident: 12145_CR53
– ident: 12145_CR50
  doi: 10.1103/PhysRevD.100.086006
– volume: 122
  start-page: 201603
  year: 2019
  ident: 12145_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.201603
– ident: 12145_CR45
  doi: 10.1103/PhysRevD.99.024021
– volume: D 92
  start-page: 124043
  year: 2015
  ident: 12145_CR18
  publication-title: Phys. Rev.
– ident: 12145_CR84
– ident: 12145_CR3
– ident: 12145_CR63
– volume: 17
  start-page: 2
  year: 2014
  ident: 12145_CR9
  publication-title: Living Rev. Rel.
  doi: 10.12942/lrr-2014-2
– ident: 12145_CR33
  doi: 10.1103/PhysRevLett.105.061602
– volume: 27
  start-page: 194002
  year: 2010
  ident: 12145_CR7
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/19/194002
– volume: B 800
  start-page: 135100
  year: 2020
  ident: 12145_CR25
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2019.135100
– volume: 12
  start-page: 056
  year: 2014
  ident: 12145_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)056
– ident: 12145_CR56
  doi: 10.1103/PhysRevD.100.066028
– ident: 12145_CR89
– volume: 27
  start-page: 205001
  year: 2010
  ident: 12145_CR73
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/20/205001
– ident: 12145_CR71
  doi: 10.1103/PhysRevD.73.104031
– ident: 12145_CR81
  doi: 10.1103/PhysRevD.100.104024
– ident: 12145_CR66
  doi: 10.1103/PhysRevD.85.064039
– ident: 12145_CR72
– ident: 12145_CR74
  doi: 10.1103/PhysRevD.78.044012
– volume: 123
  start-page: 231104
  year: 2019
  ident: 12145_CR67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.231104
– ident: 12145_CR78
  doi: 10.1088/1361-6382/aaa3a8
– volume: 122
  start-page: 241605
  year: 2019
  ident: 12145_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.241605
– ident: 12145_CR79
– volume: 31
  start-page: 043001
  issue: 4
  year: 2014
  ident: 12145_CR14
  publication-title: Classical and Quantum Gravity
  doi: 10.1088/0264-9381/31/4/043001
– ident: 12145_CR22
  doi: 10.1103/PhysRevD.100.024047
– ident: 12145_CR40
  doi: 10.1103/PhysRevD.91.024017
– volume: 12
  start-page: 156
  year: 2019
  ident: 12145_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)156
– volume: D 99
  start-page: 104004
  year: 2019
  ident: 12145_CR59
  publication-title: Phys. Rev.
– volume: 425
  start-page: 217
  issue: 1-2
  year: 1994
  ident: 12145_CR34
  publication-title: Nuclear Physics B
  doi: 10.1016/0550-3213(94)90179-1
– volume: 09
  start-page: 056
  year: 2019
  ident: 12145_CR80
  publication-title: JHEP
  doi: 10.1007/JHEP09(2019)056
– volume: 04
  start-page: 033
  year: 2019
  ident: 12145_CR82
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)033
– ident: 12145_CR69
  doi: 10.1103/PhysRevD.96.084064
– ident: 12145_CR92
  doi: 10.1103/PhysRevD.94.084009
– volume: 522
  start-page: 321
  issue: 1-2
  year: 1998
  ident: 12145_CR26
  publication-title: Nuclear Physics B
  doi: 10.1016/S0550-3213(98)00138-2
– volume: 26
  start-page: 573
  issue: 17
  year: 1979
  ident: 12145_CR83
  publication-title: Lettere al Nuovo Cimento
  doi: 10.1007/BF02817047
– ident: 12145_CR32
  doi: 10.1103/PhysRevD.78.085011
– ident: 12145_CR85
  doi: 10.1103/PhysRevD.62.044024
– ident: 12145_CR8
– volume: D 97
  start-page: 105019
  year: 2018
  ident: 12145_CR46
  publication-title: Phys. Rev.
– volume: 121
  start-page: 171601
  year: 2018
  ident: 12145_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.171601
– ident: 12145_CR4
  doi: 10.1103/PhysRevD.100.023007
– volume: D 93
  start-page: 124010
  year: 2016
  ident: 12145_CR19
  publication-title: Phys. Rev.
– volume: 11
  start-page: 096
  year: 2013
  ident: 12145_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)096
– ident: 12145_CR75
  doi: 10.1103/PhysRevD.78.044012
– ident: 12145_CR2
– volume: D 73
  start-page: 104029
  year: 2006
  ident: 12145_CR12
  publication-title: Phys. Rev.
– volume: 905
  start-page: 273
  year: 2016
  ident: 12145_CR64
  publication-title: Lect. Notes Phys.
  doi: 10.1007/978-3-319-19416-5_7
– ident: 12145_CR20
  doi: 10.1103/PhysRevD.96.024063
– ident: 12145_CR70
  doi: 10.1103/PhysRevD.96.084065
– ident: 12145_CR27
– ident: 12145_CR55
– ident: 12145_CR42
  doi: 10.1103/PhysRevD.97.085019
– ident: 12145_CR30
– ident: 12145_CR5
– ident: 12145_CR76
  doi: 10.1103/PhysRevD.97.064010
– volume: 02
  start-page: 137
  year: 2019
  ident: 12145_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)137
SSID ssj0015190
Score 2.6823063
Snippet A bstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and...
We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic...
We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic...
We introduce a - somewhat holographic - dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic...
Abstract We introduce a — somewhat holographic — dictionary between gravitational observables for scattering processes (measured at the boundary) and adiabatic...
SourceID doaj
swepub
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 72
SubjectTerms Circular orbits
Classical and Quantum Gravitation
Classical Theories of Gravity
Elementary Particles
Fourier transforms
Gravitational waves
Gravity
High energy physics
Interdisciplinary subjects
Invariants
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Recoil
Regular Article - Theoretical Physics
Relativity Theory
Scattering amplitude
Scattering Amplitudes
Scattering angle
String Theory
Theoretical physics
Theory of relativity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64viijooZqmSZMcfS2LoHhQ8RaSaQqC7so-Dv57J2m7uqJ48ZqkdPJN2nyTxzeEHOQgOOB_LpWsUBiglDRVCiBVQCUo8Kwqw9LAzW3Re-DXT-LpS6qvcCaslgeugTuVpSoqa6XWDtmHcK6sdAkaB14lmNSRGuGc1wZTzf4B8hLaCvlQeXrdu7qj2REG-vSYSjYzB0Wp_hl-Od0S_SYfGqec7jJZarhiclbbuELmfH-VLMQzmzBaI_vd4eA1cTEv0vA9CWc9k_GgLkjiRaHROnnoXt1f9NIm5UEKXLFxyj0TllqP3UN0fcUdlFJkCBlSI8ts5jAgcxmvnPLgC0tButzmQmpkCpzLfIPM9wd9v0kSh3WU516VKuOgra4cUpfCWSZyyQA65KQFwUCjBx7SUryYVsm4Rs0E1Ayi1iFH0wfeaimM35ueB1SnzYKGdSxAz5rGs-Yvz3bITusT03xYI8NyHnYapRA_VucZBmgCOUjRIcetGz-rfzX3sPbzjMGXz49n0eDJxISwV-mt_-jWNlkM762XcXbI_Hg48btIbMZuL47hD4EO8ZU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iCF7EFceNIgp6qKRp0iRHt2EQFA8q3kLymoqgMzLLwX_vS9qOjMvBW8hS0veyfC8v7wshhzkIDrjOpZIVCg2UkqZKAaQKqAQFnlVlOBq4uS16D_z6STzNkayNhYm33VuXZFyp22C3697VHc2O0VinJ1TiqrsgMB0G9UUIcGgcBwhIaMvg87PRzOYTOfpngOXUF_qNNzTuNd0VstyAxOSs1uoqmfP9NbIYL2vCaJ0cdIeDt8TFB5GGH0m45JmMB3VGEiOERhvkoXt1f9FLm7cOUuCKjVPumbDUepxQKFZfcQelFBnKCjGRZTZzaIm5jFdOefCFpSBdbnMhNUIEzmW-Seb7g77fIonDMspzr0qVcdBWVw4xS-EsE7lkAB1y2grBQEMEHt6jeDUthXEtNROkZlBqHXI8bfBec2D8XfU8SHVaLZBXx4zB8Nk0c8HIUhWVtVJrh4BSOFdWugSNv14JJrXtkN1WJ6aZUSPDch5cjFKIX4vzDC0zgeCj6JCTVo1fxX9296jW80yHL18ez2KHJxMT7F2lt__xzR2yFJL1Mc0umR8PJ34PgcvY7ceh-glbp-PF
  priority: 102
  providerName: Springer Nature
Title From boundary data to bound states
URI https://link.springer.com/article/10.1007/JHEP01(2020)072
https://www.proquest.com/docview/2344372755
https://www.proquest.com/docview/3162651856
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-407189
https://doaj.org/article/7d86faa799b0455bbdf9dc9048f5279a
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2AvZZ8sWxfM2KB98CrLkiU9jTRLFgorZSyjb0I6y2WwxW0-Hvbf7yTLKRnrXgS2ZHO-k06_u5PvCHlXguCAei6XrFJooNQ0VwogV0AlKPCsqYNr4MtFNZvz8ytxlRxuq3SssteJUVHXLQQf-SkreQgxSSE-3tzmoWpUiK6mEhp75ABVsELj6-BscnH5dRtHQHxC-4Q-VJ6ezyaXtDhGg5-eUMl29qKYsn8HZ25Do3-lEY1bz_QxOUyYMRt1Qn5CHvjFU_Iwnt2E1TPydrpsf2Uu1kda_s7Cmc9s3XY3svjD0Oo5mU8n38azPJU-yIErts65Z8JS63F9IZd9wx3UUhTIOoRIltnCoWHmCt445cFXloJ0pS2F1IgYOJflC7K_aBf-Jckc9lFeelWrgoO2unEIYSpnmUB-AgzIh54JBlJe8FCe4qfpMxp3XDOBawa5NiDH2wduupQY9w89C1zdDgu5rOONdnlt0tIwslZVY63U2iG-FM7Vja5B46c3gkltB-Sol4lJC2xl7qbDP7vLAg01gVikGpCTXox33feS-76T8w7Bn358H0WCNxsTzF-lX_2fotfkUXhj56g5Ivvr5ca_QeiydkOyp6afh2mW4tWY8dBW42F0BmA7Z6M_cbvuOw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMsFIgQldpDqONHbB8QKrTL9ikOLerN2I6DkGBT9iHUP8VvZOwkWy2i3Hq1E2s8D_sbjz0D8Jp5wT2uc7mkpUIHpSK5Ut7nyhPplQ-0ruLRwNFxOTrl-2fibAV-929h4rXKfk1MC3XV-HhGvkUZjyEmKcS78595rBoVo6t9CY1WLQ7CxS902aZv93ZQvuuUDndPPozyrqpA7rmis5wHKiyxAVUXJxBq7nwlRYFUIfqw1BYOfR5X8Nqp4ENpiZeOWSakxs2Yc8lw3BtwkzOmo0Wp4cdF1ALREOnTBxG5tT_a_USKDYqIbJNIurTzpQIBS6h2EYj9K2lp2uiG9-Buh1Cz7Val7sNKGD-AW-mmqJ8-hFfDSfMjc6ka0-QiizdMs1nTNmTpedL0EZxeC0sew-q4GYcnkDnsI5wFVamCe2117RAwlc5SgdLzfgBveiYY32Uhj8Uwvps-f3LLNRO5ZpBrA9hY_HDeJuC4-tP3kauLz2Lm7NTQTL6azhCNrFRZWyu1dohmhXNVrSuvceq1oFLbAaz1MjGdOU_NpfL9s5sV6BYKRD7lADZ7MV52X0nueivnJYJ3vn3eTgTP5yY620o__T9FL-H26OTo0BzuHR88gztx9PaIaA1WZ5N5eI6gaeZeJE3N4Mt1m8YfrxUmFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuqLxEoJQVolJ7WOL12mv7gKq2SZS2EEWIot6M7fUiJMiWPIT61_h1jPeRKohy69XetcYzY_sbz3gG4E3qOHO4z8WCZhINlJzEUjoXS0eEk87TIg9XAx_G2eicnV7wiw343b6FCWGV7Z5YbdR56cIdeY-mLLiYBOe9ogmLmPSHB5c_41BBKnha23IatYqc-atfaL7N3530Uda7lA4Hn45HcVNhIHZM0kXMPOWGGI9qjJPxBbMuFzxBChGJGGoSi_aPTVhhpXc-M8QJm5qUC4UHM2MixXHvwKZAq4h0YPNoMJ58XPkwEBuRNpkQEb3T0WBCkj2K-GyfCLp2DlblAtYw7sot-1cK0-rYG27BgwavRoe1gj2EDT99BHeruFE3fwyvh7PyR2Sr2kyzqyjEm0aLsm6IqsdK8ydwfitMeQqdaTn1zyCy2EdY6mUuE-aUUYVF-JRZQznK0rkuvG2ZoF2TkzyUxviu22zKNdd04JpGrnVhb_XDZZ2O4-ZPjwJXV5-FPNpVQzn7qptlqUUus8IYoZRFbMutzQuVO4VTLzgVynRhu5WJbhb3XF-r4j-70wSNRI44KOvCfivG6-4byd2t5bxGcP_b58OK4OVSB9Nbquf_p-gV3MNlod-fjM9ewP0weH1ftA2dxWzpXyKCWtidRlUj-HLbq-MPZH8rpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+boundary+data+to+bound+states&rft.jtitle=The+journal+of+high+energy+physics&rft.au=K%C3%A4lin+Gregor&rft.au=Porto%2C+Rafael+A&rft.date=2020&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282020%29072&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon