Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition

•Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are identified by DMD as measured in subdural array recordings.•Sleep spindle networks are characterized by different cortical distribution pattern...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 258; pp. 1 - 15
Main Authors Brunton, Bingni W., Johnson, Lise A., Ojemann, Jeffrey G., Kutz, J. Nathan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are identified by DMD as measured in subdural array recordings.•Sleep spindle networks are characterized by different cortical distribution patterns, carrying frequencies and durations. There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately. Here we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial–temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements. We first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration. DMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics. The resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings.
AbstractList BACKGROUNDThere is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately.NEW METHODHere we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial-temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements.RESULTSWe first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration.COMPARISON WITH EXISTING METHODSDMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics.CONCLUSIONSThe resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings.
There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately. Here we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial-temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements. We first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration. DMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics. The resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings.
•Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are identified by DMD as measured in subdural array recordings.•Sleep spindle networks are characterized by different cortical distribution patterns, carrying frequencies and durations. There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately. Here we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial–temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements. We first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration. DMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics. The resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings.
Author Johnson, Lise A.
Ojemann, Jeffrey G.
Kutz, J. Nathan
Brunton, Bingni W.
Author_xml – sequence: 1
  givenname: Bingni W.
  orcidid: 0000-0002-4831-3466
  surname: Brunton
  fullname: Brunton, Bingni W.
  email: bbrunton@uw.edu
  organization: Department of Biology, University of Washington, Seattle, WA 98195, USA
– sequence: 2
  givenname: Lise A.
  surname: Johnson
  fullname: Johnson, Lise A.
  organization: Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA 98195, USA
– sequence: 3
  givenname: Jeffrey G.
  surname: Ojemann
  fullname: Ojemann, Jeffrey G.
  organization: Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: J. Nathan
  surname: Kutz
  fullname: Kutz, J. Nathan
  organization: Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26529367$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3TAUhEVJaW6SvkLQshvfHsmWbEEXLSH9gUA2KWQnZPk40cWWbiS5NLu-Q9-wT1KZm3TRTVaCM98MYuaEHPngkZBzBlsGTL7fbXcelxnz_ZYDE-W4BQavyIZ1La9k290ekU0BRQW8hWNyktIOABoF8g055lJwVct2Qx4uf-ZobHb-jqa9yc5Mf379zjjvQzQTteEeI_pMi5Qx-kSdp5OJd1glayak5RMrF9GGOJSQRJe0Zg2P3szO0jkMSIeilsDksgv-jLwezZTw7dN7Sr5_vry5-FpdXX_5dvHpqrJNx3PVtDXvmWxAGmVYX8uxU21n5MjGXijgaNteGGANKsZtLXoYGwmqbzoh-qLVp-TdIXcfw8OCKevZJYvTZDyGJWnWCqZUw7ks6PkTuvQzDnof3Wzio36uqQDyANgYUoo4_kMY6HUPvdPPe-h1j_Ve9ijGD_8ZrctmraG07qaX7R8PdixF_XAYdbIOvcXBlcazHoJ7KeIvZ72uXQ
CitedBy_id crossref_primary_10_1121_10_0026460
crossref_primary_10_1137_21M1417405
crossref_primary_10_1103_PhysRevE_101_060104
crossref_primary_10_1103_PhysRevE_104_034211
crossref_primary_10_1038_s41598_024_69837_y
crossref_primary_10_1016_j_advwatres_2022_104217
crossref_primary_10_1038_s41598_020_58064_w
crossref_primary_10_1177_0278364920921935
crossref_primary_10_1109_ACCESS_2019_2915609
crossref_primary_10_1039_D4SM00483C
crossref_primary_10_1115_1_4054869
crossref_primary_10_2514_1_J063929
crossref_primary_10_1109_TRO_2022_3228130
crossref_primary_10_1016_j_anucene_2020_107826
crossref_primary_10_1016_j_physd_2023_133741
crossref_primary_10_1371_journal_pcbi_1007491
crossref_primary_10_1162_neco_a_01203
crossref_primary_10_1007_s00332_017_9423_0
crossref_primary_10_1007_s11571_020_09656_9
crossref_primary_10_3902_jnns_30_73
crossref_primary_10_1063_5_0046325
crossref_primary_10_1371_journal_pcbi_1010401
crossref_primary_10_1016_j_trc_2023_104178
crossref_primary_10_2514_1_J059207
crossref_primary_10_1016_j_compchemeng_2022_108104
crossref_primary_10_1016_j_neuroimage_2023_120358
crossref_primary_10_3934_jcd_2015002
crossref_primary_10_1016_j_nicl_2019_102150
crossref_primary_10_1088_1572_9494_ac6c7b
crossref_primary_10_1098_rspa_2021_0830
crossref_primary_10_1016_j_oceaneng_2023_115446
crossref_primary_10_1063_5_0220277
crossref_primary_10_1016_j_jcp_2024_113194
crossref_primary_10_1016_j_neunet_2021_04_029
crossref_primary_10_1061_JHYEFF_HEENG_5947
crossref_primary_10_1103_PhysRevE_105_015312
crossref_primary_10_1007_s10891_020_02257_7
crossref_primary_10_1016_j_ifacol_2021_06_133
crossref_primary_10_1109_TNSRE_2023_3260143
crossref_primary_10_3390_a17090388
crossref_primary_10_1080_09540261_2017_1282438
crossref_primary_10_1155_2019_3262818
crossref_primary_10_1109_JBHI_2021_3130275
crossref_primary_10_3390_math12050762
crossref_primary_10_1016_j_nbd_2025_106858
crossref_primary_10_1017_aer_2023_89
crossref_primary_10_1021_acs_iecr_3c03275
crossref_primary_10_1063_5_0033827
crossref_primary_10_1007_s00138_017_0835_5
crossref_primary_10_1016_j_ecoinf_2022_101766
crossref_primary_10_1038_s41598_023_40648_x
crossref_primary_10_1016_j_ynstr_2023_100516
crossref_primary_10_1002_cnm_3406
crossref_primary_10_1016_j_cub_2016_05_029
crossref_primary_10_1137_16M1062296
crossref_primary_10_1109_TBME_2016_2543662
crossref_primary_10_1016_j_apenergy_2018_09_190
crossref_primary_10_1063_1_5020558
crossref_primary_10_1038_s41593_024_01783_4
crossref_primary_10_1103_PhysRevB_107_184308
crossref_primary_10_1007_s00332_017_9437_7
crossref_primary_10_1109_TIE_2021_3121755
crossref_primary_10_1002_cpa_22125
crossref_primary_10_1016_j_ijnonlinmec_2020_103625
crossref_primary_10_1016_j_jsv_2022_116849
crossref_primary_10_56082_annalsarscimath_2022_1_2_5
crossref_primary_10_3390_math10234406
crossref_primary_10_1016_j_camwa_2021_05_026
crossref_primary_10_56082_annalsarscimath_2023_1_2_229
crossref_primary_10_1016_j_patrec_2019_02_010
crossref_primary_10_1016_j_epsr_2023_109387
crossref_primary_10_1016_j_neuron_2020_10_011
crossref_primary_10_1242_jeb_246223
crossref_primary_10_1088_1741_2552_acad28
crossref_primary_10_1109_ACCESS_2024_3359050
crossref_primary_10_1109_ACCESS_2020_2986499
crossref_primary_10_1371_journal_pcbi_1006908
crossref_primary_10_1007_s40722_022_00243_0
crossref_primary_10_1007_s00332_017_9441_y
crossref_primary_10_1016_j_jneumeth_2017_06_004
crossref_primary_10_1016_j_oceaneng_2022_113235
crossref_primary_10_1061_JAEEEZ_ASENG_4836
crossref_primary_10_7554_eLife_21792
crossref_primary_10_1063_5_0062546
crossref_primary_10_1016_j_jneumeth_2020_109063
crossref_primary_10_3389_fnhum_2016_00165
crossref_primary_10_1016_j_bbe_2020_11_002
crossref_primary_10_1016_j_acha_2020_06_005
crossref_primary_10_1016_j_neuroimage_2021_118801
crossref_primary_10_1137_19M1305033
crossref_primary_10_1523_JNEUROSCI_1531_22_2023
crossref_primary_10_1115_1_4052999
crossref_primary_10_1109_JBHI_2020_3015471
crossref_primary_10_1098_rsta_2021_0199
crossref_primary_10_3934_math_2024050
crossref_primary_10_1016_j_cviu_2021_103355
crossref_primary_10_1016_j_physa_2022_127152
crossref_primary_10_1007_s00006_020_01061_z
crossref_primary_10_1016_j_physd_2024_134405
crossref_primary_10_1137_20M1338058
crossref_primary_10_1016_j_acha_2018_08_002
crossref_primary_10_1038_s41598_021_02413_w
crossref_primary_10_1016_j_ifacol_2018_07_232
crossref_primary_10_1063_5_0209683
crossref_primary_10_1007_s10472_019_09666_2
crossref_primary_10_1103_PhysRevFluids_2_124402
crossref_primary_10_53391_mmnsa_1512698
crossref_primary_10_1016_j_ijforecast_2023_07_001
crossref_primary_10_1038_s41746_025_01531_3
crossref_primary_10_1016_j_neuroimage_2021_118330
crossref_primary_10_1109_TNSRE_2022_3164074
crossref_primary_10_1088_1361_6544_aabc8f
crossref_primary_10_1016_j_conb_2019_06_008
crossref_primary_10_1016_j_ifacol_2016_10_249
crossref_primary_10_1103_PhysRevE_102_062216
crossref_primary_10_1111_ejn_13727
crossref_primary_10_1002_asl_1279
crossref_primary_10_1088_1741_2552_ab8910
crossref_primary_10_1109_TUFFC_2024_3387351
crossref_primary_10_1063_5_0157763
crossref_primary_10_3390_computation11100201
crossref_primary_10_1109_TEMC_2020_2994934
crossref_primary_10_1017_jfm_2019_686
crossref_primary_10_1080_15472450_2023_2205022
crossref_primary_10_1007_s10494_020_00156_8
crossref_primary_10_1137_21M1399907
crossref_primary_10_1137_19M1289881
crossref_primary_10_1016_j_neuroscience_2018_07_025
crossref_primary_10_1109_ACCESS_2022_3183760
crossref_primary_10_1093_imammb_dqae025
crossref_primary_10_1061__ASCE_HE_1943_5584_0002204
crossref_primary_10_1098_rspa_2021_0097
crossref_primary_10_3389_fphys_2018_01540
crossref_primary_10_1016_j_dche_2025_100219
crossref_primary_10_1007_s10514_023_10089_6
crossref_primary_10_1002_gamm_202200003
crossref_primary_10_1017_S0033291724000710
crossref_primary_10_1098_rspa_2023_0422
crossref_primary_10_1007_s41745_025_00464_w
crossref_primary_10_1109_JSEN_2023_3330228
crossref_primary_10_1109_TAC_2024_3419179
crossref_primary_10_1016_j_bspc_2021_102765
crossref_primary_10_1088_1741_2552_ac6063
crossref_primary_10_1098_rsif_2021_0686
crossref_primary_10_1007_s10444_018_9592_x
crossref_primary_10_1371_journal_pcbi_1010012
crossref_primary_10_1016_j_neuroimage_2020_117189
crossref_primary_10_1137_19M1259948
crossref_primary_10_3390_e20030152
crossref_primary_10_1109_TIV_2022_3180337
crossref_primary_10_3390_s24020486
crossref_primary_10_1016_j_neuron_2024_06_011
crossref_primary_10_1080_10618562_2018_1511049
crossref_primary_10_1137_22M1521407
crossref_primary_10_1109_TITS_2020_3032880
crossref_primary_10_1137_18M1188227
crossref_primary_10_1146_annurev_neuro_092619_094115
crossref_primary_10_1371_journal_pcbi_1006545
crossref_primary_10_1063_1_4996024
crossref_primary_10_1371_journal_pone_0211413
crossref_primary_10_1371_journal_pone_0150171
crossref_primary_10_1063_5_0123550
crossref_primary_10_1109_ACCESS_2018_2853125
crossref_primary_10_1109_TAC_2023_3242325
crossref_primary_10_1088_1748_9326_ac548f
crossref_primary_10_3390_en13246513
crossref_primary_10_1073_pnas_1813476116
crossref_primary_10_1088_2632_2153_abf0f5
crossref_primary_10_1016_j_ast_2021_107191
crossref_primary_10_1021_acs_jpca_3c05755
crossref_primary_10_1177_1748006X231162127
crossref_primary_10_1038_s41551_022_00962_7
crossref_primary_10_1103_PhysRevResearch_5_013175
crossref_primary_10_3389_fncom_2019_00094
crossref_primary_10_1137_17M1162366
crossref_primary_10_3390_a17040133
crossref_primary_10_1016_j_bspc_2024_105983
crossref_primary_10_1007_s11042_018_6114_2
crossref_primary_10_2514_1_J057870
crossref_primary_10_1016_j_cej_2024_157477
crossref_primary_10_1063_5_0123101
crossref_primary_10_1103_PhysRevE_96_033310
crossref_primary_10_1162_NECO_a_00936
crossref_primary_10_1137_18M1216572
crossref_primary_10_1152_jn_00131_2023
crossref_primary_10_1088_1741_2552_ac7256
crossref_primary_10_1088_1741_2552_ad705f
crossref_primary_10_1063_5_0238087
crossref_primary_10_1016_j_biosystems_2021_104403
crossref_primary_10_1016_j_neuroimage_2022_119131
crossref_primary_10_1016_j_neunet_2019_04_020
crossref_primary_10_1186_s12915_018_0494_7
crossref_primary_10_1007_s11042_020_10315_8
crossref_primary_10_1109_ACCESS_2022_3161438
crossref_primary_10_3390_computation11060114
crossref_primary_10_35848_1347_4065_ac1c3c
crossref_primary_10_2514_1_J062546
crossref_primary_10_1016_j_cpc_2024_109217
crossref_primary_10_1063_1_5099091
crossref_primary_10_1137_21M1401243
crossref_primary_10_1007_s11071_023_09135_w
crossref_primary_10_3934_bdia_2024001
crossref_primary_10_1002_pamm_202400127
crossref_primary_10_3389_fncom_2019_00075
crossref_primary_10_1038_s41598_022_25421_w
crossref_primary_10_1137_18M1215013
crossref_primary_10_3390_rs13234742
crossref_primary_10_1002_aic_16743
crossref_primary_10_1016_j_jprocont_2020_05_003
crossref_primary_10_1002_2017JC012730
crossref_primary_10_1007_s00603_021_02668_9
crossref_primary_10_1371_journal_pcbi_1005303
crossref_primary_10_1152_jn_00525_2017
crossref_primary_10_1098_rsif_2021_0523
crossref_primary_10_3390_app15020713
crossref_primary_10_1109_ACCESS_2022_3179414
crossref_primary_10_1007_s12650_022_00833_y
crossref_primary_10_1038_s42005_023_01230_z
crossref_primary_10_1098_rspa_2022_0576
crossref_primary_10_1038_s41598_019_53187_1
crossref_primary_10_3390_math13050709
crossref_primary_10_1089_brain_2020_0989
crossref_primary_10_1140_epjst_e2016_60057_9
crossref_primary_10_3390_math8040481
crossref_primary_10_1137_17M1125236
crossref_primary_10_1016_j_ijheatfluidflow_2021_108816
crossref_primary_10_1177_09544070221107805
crossref_primary_10_1109_TAC_2020_2978039
crossref_primary_10_1016_j_compbiomed_2021_104549
crossref_primary_10_1088_1361_6501_accf2b
crossref_primary_10_1016_j_jneumeth_2021_109199
crossref_primary_10_1016_j_tins_2017_02_004
crossref_primary_10_1007_s11071_024_09340_1
crossref_primary_10_1109_ACCESS_2023_3284465
crossref_primary_10_1016_j_ifacol_2018_09_011
crossref_primary_10_1137_20M1359833
crossref_primary_10_1038_s41467_017_00030_8
crossref_primary_10_1137_21M1443832
crossref_primary_10_1038_s42003_024_06294_3
crossref_primary_10_1016_j_dsp_2021_103216
crossref_primary_10_1016_j_brainres_2022_148001
crossref_primary_10_1007_s11071_017_3764_y
crossref_primary_10_1080_17512549_2020_1842802
crossref_primary_10_7554_eLife_38471
crossref_primary_10_3389_fncom_2020_00071
crossref_primary_10_1038_s41467_023_37897_9
crossref_primary_10_2514_1_J056060
crossref_primary_10_1016_j_ymssp_2022_109919
crossref_primary_10_1109_TBDATA_2020_2980849
crossref_primary_10_1016_j_isatra_2022_07_026
crossref_primary_10_1103_PhysRevFluids_5_074702
crossref_primary_10_12677_pm_2024_143085
crossref_primary_10_1103_PhysRevE_108_045001
crossref_primary_10_3902_jnns_25_2
crossref_primary_10_3390_computation10120210
crossref_primary_10_1137_15M1023543
crossref_primary_10_1109_TIE_2019_2928239
crossref_primary_10_1103_PhysRevAccelBeams_21_011004
crossref_primary_10_1109_ACCESS_2023_3267125
crossref_primary_10_2514_1_J061539
Cites_doi 10.1053/smrv.2002.0252
10.1371/journal.pcbi.1000609
10.3389/fncir.2014.00115
10.1063/1.4772195
10.1016/S0893-6080(00)00026-5
10.1073/pnas.1207532109
10.1038/nmeth.3041
10.1016/j.neuroimage.2005.11.021
10.1007/s10827-007-0020-3
10.1093/inthealth/ihv009
10.1007/s11071-005-2824-x
10.1016/j.tics.2005.08.011
10.1038/nmeth.2855
10.1038/nrn2774
10.1016/j.neuroscience.2005.01.011
10.1016/j.neucom.2004.10.077
10.1103/PhysRevLett.97.118102
10.1017/S0022112010001217
10.1523/JNEUROSCI.3175-06.2006
10.1523/JNEUROSCI.22-15-06830.2002
10.1523/JNEUROSCI.3276-09.2010
10.1016/j.clinph.2009.12.039
10.1016/j.neuron.2011.02.043
10.1080/03610927708827533
10.1109/TAU.1967.1161901
10.1146/annurev-neuro-062111-150410
10.1523/JNEUROSCI.3886-06.2007
10.1017/S0022112009992059
10.1063/1.4863670
10.1038/nature11129
10.1007/s00332-012-9130-9
10.2514/3.20031
10.1080/01691864.2014.981292
10.1126/science.1099745
10.1126/science.8235588
10.1098/rspa.1998.0193
10.1111/j.1365-2869.2009.00802.x
10.1523/JNEUROSCI.21-09-03175.2001
10.1016/j.neuron.2006.07.018
10.1038/nn.3776
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2015.10.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 15
ExternalDocumentID 26529367
10_1016_j_jneumeth_2015_10_010
S0165027015003829
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS065186-01
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c482t-4732b16406a9a1b36f8978a6f1fb5902ec7b5a014e912c35b0f4609b4855bc7b3
IEDL.DBID .~1
ISSN 0165-0270
IngestDate Fri Jul 11 10:43:42 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Tue Jul 01 02:57:05 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Feature extraction
Sleep spindles
Dynamic mode decomposition
Spatiotemporal modes
Electrocorticography
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-4732b16406a9a1b36f8978a6f1fb5902ec7b5a014e912c35b0f4609b4855bc7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4831-3466
OpenAccessLink https://doi.org/10.1016/j.jneumeth.2015.10.010
PMID 26529367
PQID 1751994226
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1751994226
pubmed_primary_26529367
crossref_primary_10_1016_j_jneumeth_2015_10_010
crossref_citationtrail_10_1016_j_jneumeth_2015_10_010
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_10_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-30
PublicationDateYYYYMMDD 2016-01-30
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-30
  day: 30
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rowley, Mezić, Bagheri, Schlatter, Henningson (bib0205) 2009; 641
Steriade, McCormick, Sejnowski (bib0230) 1993; 262
De Gennaro, Ferrara (bib0065) 2003; 7
Miller, Sorensen, Ojemann, Den Nijs (bib0165) 2009; 5
Hyvärinen, Oja (bib0110) 2000; 13
Clemens, Fabo, Halasz (bib0055) 2005; 132
Budišić, Mohr, Mezić (bib0025) 2012; 22
Huang, Shen, Long, Wu, Shih, Zheng (bib0105) 1998; 454
Liang, Bressler, Desimone, Fries (bib0145) 2005; 65
Nir, Staba, Andrillon, Vyazovskiy, Cirelli, Fried (bib0175) 2011; 70
Broome, Jayaraman, Laurent (bib0015) 2006; 51
Warby, Wendt, Welinder, Munk, Carrillo, Sorensen (bib0250) 2014; 11
Wennberg (bib0260) 2010; 121
Gais, Mölle, Helms, Born (bib0085) 2002; 22
Schmid (bib0225) 2010; 656
Chen, Tu, Rowley (bib0045) 2012; 22
Jovanović, Schmid, Nichols (bib0130) 2014; 26
Cunningham, Byron (bib0060) 2014
Johnson, Weaver, Brunton, Wander, Hakimania, Ojemann (bib0120) 2015
Sweeney-Reed, Nasuto (bib0235) 2007; 23
Berger, Sastuba, Vogt, Jung, Ben Amor (bib0010) 2015; 29
Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu (bib0050) 2012
Freeman, Vladimirov, Kawashima, Mu, Sofroniew, Bennett (bib0075) 2014
Fries (bib0080) 2005; 9
Johnson, Blakely, Hermes, Hakimian, Ramsey, Ojemann (bib0115) 2012; 109
Ganguli, Sompolinsky (bib0090) 2012; 35
Murphy (bib0170) 2012
Miller, Leuthardt, Schalk, Rao, Anderson, Moran (bib0160) 2007; 27
Charemza, Deadman (bib0040) 1992
Proctor, Eckhoff (bib0185) 2015; 7
Byron, Cunningham, Santhanam, Ryu, Shenoy, Sahani (bib0035) 2009
Mezić (bib0155) 2005; 41
Schmid, Sesterhenn (bib0220) 2008
Machens, Romo, Brody (bib0150) 2010; 30
Eschenko, Mölle, Born, Sara (bib0070) 2006; 26
Potter, El Hady, Fetz (bib0180) 2014; 8
Juang, Pappa (bib0135) 1985; 8
Holmes, Lumley, Berkooz (bib0100) 1998
Ray, Fogel, Smith, Peters (bib0195) 2010; 19
Rehman, Mandic (bib0200) 2009
Welch (bib0255) 1967; 15
Brunton, Proctor, Kutz (bib0020) 2013
Jolliffe (bib0125) 2005
Holland, Welsch (bib0095) 1977; 6
Kutz, Fu, Brunton (bib0140) 2015
Rudrauf, Douiri, Kovach, Lachaux, Cosmelli, Chavez (bib0210) 2006; 31
Raghavachari, Kahana, Rizzuto, Caplan, Kirschen, Bourgeois (bib0190) 2001; 21
Bedard, Kroeger, Destexhe (bib0005) 2006; 97
Tu, Rowley, Luchtenburg, Brunton, Kutz (bib0240) 2013
Buzsáki, Draguhn (bib0030) 2004; 304
Schimicek, Zeitlhofer, Anderer, Saletu (bib0215) 1994; 25
Uhlhaas, Singer (bib0245) 2010; 11
Buzsáki (10.1016/j.jneumeth.2015.10.010_bib0030) 2004; 304
Clemens (10.1016/j.jneumeth.2015.10.010_bib0055) 2005; 132
Eschenko (10.1016/j.jneumeth.2015.10.010_bib0070) 2006; 26
Machens (10.1016/j.jneumeth.2015.10.010_bib0150) 2010; 30
Churchland (10.1016/j.jneumeth.2015.10.010_bib0050) 2012
Kutz (10.1016/j.jneumeth.2015.10.010_bib0140) 2015
Cunningham (10.1016/j.jneumeth.2015.10.010_bib0060) 2014
Miller (10.1016/j.jneumeth.2015.10.010_bib0160) 2007; 27
Freeman (10.1016/j.jneumeth.2015.10.010_bib0075) 2014
Wennberg (10.1016/j.jneumeth.2015.10.010_bib0260) 2010; 121
Rehman (10.1016/j.jneumeth.2015.10.010_bib0200) 2009
Schmid (10.1016/j.jneumeth.2015.10.010_bib0220) 2008
Johnson (10.1016/j.jneumeth.2015.10.010_bib0120) 2015
Rowley (10.1016/j.jneumeth.2015.10.010_bib0205) 2009; 641
Liang (10.1016/j.jneumeth.2015.10.010_bib0145) 2005; 65
Jovanović (10.1016/j.jneumeth.2015.10.010_bib0130) 2014; 26
Fries (10.1016/j.jneumeth.2015.10.010_bib0080) 2005; 9
Ganguli (10.1016/j.jneumeth.2015.10.010_bib0090) 2012; 35
Byron (10.1016/j.jneumeth.2015.10.010_bib0035) 2009
De Gennaro (10.1016/j.jneumeth.2015.10.010_bib0065) 2003; 7
Ray (10.1016/j.jneumeth.2015.10.010_bib0195) 2010; 19
Gais (10.1016/j.jneumeth.2015.10.010_bib0085) 2002; 22
Holmes (10.1016/j.jneumeth.2015.10.010_bib0100) 1998
Murphy (10.1016/j.jneumeth.2015.10.010_bib0170) 2012
Nir (10.1016/j.jneumeth.2015.10.010_bib0175) 2011; 70
Juang (10.1016/j.jneumeth.2015.10.010_bib0135) 1985; 8
Schimicek (10.1016/j.jneumeth.2015.10.010_bib0215) 1994; 25
Uhlhaas (10.1016/j.jneumeth.2015.10.010_bib0245) 2010; 11
Berger (10.1016/j.jneumeth.2015.10.010_bib0010) 2015; 29
Tu (10.1016/j.jneumeth.2015.10.010_bib0240) 2013
Rudrauf (10.1016/j.jneumeth.2015.10.010_bib0210) 2006; 31
Chen (10.1016/j.jneumeth.2015.10.010_bib0045) 2012; 22
Holland (10.1016/j.jneumeth.2015.10.010_bib0095) 1977; 6
Huang (10.1016/j.jneumeth.2015.10.010_bib0105) 1998; 454
Bedard (10.1016/j.jneumeth.2015.10.010_bib0005) 2006; 97
Steriade (10.1016/j.jneumeth.2015.10.010_bib0230) 1993; 262
Budišić (10.1016/j.jneumeth.2015.10.010_bib0025) 2012; 22
Brunton (10.1016/j.jneumeth.2015.10.010_bib0020) 2013
Potter (10.1016/j.jneumeth.2015.10.010_bib0180) 2014; 8
Miller (10.1016/j.jneumeth.2015.10.010_bib0165) 2009; 5
Sweeney-Reed (10.1016/j.jneumeth.2015.10.010_bib0235) 2007; 23
Hyvärinen (10.1016/j.jneumeth.2015.10.010_bib0110) 2000; 13
Jolliffe (10.1016/j.jneumeth.2015.10.010_bib0125) 2005
Mezić (10.1016/j.jneumeth.2015.10.010_bib0155) 2005; 41
Warby (10.1016/j.jneumeth.2015.10.010_bib0250) 2014; 11
Charemza (10.1016/j.jneumeth.2015.10.010_bib0040) 1992
Welch (10.1016/j.jneumeth.2015.10.010_bib0255) 1967; 15
Johnson (10.1016/j.jneumeth.2015.10.010_bib0115) 2012; 109
Proctor (10.1016/j.jneumeth.2015.10.010_bib0185) 2015; 7
Raghavachari (10.1016/j.jneumeth.2015.10.010_bib0190) 2001; 21
Broome (10.1016/j.jneumeth.2015.10.010_bib0015) 2006; 51
Schmid (10.1016/j.jneumeth.2015.10.010_bib0225) 2010; 656
References_xml – year: 2008
  ident: bib0220
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: Bull Am Phys Soc
– year: 1992
  ident: bib0040
  article-title: New directions in econometric practice: general to specific modelling, cointegration and vector autoregression
– volume: 6
  start-page: 813
  year: 1977
  end-page: 827
  ident: bib0095
  article-title: Robust regression using iteratively reweighted least-squares?
  publication-title: Commun Stat Theory Methods
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib0110
  article-title: Independent component analysis: algorithms and applications?
  publication-title: Neural Netw
– volume: 97
  start-page: 118102
  year: 2006
  ident: bib0005
  article-title: Does the 1/
  publication-title: Phys Rev Lett
– volume: 132
  start-page: 529
  year: 2005
  end-page: 535
  ident: bib0055
  article-title: Overnight verbal memory retention correlates with the number of sleep spindles?
  publication-title: Neuroscience
– volume: 109
  start-page: 18583
  year: 2012
  end-page: 18588
  ident: bib0115
  article-title: Sleep spindles are locally modulated by training on a brain–computer interface?
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 024103
  year: 2014
  ident: bib0130
  article-title: Sparsity-promoting dynamic mode decomposition
  publication-title: Phys Fluids
– volume: 15
  start-page: 70
  year: 1967
  end-page: 73
  ident: bib0255
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans Audio Electroacoust
– volume: 30
  start-page: 350
  year: 2010
  end-page: 360
  ident: bib0150
  article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex
  publication-title: J Neurosci
– volume: 29
  start-page: 331
  year: 2015
  end-page: 343
  ident: bib0010
  article-title: Estimation of perturbations in robotic behavior using dynamic mode decomposition?
  publication-title: Adv Robot
– volume: 22
  start-page: 047510
  year: 2012
  ident: bib0025
  article-title: Applied Koopmanism
  publication-title: Chaos: Interdiscip J Nonlinear Sci
– volume: 262
  start-page: 679
  year: 1993
  end-page: 685
  ident: bib0230
  article-title: Thalamocortical oscillations in the sleeping and aroused brain?
  publication-title: Science
– year: 1998
  ident: bib0100
  article-title: Turbulence, coherent structures, dynamical systems and symmetry
– volume: 5
  start-page: e1000609
  year: 2009
  ident: bib0165
  article-title: Power-law scaling in the brain surface electric potential
  publication-title: PLoS Comput Biol
– volume: 25
  start-page: 26
  year: 1994
  end-page: 29
  ident: bib0215
  article-title: Automatic sleep-spindle detection procedure: aspects of reliability and validity?
  publication-title: Clin EEG Neurosci
– volume: 7
  start-page: 139
  year: 2015
  end-page: 145
  ident: bib0185
  article-title: Discovering dynamic patterns from infectious disease data using dynamic mode decomposition?
  publication-title: Int Health
– volume: 121
  start-page: 1176
  year: 2010
  end-page: 1186
  ident: bib0260
  article-title: Intracranial cortical localization of the human k-complex?
  publication-title: Clin Neurophysiol
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  ident: bib0030
  article-title: Neuronal oscillations in cortical networks?
  publication-title: Science
– year: 2015
  ident: bib0140
  article-title: Multi-resolution dynamic mode decomposition
– year: 2014
  ident: bib0075
  article-title: Mapping brain activity at scale with cluster computing
  publication-title: Nat Methods
– year: 2012
  ident: bib0050
  article-title: Neural population dynamics during reaching
  publication-title: Nature
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib0105
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc Lond Ser A: Math Phys Eng Sci
– year: 2013
  ident: bib0020
  article-title: Compressive sampling and dynamic mode decomposition
– volume: 22
  start-page: 887
  year: 2012
  end-page: 915
  ident: bib0045
  article-title: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses
  publication-title: J Nonlinear Sci
– year: 2015
  ident: bib0120
  article-title: Spatio-temporal sleep spindle networks reflect the intrinsic connectivity revealed by waking behavior and resting state fMRI
– volume: 19
  start-page: 374
  year: 2010
  end-page: 378
  ident: bib0195
  article-title: Validating an automated sleep spindle detection algorithm using an individualized approach?
  publication-title: J Sleep Res
– volume: 656
  start-page: 5
  year: 2010
  end-page: 28
  ident: bib0225
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J Fluid Mech
– volume: 7
  start-page: 423
  year: 2003
  end-page: 440
  ident: bib0065
  article-title: Sleep spindles: an overview?
  publication-title: Sleep Med Rev
– volume: 41
  start-page: 309
  year: 2005
  end-page: 325
  ident: bib0155
  article-title: Spectral properties of dynamical systems, model reduction and decompositions
  publication-title: Nonlinear Dyn
– volume: 27
  start-page: 2424
  year: 2007
  end-page: 2432
  ident: bib0160
  article-title: Spectral changes in cortical surface potentials during motor movement?
  publication-title: J Neurosci
– year: 2005
  ident: bib0125
  article-title: Principal component analysis
– volume: 11
  start-page: 100
  year: 2010
  end-page: 113
  ident: bib0245
  article-title: Abnormal neural oscillations and synchrony in schizophrenia?
  publication-title: Nat Rev Neurosci
– year: 2009
  ident: bib0200
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc R Soc A: Math Phys Eng Sci
– volume: 22
  start-page: 6830
  year: 2002
  end-page: 6834
  ident: bib0085
  article-title: Learning-dependent increases in sleep spindle density?
  publication-title: J Neurosci
– volume: 8
  start-page: 115
  year: 2014
  ident: bib0180
  article-title: Closed-loop neuroscience and neuroengineering
  publication-title: Front Neural Circuit
– year: 2014
  ident: bib0060
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat Neurosci
– year: 2013
  ident: bib0240
  article-title: On dynamic mode decomposition: theory and applications
– volume: 641
  start-page: 115
  year: 2009
  end-page: 127
  ident: bib0205
  article-title: Spectral analysis of nonlinear flows
  publication-title: J Fluid Mech
– volume: 11
  start-page: 385
  year: 2014
  end-page: 392
  ident: bib0250
  article-title: Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods
  publication-title: Nat Methods
– volume: 26
  start-page: 12914
  year: 2006
  end-page: 12920
  ident: bib0070
  article-title: Elevated sleep spindle density after learning or after retrieval in rats?
  publication-title: J Neurosci
– year: 2012
  ident: bib0170
  article-title: Machine learning: a probabilistic perspective
– volume: 9
  start-page: 474
  year: 2005
  end-page: 480
  ident: bib0080
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence?
  publication-title: Trends Cogn Sci
– volume: 35
  start-page: 485
  year: 2012
  end-page: 508
  ident: bib0090
  article-title: Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis
  publication-title: Annu Rev Neurosci
– volume: 8
  start-page: 620
  year: 1985
  end-page: 627
  ident: bib0135
  article-title: An eigensystem realization algorithm for modal parameter identification and model reduction
  publication-title: J Guid Control Dyn
– volume: 21
  start-page: 3175
  year: 2001
  end-page: 3183
  ident: bib0190
  article-title: Gating of human theta oscillations by a working memory task?
  publication-title: J Neurosci
– volume: 65
  start-page: 801
  year: 2005
  end-page: 807
  ident: bib0145
  article-title: Empirical mode decomposition: a method for analyzing neural data
  publication-title: Neurocomputing
– volume: 51
  start-page: 467
  year: 2006
  end-page: 482
  ident: bib0015
  article-title: Encoding and decoding of overlapping odor sequences?
  publication-title: Neuron
– volume: 23
  start-page: 79
  year: 2007
  end-page: 111
  ident: bib0235
  article-title: A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition?
  publication-title: J Comput Neurosci
– start-page: 1881
  year: 2009
  end-page: 1888
  ident: bib0035
  article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
  publication-title: Adv Neural Inform Process Syst
– volume: 70
  start-page: 153
  year: 2011
  end-page: 169
  ident: bib0175
  article-title: Regional slow waves and spindles in human sleep?
  publication-title: Neuron
– volume: 31
  start-page: 209
  year: 2006
  end-page: 227
  ident: bib0210
  article-title: Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals
  publication-title: Neuroimage
– volume: 7
  start-page: 423
  issue: 5
  year: 2003
  ident: 10.1016/j.jneumeth.2015.10.010_bib0065
  article-title: Sleep spindles: an overview?
  publication-title: Sleep Med Rev
  doi: 10.1053/smrv.2002.0252
– volume: 5
  start-page: e1000609
  issue: 12
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.010_bib0165
  article-title: Power-law scaling in the brain surface electric potential
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000609
– volume: 8
  start-page: 115
  year: 2014
  ident: 10.1016/j.jneumeth.2015.10.010_bib0180
  article-title: Closed-loop neuroscience and neuroengineering
  publication-title: Front Neural Circuit
  doi: 10.3389/fncir.2014.00115
– year: 2012
  ident: 10.1016/j.jneumeth.2015.10.010_bib0170
– volume: 22
  start-page: 047510
  issue: 4
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.010_bib0025
  article-title: Applied Koopmanism
  publication-title: Chaos: Interdiscip J Nonlinear Sci
  doi: 10.1063/1.4772195
– volume: 13
  start-page: 411
  issue: 4
  year: 2000
  ident: 10.1016/j.jneumeth.2015.10.010_bib0110
  article-title: Independent component analysis: algorithms and applications?
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 109
  start-page: 18583
  issue: 45
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.010_bib0115
  article-title: Sleep spindles are locally modulated by training on a brain–computer interface?
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1207532109
– year: 2008
  ident: 10.1016/j.jneumeth.2015.10.010_bib0220
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: Bull Am Phys Soc
– year: 2009
  ident: 10.1016/j.jneumeth.2015.10.010_bib0200
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc R Soc A: Math Phys Eng Sci
– year: 2013
  ident: 10.1016/j.jneumeth.2015.10.010_bib0240
– year: 2014
  ident: 10.1016/j.jneumeth.2015.10.010_bib0075
  article-title: Mapping brain activity at scale with cluster computing
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3041
– volume: 31
  start-page: 209
  issue: 1
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.010_bib0210
  article-title: Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.021
– volume: 23
  start-page: 79
  issue: 1
  year: 2007
  ident: 10.1016/j.jneumeth.2015.10.010_bib0235
  article-title: A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition?
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-007-0020-3
– volume: 7
  start-page: 139
  issue: 2
  year: 2015
  ident: 10.1016/j.jneumeth.2015.10.010_bib0185
  article-title: Discovering dynamic patterns from infectious disease data using dynamic mode decomposition?
  publication-title: Int Health
  doi: 10.1093/inthealth/ihv009
– volume: 41
  start-page: 309
  issue: 1–3
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.010_bib0155
  article-title: Spectral properties of dynamical systems, model reduction and decompositions
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-005-2824-x
– volume: 9
  start-page: 474
  issue: 10
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.010_bib0080
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence?
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2005.08.011
– volume: 11
  start-page: 385
  issue: 4
  year: 2014
  ident: 10.1016/j.jneumeth.2015.10.010_bib0250
  article-title: Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2855
– year: 1998
  ident: 10.1016/j.jneumeth.2015.10.010_bib0100
– volume: 11
  start-page: 100
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.010_bib0245
  article-title: Abnormal neural oscillations and synchrony in schizophrenia?
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2774
– volume: 132
  start-page: 529
  issue: 2
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.010_bib0055
  article-title: Overnight verbal memory retention correlates with the number of sleep spindles?
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.01.011
– volume: 65
  start-page: 801
  year: 2005
  ident: 10.1016/j.jneumeth.2015.10.010_bib0145
  article-title: Empirical mode decomposition: a method for analyzing neural data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.10.077
– year: 2015
  ident: 10.1016/j.jneumeth.2015.10.010_bib0140
– year: 2005
  ident: 10.1016/j.jneumeth.2015.10.010_bib0125
– volume: 97
  start-page: 118102
  issue: 11
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.010_bib0005
  article-title: Does the 1/f frequency scaling of brain signals reflect self-organized critical states?
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.97.118102
– volume: 656
  start-page: 5
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.010_bib0225
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112010001217
– start-page: 1881
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.010_bib0035
  article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
  publication-title: Adv Neural Inform Process Syst
– volume: 26
  start-page: 12914
  issue: 50
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.010_bib0070
  article-title: Elevated sleep spindle density after learning or after retrieval in rats?
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3175-06.2006
– volume: 22
  start-page: 6830
  issue: 15
  year: 2002
  ident: 10.1016/j.jneumeth.2015.10.010_bib0085
  article-title: Learning-dependent increases in sleep spindle density?
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-15-06830.2002
– volume: 25
  start-page: 26
  issue: 1
  year: 1994
  ident: 10.1016/j.jneumeth.2015.10.010_bib0215
  article-title: Automatic sleep-spindle detection procedure: aspects of reliability and validity?
  publication-title: Clin EEG Neurosci
– volume: 30
  start-page: 350
  issue: 1
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.010_bib0150
  article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3276-09.2010
– volume: 121
  start-page: 1176
  issue: 8
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.010_bib0260
  article-title: Intracranial cortical localization of the human k-complex?
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.12.039
– volume: 70
  start-page: 153
  issue: 1
  year: 2011
  ident: 10.1016/j.jneumeth.2015.10.010_bib0175
  article-title: Regional slow waves and spindles in human sleep?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.043
– volume: 6
  start-page: 813
  issue: 9
  year: 1977
  ident: 10.1016/j.jneumeth.2015.10.010_bib0095
  article-title: Robust regression using iteratively reweighted least-squares?
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610927708827533
– volume: 15
  start-page: 70
  issue: 2
  year: 1967
  ident: 10.1016/j.jneumeth.2015.10.010_bib0255
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans Audio Electroacoust
  doi: 10.1109/TAU.1967.1161901
– volume: 35
  start-page: 485
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.010_bib0090
  article-title: Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-062111-150410
– volume: 27
  start-page: 2424
  issue: 9
  year: 2007
  ident: 10.1016/j.jneumeth.2015.10.010_bib0160
  article-title: Spectral changes in cortical surface potentials during motor movement?
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3886-06.2007
– year: 2013
  ident: 10.1016/j.jneumeth.2015.10.010_bib0020
– volume: 641
  start-page: 115
  year: 2009
  ident: 10.1016/j.jneumeth.2015.10.010_bib0205
  article-title: Spectral analysis of nonlinear flows
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112009992059
– volume: 26
  start-page: 024103
  issue: 2
  year: 2014
  ident: 10.1016/j.jneumeth.2015.10.010_bib0130
  article-title: Sparsity-promoting dynamic mode decomposition
  publication-title: Phys Fluids
  doi: 10.1063/1.4863670
– year: 2012
  ident: 10.1016/j.jneumeth.2015.10.010_bib0050
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– year: 2015
  ident: 10.1016/j.jneumeth.2015.10.010_bib0120
– volume: 22
  start-page: 887
  issue: 6
  year: 2012
  ident: 10.1016/j.jneumeth.2015.10.010_bib0045
  article-title: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses
  publication-title: J Nonlinear Sci
  doi: 10.1007/s00332-012-9130-9
– volume: 8
  start-page: 620
  issue: 5
  year: 1985
  ident: 10.1016/j.jneumeth.2015.10.010_bib0135
  article-title: An eigensystem realization algorithm for modal parameter identification and model reduction
  publication-title: J Guid Control Dyn
  doi: 10.2514/3.20031
– volume: 29
  start-page: 331
  issue: 5
  year: 2015
  ident: 10.1016/j.jneumeth.2015.10.010_bib0010
  article-title: Estimation of perturbations in robotic behavior using dynamic mode decomposition?
  publication-title: Adv Robot
  doi: 10.1080/01691864.2014.981292
– volume: 304
  start-page: 1926
  issue: 5679
  year: 2004
  ident: 10.1016/j.jneumeth.2015.10.010_bib0030
  article-title: Neuronal oscillations in cortical networks?
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 262
  start-page: 679
  issue: 5134
  year: 1993
  ident: 10.1016/j.jneumeth.2015.10.010_bib0230
  article-title: Thalamocortical oscillations in the sleeping and aroused brain?
  publication-title: Science
  doi: 10.1126/science.8235588
– year: 1992
  ident: 10.1016/j.jneumeth.2015.10.010_bib0040
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.jneumeth.2015.10.010_bib0105
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc Lond Ser A: Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 19
  start-page: 374
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2015.10.010_bib0195
  article-title: Validating an automated sleep spindle detection algorithm using an individualized approach?
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.2009.00802.x
– volume: 21
  start-page: 3175
  issue: 9
  year: 2001
  ident: 10.1016/j.jneumeth.2015.10.010_bib0190
  article-title: Gating of human theta oscillations by a working memory task?
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-09-03175.2001
– volume: 51
  start-page: 467
  issue: 4
  year: 2006
  ident: 10.1016/j.jneumeth.2015.10.010_bib0015
  article-title: Encoding and decoding of overlapping odor sequences?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.07.018
– year: 2014
  ident: 10.1016/j.jneumeth.2015.10.010_bib0060
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3776
SSID ssj0004906
Score 2.6237383
Snippet •Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are...
There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of...
BACKGROUNDThere is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adult
Algorithms
Brain - physiology
Brain Mapping - methods
Child
Dynamic mode decomposition
Electrocorticography
Electroencephalography - methods
Feature extraction
Female
Humans
Models, Neurological
Principal Component Analysis
Sleep spindles
Spatiotemporal modes
Title Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
URI https://dx.doi.org/10.1016/j.jneumeth.2015.10.010
https://www.ncbi.nlm.nih.gov/pubmed/26529367
https://www.proquest.com/docview/1751994226
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkFAvFY8-lpeMVPWW3WzsOMlxhUBbEFxaJG5R7Dh0V4t3YbMSXBD_gX_IL2HGcWgrFXHgEimJrVieiecb-5sZgG8lLxAIaPRNykrhJUkCJaQMMmWUjowW0h3FnJ7J4bk4vogvluCgjYUhWqVf-5s13a3W_knPz2ZvNhr1flIgDjpV5LKHPI0oiE-IhLS8e_-H5iEyV1-TGtN5ZfhXlPC4O7ZmQZWaieIVd4nlRZG0_zdQrwFQZ4iO1uCjR5Bs0AxyHZaM3YDNgUXv-eqOfWeO0-k2yzdg9dQfnW_C9eFt7SKi7CWbE426mDw9PPrMVBOmp78p8K9mM5dw087ZyLIJ0cSDOYrRMEp8ie2aTR3aXmdEmb9kZVPSnlFJHVYaoqh7HtgnOD86_HUwDHy9hUCLNKoDkfBIofsUyiIr-orLKkUfs5BVv1KU5cXoRMUF-lQm60eaxyqsUJSZovwyCt_xz7Bsp9Z8BRbyBIEXmn5p-qIoZUoVjmNEQ6lOI27iDsTtJOfaJyOnmhiTvGWdjfNWODkJh56jcDrQe-k3a9JxvNkja2WY_6NYOdqMN_vut0LP8a-jo5TCmuliniPooqTKiF078KXRhpfxRDJGDCWTrXd8eRs-4J3b6-HhDizXNwuzi-inVntOvfdgZfDjZHj2DP5WBmE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQRcELQ8tryMhLilm41jJzmuqlZb2t0LrdSbFTtO2dXiXdisRG_8h_7D_hJmHKeABOqBSw5-KJHHsb-xv_kG4H3FSwQCBn2Tqtb4yLJIp1JGhbbaJNak0l_FTKZyfJ5-vBAXW3DQxcIQrTKs_e2a7lfrUDIIozlYzWaDTxSIg04Vuewxz5PiHmyTOpXowfbo-GQ8_RUeWfgUm9Serizj3wKF5_tzZzeUrJlYXmKfiF4UTPv3PepfGNTvRUeP4VEAkWzUfucT2LJuB3ZHDh3oL1fsA_O0Tn9evgP3J-H2fBe-Hn5vfFCUu2RrYlKXi5sf10GcasHM8jPF_jVs5TU33ZrNHFsQUzxaoyUtI-1LbNee69AJOyPW_CWr2qz2jLLqsMoSSz1QwZ7C-dHh2cE4CikXIpPmSROlGU80elCxLItyqLmsc3QzS1kPa01CL9ZkWpToVtlimBgudFyjNQtNEjMa6_gz6Lmlsy-AxTxD7IW7v7TDtKxkTkmOBQKi3OQJt6IPohtkZYIeOaXFWKiOeDZXnXEUGYfK0Th9GNz2W7WKHHf2KDobqj_mlsJt486-7zqjK_zx6DaldHa5WSvEXaSrjPC1D8_b2XD7PYkUCKNktvcfb34LD8Znk1N1ejw9eQkPscYf_fD4FfSabxv7GsFQo9-Eyf4T73MJEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+spatial%E2%80%93temporal+coherent+patterns+in+large-scale+neural+recordings+using+dynamic+mode+decomposition&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Brunton%2C+Bingni+W.&rft.au=Johnson%2C+Lise+A.&rft.au=Ojemann%2C+Jeffrey+G.&rft.au=Kutz%2C+J.+Nathan&rft.date=2016-01-30&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=258&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.10.010&rft.externalDocID=S0165027015003829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon