Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
•Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are identified by DMD as measured in subdural array recordings.•Sleep spindle networks are characterized by different cortical distribution pattern...
Saved in:
Published in | Journal of neuroscience methods Vol. 258; pp. 1 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
30.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are identified by DMD as measured in subdural array recordings.•Sleep spindle networks are characterized by different cortical distribution patterns, carrying frequencies and durations.
There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately.
Here we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial–temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements.
We first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration.
DMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics.
The resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings. |
---|---|
AbstractList | BACKGROUNDThere is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately.NEW METHODHere we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial-temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements.RESULTSWe first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration.COMPARISON WITH EXISTING METHODSDMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics.CONCLUSIONSThe resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings. There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately. Here we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial-temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements. We first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration. DMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics. The resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings. •Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are identified by DMD as measured in subdural array recordings.•Sleep spindle networks are characterized by different cortical distribution patterns, carrying frequencies and durations. There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically restricted to analysis either in space or in time separately. Here we report the adaptation of dynamic mode decomposition (DMD), an algorithm originally developed for studying fluid physics, to large-scale neural recordings. DMD is a modal decomposition algorithm that describes high-dimensional dynamic data using coupled spatial–temporal modes. The algorithm is robust to variations in noise and subsampling rate; it scales easily to very large numbers of simultaneously acquired measurements. We first validate the DMD approach on sub-dural electrode array recordings from human subjects performing a known motor task. Next, we combine DMD with unsupervised clustering, developing a novel method to extract spindle networks during sleep. We uncovered several distinct sleep spindle networks identifiable by their stereotypical cortical distribution patterns, frequency, and duration. DMD is closely related to principal components analysis (PCA) and discrete Fourier transform (DFT). We may think of DMD as a rotation of the low-dimensional PCA space such that each basis vector has coherent dynamics. The resulting analysis combines key features of performing PCA in space and power spectral analysis in time, making it particularly suitable for analyzing large-scale neural recordings. |
Author | Johnson, Lise A. Ojemann, Jeffrey G. Kutz, J. Nathan Brunton, Bingni W. |
Author_xml | – sequence: 1 givenname: Bingni W. orcidid: 0000-0002-4831-3466 surname: Brunton fullname: Brunton, Bingni W. email: bbrunton@uw.edu organization: Department of Biology, University of Washington, Seattle, WA 98195, USA – sequence: 2 givenname: Lise A. surname: Johnson fullname: Johnson, Lise A. organization: Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA 98195, USA – sequence: 3 givenname: Jeffrey G. surname: Ojemann fullname: Ojemann, Jeffrey G. organization: Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: J. Nathan surname: Kutz fullname: Kutz, J. Nathan organization: Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26529367$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3TAUhEVJaW6SvkLQshvfHsmWbEEXLSH9gUA2KWQnZPk40cWWbiS5NLu-Q9-wT1KZm3TRTVaCM98MYuaEHPngkZBzBlsGTL7fbXcelxnz_ZYDE-W4BQavyIZ1La9k290ekU0BRQW8hWNyktIOABoF8g055lJwVct2Qx4uf-ZobHb-jqa9yc5Mf379zjjvQzQTteEeI_pMi5Qx-kSdp5OJd1glayak5RMrF9GGOJSQRJe0Zg2P3szO0jkMSIeilsDksgv-jLwezZTw7dN7Sr5_vry5-FpdXX_5dvHpqrJNx3PVtDXvmWxAGmVYX8uxU21n5MjGXijgaNteGGANKsZtLXoYGwmqbzoh-qLVp-TdIXcfw8OCKevZJYvTZDyGJWnWCqZUw7ks6PkTuvQzDnof3Wzio36uqQDyANgYUoo4_kMY6HUPvdPPe-h1j_Ve9ijGD_8ZrctmraG07qaX7R8PdixF_XAYdbIOvcXBlcazHoJ7KeIvZ72uXQ |
CitedBy_id | crossref_primary_10_1121_10_0026460 crossref_primary_10_1137_21M1417405 crossref_primary_10_1103_PhysRevE_101_060104 crossref_primary_10_1103_PhysRevE_104_034211 crossref_primary_10_1038_s41598_024_69837_y crossref_primary_10_1016_j_advwatres_2022_104217 crossref_primary_10_1038_s41598_020_58064_w crossref_primary_10_1177_0278364920921935 crossref_primary_10_1109_ACCESS_2019_2915609 crossref_primary_10_1039_D4SM00483C crossref_primary_10_1115_1_4054869 crossref_primary_10_2514_1_J063929 crossref_primary_10_1109_TRO_2022_3228130 crossref_primary_10_1016_j_anucene_2020_107826 crossref_primary_10_1016_j_physd_2023_133741 crossref_primary_10_1371_journal_pcbi_1007491 crossref_primary_10_1162_neco_a_01203 crossref_primary_10_1007_s00332_017_9423_0 crossref_primary_10_1007_s11571_020_09656_9 crossref_primary_10_3902_jnns_30_73 crossref_primary_10_1063_5_0046325 crossref_primary_10_1371_journal_pcbi_1010401 crossref_primary_10_1016_j_trc_2023_104178 crossref_primary_10_2514_1_J059207 crossref_primary_10_1016_j_compchemeng_2022_108104 crossref_primary_10_1016_j_neuroimage_2023_120358 crossref_primary_10_3934_jcd_2015002 crossref_primary_10_1016_j_nicl_2019_102150 crossref_primary_10_1088_1572_9494_ac6c7b crossref_primary_10_1098_rspa_2021_0830 crossref_primary_10_1016_j_oceaneng_2023_115446 crossref_primary_10_1063_5_0220277 crossref_primary_10_1016_j_jcp_2024_113194 crossref_primary_10_1016_j_neunet_2021_04_029 crossref_primary_10_1061_JHYEFF_HEENG_5947 crossref_primary_10_1103_PhysRevE_105_015312 crossref_primary_10_1007_s10891_020_02257_7 crossref_primary_10_1016_j_ifacol_2021_06_133 crossref_primary_10_1109_TNSRE_2023_3260143 crossref_primary_10_3390_a17090388 crossref_primary_10_1080_09540261_2017_1282438 crossref_primary_10_1155_2019_3262818 crossref_primary_10_1109_JBHI_2021_3130275 crossref_primary_10_3390_math12050762 crossref_primary_10_1016_j_nbd_2025_106858 crossref_primary_10_1017_aer_2023_89 crossref_primary_10_1021_acs_iecr_3c03275 crossref_primary_10_1063_5_0033827 crossref_primary_10_1007_s00138_017_0835_5 crossref_primary_10_1016_j_ecoinf_2022_101766 crossref_primary_10_1038_s41598_023_40648_x crossref_primary_10_1016_j_ynstr_2023_100516 crossref_primary_10_1002_cnm_3406 crossref_primary_10_1016_j_cub_2016_05_029 crossref_primary_10_1137_16M1062296 crossref_primary_10_1109_TBME_2016_2543662 crossref_primary_10_1016_j_apenergy_2018_09_190 crossref_primary_10_1063_1_5020558 crossref_primary_10_1038_s41593_024_01783_4 crossref_primary_10_1103_PhysRevB_107_184308 crossref_primary_10_1007_s00332_017_9437_7 crossref_primary_10_1109_TIE_2021_3121755 crossref_primary_10_1002_cpa_22125 crossref_primary_10_1016_j_ijnonlinmec_2020_103625 crossref_primary_10_1016_j_jsv_2022_116849 crossref_primary_10_56082_annalsarscimath_2022_1_2_5 crossref_primary_10_3390_math10234406 crossref_primary_10_1016_j_camwa_2021_05_026 crossref_primary_10_56082_annalsarscimath_2023_1_2_229 crossref_primary_10_1016_j_patrec_2019_02_010 crossref_primary_10_1016_j_epsr_2023_109387 crossref_primary_10_1016_j_neuron_2020_10_011 crossref_primary_10_1242_jeb_246223 crossref_primary_10_1088_1741_2552_acad28 crossref_primary_10_1109_ACCESS_2024_3359050 crossref_primary_10_1109_ACCESS_2020_2986499 crossref_primary_10_1371_journal_pcbi_1006908 crossref_primary_10_1007_s40722_022_00243_0 crossref_primary_10_1007_s00332_017_9441_y crossref_primary_10_1016_j_jneumeth_2017_06_004 crossref_primary_10_1016_j_oceaneng_2022_113235 crossref_primary_10_1061_JAEEEZ_ASENG_4836 crossref_primary_10_7554_eLife_21792 crossref_primary_10_1063_5_0062546 crossref_primary_10_1016_j_jneumeth_2020_109063 crossref_primary_10_3389_fnhum_2016_00165 crossref_primary_10_1016_j_bbe_2020_11_002 crossref_primary_10_1016_j_acha_2020_06_005 crossref_primary_10_1016_j_neuroimage_2021_118801 crossref_primary_10_1137_19M1305033 crossref_primary_10_1523_JNEUROSCI_1531_22_2023 crossref_primary_10_1115_1_4052999 crossref_primary_10_1109_JBHI_2020_3015471 crossref_primary_10_1098_rsta_2021_0199 crossref_primary_10_3934_math_2024050 crossref_primary_10_1016_j_cviu_2021_103355 crossref_primary_10_1016_j_physa_2022_127152 crossref_primary_10_1007_s00006_020_01061_z crossref_primary_10_1016_j_physd_2024_134405 crossref_primary_10_1137_20M1338058 crossref_primary_10_1016_j_acha_2018_08_002 crossref_primary_10_1038_s41598_021_02413_w crossref_primary_10_1016_j_ifacol_2018_07_232 crossref_primary_10_1063_5_0209683 crossref_primary_10_1007_s10472_019_09666_2 crossref_primary_10_1103_PhysRevFluids_2_124402 crossref_primary_10_53391_mmnsa_1512698 crossref_primary_10_1016_j_ijforecast_2023_07_001 crossref_primary_10_1038_s41746_025_01531_3 crossref_primary_10_1016_j_neuroimage_2021_118330 crossref_primary_10_1109_TNSRE_2022_3164074 crossref_primary_10_1088_1361_6544_aabc8f crossref_primary_10_1016_j_conb_2019_06_008 crossref_primary_10_1016_j_ifacol_2016_10_249 crossref_primary_10_1103_PhysRevE_102_062216 crossref_primary_10_1111_ejn_13727 crossref_primary_10_1002_asl_1279 crossref_primary_10_1088_1741_2552_ab8910 crossref_primary_10_1109_TUFFC_2024_3387351 crossref_primary_10_1063_5_0157763 crossref_primary_10_3390_computation11100201 crossref_primary_10_1109_TEMC_2020_2994934 crossref_primary_10_1017_jfm_2019_686 crossref_primary_10_1080_15472450_2023_2205022 crossref_primary_10_1007_s10494_020_00156_8 crossref_primary_10_1137_21M1399907 crossref_primary_10_1137_19M1289881 crossref_primary_10_1016_j_neuroscience_2018_07_025 crossref_primary_10_1109_ACCESS_2022_3183760 crossref_primary_10_1093_imammb_dqae025 crossref_primary_10_1061__ASCE_HE_1943_5584_0002204 crossref_primary_10_1098_rspa_2021_0097 crossref_primary_10_3389_fphys_2018_01540 crossref_primary_10_1016_j_dche_2025_100219 crossref_primary_10_1007_s10514_023_10089_6 crossref_primary_10_1002_gamm_202200003 crossref_primary_10_1017_S0033291724000710 crossref_primary_10_1098_rspa_2023_0422 crossref_primary_10_1007_s41745_025_00464_w crossref_primary_10_1109_JSEN_2023_3330228 crossref_primary_10_1109_TAC_2024_3419179 crossref_primary_10_1016_j_bspc_2021_102765 crossref_primary_10_1088_1741_2552_ac6063 crossref_primary_10_1098_rsif_2021_0686 crossref_primary_10_1007_s10444_018_9592_x crossref_primary_10_1371_journal_pcbi_1010012 crossref_primary_10_1016_j_neuroimage_2020_117189 crossref_primary_10_1137_19M1259948 crossref_primary_10_3390_e20030152 crossref_primary_10_1109_TIV_2022_3180337 crossref_primary_10_3390_s24020486 crossref_primary_10_1016_j_neuron_2024_06_011 crossref_primary_10_1080_10618562_2018_1511049 crossref_primary_10_1137_22M1521407 crossref_primary_10_1109_TITS_2020_3032880 crossref_primary_10_1137_18M1188227 crossref_primary_10_1146_annurev_neuro_092619_094115 crossref_primary_10_1371_journal_pcbi_1006545 crossref_primary_10_1063_1_4996024 crossref_primary_10_1371_journal_pone_0211413 crossref_primary_10_1371_journal_pone_0150171 crossref_primary_10_1063_5_0123550 crossref_primary_10_1109_ACCESS_2018_2853125 crossref_primary_10_1109_TAC_2023_3242325 crossref_primary_10_1088_1748_9326_ac548f crossref_primary_10_3390_en13246513 crossref_primary_10_1073_pnas_1813476116 crossref_primary_10_1088_2632_2153_abf0f5 crossref_primary_10_1016_j_ast_2021_107191 crossref_primary_10_1021_acs_jpca_3c05755 crossref_primary_10_1177_1748006X231162127 crossref_primary_10_1038_s41551_022_00962_7 crossref_primary_10_1103_PhysRevResearch_5_013175 crossref_primary_10_3389_fncom_2019_00094 crossref_primary_10_1137_17M1162366 crossref_primary_10_3390_a17040133 crossref_primary_10_1016_j_bspc_2024_105983 crossref_primary_10_1007_s11042_018_6114_2 crossref_primary_10_2514_1_J057870 crossref_primary_10_1016_j_cej_2024_157477 crossref_primary_10_1063_5_0123101 crossref_primary_10_1103_PhysRevE_96_033310 crossref_primary_10_1162_NECO_a_00936 crossref_primary_10_1137_18M1216572 crossref_primary_10_1152_jn_00131_2023 crossref_primary_10_1088_1741_2552_ac7256 crossref_primary_10_1088_1741_2552_ad705f crossref_primary_10_1063_5_0238087 crossref_primary_10_1016_j_biosystems_2021_104403 crossref_primary_10_1016_j_neuroimage_2022_119131 crossref_primary_10_1016_j_neunet_2019_04_020 crossref_primary_10_1186_s12915_018_0494_7 crossref_primary_10_1007_s11042_020_10315_8 crossref_primary_10_1109_ACCESS_2022_3161438 crossref_primary_10_3390_computation11060114 crossref_primary_10_35848_1347_4065_ac1c3c crossref_primary_10_2514_1_J062546 crossref_primary_10_1016_j_cpc_2024_109217 crossref_primary_10_1063_1_5099091 crossref_primary_10_1137_21M1401243 crossref_primary_10_1007_s11071_023_09135_w crossref_primary_10_3934_bdia_2024001 crossref_primary_10_1002_pamm_202400127 crossref_primary_10_3389_fncom_2019_00075 crossref_primary_10_1038_s41598_022_25421_w crossref_primary_10_1137_18M1215013 crossref_primary_10_3390_rs13234742 crossref_primary_10_1002_aic_16743 crossref_primary_10_1016_j_jprocont_2020_05_003 crossref_primary_10_1002_2017JC012730 crossref_primary_10_1007_s00603_021_02668_9 crossref_primary_10_1371_journal_pcbi_1005303 crossref_primary_10_1152_jn_00525_2017 crossref_primary_10_1098_rsif_2021_0523 crossref_primary_10_3390_app15020713 crossref_primary_10_1109_ACCESS_2022_3179414 crossref_primary_10_1007_s12650_022_00833_y crossref_primary_10_1038_s42005_023_01230_z crossref_primary_10_1098_rspa_2022_0576 crossref_primary_10_1038_s41598_019_53187_1 crossref_primary_10_3390_math13050709 crossref_primary_10_1089_brain_2020_0989 crossref_primary_10_1140_epjst_e2016_60057_9 crossref_primary_10_3390_math8040481 crossref_primary_10_1137_17M1125236 crossref_primary_10_1016_j_ijheatfluidflow_2021_108816 crossref_primary_10_1177_09544070221107805 crossref_primary_10_1109_TAC_2020_2978039 crossref_primary_10_1016_j_compbiomed_2021_104549 crossref_primary_10_1088_1361_6501_accf2b crossref_primary_10_1016_j_jneumeth_2021_109199 crossref_primary_10_1016_j_tins_2017_02_004 crossref_primary_10_1007_s11071_024_09340_1 crossref_primary_10_1109_ACCESS_2023_3284465 crossref_primary_10_1016_j_ifacol_2018_09_011 crossref_primary_10_1137_20M1359833 crossref_primary_10_1038_s41467_017_00030_8 crossref_primary_10_1137_21M1443832 crossref_primary_10_1038_s42003_024_06294_3 crossref_primary_10_1016_j_dsp_2021_103216 crossref_primary_10_1016_j_brainres_2022_148001 crossref_primary_10_1007_s11071_017_3764_y crossref_primary_10_1080_17512549_2020_1842802 crossref_primary_10_7554_eLife_38471 crossref_primary_10_3389_fncom_2020_00071 crossref_primary_10_1038_s41467_023_37897_9 crossref_primary_10_2514_1_J056060 crossref_primary_10_1016_j_ymssp_2022_109919 crossref_primary_10_1109_TBDATA_2020_2980849 crossref_primary_10_1016_j_isatra_2022_07_026 crossref_primary_10_1103_PhysRevFluids_5_074702 crossref_primary_10_12677_pm_2024_143085 crossref_primary_10_1103_PhysRevE_108_045001 crossref_primary_10_3902_jnns_25_2 crossref_primary_10_3390_computation10120210 crossref_primary_10_1137_15M1023543 crossref_primary_10_1109_TIE_2019_2928239 crossref_primary_10_1103_PhysRevAccelBeams_21_011004 crossref_primary_10_1109_ACCESS_2023_3267125 crossref_primary_10_2514_1_J061539 |
Cites_doi | 10.1053/smrv.2002.0252 10.1371/journal.pcbi.1000609 10.3389/fncir.2014.00115 10.1063/1.4772195 10.1016/S0893-6080(00)00026-5 10.1073/pnas.1207532109 10.1038/nmeth.3041 10.1016/j.neuroimage.2005.11.021 10.1007/s10827-007-0020-3 10.1093/inthealth/ihv009 10.1007/s11071-005-2824-x 10.1016/j.tics.2005.08.011 10.1038/nmeth.2855 10.1038/nrn2774 10.1016/j.neuroscience.2005.01.011 10.1016/j.neucom.2004.10.077 10.1103/PhysRevLett.97.118102 10.1017/S0022112010001217 10.1523/JNEUROSCI.3175-06.2006 10.1523/JNEUROSCI.22-15-06830.2002 10.1523/JNEUROSCI.3276-09.2010 10.1016/j.clinph.2009.12.039 10.1016/j.neuron.2011.02.043 10.1080/03610927708827533 10.1109/TAU.1967.1161901 10.1146/annurev-neuro-062111-150410 10.1523/JNEUROSCI.3886-06.2007 10.1017/S0022112009992059 10.1063/1.4863670 10.1038/nature11129 10.1007/s00332-012-9130-9 10.2514/3.20031 10.1080/01691864.2014.981292 10.1126/science.1099745 10.1126/science.8235588 10.1098/rspa.1998.0193 10.1111/j.1365-2869.2009.00802.x 10.1523/JNEUROSCI.21-09-03175.2001 10.1016/j.neuron.2006.07.018 10.1038/nn.3776 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2015.10.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 15 |
ExternalDocumentID | 26529367 10_1016_j_jneumeth_2015_10_010 S0165027015003829 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS065186-01 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c482t-4732b16406a9a1b36f8978a6f1fb5902ec7b5a014e912c35b0f4609b4855bc7b3 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 |
IngestDate | Fri Jul 11 10:43:42 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Tue Jul 01 02:57:05 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Fri Feb 23 02:33:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feature extraction Sleep spindles Dynamic mode decomposition Spatiotemporal modes Electrocorticography |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-4732b16406a9a1b36f8978a6f1fb5902ec7b5a014e912c35b0f4609b4855bc7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4831-3466 |
OpenAccessLink | https://doi.org/10.1016/j.jneumeth.2015.10.010 |
PMID | 26529367 |
PQID | 1751994226 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1751994226 pubmed_primary_26529367 crossref_primary_10_1016_j_jneumeth_2015_10_010 crossref_citationtrail_10_1016_j_jneumeth_2015_10_010 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_10_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-30 |
PublicationDateYYYYMMDD | 2016-01-30 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rowley, Mezić, Bagheri, Schlatter, Henningson (bib0205) 2009; 641 Steriade, McCormick, Sejnowski (bib0230) 1993; 262 De Gennaro, Ferrara (bib0065) 2003; 7 Miller, Sorensen, Ojemann, Den Nijs (bib0165) 2009; 5 Hyvärinen, Oja (bib0110) 2000; 13 Clemens, Fabo, Halasz (bib0055) 2005; 132 Budišić, Mohr, Mezić (bib0025) 2012; 22 Huang, Shen, Long, Wu, Shih, Zheng (bib0105) 1998; 454 Liang, Bressler, Desimone, Fries (bib0145) 2005; 65 Nir, Staba, Andrillon, Vyazovskiy, Cirelli, Fried (bib0175) 2011; 70 Broome, Jayaraman, Laurent (bib0015) 2006; 51 Warby, Wendt, Welinder, Munk, Carrillo, Sorensen (bib0250) 2014; 11 Wennberg (bib0260) 2010; 121 Gais, Mölle, Helms, Born (bib0085) 2002; 22 Schmid (bib0225) 2010; 656 Chen, Tu, Rowley (bib0045) 2012; 22 Jovanović, Schmid, Nichols (bib0130) 2014; 26 Cunningham, Byron (bib0060) 2014 Johnson, Weaver, Brunton, Wander, Hakimania, Ojemann (bib0120) 2015 Sweeney-Reed, Nasuto (bib0235) 2007; 23 Berger, Sastuba, Vogt, Jung, Ben Amor (bib0010) 2015; 29 Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu (bib0050) 2012 Freeman, Vladimirov, Kawashima, Mu, Sofroniew, Bennett (bib0075) 2014 Fries (bib0080) 2005; 9 Johnson, Blakely, Hermes, Hakimian, Ramsey, Ojemann (bib0115) 2012; 109 Ganguli, Sompolinsky (bib0090) 2012; 35 Murphy (bib0170) 2012 Miller, Leuthardt, Schalk, Rao, Anderson, Moran (bib0160) 2007; 27 Charemza, Deadman (bib0040) 1992 Proctor, Eckhoff (bib0185) 2015; 7 Byron, Cunningham, Santhanam, Ryu, Shenoy, Sahani (bib0035) 2009 Mezić (bib0155) 2005; 41 Schmid, Sesterhenn (bib0220) 2008 Machens, Romo, Brody (bib0150) 2010; 30 Eschenko, Mölle, Born, Sara (bib0070) 2006; 26 Potter, El Hady, Fetz (bib0180) 2014; 8 Juang, Pappa (bib0135) 1985; 8 Holmes, Lumley, Berkooz (bib0100) 1998 Ray, Fogel, Smith, Peters (bib0195) 2010; 19 Rehman, Mandic (bib0200) 2009 Welch (bib0255) 1967; 15 Brunton, Proctor, Kutz (bib0020) 2013 Jolliffe (bib0125) 2005 Holland, Welsch (bib0095) 1977; 6 Kutz, Fu, Brunton (bib0140) 2015 Rudrauf, Douiri, Kovach, Lachaux, Cosmelli, Chavez (bib0210) 2006; 31 Raghavachari, Kahana, Rizzuto, Caplan, Kirschen, Bourgeois (bib0190) 2001; 21 Bedard, Kroeger, Destexhe (bib0005) 2006; 97 Tu, Rowley, Luchtenburg, Brunton, Kutz (bib0240) 2013 Buzsáki, Draguhn (bib0030) 2004; 304 Schimicek, Zeitlhofer, Anderer, Saletu (bib0215) 1994; 25 Uhlhaas, Singer (bib0245) 2010; 11 Buzsáki (10.1016/j.jneumeth.2015.10.010_bib0030) 2004; 304 Clemens (10.1016/j.jneumeth.2015.10.010_bib0055) 2005; 132 Eschenko (10.1016/j.jneumeth.2015.10.010_bib0070) 2006; 26 Machens (10.1016/j.jneumeth.2015.10.010_bib0150) 2010; 30 Churchland (10.1016/j.jneumeth.2015.10.010_bib0050) 2012 Kutz (10.1016/j.jneumeth.2015.10.010_bib0140) 2015 Cunningham (10.1016/j.jneumeth.2015.10.010_bib0060) 2014 Miller (10.1016/j.jneumeth.2015.10.010_bib0160) 2007; 27 Freeman (10.1016/j.jneumeth.2015.10.010_bib0075) 2014 Wennberg (10.1016/j.jneumeth.2015.10.010_bib0260) 2010; 121 Rehman (10.1016/j.jneumeth.2015.10.010_bib0200) 2009 Schmid (10.1016/j.jneumeth.2015.10.010_bib0220) 2008 Johnson (10.1016/j.jneumeth.2015.10.010_bib0120) 2015 Rowley (10.1016/j.jneumeth.2015.10.010_bib0205) 2009; 641 Liang (10.1016/j.jneumeth.2015.10.010_bib0145) 2005; 65 Jovanović (10.1016/j.jneumeth.2015.10.010_bib0130) 2014; 26 Fries (10.1016/j.jneumeth.2015.10.010_bib0080) 2005; 9 Ganguli (10.1016/j.jneumeth.2015.10.010_bib0090) 2012; 35 Byron (10.1016/j.jneumeth.2015.10.010_bib0035) 2009 De Gennaro (10.1016/j.jneumeth.2015.10.010_bib0065) 2003; 7 Ray (10.1016/j.jneumeth.2015.10.010_bib0195) 2010; 19 Gais (10.1016/j.jneumeth.2015.10.010_bib0085) 2002; 22 Holmes (10.1016/j.jneumeth.2015.10.010_bib0100) 1998 Murphy (10.1016/j.jneumeth.2015.10.010_bib0170) 2012 Nir (10.1016/j.jneumeth.2015.10.010_bib0175) 2011; 70 Juang (10.1016/j.jneumeth.2015.10.010_bib0135) 1985; 8 Schimicek (10.1016/j.jneumeth.2015.10.010_bib0215) 1994; 25 Uhlhaas (10.1016/j.jneumeth.2015.10.010_bib0245) 2010; 11 Berger (10.1016/j.jneumeth.2015.10.010_bib0010) 2015; 29 Tu (10.1016/j.jneumeth.2015.10.010_bib0240) 2013 Rudrauf (10.1016/j.jneumeth.2015.10.010_bib0210) 2006; 31 Chen (10.1016/j.jneumeth.2015.10.010_bib0045) 2012; 22 Holland (10.1016/j.jneumeth.2015.10.010_bib0095) 1977; 6 Huang (10.1016/j.jneumeth.2015.10.010_bib0105) 1998; 454 Bedard (10.1016/j.jneumeth.2015.10.010_bib0005) 2006; 97 Steriade (10.1016/j.jneumeth.2015.10.010_bib0230) 1993; 262 Budišić (10.1016/j.jneumeth.2015.10.010_bib0025) 2012; 22 Brunton (10.1016/j.jneumeth.2015.10.010_bib0020) 2013 Potter (10.1016/j.jneumeth.2015.10.010_bib0180) 2014; 8 Miller (10.1016/j.jneumeth.2015.10.010_bib0165) 2009; 5 Sweeney-Reed (10.1016/j.jneumeth.2015.10.010_bib0235) 2007; 23 Hyvärinen (10.1016/j.jneumeth.2015.10.010_bib0110) 2000; 13 Jolliffe (10.1016/j.jneumeth.2015.10.010_bib0125) 2005 Mezić (10.1016/j.jneumeth.2015.10.010_bib0155) 2005; 41 Warby (10.1016/j.jneumeth.2015.10.010_bib0250) 2014; 11 Charemza (10.1016/j.jneumeth.2015.10.010_bib0040) 1992 Welch (10.1016/j.jneumeth.2015.10.010_bib0255) 1967; 15 Johnson (10.1016/j.jneumeth.2015.10.010_bib0115) 2012; 109 Proctor (10.1016/j.jneumeth.2015.10.010_bib0185) 2015; 7 Raghavachari (10.1016/j.jneumeth.2015.10.010_bib0190) 2001; 21 Broome (10.1016/j.jneumeth.2015.10.010_bib0015) 2006; 51 Schmid (10.1016/j.jneumeth.2015.10.010_bib0225) 2010; 656 |
References_xml | – year: 2008 ident: bib0220 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: Bull Am Phys Soc – year: 1992 ident: bib0040 article-title: New directions in econometric practice: general to specific modelling, cointegration and vector autoregression – volume: 6 start-page: 813 year: 1977 end-page: 827 ident: bib0095 article-title: Robust regression using iteratively reweighted least-squares? publication-title: Commun Stat Theory Methods – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib0110 article-title: Independent component analysis: algorithms and applications? publication-title: Neural Netw – volume: 97 start-page: 118102 year: 2006 ident: bib0005 article-title: Does the 1/ publication-title: Phys Rev Lett – volume: 132 start-page: 529 year: 2005 end-page: 535 ident: bib0055 article-title: Overnight verbal memory retention correlates with the number of sleep spindles? publication-title: Neuroscience – volume: 109 start-page: 18583 year: 2012 end-page: 18588 ident: bib0115 article-title: Sleep spindles are locally modulated by training on a brain–computer interface? publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 024103 year: 2014 ident: bib0130 article-title: Sparsity-promoting dynamic mode decomposition publication-title: Phys Fluids – volume: 15 start-page: 70 year: 1967 end-page: 73 ident: bib0255 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans Audio Electroacoust – volume: 30 start-page: 350 year: 2010 end-page: 360 ident: bib0150 article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex publication-title: J Neurosci – volume: 29 start-page: 331 year: 2015 end-page: 343 ident: bib0010 article-title: Estimation of perturbations in robotic behavior using dynamic mode decomposition? publication-title: Adv Robot – volume: 22 start-page: 047510 year: 2012 ident: bib0025 article-title: Applied Koopmanism publication-title: Chaos: Interdiscip J Nonlinear Sci – volume: 262 start-page: 679 year: 1993 end-page: 685 ident: bib0230 article-title: Thalamocortical oscillations in the sleeping and aroused brain? publication-title: Science – year: 1998 ident: bib0100 article-title: Turbulence, coherent structures, dynamical systems and symmetry – volume: 5 start-page: e1000609 year: 2009 ident: bib0165 article-title: Power-law scaling in the brain surface electric potential publication-title: PLoS Comput Biol – volume: 25 start-page: 26 year: 1994 end-page: 29 ident: bib0215 article-title: Automatic sleep-spindle detection procedure: aspects of reliability and validity? publication-title: Clin EEG Neurosci – volume: 7 start-page: 139 year: 2015 end-page: 145 ident: bib0185 article-title: Discovering dynamic patterns from infectious disease data using dynamic mode decomposition? publication-title: Int Health – volume: 121 start-page: 1176 year: 2010 end-page: 1186 ident: bib0260 article-title: Intracranial cortical localization of the human k-complex? publication-title: Clin Neurophysiol – volume: 304 start-page: 1926 year: 2004 end-page: 1929 ident: bib0030 article-title: Neuronal oscillations in cortical networks? publication-title: Science – year: 2015 ident: bib0140 article-title: Multi-resolution dynamic mode decomposition – year: 2014 ident: bib0075 article-title: Mapping brain activity at scale with cluster computing publication-title: Nat Methods – year: 2012 ident: bib0050 article-title: Neural population dynamics during reaching publication-title: Nature – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib0105 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc R Soc Lond Ser A: Math Phys Eng Sci – year: 2013 ident: bib0020 article-title: Compressive sampling and dynamic mode decomposition – volume: 22 start-page: 887 year: 2012 end-page: 915 ident: bib0045 article-title: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses publication-title: J Nonlinear Sci – year: 2015 ident: bib0120 article-title: Spatio-temporal sleep spindle networks reflect the intrinsic connectivity revealed by waking behavior and resting state fMRI – volume: 19 start-page: 374 year: 2010 end-page: 378 ident: bib0195 article-title: Validating an automated sleep spindle detection algorithm using an individualized approach? publication-title: J Sleep Res – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: bib0225 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J Fluid Mech – volume: 7 start-page: 423 year: 2003 end-page: 440 ident: bib0065 article-title: Sleep spindles: an overview? publication-title: Sleep Med Rev – volume: 41 start-page: 309 year: 2005 end-page: 325 ident: bib0155 article-title: Spectral properties of dynamical systems, model reduction and decompositions publication-title: Nonlinear Dyn – volume: 27 start-page: 2424 year: 2007 end-page: 2432 ident: bib0160 article-title: Spectral changes in cortical surface potentials during motor movement? publication-title: J Neurosci – year: 2005 ident: bib0125 article-title: Principal component analysis – volume: 11 start-page: 100 year: 2010 end-page: 113 ident: bib0245 article-title: Abnormal neural oscillations and synchrony in schizophrenia? publication-title: Nat Rev Neurosci – year: 2009 ident: bib0200 article-title: Multivariate empirical mode decomposition publication-title: Proc R Soc A: Math Phys Eng Sci – volume: 22 start-page: 6830 year: 2002 end-page: 6834 ident: bib0085 article-title: Learning-dependent increases in sleep spindle density? publication-title: J Neurosci – volume: 8 start-page: 115 year: 2014 ident: bib0180 article-title: Closed-loop neuroscience and neuroengineering publication-title: Front Neural Circuit – year: 2014 ident: bib0060 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat Neurosci – year: 2013 ident: bib0240 article-title: On dynamic mode decomposition: theory and applications – volume: 641 start-page: 115 year: 2009 end-page: 127 ident: bib0205 article-title: Spectral analysis of nonlinear flows publication-title: J Fluid Mech – volume: 11 start-page: 385 year: 2014 end-page: 392 ident: bib0250 article-title: Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods publication-title: Nat Methods – volume: 26 start-page: 12914 year: 2006 end-page: 12920 ident: bib0070 article-title: Elevated sleep spindle density after learning or after retrieval in rats? publication-title: J Neurosci – year: 2012 ident: bib0170 article-title: Machine learning: a probabilistic perspective – volume: 9 start-page: 474 year: 2005 end-page: 480 ident: bib0080 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence? publication-title: Trends Cogn Sci – volume: 35 start-page: 485 year: 2012 end-page: 508 ident: bib0090 article-title: Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis publication-title: Annu Rev Neurosci – volume: 8 start-page: 620 year: 1985 end-page: 627 ident: bib0135 article-title: An eigensystem realization algorithm for modal parameter identification and model reduction publication-title: J Guid Control Dyn – volume: 21 start-page: 3175 year: 2001 end-page: 3183 ident: bib0190 article-title: Gating of human theta oscillations by a working memory task? publication-title: J Neurosci – volume: 65 start-page: 801 year: 2005 end-page: 807 ident: bib0145 article-title: Empirical mode decomposition: a method for analyzing neural data publication-title: Neurocomputing – volume: 51 start-page: 467 year: 2006 end-page: 482 ident: bib0015 article-title: Encoding and decoding of overlapping odor sequences? publication-title: Neuron – volume: 23 start-page: 79 year: 2007 end-page: 111 ident: bib0235 article-title: A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition? publication-title: J Comput Neurosci – start-page: 1881 year: 2009 end-page: 1888 ident: bib0035 article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity publication-title: Adv Neural Inform Process Syst – volume: 70 start-page: 153 year: 2011 end-page: 169 ident: bib0175 article-title: Regional slow waves and spindles in human sleep? publication-title: Neuron – volume: 31 start-page: 209 year: 2006 end-page: 227 ident: bib0210 article-title: Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals publication-title: Neuroimage – volume: 7 start-page: 423 issue: 5 year: 2003 ident: 10.1016/j.jneumeth.2015.10.010_bib0065 article-title: Sleep spindles: an overview? publication-title: Sleep Med Rev doi: 10.1053/smrv.2002.0252 – volume: 5 start-page: e1000609 issue: 12 year: 2009 ident: 10.1016/j.jneumeth.2015.10.010_bib0165 article-title: Power-law scaling in the brain surface electric potential publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000609 – volume: 8 start-page: 115 year: 2014 ident: 10.1016/j.jneumeth.2015.10.010_bib0180 article-title: Closed-loop neuroscience and neuroengineering publication-title: Front Neural Circuit doi: 10.3389/fncir.2014.00115 – year: 2012 ident: 10.1016/j.jneumeth.2015.10.010_bib0170 – volume: 22 start-page: 047510 issue: 4 year: 2012 ident: 10.1016/j.jneumeth.2015.10.010_bib0025 article-title: Applied Koopmanism publication-title: Chaos: Interdiscip J Nonlinear Sci doi: 10.1063/1.4772195 – volume: 13 start-page: 411 issue: 4 year: 2000 ident: 10.1016/j.jneumeth.2015.10.010_bib0110 article-title: Independent component analysis: algorithms and applications? publication-title: Neural Netw doi: 10.1016/S0893-6080(00)00026-5 – volume: 109 start-page: 18583 issue: 45 year: 2012 ident: 10.1016/j.jneumeth.2015.10.010_bib0115 article-title: Sleep spindles are locally modulated by training on a brain–computer interface? publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1207532109 – year: 2008 ident: 10.1016/j.jneumeth.2015.10.010_bib0220 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: Bull Am Phys Soc – year: 2009 ident: 10.1016/j.jneumeth.2015.10.010_bib0200 article-title: Multivariate empirical mode decomposition publication-title: Proc R Soc A: Math Phys Eng Sci – year: 2013 ident: 10.1016/j.jneumeth.2015.10.010_bib0240 – year: 2014 ident: 10.1016/j.jneumeth.2015.10.010_bib0075 article-title: Mapping brain activity at scale with cluster computing publication-title: Nat Methods doi: 10.1038/nmeth.3041 – volume: 31 start-page: 209 issue: 1 year: 2006 ident: 10.1016/j.jneumeth.2015.10.010_bib0210 article-title: Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.021 – volume: 23 start-page: 79 issue: 1 year: 2007 ident: 10.1016/j.jneumeth.2015.10.010_bib0235 article-title: A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition? publication-title: J Comput Neurosci doi: 10.1007/s10827-007-0020-3 – volume: 7 start-page: 139 issue: 2 year: 2015 ident: 10.1016/j.jneumeth.2015.10.010_bib0185 article-title: Discovering dynamic patterns from infectious disease data using dynamic mode decomposition? publication-title: Int Health doi: 10.1093/inthealth/ihv009 – volume: 41 start-page: 309 issue: 1–3 year: 2005 ident: 10.1016/j.jneumeth.2015.10.010_bib0155 article-title: Spectral properties of dynamical systems, model reduction and decompositions publication-title: Nonlinear Dyn doi: 10.1007/s11071-005-2824-x – volume: 9 start-page: 474 issue: 10 year: 2005 ident: 10.1016/j.jneumeth.2015.10.010_bib0080 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence? publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2005.08.011 – volume: 11 start-page: 385 issue: 4 year: 2014 ident: 10.1016/j.jneumeth.2015.10.010_bib0250 article-title: Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods publication-title: Nat Methods doi: 10.1038/nmeth.2855 – year: 1998 ident: 10.1016/j.jneumeth.2015.10.010_bib0100 – volume: 11 start-page: 100 issue: 2 year: 2010 ident: 10.1016/j.jneumeth.2015.10.010_bib0245 article-title: Abnormal neural oscillations and synchrony in schizophrenia? publication-title: Nat Rev Neurosci doi: 10.1038/nrn2774 – volume: 132 start-page: 529 issue: 2 year: 2005 ident: 10.1016/j.jneumeth.2015.10.010_bib0055 article-title: Overnight verbal memory retention correlates with the number of sleep spindles? publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.01.011 – volume: 65 start-page: 801 year: 2005 ident: 10.1016/j.jneumeth.2015.10.010_bib0145 article-title: Empirical mode decomposition: a method for analyzing neural data publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.10.077 – year: 2015 ident: 10.1016/j.jneumeth.2015.10.010_bib0140 – year: 2005 ident: 10.1016/j.jneumeth.2015.10.010_bib0125 – volume: 97 start-page: 118102 issue: 11 year: 2006 ident: 10.1016/j.jneumeth.2015.10.010_bib0005 article-title: Does the 1/f frequency scaling of brain signals reflect self-organized critical states? publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.97.118102 – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.jneumeth.2015.10.010_bib0225 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J Fluid Mech doi: 10.1017/S0022112010001217 – start-page: 1881 year: 2009 ident: 10.1016/j.jneumeth.2015.10.010_bib0035 article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity publication-title: Adv Neural Inform Process Syst – volume: 26 start-page: 12914 issue: 50 year: 2006 ident: 10.1016/j.jneumeth.2015.10.010_bib0070 article-title: Elevated sleep spindle density after learning or after retrieval in rats? publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3175-06.2006 – volume: 22 start-page: 6830 issue: 15 year: 2002 ident: 10.1016/j.jneumeth.2015.10.010_bib0085 article-title: Learning-dependent increases in sleep spindle density? publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-15-06830.2002 – volume: 25 start-page: 26 issue: 1 year: 1994 ident: 10.1016/j.jneumeth.2015.10.010_bib0215 article-title: Automatic sleep-spindle detection procedure: aspects of reliability and validity? publication-title: Clin EEG Neurosci – volume: 30 start-page: 350 issue: 1 year: 2010 ident: 10.1016/j.jneumeth.2015.10.010_bib0150 article-title: Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3276-09.2010 – volume: 121 start-page: 1176 issue: 8 year: 2010 ident: 10.1016/j.jneumeth.2015.10.010_bib0260 article-title: Intracranial cortical localization of the human k-complex? publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.12.039 – volume: 70 start-page: 153 issue: 1 year: 2011 ident: 10.1016/j.jneumeth.2015.10.010_bib0175 article-title: Regional slow waves and spindles in human sleep? publication-title: Neuron doi: 10.1016/j.neuron.2011.02.043 – volume: 6 start-page: 813 issue: 9 year: 1977 ident: 10.1016/j.jneumeth.2015.10.010_bib0095 article-title: Robust regression using iteratively reweighted least-squares? publication-title: Commun Stat Theory Methods doi: 10.1080/03610927708827533 – volume: 15 start-page: 70 issue: 2 year: 1967 ident: 10.1016/j.jneumeth.2015.10.010_bib0255 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans Audio Electroacoust doi: 10.1109/TAU.1967.1161901 – volume: 35 start-page: 485 year: 2012 ident: 10.1016/j.jneumeth.2015.10.010_bib0090 article-title: Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis publication-title: Annu Rev Neurosci doi: 10.1146/annurev-neuro-062111-150410 – volume: 27 start-page: 2424 issue: 9 year: 2007 ident: 10.1016/j.jneumeth.2015.10.010_bib0160 article-title: Spectral changes in cortical surface potentials during motor movement? publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3886-06.2007 – year: 2013 ident: 10.1016/j.jneumeth.2015.10.010_bib0020 – volume: 641 start-page: 115 year: 2009 ident: 10.1016/j.jneumeth.2015.10.010_bib0205 article-title: Spectral analysis of nonlinear flows publication-title: J Fluid Mech doi: 10.1017/S0022112009992059 – volume: 26 start-page: 024103 issue: 2 year: 2014 ident: 10.1016/j.jneumeth.2015.10.010_bib0130 article-title: Sparsity-promoting dynamic mode decomposition publication-title: Phys Fluids doi: 10.1063/1.4863670 – year: 2012 ident: 10.1016/j.jneumeth.2015.10.010_bib0050 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – year: 2015 ident: 10.1016/j.jneumeth.2015.10.010_bib0120 – volume: 22 start-page: 887 issue: 6 year: 2012 ident: 10.1016/j.jneumeth.2015.10.010_bib0045 article-title: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses publication-title: J Nonlinear Sci doi: 10.1007/s00332-012-9130-9 – volume: 8 start-page: 620 issue: 5 year: 1985 ident: 10.1016/j.jneumeth.2015.10.010_bib0135 article-title: An eigensystem realization algorithm for modal parameter identification and model reduction publication-title: J Guid Control Dyn doi: 10.2514/3.20031 – volume: 29 start-page: 331 issue: 5 year: 2015 ident: 10.1016/j.jneumeth.2015.10.010_bib0010 article-title: Estimation of perturbations in robotic behavior using dynamic mode decomposition? publication-title: Adv Robot doi: 10.1080/01691864.2014.981292 – volume: 304 start-page: 1926 issue: 5679 year: 2004 ident: 10.1016/j.jneumeth.2015.10.010_bib0030 article-title: Neuronal oscillations in cortical networks? publication-title: Science doi: 10.1126/science.1099745 – volume: 262 start-page: 679 issue: 5134 year: 1993 ident: 10.1016/j.jneumeth.2015.10.010_bib0230 article-title: Thalamocortical oscillations in the sleeping and aroused brain? publication-title: Science doi: 10.1126/science.8235588 – year: 1992 ident: 10.1016/j.jneumeth.2015.10.010_bib0040 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.jneumeth.2015.10.010_bib0105 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc R Soc Lond Ser A: Math Phys Eng Sci doi: 10.1098/rspa.1998.0193 – volume: 19 start-page: 374 issue: 2 year: 2010 ident: 10.1016/j.jneumeth.2015.10.010_bib0195 article-title: Validating an automated sleep spindle detection algorithm using an individualized approach? publication-title: J Sleep Res doi: 10.1111/j.1365-2869.2009.00802.x – volume: 21 start-page: 3175 issue: 9 year: 2001 ident: 10.1016/j.jneumeth.2015.10.010_bib0190 article-title: Gating of human theta oscillations by a working memory task? publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-09-03175.2001 – volume: 51 start-page: 467 issue: 4 year: 2006 ident: 10.1016/j.jneumeth.2015.10.010_bib0015 article-title: Encoding and decoding of overlapping odor sequences? publication-title: Neuron doi: 10.1016/j.neuron.2006.07.018 – year: 2014 ident: 10.1016/j.jneumeth.2015.10.010_bib0060 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat Neurosci doi: 10.1038/nn.3776 |
SSID | ssj0004906 |
Score | 2.6237383 |
Snippet | •Dynamic mode decomposition (DMD) extracts dynamically coherent patterns from large-scale neuronal recordings.•Multiple, distinct sleep spindle networks are... There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of... BACKGROUNDThere is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Adult Algorithms Brain - physiology Brain Mapping - methods Child Dynamic mode decomposition Electrocorticography Electroencephalography - methods Feature extraction Female Humans Models, Neurological Principal Component Analysis Sleep spindles Spatiotemporal modes |
Title | Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition |
URI | https://dx.doi.org/10.1016/j.jneumeth.2015.10.010 https://www.ncbi.nlm.nih.gov/pubmed/26529367 https://www.proquest.com/docview/1751994226 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkFAvFY8-lpeMVPWW3WzsOMlxhUBbEFxaJG5R7Dh0V4t3YbMSXBD_gX_IL2HGcWgrFXHgEimJrVieiecb-5sZgG8lLxAIaPRNykrhJUkCJaQMMmWUjowW0h3FnJ7J4bk4vogvluCgjYUhWqVf-5s13a3W_knPz2ZvNhr1flIgDjpV5LKHPI0oiE-IhLS8e_-H5iEyV1-TGtN5ZfhXlPC4O7ZmQZWaieIVd4nlRZG0_zdQrwFQZ4iO1uCjR5Bs0AxyHZaM3YDNgUXv-eqOfWeO0-k2yzdg9dQfnW_C9eFt7SKi7CWbE426mDw9PPrMVBOmp78p8K9mM5dw087ZyLIJ0cSDOYrRMEp8ie2aTR3aXmdEmb9kZVPSnlFJHVYaoqh7HtgnOD86_HUwDHy9hUCLNKoDkfBIofsUyiIr-orLKkUfs5BVv1KU5cXoRMUF-lQm60eaxyqsUJSZovwyCt_xz7Bsp9Z8BRbyBIEXmn5p-qIoZUoVjmNEQ6lOI27iDsTtJOfaJyOnmhiTvGWdjfNWODkJh56jcDrQe-k3a9JxvNkja2WY_6NYOdqMN_vut0LP8a-jo5TCmuliniPooqTKiF078KXRhpfxRDJGDCWTrXd8eRs-4J3b6-HhDizXNwuzi-inVntOvfdgZfDjZHj2DP5WBmE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQRcELQ8tryMhLilm41jJzmuqlZb2t0LrdSbFTtO2dXiXdisRG_8h_7D_hJmHKeABOqBSw5-KJHHsb-xv_kG4H3FSwQCBn2Tqtb4yLJIp1JGhbbaJNak0l_FTKZyfJ5-vBAXW3DQxcIQrTKs_e2a7lfrUDIIozlYzWaDTxSIg04Vuewxz5PiHmyTOpXowfbo-GQ8_RUeWfgUm9Serizj3wKF5_tzZzeUrJlYXmKfiF4UTPv3PepfGNTvRUeP4VEAkWzUfucT2LJuB3ZHDh3oL1fsA_O0Tn9evgP3J-H2fBe-Hn5vfFCUu2RrYlKXi5sf10GcasHM8jPF_jVs5TU33ZrNHFsQUzxaoyUtI-1LbNee69AJOyPW_CWr2qz2jLLqsMoSSz1QwZ7C-dHh2cE4CikXIpPmSROlGU80elCxLItyqLmsc3QzS1kPa01CL9ZkWpToVtlimBgudFyjNQtNEjMa6_gz6Lmlsy-AxTxD7IW7v7TDtKxkTkmOBQKi3OQJt6IPohtkZYIeOaXFWKiOeDZXnXEUGYfK0Th9GNz2W7WKHHf2KDobqj_mlsJt486-7zqjK_zx6DaldHa5WSvEXaSrjPC1D8_b2XD7PYkUCKNktvcfb34LD8Znk1N1ejw9eQkPscYf_fD4FfSabxv7GsFQo9-Eyf4T73MJEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+spatial%E2%80%93temporal+coherent+patterns+in+large-scale+neural+recordings+using+dynamic+mode+decomposition&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Brunton%2C+Bingni+W.&rft.au=Johnson%2C+Lise+A.&rft.au=Ojemann%2C+Jeffrey+G.&rft.au=Kutz%2C+J.+Nathan&rft.date=2016-01-30&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=258&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.10.010&rft.externalDocID=S0165027015003829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |